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Abstract. Cadiag-2—where “Cadiag” stands for “computer-assisted diagnosis”—
is an expert system based on fuzzy logic assisting in the differential diagnosis in 
internal medicine. With its aid, it is possible to derive from possibly vague 
information about a patient’s symptoms conjectures about present diseases. In this 
paper, we provide a mathematical formalization of the inferential mechanism of 
Cadiag-2. The aim is to have a formal logical calculus at hand which exactly 
corresponds to the mode of operation of Cadiag-2 and which is needed, for 
instance, to perform consistency checking of the system’s medical knowledge base. 
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1. Introduction 

Cadiag-1 and Cadiag-2 are computer-based medical consultation systems, developed at 
the University of Vienna Medical School since the 80’s (see, e.g., [1]; for the 
performance, see, e.g., [2]). Their aim is to support clinical differential diagnosis in the 
field of internal medicine. The systems deal with relationships between propositions 
that are symptoms, signs, laboratory test results, and clinical findings on the one hand 
and diseases and possible therapies on the other hand. 

In Cadiag-1, these propositions are treated as three-valued, that is, as being true, 
false, or undefined. The Cadiag-1 rules can be formulated in the monadic fragment of 
first-order classical logic; the decidability of the latter makes it possible to check the 
consistency of its medical knowledge base, and actually 17 inconsistencies within 
50 000 binary relationships have been detected [3]. 

Precise information, however, is usually not available to physicians to decide about 
a patient’s disease and its subsequent treatment. In order to process vague information, 
the successor system Cadiag-2 was based on fuzzy logic [4]. 

Note that Cadiag-2 is entirely based on fuzzy techniques. An advantage of this 
choice, when compared to systems like DXplain [5], which are essentially based on 
probability theory, is the fact that Cadiag-2 inferences are always offered together with 
a justification which is easily comprehensible to the user. 

However, Cadiag-2 has not been explicitly formulated in the framework of a 
formal logic. As a consequence, the problem how to check the consistency of its rules 
is not yet well understood. In this paper, we provide first steps towards these issues; we 
introduce a basic fuzzy-logical framework for Cadiag-2. 



2. The Cadiag-2 inferential mechanism 

We shall shortly describe the inferential mechanism of Cadiag-2. For a comprehensive 
description of the system, see, e.g., [6]. 

The knowledge base of Cadiag-2 consists of if-then rules describing known causal 
and logical interrelations between symptoms and diagnoses. On the basis of this 
general information and the particular information referring to a patient, the inference 
engine can draw conclusions. We note that symptoms and diseases are not analysed 
with respect to their meaning, but are rather treated as pure propositions; what matters 
is their mutual relationship. 

Propositions processed by Cadiag-2. An example of a proposition referring to a 
symptom might be “suffering from strong abdominal pain”. It is obvious that the 
alternatives true and false to evaluate this proposition are not exhaustive. Accordingly, 
Cadiag-2 considers all statements about symptoms as vague. Namely, to each symptom, 
there is associated a degree of presence, expressed by any element of the real unit 
interval [ ]. 1,0

The second class of propositions in Cadiag-2 refers to diagnoses, which are not 
treated as vague. However, as it is rarely possible to confirm or to exclude a diagnosis 
with certainty, to each diagnosis, there is associated a degree of certainty, which is 
again a value in [ ]. 1,0

Let now mσσ ,,1 K  be all symptoms and nδδ ,,1 K  all diagnoses contained in 
the knowledge base. Each such symbol is called a basic entity. By the use of 
connectives, we can form compound entities; we have to our disposal the 
conjunction∧ , the disjunction , and negation ~. ∨

For example, 31 ~σσ ∧ expresses the presence of the symptom 1σ  and the 

absence of the symptom 3σ . Assume now that 1σ  and 3σ  are assigned the truth 

values  and , respectively. Then we may calculate a truth value for 1t 3t 3~1 σσ ∧ as 

well, namely, we take { 31, t }1min t − . In general, if we are given an assignment of 
certain basic entities, we may extend it to as many compound ones as possible: 

Definition 1. An evaluation is a function v  from a subset of the set of entities to 
the real unit interval such that the following holds: (i) If [ 1,0 ] ( ) sv =α  and ( ) tv =β , 

then ( ) { tv =∧ }s,minβα  and ( ) { }tsv ,max=∨ βα ; (ii) if ( ) 0=αv  or 

( ) 0=βv , then ( ∧ ) 0=βαv ; (iii) if ( ) 0>= tv α  and ( )βv  is undefined, or 

( )αv  is undefined and ( ) 0>= tv β , then ( ) tv =∨ βα ; (iv) if ( ) t=v α , then 

( ) t−=1v ~α . 

The input of a run of Cadiag-2 is an evaluation , called the initial evaluation 
and used to describe the state of a particular patient. Then, inference rules are 
successively applied so as to generate a sequence of evaluations . Compared 
to its predecessor, each evaluation in this sequence encodes an increased amount of 
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The cases (me) and (ao) work similarly. 
The rules are applied systematically one by one, but the order is arbitrary. The 

process is completed if, by use of any of the rules, the evaluation remains unchanged.  

In this section, we introduce CadL (“Cadiag logic”), a calculus adequate to formalise 

According to the ideas of Cadiag-2, CadL uses a concept well-known in fuzzy 

3. CadL—the logical counterpart of Cadiag-2. 

Cadiag-2. 

logic (see, e.g., [7]): pairs consisting of a proposition and a rational truth value. 
Definition 2. The atomic propositions of CadL are symbols  K21,ϕϕ  . The 

lattice propositions of CadL, denoted by LF , are the expressions built up from the 
∧ , , and ~. , the ∨  Moreoveratomic propositions by means of the connectives 
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We have shown that the mode of operation of Cadiag-2 can be represented in the 
framework of a formal logical calculus, called CadL. Any general question about the 

question about this logic. 
 the basis for a precise comparison of Cadiag-2 with 

2: Computer-Assisted Medical Diagnosis Using Fuzzy Subsets, in: M. 
M. Gupta, E. Sanchez (eds.), Approximate Reasoning in Decision Analysis, North-Holland Publishing 

 Amsterdam 1982; 219 - 247.  
K.-P. Adlassnig, G. Kolarz, Evaluation of Two Different Models of Semiautomatic 

Knowledge Acquisition for the Medical Consultant System CADIAG-II/RHEUMA, Artificial 

Propositions 1 and 2 together im y that (initial pieces of) runs of C ag-2 and 
roofs of CadL are l correspondence. 

4. Discussion and Conclusion 

inference of Cadiag-2 translates to a 
We have provided in this way

any other method used in medical decision support. Moreover, we are able to 
characterize our system within the family of t-norm-based fuzzy logics, which are at 
present intensively studied. We have furthermore prepared the ground for tackling one 
of the most important problems about the Cadiag-2 knowledge base, its consistency. 
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