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Abstract

After dropping the implication-like operation and reversing
the order, an MTL-algebra becomes a partially ordered struc-
ture (L; <,®,0,1) based on the single addition-like operation .
Furthermore, @ may be restricted to a partial, but cancellative
addition 4+ without loss of information.

We deal in this paper with the case that the resulting partial
algebra (L; <,+,0,1) is embeddable into the positive cone of a
partially ordered group. It turns out that most of the examples
of MTL-algebras known at present can be represented in this
way. So the systematization of a considerable class of MTL-
algebras is achieved, and the methods of their construction are
brought onto a common line.

1 Introduction

T-norm based fuzzy logics [13] represent an attempt to formalise rea-
soning about vague properties. By a property to be vague we mean
that not for all objects of reference the property is either clearly true
or clearly false. Fuzzy logics are in particular designed for situations
in which natural-language expressions need to be modelled without ar-
tificial specifications about borderline cases. Applications where fuzzy
logic has proved useful can for instance be found in medicine. In par-
ticular, we have recently formulated the inference mechanism of the
medical expert system Cadiag-2 [1] in a fuzzy-logical framework [5].



In recent years, the algebraic aspects of fuzzy logics have been studied
quite intensively, and the present paper is meant as a further contri-
bution to this field. The algebraic semantics of a large family of fuzzy
logics is based on subvarieties of the variety of residuated lattices [12].
In this paper, we consider the logic MTL which was introduced in [§]
by F. Esteva and Ll. Godo. The standard models for MTL are left-
continuous t-norm algebras: the real unit interval is used as the set
of truth values and endowed with the natural order, an arbitrary left-
continuous t-norm, the associated residual implication, and the con-
stants 0 and 1. The variety generated by the left-continuous t-norm
algebras are the bounded, integral, commutative, prelinear residuated
lattices, called MTL-algebras.

Like residuated lattices in general, also MTL-algebras still resist a com-
prehensive analysis, and there do not seem to exist many results about
their structure in general. Here, we intend to contribute partially to
the characterisation of MTL-algebras; rather than considering the gen-
eral case, we aim at systematising at least those MTL-algebras which
are known at present. We have in particular in mind left-continuous
t-norm algebras, various examples of which were collected in a paper
of S. Jenei [18].

We will continue the lines of our previous work [24, 25]. These pa-
pers were focussed on BL-algebras, which are less general than MTL-
algebras and whose structure is well-known [2]. In [24] we introduced
weak effect algebras, which are partial algebras and a subclass of which
can be identified with the BL-algebras. Under certain assumptions, we
were able to perform an analysis of weak effect algebras analogously to
the case of BL-algebras [25].

The basic idea on which this paper is based is the following. With
every MTL-algebra, we may associate a partial algebra in a natural
way (Section 2). For technical convenience, we first reverse the order.
We then drop the difference-like operation and restrict the addition-
like operation to the cases in which both summands are minimal in
the sense that they cannot be made smaller without making the sum
smaller. The resulting partially ordered structure (L; <,+,0, 1) is based
on a single cancellative partial addition and bears all information of the
original algebra.



In the next step, it would be natural to search for algebraic conditions
implying that the partial algebra (L; <,+,0,1) is embedabble into the
positive cone of some partially ordered (po-) group. As far as the
structure of these groups is known, we could investigate in this way our
original algebras. However, the only condition which we know to be
powerful enough, is the Riesz decomposition property, a property suc-
cessfully applied to effect algebras and pseudoeffect algebras to obtain
a representation by po-groups [21, 7]. However, in the present con-
text this condition is too restrictive; for instance, the partial algebra
associated to the nilpotent minimum t-norm would be excluded.

We have decided to go the opposite way; we shall examine MTL-
algebras which do allow a representation by a po-group in the indicated
way (Section 3). It turns out that this class is rather wide and con-
tains in particular various examples from [18] (Section 4). All in all,
we may say that we develop a systematic view on an important class
of MTL-algebras, and we describe their construction in a uniform way.

2 The partial algebras associated to
basic semihoops

This paper aims at characterising MTL-algebras; however, what we
actually consider is slightly more general. MTL-algebras are bounded,
commutative, integral, prelinear residuated lattices; we will drop here
the boundedness condition. The resulting broader class of residuated
lattices contains the so-called basic semihoops and corresponds to the
falsehood-free version of MTL, called MTLH [9].

