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Abstract

Anisotropic Hermitian spaces can be characterised as anisotropic ortho-
geometries, that is, as projective spaces that are additionally endowed
with a suitable orthogonality relation. But linear dependence is uniquely
determined by the orthogonality relation and hence it makes sense to
investigate solely the latter. It turns out that by means of orthosets,
which are structures based on a symmetric, irreflexive binary relation,
we can achieve a quite compact description of the inner-product spaces
under consideration. In particular, Pasch’s axiom, or any of its variants,
is no longer needed.

Having established the correspondence between anisotropic Hermitian
spaces on the one hand and so-called linear orthosets on the other hand,
we moreover consider the respective symmetries. We present a version
of Wigner’s Theorem adapted to the present context.
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1 Introduction

The characterisation of linear spaces by means of the linear dependence rela-
tion is a topic whose roots go far into the past. As the first milestone, we might
consider von Staudt’s contributions to what he called “Geometrie der Lage”,
published in 1856–1857 [Sta]. In 1908, Veblen and Young laid the basis for the
coordinatisation theorem of projective geometry as we know it today [VeYo].
Presumably much later inner-product spaces were studied in this context. In
addition to the ternary linear dependence relation, the binary relation of or-
thogonality was considered. It is in the seminal paper [BiNe] of Birkhoff and
von Neumann where we find the key fact needed to understand the mutual
relationship between orthogonality and an inner product.

In the present paper we are interested in linear spaces endowed with a
sesquilinear form that is symmetric and anisotropic. That is, we focus on aniso-
tropic Hermitian spaces, in the sequel simply referred to as Hermitian spaces.
By an orthogeometry, we mean a projective space endowed with an orthogon-
ality relation ⊥ such that ⊥ is symmetric and irreflexive, any point orthogonal
to two points is orthogonal to the whole line spanned by them, and any point
on a line is orthogonal to another point on that line. It turns out that or-
thogeometries coincide, up to isomorphism, with those arising from Hermitian
spaces [FaFr].

To formulate this result, however, it seems to be unnecessary to make use
of the linear dependence relation. Indeed, the linear span ⟨u, v⟩ of two vectors
u and v of a Hermitian space coincides with {u, v}⊥⊥ and is thus expressible by
the orthogonality relation. Here, for any set S of vectors, S⊥⊥ is the subspace
consisting of those vectors that are orthogonal to all vectors orthogonal to
every member of S. At least in principle, it is thus immediate that Hermitian
spaces can be characterised solely by means of the orthogonality relation. It
is less evident that this can be done in such a way that the conditions on the
linear dependence relation are largely omitted. In the language of projective
geometry, we may say that our conditions do not involve planes but only lines.
In particular, we can dispense with Pasch’s axiom, which we consider as the
condition hardest to motivate among the axioms of projective geometry.

To provide a concise characterisation of the orthogonality relation ⊥ on a
Hermitian space is the primary purpose of this paper. Our starting point is the
notion of an orthogonality space, or an orthoset for short: a setX endowed with
a symmetric and irreflexive binary relation ⊥. Our focus is on the following
combinatorial principle. We call an orthoset linear if, for any distinct elements
e, f ∈ X, there is a third one g ∈ X such that the orthogonal complements
of {e, f} and {e, g} coincide and exactly one of f and g is orthogonal to e.
This is all we need; we will establish the mutual correspondence between linear
orthosets and Hermitian spaces. As usual we have to exclude the case of low
ranks; the theory works only under the assumption that the orthosets contain
at least four mutually orthogonal elements.
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The idea to consider orthosets in the present context goes back to David
Foulis and his collaborators; see, e.g., [Dac, Wlc]. The collection of one-
dimensional subspaces of a Hilbert space has the natural structure of an
orthoset and in principle, this is for us the guiding example as well. The ques-
tion how to characterise (generalised or classical) Hilbert spaces as orthosets
was dealt with, e.g., in [Mac, HePu, Bru, Rum, Vet1, Vet2]. Here, we ad-
dress a more general context. Indeed, the present work might be understood
as a “local” study of inner-product spaces. Roughly speaking, we focus on
properties that pairs of vectors may have and neglect properties that involve
subspaces of possibly infinite dimensions. In this context it is unlikely, say, to
ensure the orthomodularity of the subspace lattice, which would give us the
chance to apply, e.g., Wilbur’s theory [Wlb] or Solèr’s Theorem [Sol].

We already established in [Vet1] that linear orthosets of finite rank are
representable by Hermitian spaces. To explain the difficulties that we had to
handle in the case of infinite rank we have to refer to the lattice-theoretic results
that we relied on. Any orthoset gives rise in a canonical manner to a complete
ortholattice; under a mild assumption, the latter contains the former as its
atom space. A lattice-theoretic characterisation of Hermitian spaces is in turn
well-known; provided that the dimension is at least 4, the set of orthoclosed
subspaces can be described as a complete, irreducible, atomistic ortholattice
with the covering property [MaMa, Section 34]. It is not difficult to verify that
the linearity of an orthoset implies the covering property of the corresponding
ortholattice if the rank is finite [Vet1]. In case of an infinite rank, however, the
argument is no longer applicable. In [Vet2], we provided an alternative version
of the representation theorem for Hermitian spaces, with the effect that the
conditions imposed on a complete atomistic ortholattice involve finite elements
only. However, one of the conditions from [Vet2] turned out to be redundant
and as a consequence, a formulation is possible involving elements of height 2
only. Consequently, we are in the position to describe Hermitian spaces without
restriction of the dimension by orthosets in the mentioned simple way.

It would certainly be desirable to extend the correspondence between linear
orthosets and Hermitian spaces to include structure-preserving maps. For a
suitable categorical framework, we refer the reader to [PaVe1, PaVe2]. Here,
we restrict to the “less involved” part of this theory: we discuss the correlation
between the automorphisms of both kinds of structures. Numerous results on
the symmetries of projective Hermitian spaces can be found in the literature
and they are commonly referred to as “Wigner’s Theorem”. In the present
context, two versions are relevant. Piron has dealt with the symmetries of the
ortholattice of closed subspaces of an orthomodular space [Pir]. Uhlhorn has
dealt with the symmetries of the orthoset of one-dimensional subspaces of a
classical Hilbert space [Uhl]. Dealing with the one-dimensional subspaces of
a Hermitian space, we establish the natural generalisation of both variants.
Although no new methods of proof are needed, we feel that we fill a gap and
we provide the necessary arguments in a concise form.
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The paper is structured as follows. Notation, terminology, and basic facts
are compiled in the subsequent Section 2. Section 3 is devoted to the improved
version of a lattice-theoretic characterisation of Hermitian spaces. Applying
this result, we are led in Section 4 to a correspondence between Hermitian
spaces on the one hand and linear orthosets on the other hand. Section 5
contains the version of Wigner’s Theorem relevant in the present context.

2 Hermitian spaces, orthosets, and
orthogeometries

We start by fixing the basic terminology and providing some background
information.

A ⋆-sfield is meant be an sfield (i.e., a division ring) equipped with an
involutory antiautomorphism. Let H be a (left) linear space over the ⋆-sfield
F with the antiautomorphism ⋆. A Hermitian form on H is a symmetric
sesquilinear form, that is, a map (·, ·) : H×H → F such that, for any u, v, w ∈
H and α, β ∈ F ,

(αu+ βv,w) = α (u,w) + β (v, w) ,

(w,αu+ βv) = (w, u)α⋆ + (w, v)β⋆,

(u, v) = (v, u)
⋆
.

We additionally assume in this paper Hermitian forms to be anisotropic, mean-
ing that (u, u) = 0 holds only in case u = 0. Endowed with an (anisotropic)
Hermitian form, H becomes a Hermitian space.

For a linear space V , we put V • = V \ {0}. For vectors u1, . . . , uk ∈ V •, we
denote by ⟨u1, . . . , uk⟩ the subspace spanned by u1, . . . , uk. We define P (V ) to
be the collection of one-dimensional subspaces of V , that is,

P (V ) = {⟨u⟩ : u ∈ V •}.

Our primary issue is the reduction of a Hermitian space H to an algebraic or
a relational structure. In order to do so, it seems to make sense to proceed
in two steps: first to consider the linear dependence relation, then the inner
product. We can deal with both aspects by endowing P (H) with a suitable
structure. Let us review the basic facts.

Definition 2.1 An (irreducible) projective space is a non-empty set P together with
a map ⋆ : P × P → P(P ) such that, for any e, f, g, h ∈ P , the following conditions
hold.

(P1) e, f ∈ e ⋆ f , and e ⋆ f contains an element distinct from e and f if and
only if e ̸= f .

(P2) If g, h ∈ e ⋆ f and g ̸= h, then g ⋆ h = e ⋆ f .
(P3) Let e ̸= g and f ̸= h. Then e ⋆ f ∩ g ⋆ h ̸= ∅ implies e ⋆ g ∩ f ⋆ h ̸= ∅.
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For a subset B of a projective space P , we denote by ⟨B⟩ the smallest subset of P
containing B and such that e, f ∈ ⟨B⟩ implies e ⋆ f ⊆ ⟨B⟩. The rank of P is the
minimal cardinality of the subsets B ⊆ P such that ⟨B⟩ = P .

The elements of a projective space are commonly called points; ⟨e, f⟩ =
e ⋆ f is called the line spanned by the distinct points e and f ; and ⟨e, f, g⟩
is called a plane, provided that the points e, f , g are not contained in a
line. By (P1), each line contains at least three points, and by (P2), any two
distinct points belong to exactly one line. (P3), also called Pasch’s axiom,
might be found geometrically appealing – “two lines in a plane have a non-
empty intersection” –, but has otherwise no straightforward interpretation. We
note, however, that we may extend ⋆ elementwise to an operation on subsets
and replace (P3) with the condition that ⋆ is associative.

A subset B of a projective space P is called independent if e /∈ ⟨B \ {e}⟩
for any e ∈ B. A basis of P is an independent set B ⊆ P such that ⟨B⟩ = P .
If P is of finite rank n, then any basis consists of n points.

Provided that we deal with dimensions ⩾ 4, projective spaces provide the
possibility of describing linear spaces. We cite the classical coordinatisation
theorem; see, e.g., [FaFr, Theorem 9.2.6].

Theorem 2.2 Let V be a linear space. Then P (V ), together with the map ⋆ given by

⟨u⟩ ⋆ ⟨v⟩ = {⟨w⟩ : w ∈ ⟨u, v⟩•},
is a projective space. Up to isomorphism, any projective space of rank ⩾ 4 arises in
this way.

Next, let H be a Hermitian space. We call vectors u, v ∈ H • orthogonal if
(u, v) = 0; we write u ⊥ v in this case. The binary relation ⊥ is compatible
with the transition from H to P (H) and we arrive at the following abstraction
from H.

Definition 2.3 An orthoset (or orthogonality space) is a non-empty set X equipped
with a symmetric, irreflexive binary relation ⊥, called the orthogonality relation.

A subset of an orthoset X consisting of mutually orthogonal elements is called a
⊥-set. The supremum of the cardinalities of ⊥-sets is called the rank of (X,⊥).