A basic semihoop is a structure (S; <, ®, —, 1) such that (i) (S;<) is a
lattice with largest element 1; (ii) (S;®, 1) is a commutative semigroup
with neutral element 1; (iii) ® is isotone in both variables; (iv) for any
a,b, a — b is maximal among all elements x such that a ©® x < b; and
(v) for any a,b, we have (a — b) V (b — a) = 1. An MTL-algebra is a
structure (S; <, ®, —,0,1) such that (5; <, ®, —, 1) is a basic semihoop
whose least element is 0. Cf. [9, Lemma 3.13(a)].

We note that basic semihoops whose underlying order is complete co-
incide with the commutative, strictly two-sided quantales fulfilling the



so-called algebraic Strong de Morgan’s law. For a general account on
quantales, see [22]; moreover, the algebraic Strong de Morgan’s law [20]
is the prelinearity condition (v), see [22, Definition 4.3.3].

The prototypical examples of MTL-algebras are the standard models
for the fuzzy logic MTL: left-continuous t-norm algebras. But it is
quite remarkable, and possibly of significance for the debate about a
proper interpretation of fuzzy logics, that MTL-algebras also naturally
arise in other contexts, as the correspondence with quantales reveals.
Namely, it is well-known that the set Idl(R) of left ideals of a ring
R is naturally endowed with the structure of a quantale. If R is a
commutative ring with 1, then the quantale Idl(R) is commutative and
strictly two-sided. Let R be even a Dedekind domain; then Idl(R)
fulfils the algebraic Strong de Morgan’s law, and it follows that Id1(R)
is actually a complete MTL-algebra.

For our purposes, it is reasonable to modify the definition of a basic
semihoop in a purely technical way. Namely, we will work with the dual
structures: we will reverse the order and rename constants and opera-
tions appropriately. Moreover, we will treat ©, which is the operation
corresponding to —, as a defined operation. These changes will make
the relationship to po-groups more intuitive.

To avoid cumbersome terminology, we will rename the structures un-
der study; in what follows, “dbs” is meant to remind of “dual basic
semihoops”.

Definition 2.1 A structure (L; <,®,0) is called a dbs-algebra if the
following holds.

T1) (L; <,0) is a lattice with smallest element 0.

T2) (L;,0) is a commutative semigroup with neutral element 0.

(T1)
(T2)
(T3) @ is isotone in both variables.
(T4)

T4) For any a and b, there is a smallest element x such that a®z > 0.

This element will be denoted by b © a.

(T5) For a,b, let a © b and b © a as specified by (T4). Then (a © b) A
(boa)=0.



A dbs-algebra is called bounded if there is a largest element, denoted
then by 1. By a dbs-chain, we mean a dbs-algebra whose order is linear.

For a quick reference of notions, we list the one-to-one correspondences:

dbs-algebras — basic semihoops (commutative, integral,
prelinear residuated lattices)
bounded dbs-algebras — MTL-algebras
dbs-chains — linearly ordered basic semihoops
bounded dbs-chains — linearly ordered MTL-algebras

This article is devoted exclusively to dbs-chains. This is motivated by
the fact that dbs-algebras are subdirect products of linearly ordered
ones [9, Lemma 3.10]. Note that in the case of a linear order, axiom
(T5) is redundant.

Next we shall see that dbs-algebras are in a one-to-one correspondence
with certain partial algebras.

Definition 2.2 Let (L;<,®,0) be a dbs-algebra. Define the partial
binary operation + as follows: for a,b € L, let a +b=a @ b if a is the
smallest element x such that @b = a®b and b is the smallest element
y such that a @y = a ® b; else let a + b be undefined. Then + is called
the partial addition belonging to ®, and (L; <, +,0) is called the partial
algebra associated to L.

Proposition 2.3 Let (L;<,®,0) be a dbs-algebra, and let + be the
partial addition belonging to &. Then @ can be reobtained from + by

a®b=max {a +V: a <aandb <bsuch that o’ + ¥ is defined}

for any a,b € L.