By the symmetry and anisotropy of the Hermitian form, it is immediate
that any Hermitian space H gives rise to the orthoset (P (H),⊥). Further
properties of the orthogonality relation come along with the notion of an or-
thogeometry, which is discussed in Faure and Frölicher’s monograph [FaFr,
Section 14.1].

Definition 2.4 Let P be a projective space and let ⊥ be a binary relation making P
into an orthoset. Then we call (P,⊥) an orthogeometry provided that the following
conditions hold:
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(O1) If e ⊥ f, g, then e ⊥ h for any h ∈ f ⋆ g.
(O2) If e ̸= f , there is a g ∈ e ⋆ f such that g ⊥ e.

We note that our definition differs from the one given in [FaFr]; here, we
assume orthogeometries to be anisotropic. The subsequent lemma shows that
an orthogeometry understood according to Definition 2.4 is actually the same
as an anisotropic orthogeometry in the sense of Faure and Frölicher.

Lemma 2.5 Let (P,⊥) be an orthogeometry. Then, for any e, f, h such that e ̸= f ,
there is a g ∈ e ⋆ f such that h ⊥ g.

Proof Let e and f be distinct points and h any further point. If h ∈ e⋆f , the assertion
is clear from (P2) and (O2). Assume that h /∈ e ⋆ f . By (O2), there is an e′ ⊥ h such
that h ⋆ e = h ⋆ e′ and, similarly, there is a f ′ ⊥ h such that h ⋆ f = h ⋆ f ′. Then
e⋆f and e′ ⋆f ′ are lines contained in the plane ⟨e, f, h⟩ and hence possess a common
point g. By (O1), g fulfils the requirements. □

By the rank of an orthogeometry (P,⊥) we mean the rank of (P,⊥) as an
orthoset. If finite, this value coincides with the rank of P as a projective space.

Lemma 2.6 Let (P,⊥) be an orthogeometry. Then the rank of (the orthoset) (P,⊥)
is finite if and only if so is the rank of P as a projective space, and in this case the
two values coincide.

Proof Let m be the rank of the orthoset and let n be the rank of the projective space.
Assume first that m is finite. Then there is a maximal ⊥-set B = {e1, . . . , em}.

We claim that B is a basis of P , implying that m = n. Indeed, by (O1), B is
independent. Assume that there is an f /∈ ⟨B⟩. By (O2), there is an f1 ∈ e1 ⋆ f
such that f1 ⊥ e1, and by (P2) we have e1 ⋆ f = e1 ⋆ f1. Moreover, f1 ̸= e2
because otherwise f ∈ e1 ⋆ e2 in contradiction to our assumption. Hence we may
argue again that there is an f2 ⊥ e2 such that e2 ⋆ f1 = e2 ⋆ f2. Note that then
⟨e1, e2, f⟩ = ⟨e1, e2, f2⟩ and f2 ⊥ e1, e2. Applying the same argument repeatedly, we
eventually conclude that there is an fm ⊥ B, contradicting the maximality of the
⊥-set B. It follows ⟨B⟩ = P , that is, B is a basis of P and consequently m = n.

Assume second that m is infinite. Then P contains an infinite independent set,
hence n is infinite as well. □

Orthogeometries characterise Hermitian spaces of dimension ⩾ 4. In the
finite-dimensional case, a related statement was shown in [BiNe], cf. also
[MaMa, (34.3)]. For the general case, we refer to [FaFr, Section 14.1].

Theorem 2.7 Let H be a Hermitian space. Then (P (H),⊥) is an orthogeometry.
Up to isomorphism, any orthogeometry of rank ⩾ 4 arises in this way.



Springer Nature 2021 LATEX template

Linear orthosets and orthogeometries 7

Proof P (H) is a projective space by Theorem 2.2, and (O1) obviously holds. More-

over, for linearly independent vectors u, v ∈ H
•
, we have v − (v, u) (u, u)−1u ⊥ u

and we conclude that also (O2) is fulfilled.
For the converse assertion, let (P,⊥) be an orthogeometry of rank ⩾ 4. Then,

by Theorem 2.2, there is a linear space H such that the projective spaces P and
P (H) are isomorphic. By Lemma 2.6, the projective space P (H) has rank ⩾ 4 and
consequently H has dimension ⩾ 4. By [FaFr, Theorem 14.1.8], there is a Hermitian
form on H inducing the orthogonality relation on P (H) imparted by P . □

3 Lattice-theoretic description of Hermitian
spaces

The aim of this section is to establish a lattice-theoretic characterisation of
Hermitian spaces. Provided that the dimension is at least 4, Hermitian spaces
correspond to the complete, irreducible atomistic ortholattices with the cov-
ering property [MaMa, Theorems (34.2), (34.5)]. Our aim is to replace the
lattice-theoretic conditions by weaker ones. More specifically, the covering
property involves all elements of the lattice including the non-finite ones and
we wish to replace it with a condition that involves finite elements only. We
have shown in [Vet2] that this is possible and we will present here an im-
proved version. Our proof will moreover be comparatively short, this time not
following the lines of [MaMa] but being based on Theorem 2.7.

We recall that an ortholattice is a bounded lattice equipped with an order-
reversing involution ⊥ such that, for any a, a⊥ is a complement of a. Elements
a and b of an ortholattice are called orthogonal if a ⩽ b⊥; we write a ⊥ b in
this case.

Furthermore, a lattice with 0 is atomistic if every element is a join of atoms,
and the joins of finitely many atoms (including 0) are called the finite elements.

For an atomistic ortholattice, we shall consider the following condition:

(L) For any distinct atoms p and q, there is an atom r ⊥ p such that p ∨ q =
p ∨ r.

Let us compile the consequences of condition (L).

Lemma 3.1 Let L be an atomistic ortholattice fulfilling (L). Let a be a finite element
of L and let p be an atom of L not below a. Then there is an atom q ⊥ a such that
a ∨ p = a ∨ q.

Proof The assertion follows from the following fact, cf. [Vet2]:
(⋆) Let r1, . . . , rk, where k ⩾ 1, be pairwise orthogonal atoms and let p be

an atom not below r1 ∨ . . . ∨ rk. Then there is an atom q ⊥ r1, . . . , rk such that
r1 ∨ . . . ∨ rk ∨ p = r1 ∨ . . . ∨ rk ∨ q.

To see (⋆), we construct successively a sequence q0, . . . , qk of atoms such that,
for any i ⩾ 1, qi ⊥ r1, . . . , ri and r1 ∨ . . . ∨ ri ∨ qi = r1 ∨ . . . ∨ ri ∨ p. Namely, set
q0 = p. Given qi−1, we may by (L) choose qi ⊥ ri such that ri∨ qi−1 = ri∨ qi. □
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Lemma 3.2 Let L be an atomistic ortholattice fulfilling (L). Let a be finite and let
p, q be atoms orthogonal to a. Then a ∨ p ⩽ a ∨ q implies p = q.

Proof Assume to the contrary that a∨ p ⩽ a∨ q and p ̸= q. By (L), there is an atom
p′ ⊥ q such that p∨q = p′∨q. Then, on the one hand, p′ ⩽ p∨q ⊥ a, hence p′ ⊥ a∨q.
On the other hand, p′ ⩽ a ∨ p′ ∨ q = a ∨ p ∨ q = a ∨ q, a contradiction. □

Let L be an atomistic lattice. We write a<· b if a is covered by b. We recall
that L is said to fulfil the covering property if, for any a ∈ L and any atom
p ∈ L such that p ≰ a, we have a <· a ∨ p. If this is the case whenever a is
finite, L is said to fulfil the finite covering property.

Note that if L has the finite covering property, it also has the finite exchange
property. Indeed, if in this case a is a finite element of L, p and q are atoms,
and p ≰ a but p ⩽ a ∨ q, then a < a ∨ p ⩽ a ∨ q and thus a ∨ p = a ∨ q.

Lemma 3.3 Let L be an atomistic ortholattice fulfilling (L). Then L fulfils the finite
covering property.

Proof Let a ∈ L be a finite element and let p be an atom of L such that p ≰ a. Let
b ∈ L be such that a < b ⩽ a ∨ p. Then there is an atom q ⩽ b such that q ≰ a and
hence a < a ∨ q ⩽ a ∨ p.

By Lemma 3.1, there are p′, q′ ⊥ a be such that a∨ p = a∨ p′ and a∨ q = a∨ q′.
Moreover, by Lemma 3.2, a ∨ q′ ⩽ a ∨ p′ implies p′ = q′. It follows a ∨ p = a ∨ q ⩽
b ⩽ a ∨ p, that is, b = a ∨ p. □

We insert the following lattice-theoretic result, cf. [MaMa, (27.4)].

Lemma 3.4 Let L be an atomistic ortholattice with the covering property. Then for
any a, b ∈ L, a <· a ∨ b implies a ∧ b <· b.

Proof Let a, b ∈ L be such that a<· a∨ b. Then a⊥ ∧ b⊥ <· a⊥ and hence there is an
atom p ⊥ a but p ̸⊥ b. We have (a⊥ ∧ b⊥) ∨ p ⩽ a⊥ and by the covering property it
in fact follows (a⊥ ∧ b⊥) ∨ p = a⊥. Hence a⊥ ∨ b⊥ = b⊥ ∨ p. Again by the covering
property, we conclude b⊥ <· a⊥ ∨ b⊥, that is, a ∧ b <· b. □

For an element d of an ortholattice L, let us consider the sublattice ↓d =
{a ∈ L : a ⩽ d}. We endow ↓d with the operation

⊥d : ↓d → ↓d, a 7→ a⊥ ∧ d.

Equipped with ⊥d , ↓d becomes an ortholattice if and only if ⊥d is involutory.

Lemma 3.5 Let L be an atomistic ortholattice fulfilling (L) and let d ∈ L be finite.
Then the ↓d is an atomistic ortholattice with the covering property.
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Proof Clearly, ↓d is an atomistic lattice. By Lemma 3.3, ↓d has the finite covering
property. Consequently, by [MaMa, (8.8), (8.17)], ↓d consists of finite elements only.
In particular, ↓d has the covering property.

To see that ↓d is an ortholattice, we have to verify that ⊥d is involutory. For any
a ⩽ d, we clearly have a ⩽ a⊥d⊥d ; let us assume a < a⊥d⊥d . By Lemma 3.1, there
is an atom r ⊥ a such that r ⩽ a⊥d⊥d = (a ∨ d⊥) ∧ d. But then r ⩽ a⊥ ∧ d as well
as r ⩽ a ∨ d⊥, a contradiction. □

An element z of an ortholattice L is called central if x = (x∧ z)∨ (x∧ z⊥)
for any x ∈ L. In this case,

L → ↓z × ↓z⊥, x 7→ (x ∧ z, x ∧ z⊥)

defines an isomorphism between L and the direct product of the ortholattices
↓z and ↓z⊥. We call L irreducible if L does not contain any central elements
apart from 0 and 1.

Moreover, we denote by A(L) the collection of atoms of L, called the atom
space of L.

We shall show that condition (L) implies a complete, atomistic ortholat-
tice to be decomposable into irreducible components. The following easy
observation will be useful.

Lemma 3.6 Assume that, for any pair p, q of orthogonal atoms of an ortholattice,
there is a third atom r ⩽ p ∨ q. Then L is irreducible.