Proof. Let a,b€ Land c=a®b. If o’ < a and V' < b such that a’ + V'
exists, clearly @’ + b < c.

On the other hand, let ' = ¢6b; then a’ is the smallest element fulfilling
a’ @& b > c. Because then in particular ¢’ < a, we also have o’ &b < ¢,
whence @’ @b = c.



Similarly, we set ' = ¢ & ad/, so that «’ @V = c. In this sum, ¥ is
minimal by construction. Furthermore, cob < d' =c6b < cOV, that
is, c&V = d’, whence also @’ is minimal. So we get a®b=d +¥. O

To give an impression of the nature of the partial algebras with which
we have to do here, we collect some of their characteristic properties.
In other words, if we had to axiomatise these algebras, we would find
among the axioms at least the following ones.

Proposition 2.4 Let (L; <,®,0) be a dbs-algebra, and let (L; <,+,0)
be the partial algebra associated to L. Then the following holds.

(P1) (L; <,0) is a lattice with smallest element 0.

(P2) + is a partial binary operation such that we have for a,b,c € L:

(i) a+ b is defined if and only if b+ a is defined, in which case
both elements are equal.

(ii) If (a +b) + ¢ and a + (b + ¢) are both defined, then these
elements are equal.

(iii) a + 0 is defined and equals a.

(P3) Ifa+c and b+c are both defined, then a < b exactly if a+c < b+c.

These properties strongly remind of generalised effect algebras; see
e.g. [6]. However, there are two important differences. In contrast
to generalised effect algebras, the partial order of the algebras derived
from dbs-algebras need not be determined by the partial addition: there
may be elements a and b such that a < b, but no ¢ such that a +c = b.

Moreover, there are, in principle, several different kinds of associativity
for partial algebras; for this topic see [3]. Generalised effect algebras
fulfil the strongest form: (a + b) + ¢ is defined if and only if a + (b + ¢)
is defined, in which case both these elements coincide. In the present
context, however, we have associativity only in the weak form (P2)(ii).

We finally mention another closely related kind of algebra: the weak
effect algebras, with which we deal in [24, 25] and which arise from



BL-algebras. The lack of the property that the addition determines
the partial order, is shared by weak effect algebras. But weak effect
algebras do fulfil the strong version of associativity. In the case that
they arise from BL-algebras, even the Riesz decomposition property

holds [25].

3 Basic semihoops constructed
from linearly ordered groups

We have seen that every dbs-algebra (alias basic semihoop alias com-
mutative, integral, prelinear residuated lattice) gives rise to an algebra
based on a partial addition and that the transition to the partial algebra
means no loss of information. However, apart from the basic proper-
ties (P1)-(P3) in Proposition 2.4, it is far from easy to characterise the
partial algebras arising this way. In this section, we shall investigate
those among them which can be embedded into some po-group.

We shall wonder which kind of a substructures of a po-group are asso-
ciated to a dbs-algebra in the sense of Definition 2.2. The basic idea
is as follows. We choose a subset of the positive cone of a po-group;
we restrict the group operation to this subset; and the obtained partial
addition is re-extended to a total operation in the way shown in Propo-
sition 2.3. The question is then under which conditions the result is a
dbs-algebra.

In the sequel, we will mark total group operations by a hat, like for
instance +, so as to distinguish them from the partial operations.

Definition 3.1 Let (G; <, +,0) be a po-group. Let L C G such that
0 € L, and let + be a partial binary operation on L such that for all
a,b € L (i) a + b, whenever defined for some a,b € L, coincides with
a+b and (ii) a+0 is always defined. Moreover, let < be the restriction
of the partial order of G* to L. Then we call (L;<,+,0) a partial
substructure of (G*; <, +,0).

Moreover, considering (L; <,+,0), assume that

a®b=max {a +V: a <a, V' <b, d +¥ is defined} (1)
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exists for all a,b € L. Then we say that + is extendible to @, and we
call @ the total addition on L belonging to +. Moreover, (L; <,®,0) is
called the total algebra associated to (L; <,+,0).

A dbs-algebra which is the total algebra associated to the partial sub-
structure of some po-group’s positive cone is called po-group repre-
sentable.

We will see in Section 4 that the dbs-chains which are duals of left-
continuous t-norm algebras are po-group representable in numerous
cases.