Proof Let z be a central element distinct from 0 and 1. Let p, q be atoms such
that p ⩽ z and q ⩽ z⊥. Assume that r is an atom such that r ⩽ p ∨ q. Then
r = (r ∧ z)∨ (r ∧ z⊥) and it follows that either r ⩽ z or r ⩽ z⊥. In the first case, we
have r = r ∧ z ⩽ (p ∨ q) ∧ z = p, that is, r = p; in the second case, we similarly see
that r = q. Hence there is no third atom below p ∨ q. □

Theorem 3.7 Let L be an complete, atomistic ortholattice fulfilling (L).

(i) There are mutually orthogonal central elements zι, ι ∈ I, such that, for each
ι ∈ I, ↓zι is an irreducible ortholattice and L → Πι∈I↓zι, x 7→ (x ∧ zι)ι
defines an isomorphism between L and the direct product of ↓zι, ι ∈ I.

(ii) L is irreducible if and only if, for any orthogonal atoms p and q, there is a
third atom r ⩽ p ∨ q.

Proof For atoms p, q ∈ L, we define p ∼ q to hold if p = q or otherwise there is a
third atom r ⩽ p ∨ q. We claim that ∼ is an equivalence relation on A(L). Clearly,
∼ is reflexive and symmetric. Let p, q, r be pairwise distinct atoms such that p ∼ q
and q ∼ r. We need to show that p ∼ r. Recall that, by Lemma 3.5, ↓(p ∨ q ∨ r) is
an ortholattice with the covering property.

Let s ̸= p, q be such that s ⩽ p∨q, and let t ̸= q, r be such that t ⩽ q∨r. Assume
first q ⩽ s∨t. Then s ̸= t and we conclude s ⩽ q∨t. Hence p ⩽ s∨q ⩽ q∨t = q∨r and
thus q ⩽ p∨ r, showing that p ∼ r. Assume second q ≰ s∨ t. Then s∨ t<· s∨ t∨ q =
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(s∨ q)∨ (t∨ q) = (s∨ p)∨ (t∨ r) = (s∨ t)∨ (p∨ r). By Lemma 3.4 we conclude that
(s ∨ t) ∧ (p ∨ r) <· p ∨ r. This implies that there is an atom u below both s ∨ t and
p∨ r. Then u ̸= p because otherwise q ⩽ p∨ q ∨ t = p∨ s∨ t = s∨ t, in contradiction
to our assumption; and similarly we see that u ̸= r. We conclude that p ∼ r.

Let now Aι ⊆ A(L), ι ∈ I, be the equivalence classes w.r.t. ∼, and put zι =
∨

Aι.
By (L), p ∼ q holds for any distinct non-orthogonal atoms p and q. Hence the elements
zι, ι ∈ I, are pairwise orthogonal. Let a ∈ L. Then a ∧ zι =

∨
{p ∈ A(L) : p ⩽ a,

p ∈ Aι} for each ι ∈ I and hence a =
∨

ι(a ∧ zι). For each ι ∈ I, we moreover

have z⊥ι =
∨

κ̸=ι zκ and hence a = (a ∧ zι) ∨ (a ∧ z⊥ι ). Thus zι is central and, by
Lemma 3.6, ↓zι is irreducible. The assertions follow. □

We arrive at the main theorem of this section. We equip the atom space
A(L) of an atomistic lattice L with the operation ⋆, defined for p, q ∈ A(L) by

p ⋆ q = {r ∈ A(L) : r ⩽ p ∨ q}.

We furthermore equip A(L) with the orthogonality relation inherited from L.

Theorem 3.8 Let L be a complete, irreducible, atomistic ortholattice fulfilling (L).
Then (A(L),⊥) is an orthogeometry.

Proof We have to verify that ⋆ makes A(L) into a projective space.
Ad (P1): Clearly, p ∈ A(L) is the only atom below p ∨ p = p. Moreover, if

p, q ∈ A(L) are distinct, then, by (L) and by Theorem 3.7(ii), there is an atom
r ̸= p, q such that r ⩽ p ∨ q.

Ad (P2): Let p, q, r, s ∈ A(L) such that r, s ⩽ p ∨ q and r ̸= s. Then one of r or
s, say r, is distinct from p. By Lemma 3.3, L has the finite exchange property and
hence p∨q = p∨r. Similarly, it follows that p∨r = r∨s. That is, we have r∨s = p∨q.

Ad (P3): Let p, q, r, s ∈ A(L) such that p ̸= r, q ̸= s, and t = (p∨ q)∧ (r∨ s) ̸= 0.
We have to show that then (p ∨ r) ∧ (q ∨ s) ̸= 0.

Case 1. Assume that t is not an atom. Then there are two distinct atoms u and
v such that u, v ⩽ p ∨ q, r ∨ s. By property (P2) that we just proved, it follows
u∨v = p∨ q = r∨ s. A further application of (P2) implies u∨v = p∨ r and similarly
u ∨ v = q ∨ s. The claim follows.

Case 2. Assume that t is an atom. If q ⩽ p∨r, the claim is clear. Assume q ≰ p∨r.
Then t ̸= r, because otherwise r ⩽ p ∨ q and hence q ⩽ p ∨ r by the finite exchange
property. We have t ⩽ r∨ s and by the finite exchange property s ⩽ t∨ r ⩽ p∨ q∨ r.
By the finite covering property, we have p∨r<·p∨r∨q = (p∨r)∨(q∨s). By Lemma
3.5, ↓(p ∨ r ∨ q) is an atomistic ortholattice with the covering property. Hence, by
Lemma 3.4, we conclude that (p∨r)∧(q∨s)<·q∨s. But this means that (p∨r)∧(q∨s)
cannot be 0.

It remains to show that (A(L),⊥) is actually an orthogeometry. Clearly,
(A(L),⊥) is an orthoset. Moreover, condition (O1) is obviously fulfilled, and (O2)
holds by (L). □

We shall apply this result to the description of Hermitian spaces.
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The orthocomplement of a subset S of a Hermitian space H is the subspace
S⊥ = {u ∈ H : u ⊥ v for all v ∈ S}. The subspaces S of H such that S = S⊥⊥

are called orthoclosed. The collection of all orthoclosed subspaces, ordered by
set-theoretic inclusion and equipped with the orthocomplementation, is an
ortholattice, which we denote by C(H).

Lemma 3.9 Let H be a Hermitian space. For any orthoclosed subspace S of H and
any vector u ∈ H

•
, also S + ⟨u⟩ is orthoclosed.

In particular, any finite-dimensional subspace of H is orthoclosed.

Proof See [Piz2, Proposition (2.1.5)]. □

Theorem 3.10 Let H be a Hermitian space. Then C(H) is a complete, irreducible,
atomistic ortholattice fulfilling (L).

Conversely, let L be a complete, irreducible, atomistic ortholattice of length ⩾ 4
fulfilling (L). Then there is a Hermitian space H such that L is isomorphic to the
ortholattice C(H).

Proof Clearly, C(H) is a complete, atomistic ortholattice, and the irreducibility of
C(H) follows from Lemma 3.6. By Lemma 3.9, any two-dimensional subspace of H is
orthoclosed. Hence (L) follows from property (O2) of the orthogeometry (P (H),⊥),
see Theorem 2.7.

To prove the second part, let L be an ortholattice as indicated. By Theorem 3.8,
(A(L),⊥) is an orthogeometry. As L is of length ⩾ 4, we conclude from Lemma 3.1
that L contains 4 mutually orthogonal atoms, that is, the rank of (A(L),⊥) is at
least 4.

By Theorem 2.7, there is a Hermitian space H and an isomorphism φ : A(L) →
P (H) of orthogeometries. In particular, φ is an automorphism of orthosets: atoms p
and q of L are orthogonal if and only if so are the one-dimensional subspaces φ(p)
and φ(q) of H.

For a ∈ L, let

τ(a) =
⋃

{φ(p) : p ∈ A(L) such that p ⩽ a},

that is, the union of all one-dimensional subspaces φ(p), where p is an atom below a.
We claim that τ establishes an isomorphism between the ortholattices L and C(H).
Indeed, for a ∈ L we have

τ(a⊥) =
⋃

{φ(p) : p ⊥ a}

=
⋃

{φ(p) : p ⊥ q for all atoms q ⩽ a}

=
⋃

{φ(p) : φ(p) ⊥ φ(q) for all atoms q ⩽ a}

= {u ∈ H : u ⊥ φ(q) for all atoms q ⩽ a}

= τ(a)⊥.

(1)

In particular, τ(a) = τ(a)⊥⊥ and hence τ(a) ∈ C(H) for each a ∈ L.
It is clear that τ : L → C(H) preserves the order and is injective. By (1), τ

preserves orthocomplements. To see that τ is also surjective, consider the ortho-
closed subspace S⊥, where S ⊆ H. Let a =

∨
{φ−1(⟨u⟩) : u ∈ S

•}. Then τ(a⊥) =
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⋃
{φ(p) : p ⊥ a} =

⋃
{φ(p) : p ⊥ φ−1(⟨u⟩) for all u ∈ S

•} =
⋃
{φ(p) : φ(p) ⊥ u

for all u ∈ S} = S⊥. □

We note the following lattice-theoretic consequence of our results.

Corollary 3.11 Let L be a complete, irreducible, atomistic ortholattice. Then L
fulfils (L) if and only if L has the covering property.

Proof (⇒): Let L fulfil (L). If L is of finite length, L has the covering property
by Lemma 3.3. Otherwise, L is, by Theorem 3.10, isomorphic to C(H) for some
Hermitian space H. Then L has the covering property by Lemma 3.9.

(⇐): Let L have the covering property. For distinct atoms p, q ∈ L, p⊥ <· 1 =
p⊥ ∨ (p ∨ q) implies r = p⊥ ∧ (p ∨ q) <· p ∨ q by Lemma 3.4. Hence r is an atom
orthogonal to p, and p ∨ r = p ∨ q, that is, (L) holds. □

In view of Corollary 3.11, one might wonder whether Theorem 3.10 still
holds when condition (L) is replaced with the finite covering property. The
following example shows that this is not the case.

Example 3.12 Let H be an infinite-dimensional Hilbert space and z ∈ H
•
. Let

L = C(H) \ {⟨z⟩, ⟨z⟩⊥}, partially ordered by set-theoretic inclusion. Then L is a
complete lattice. Indeed, for any collection Aι ∈ L, ι ∈ I, we have that

∧
ι Aι =

⋂
ι Aι

if
⋂

ι Aι ̸= ⟨z⟩ and
∧

ι Aι = {0} otherwise.

Equipped with the orthocomplementation ⊥, L is furthermore an ortholattice.
Indeed, ⊥ is an order-reversing involution and for any A ∈ L, A⊥ ∩A = {0} implies
that A⊥ ∧ A = {0}. We readily check that L is atomistic. Finally, for any vectors
u, v ∈ H

•
there is some w ∈ ⟨u, v⟩•

such that w /∈ ⟨u⟩, ⟨v⟩, ⟨z⟩. We conclude from
Lemma 3.6 that L is irreducible.