Definition 3.1 shows how a dbs-algebra might arise from a partial alge-
bra; and Definition 2.2 shows how a partial algebra is associated to a
dbs-algebra. Performing successively these two steps should lead us to
the original algebra.

Proposition 3.2 Let G be a po-group, and let (L; <,+,0) be a partial
substructure of G*. Let + be extendible, and assume that (L; <,®,0)
is a dbs-algebra. Then the partial algebra associated to (L;<,®,0) is
again (L; <,+,0).

Proof. In this proof, + denotes always the partial addition of the orig-
inal algebra (L; <, +,0).

Let a and b be minimal in the sum ¢ = a @ b in the sense of Definition
2.2. According to (1), let @’ < a and b < b such that ¢ = da' + . So
adb=d +V =d &V, and it follows ' =a and ¥/ =b. Soc=a+b
is defined.

Conversely, let ¢ = a + b be defined. Then ¢ = a @ b, and in this sum,
a and b are obviously minimal. a

We will now explicitely describe ways of constructing partial substruc-
tures of the positive cone of a po-group such that the associated total
algebra is a dbs-algebra. There are various possibilities to do so, and
we do not try to give the most general solution; the one presented here
is technically sufficiently involved. For the sake of simplicity, we would
actually prefer less general methods than those offered below. However,



decreasing generality would very likely exclude some of the examples
from Section 4.

We will consider linearly ordered (l.o.) groups only. These groups are
described by the Hahn embedding theorem; see e.g. [11]. This theorem,
although not explicitly stated, provided actually the main idea for this
paper.

In what follows, if R is a po-group and u € R*, R[0,u] denotes the
interval of R between 0 and u.

Definition 3.3 Let 1 < )\ < w, and for every i < A let (R;; <,+;,0)
be a subgroup of the additive group of reals, endowed with the natural
order. Let R = I',.\R; be the lexicographic product of the R;, with
addition 4. We will refer to (R*; <, +,0) as a standard l.o. group cone.

Let 0 < j < A Fora € R, a; € R; denotes the j-th component of a.
Furthermore, we denote by R.; the set of a € R such that a; = 0 for
t > j. For any a € R, we denote by a.; the element of R.; arising
from a by setting all components with indices > j to 0. Similarly, we
define R<; and a<;. Finally, for some L C R, we define L.; = L N R
and L<; = LN R<;.

For a partial substructure (L; <, +,0) of (R*; <, +,0), let us define the
conditions (Basl)—(Bas3) as follows.

(Basl) The set L C R™ has the following properties.

(i) 0 € L.

(i) Let 0 < j < A, and for every a € L.;, let
Rj(CL) = {T S Rji (I(T) S L},

where a™ € R<; is defined by a(;j)» = a<j and ay) = 7. Then
R;(0) is one of R;[0, M] for some M > 0, or R}; if a > 0 and
a is the maximal element in L, then R;(a) is one of R or
Rj[m, 0] for m < 0; else Rj(a) is one of R}, R;, R;[0, M] for
M >0, or R}.

(ili) For any a € R, a € L if and only if a; € L for all j.



(Bas2) Let R; = Uger,Rj(a) for 0 < j < A. There are partial binary
operations +; on R; which determine the partial addition + on
L as follows: for a,b € L, a+ b is defined iff a; +; b; is defined for
all j, in which case (a+b); = a; +; b; for all j.

For each j, the operation +; has the following properties. For
r,s € R;, (i) if r +; s is defined, it equals r +; s (i.e. the sum of r
and s in the group R;); (ii) if r +; s is defined, so is s +; r; (iii)
r +; 0 is always defined.

If, for r, s € Rj,
{r'+;8: 1§ €eR;, v <r, s <s}
has a maximal element, we will denote it by r @; s.
(Bas3) Let 0 < j < A and a,b,c € L.

(i) Let a+b = c. If R;(a) is upper bounded, then R;(b) is lower
bounded, R;(c) is upper bounded, and we have

max R;(a)+ min R;(b) > max R;(c). (2)

(ii) Let a <c¢. Then

inf R;(a) > inf R;(c). (3)

Now, to give rise to a dbs-chain, the partial substructure of a standard
l.o. group cone must fulfil three conditions: the partial operation +
must be extendible to @ according to (1); the total addition @ must be
associative; and @ must fulfil the condition (T4).