The lattice F(L) of finite elements of L consists of all finite-dimensional sub-
spaces of H except for ⟨z⟩. The atoms are the one-dimensional subspaces distinct
from ⟨z⟩. The supremum in F(L) is the algebraic sum, that is, for finite-dimensional
subspaces A,B ∈ L we have A ∨ B = A+ B. As this is the case in C(H) as well, L
has the finite covering property. However, let y ∈ H

•
be such that y ⊥ z. Then there

is no atom below ⟨y, z⟩ that is orthogonal to ⟨y⟩. Hence L does not fulfil (L).
Consequently, L does not have the covering property. Indeed, ⟨y, z⟩⊥ ∨ ⟨y⟩ = 1

but 1 does not cover ⟨y, z⟩⊥.

4 Hermitian spaces as linear orthosets

On the basis of Theorem 3.10, we establish in this section that Hermitian
spaces correspond to orthosets subject to a simple combinatorial axiom. In the
case of finite rank, our result is already known [Vet1].

We define the orthocomplement of a subset A of an orthoset (X,⊥) to be
A⊥ = {f ∈ X : f ⊥ e for all e ∈ A}.
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Definition 4.1 An orthoset (X,⊥) is called linear if, for any distinct element e, f ∈
X, there is a g ∈ X such that {e, f}⊥ = {e, g}⊥ and exactly one of f and g is
orthogonal to e.

Lemma 4.2 For any linearly independent vectors u, v of a Hermitian space, we
have {⟨u⟩, ⟨v⟩}⊥⊥ = ⟨u⟩ ⋆ ⟨v⟩.

Proof We have {⟨u⟩, ⟨v⟩}⊥⊥ = {⟨w⟩ : ⟨w⟩ ⊥ ⟨x⟩ for all x ∈ H
•
such that ⟨x⟩ ⊥

⟨u⟩, ⟨v⟩} = {⟨w⟩ : w ⊥ x for all x ⊥ u, v} = {⟨w⟩ : w ∈ {u, v}⊥⊥}. Moreover, by
Lemma 3.9, {u, v}⊥⊥ = ⟨u, v⟩. The assertion follows. □

Example 4.3 The orthoset (P (H),⊥) associated with any Hilbert space H is linear.
In fact, for any Hermitian space H, (P (H),⊥) is linear. This is easily seen from
Lemma 4.2.

Any orthoset gives rise to an ortholattice in a natural way. Namely, the
map sending any A ⊆ X to A⊥⊥ = (A⊥)⊥ is a closure operation and the sets
in its image are called orthoclosed. The lattice of orthoclosed subsets of X is
denoted by C(X,⊥) and the orthocomplementation ⊥ makes C(X,⊥) into an
ortholattice.

Lemma 4.4 Let (X,⊥) be a linear orthoset. Then C(X,⊥) is a complete, ir-
reducible, atomistic ortholattice fulfilling (L). Moreover, (X,⊥) is isomorphic to
(A(C(X,⊥)),⊥).

Proof As in case of any closure space, C(X,⊥) is a complete lattice and we have
already noted that, equipped with ⊥, C(X,⊥) is an ortholattice.

Moreover, we have {e}⊥⊥ = {e} for any e ∈ X. Indeed, if {e}⊥⊥ contained an
element f distinct from e, then, by linearity, there would be a g ∈ {e}⊥ such that
g ∈ {e, g}⊥⊥ = {e, f}⊥⊥ = {e}⊥⊥, a contradiction. We conclude that the atoms
of C(X,⊥) are the singletons and in particular, C(X,⊥) is atomistic. In particular,
the map X → A(C(X,⊥)), e 7→ {e} defines an isomorphism of orthosets. Moreover,
the linearity of (X,⊥) implies condition (L) and, in view of Lemma 3.6, also the
irreducibility. □

We now arrive at the above-mentioned correspondence between linear
orthosets and Hermitian spaces.

Theorem 4.5 Let (X,⊥) be an orthoset of rank ⩾ 4. Then (X,⊥) is linear if and
only if there is a Hermitian space H such that (X,⊥) is isomorphic to (P (H),⊥).

Proof The “only if” part is the consequence of Lemma 4.4 and Theorem 3.10. The
“if” part is clear from Example 4.3. □

We conclude the section by an informal comparison of the axioms defining
orthogeometries with the conditions proposed here to characterise Hermitian
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spaces. Let us reformulate to this end Theorem 4.5 in a way that comes closer
to the style of projective geometry. For elements e and f of an orthoset, we
put e ⋆ f = {e, f}⊥⊥.

Theorem 4.6 Let (X,⊥) be an orthoset of rank ⩾ 4. Then there is a Hermitian
space H such that (P (H),⊥) is isomorphic to (X,⊥) if and only if the following
holds:

(M1) For any distinct elements e, f ∈ X, there is a g ∈ e ⋆ f such that g ⊥ e
and e ⋆ f = e ⋆ g.

(M2) For any orthogonal elements e, f ∈ X, e ⋆ f contains an element distinct
from e and f .

Proof To see the “if” part, we argue similarly as in case of Lemma 4.4 to see that
(M1) and (M2) imply C(X,⊥) to be an complete, irreducible, atomistic ortholattice
fulfilling (L). So the assertion follows again from Theorem 3.10. The “only if” part
is clear. □

We observe that all conditions of Theorem 4.6 can in some form or the
other be found among (P1)–(P3), (O1)–(O2). Indeed, the requirement that
(P (H),⊥) is an orthoset is part of the definition of an orthogeometry, (M1)
corresponds to (O2) provided that (P2) holds, and (M2) is part of (P1).

Conversely, we may check for analogues of (P1)–(P3), (O1)–(O2). The re-
quirement of (P1) that the line e ⋆ f contains e and f holds by construction
and so does (O1). Moreover, the requirement of (P1) according to which e ⋆ e
is a singleton does not occur, and a particular case of (P2) as well as (O2) is
covered by (M1). Finally, there is no analogue of Pasch’s axiom (P3).