We will give for these three conditions sufficient criteria. We will assume
(Basl)—(Bas3), and we will, roughly speaking, require that the partial
algebras (R;,<,+;,0), 1 < j < ), have the respective property. In
addition, we will make further assumptions on upper and lower bounds
of the ranges R;(a) for certain a € L.;; and a restricted form of the
Riesz decomposition property will be postulated for (R;, <,+;,0).

The following auxiliary definition serves to simplify later formulations.
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Definition 3.4 Let (L; <,+,0) be a partial substructure of a standard
Lo. group cone (([;<zR;)*; <, +,0) such that (Basl)—(Bas3) hold. Let
0 <j < Xand a,b € L<; such that a + b is defined. Then we say
that a; is in the sum a + b at an upper definitional limit if there is an
e € RS\ {0} such that for every o/ € R<; fulfilling ac; = a’; and
aj < a; < aj +je, either ' € L or else @’ + b is undefined. Under
an analogous condition, we say that a; is in the sum a + b at a lower
definitional limat.

Lemma 3.5 Let (L;<,+,0) be a partial substructure of a standard
Lo. group cone ((T;caR;)*; <, +,0) such that (Bas1)—(Bas3) hold. Then
+ s extendible to @ if the following holds.

(Extl) Let 0 < j < X and a,b,c € L; such that a+b = c. Then for
allr € Rij(a) and s € R;(b), r ®; s exists.

(Ext2) Let 0 < j < X and a € L.;. Assume sup Rj(a) = M < oc.
Then for all v, s € R; such that r+; s > M, there are v’ <r and
s’ <sin R; such thatr'+; s = M.

(Ext3) Let 0 < j < X and a,b,c € L<; such that a+b = c. Let a; be
in the sum a +b at an upper definitional limit. Then R;1(c) is
upper bounded.

In this case, ¢ = a & b for some a,b € L is determined as follows. Let
J < X largest such that a<; + be; is defined. Then we have ¢; = a; +; b;
fori < j, ¢; = (a; ®; b;) Asup Rj(c<j), and ¢; = max R;(c<;) for all
1> 7.

Proof. Let (Extl)-(Ext3) hold, and let a,b € L such that a + b is

undefined. We have to specify ¢ = a @ b according to (1), that is, find
a’ < aand b < b such that @’ + ' exists and is as large as possible.

Let 7 < X be largest such that a; + b.; is defined, and set c.; =
a<j + b.j. Furthermore, according to (Extl), a; @®; b; exists; let ¢; =
(a; ®; b;) Asup Rj(c<;). We claim that then, in accordance with (1),
¢; = max{r+;s r e R;(ac;) and r < a;;
s € Rj(b<;) and s < b;; (4)
r+; s is defined and in R;(c<;)}.
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Indeed, there are 7’/,s" € R; such that v’ < a;, s’ < b; and a; ®; b; =
r’'+;s'. We claim that " € R;(a<;) and 8" € R;j(b<;). Indeed, if a; < 0
and R;(a;) is lower bounded by mj;, then ' € R;(a<;), because then
a<j is maximal in L.; by (Basl)(ii) and consequently, by (3), m; is the
minimal element of R;, the set on which +; operates. The other cases
are analogous or obvious.

If now a; @;b; € Rj(c<;), we get in (4) the maximum for r =1/, s = 5.
Otherwise, if R;(c<;) is lower bounded by m;, then a; ®; b; cannot be
strictly smaller than m; because, again, m; is then the minimal element
of R;. So if a; ®; b; € Rj(c<;), then a; &; b; exceeds the upper bound
M; of Rj(c<;). In this case, there are by (Ext2) » <" in R;(a~;) and
s < s in R;(b.;) which add up to M;. So (4) is proved.

Let now r, s be a maximising pair in (4). Let @’ < a be such that
a’; = ac; and aj = r, and let ¥ < b be such that b_; = b.; and
V; = s; then al; + b.; = c<;. Note that either a} < a; or b < by;
so by (Ext3), Rj1(c<(j+1)) has an upper bound M. It follows from
(2) that Mji1 € Rji(alj,)); so we may set aj,, = Mj1, b, =0,
¢j+1 = M. We may apply now (Ext3) again to set a},, and c;,» to
the upper bound of Rjia(c<(j12)) and b, to 0; and so forth. Then
¢ =a 4V is the maximal element being the sum of a pair ' < a and

b <b, thatis,c=a ®b. O

Lemma 3.6 Let (L;<,+,0) be a partial substructure of a standard
Lo. group cone (Ty<xR;)"; <, +,0) such that (Bas1)—(Bas3) and (Ext1)-
(Ext3) hold. Then @ is associative if the following holds.

(Ass) Let 0 < j < A, let a,b,c € L.; such that (a + b) + ¢ is defined,
and let a; € Rj(a), bj € R;(b), ¢; € Rj(c). Then (a;@;b;)®;c; =
a; ®; (b; ®; ¢;).

Proof. Let a,b,c€ L,d= (a®b)@c,and e =a® (b® c¢). We have to
show d = e.

Assume first that (a + b) + ¢ exists; so d; = (a; +; bj) +; ¢; for every
j. Let j > 0, and assume that e.; = a<; + (b<; + c<;) is defined;
note that this holds trivially in case j = 0. It follows d.; = e;. By
(Ass), also a; +; (b; +; ¢;) is defined in R;. Assume that b<; + c<; is
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undefined; then b; +; ¢; € R;j(b<j + c<;), which by Lemma 3.5 means
that b; +; ¢; is strictly greater than the upper bound of R;(b<; + c;).
This in turn means by (2) that also a; +; (b; +; ¢;) is outside R(e<;) =
R(d.;), a contradiction. So b<; + c<; is defined and consequently also
a<j + (b<j + c<;). It follows d<; = e<;. By induction, we conclude

d=e.

Assume next that (a 4+ b) + ¢ does not exist, and let j be smallest
such that (a<; + b<;) + c<; does not exist. Then we argue as in the
preceeding paragraph to conclude d; = (a<;j+b<;)+cc; = acj+(b<j+
c<j) = e<j. Furthermore, by (Ass), (a; ®; b;) ®;j ¢c; = a; ®; (b; &, ¢;).
If then a; ®; b; & R;j(a<; + b<j), a; ®; b; exceeds the upper bound
M; of Rj(ac; + b<;), and by (2) M; &, ¢; > max R;(d.;), that is,
d; = max R;(d;); furthermore, if b; @, ¢; is in R;(b<; + c<;) or not, in
both cases we have e; = max Rj(e<;) = max R;(d<;) = d;. If, on the
other hand, a; ®; b; € R;(a<; + b<;) and b; ®; ¢; € R;(b<; + c<;), we
again have d; = e;. By Lemma 3.5, dj41 = €11, ... are, respectively,
the maximal values of the allowed range. a

Lemma 3.7 Let (L;<,+,0) be a partial substructure of a standard
Lo. group cone (Ty<xR;)"; <, +,0) such that (Bas1)—(Bas2) and (Ext1)-
(Ext3) hold. The total addition @ belonging to + fulfils (T4) if the
following holds.

(Resl) Let 0 < j < X and a,b,c € L; such that a +b = c. Then for
all m € Rj(a) and t € Rj(c), there is a smallest s € R;(b) such
that r @©; s > t.

(Res2) Let 0 < j < X and a,b € L<; such that a + b is defined.
W.r.t. the sum a + b, let either a; be at an upper definitional

limit or b; at a lower definitional limit. Then R;i1(b) is lower
bounded.

Proof. Let a,c € L such that a < c¢. We have to show that there is
smallest b € L such that a @ b > ¢. If there is a b € L such that a +b
exists and equals ¢, we are done.

Assume on the contrary that j < A is the largest index such that a
d € L.; tulfilling ac; +d = c; exists; let b € L be such that b.; = d.
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By (Resl), there is a smallest s € R;(b-;) such that a;®;s > ¢;; let b; be
this element. So b<; is the minimal element such that a<; ® b<; > c<;.