5 The correspondence of automorphisms

It would be desirable to extend the correspondence between linear orthosets
and Hermitian spaces to a categorical level. For this issue, we refer the reader
to [PaVe1, PaVe2]. Here, we shall deal with the close relationship between the
respective automorphism groups.

There are many versions of Wigner’s theorem. The formulations that
come closest to our context are Piron’s lattice-theoretic version [Pir, The-
orem (3.28)] and Uhlhorn’s orthogonality-based version [Uhl, Theorem 4.2].
The former is given for orthomodular spaces, the latter for complex Hilbert
spaces. Dealing with Hermitian spaces, we may consider our version as a
common generalisation of both.

Let V be a linear space over a sfield F . A map A : V → V is called semilin-
ear if A is a homomorphism of the additive group and, for some automorphism
σ of F , we have A(αu) = ασA(u) for all u ∈ V . If, in addition, A is bijective,
then also A−1 is semilinear and we speak of a semilinear automorphism.

Let us consider the projective space P (V ) associated with V . An auto-
morphism of P (V ) is a bijection φ : P (V ) → P (V ) such that, for any
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e, f ∈ P (V ), e ∈ f ⋆ g if and only if φ(e) ∈ φ(f) ⋆ φ(g). For any semilinear
automorphism A : V → V , we have that

P (A) : P (V ) → P (V ), ⟨u⟩ 7→ ⟨A(u)⟩

is an automorphism of P (V ), called the automorphism induced by A.

Theorem 5.1 Let V be a linear space of dimension ⩾ 3 over the sfield F . Let φ be
an automorphism of P (V ). Then φ is induced by a semilinear automorphism of V .

Assume moreover that S is a two-dimensional subspace of V and that φ, restricted
to P (S), is the identity. Then φ is induced by a unique linear automorphism which,
restricted to S, is the identity.

Proof The first part holds according to the Fundamental Theorem of Projective
Geometry; see, e.g., [Bae, Section III.1].

To see the second part, let A be a semilinear automorphism such that φ = P (A)
and let the subspace S have the indicated properties. For linear independent u, v ∈ S,
we have A(u) = αu, A(v) = βv, and A(u+ v) = γ(u+ v) for some α, β, γ ∈ F \ {0}.
Then γu + γv = A(u + v) = A(u) + A(v) = αu + βv and hence α = β = γ. We
conclude that there is an α ∈ F \ {0} such that A(u) = αu for all u ∈ S.

Furthermore, B = α−1A is likewise a semilinear automorphism such that φ =
P (B). Denote by τ the automorphism of F belonging to B. We have B(u) = u for
any u ∈ S. Moreover, for any α ∈ F and u ∈ S

•
, ατu = ατB(u) = B(αu) = αu and

hence α = ατ . So τ = id, that is, B is actually a linear automorphism.
If B̃ is a further linear automorphism inducing φ, then B̃−1B induces the identity

and we conclude again that B̃−1B is a multiple of the identity. If B̃|S is the identity,
it follows that B = B̃. □

Theorem 5.2 Let H be a linear space of dimension ⩾ 2 over the sfield F . Let

(·, ·) and (·, ·)′ be Hermitian forms w.r.t. involutory antiautomorphisms ⋆ and ⋆′
,

respectively. Assume that (·, ·) and (·, ·)′ induce the same orthogonality relation on
P (H). Then there is a λ ∈ F \ {0} such that, for all u, v ∈ H, (u, v)′ = (u, v)λ and,

for all α ∈ F , α⋆′
= λ−1α⋆λ.

Proof Apply [Piz1, Theorem (2.2)] to the identity map on H. □

An automorphism of an orthoset (X,⊥) is a bijection φ : X → X such
that, for any e, f ∈ X, we have e ⊥ f if and only if φ(e) ⊥ φ(f).

Lemma 5.3 Let H be a Hermitian space and let φ be an automorphism of (P (H),⊥).
Then φ is likewise an automorphism of P (H) as a projective space.

Proof For e, f, g ∈ P (H), we have that e ∈ {f, g}⊥⊥ if and only if φ(e) ∈
{φ(f), φ(g)}⊥⊥. By Lemma 4.2, {f, g}⊥⊥ = f ⋆g and {φ(f), φ(g)}⊥⊥ = φ(f)⋆φ(g).
The assertion follows. □
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We arrive at the announced variant of Wigner’s Theorem. A linear auto-
morphism U of a Hermitian space is called unitary if U preserves the Hermitian
form.

Theorem 5.4 Let H be a Hermitian space over the ⋆-sfield F of dimension ⩾ 3.
Any unitary operator induces an automorphism of (P (H),⊥).

Conversely, let φ be an automorphism of (P (H),⊥) and assume that there is an
at least two-dimensional subspace S of H such that φ(e) = e for any e ∈ P (S). Then
φ is induced by a unique unitary operator U which, restricted to S, is the identity.

Proof The first part is obvious.
To see the second part, let φ and S be as indicated. By Lemma 5.3 and Theorem

5.1, φ is induced by a unique linear automorphism U of H such that U |S is the
identity. For u, v ∈ H, let (u, v)′ = (U(u), U(v)). Then (·, ·)′ is a sesquilinear form
inducing the same orthogonality relation on P (V ) as (·, ·). By Theorem 5.2, there is
a λ ∈ F such that (u, v)′ = (u, v)λ for all u, v ∈ H.

In particular, for any u ∈ S
•
, we have (u, u) = (U(u), U(u)) = (u, u)′ = (u, u)λ

and hence λ = 1. Thus (U(u), U(v)) = (u, v) for all u, v ∈ H, that is, U is unitary.
□
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