Now, there is an r < a; such that r +; b; = a; ®; b;; note that r €
Rj(a<;). Let a' € L<j be such that a; = a<; and @} = r. In case
a = aj, aj +; bj > ¢; and b; is in the sum @’ + b at a lower definitional
limit. In case a} < a;, @ is in the sum ' + b at an upper definitional
limit. So by (Res2), R;;1(b<(;+1)) has a lower bound, to which value
we set bj 1.

Again by (Res2), we may choose successively also b;;o, ... as the mini-
mal elements of the respective range. Then b is as required. O

We may now summarise all preceeding lemmas.

Theorem 3.8 Let (L;<,+,0) be a partial substructure of a standard
Lo. group cone. Assume that L fulfils (Basl)—(Bas3), (Extl)—(Ext3),
(Ass), and (Resl)—(Res2). Then the total algebra belonging to L is a
dbs-chain.

So in particular, if L is as specified in Theorem 3.8 and moreover
bounded, then L gives rise to a linearly ordered MTL-algebra.

4 Examples

We will now present a list of examples of left-continuous t-norms which
are constructable by use of Theorem 3.8 from an l.o. group.

It seems easiest to proceed according to the following scheme. We
start from some specific left-continuous t-norm @, : [0,1]> — [0,1],
distinguished by some symbol x. The corresponding bounded basic
semihoop is then ([0, 1]; <, @,, —, 1), where < is the natural ordering
of the reals and —, is the residuum belonging to ®,. We next pass to
the corresponding dbs-chain ([0, 1]; <, @, 0); for this, we simply have
to calculate the t-conorm a @, b = 1 — ((1 — a) ©x (1 — b)), a,b €
[0,1]. Then, we pass to the associated partial algebra ([0, 1]; <, +,,0);
for this, we have to determine the partial addition +, on L from &,
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according Definition 2.2. Finally, we define a partial substructure of
some standard l.o. group cone which is isomorphic to ([0, 1]; <, +,,0).

To save space, we will make use of the symmetry of the operations;
when a ®, b is defined for certain choices of a and b, we will assume
that b®,a is defined as well. The same applies to &, and +,. Moreover,
in case of +,, we will treat only those cases in which both summands
are non-zero; a +, 0 = a is defined for any element a anyhow. Further-
more, the partial operation on the partial substructure of an l.o. group
cone is understood as being defined whenever it can be performed, un-
less explicitely otherwise noticed. Note finally that in this section, we
denote the total operations on R simply by +, —, -, without a hat.

We will begin with the three basic continuous t-norms. In these cases,
we are led to well-known constructions.

Example 4.1 Let ®y, be the Lukasiewicz t-norm: for a,b € [0, 1], let
a®rb=(a+b—1)VO0.

Then ([0, 1]; <, ®p, 1) is a linearly ordered basic semihoop. Let ([0, 1]; <
,@r,0) be the corresponding dbs-chain and ([0, 1]; <, +p, 0) the partial
algebra associated to the latter; we then have

a®rb = (a+b) AT,
a+rb = a+bincasea+b<1.

For the po-group representation, we let R = R, L. = R|[0,1]. Then
(L;<,+,0) is a partial substructure of the standard l.o. group cone
R*, which is evidently isomorphic to ([0, 1]; <, 4, 0).

Next, let ®p be the product t-norm: for a,b € [0, 1], let
a®Gpb=a-b.
Then we have

a®pb = a+b—a-b
a+pb = a+b—a-bin case a,b < 1.

For the po-group representation, we let Ry = N, Ry = R, R = Ry Xjex
Ry, and

L={(a,b) e R a=0,b>0o0ra=1, b=0}.
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Finally, let ®¢ be the Godel t-norm: for a,b € [0, 1], let
a Og b=aANb.

Then we have &g = V, and +¢ is not defined for any pair of non-zero
elements.

For the po-group representation, we let R =R, L = R[0, 1], and we do
not define + for any pair of non-zero positive elements.

Now, general continuous t-norms are ordinal sums of the standard t-
norms treated above. This motivates us to demonstrate how we may
form ordinal sums within our framework. Definition 3.3 implies one
restriction for this construction: Either there are only finitely many
summands, or countably infinitely many ones ordered like the naturals.

We note that Definition 3.3 could actually generalised to the case of
any linear order. This would show that actually any continuous t-norm
is po-group representable.

Proposition 4.2 Let 1 < p < w, and for every k < p let i, € N
such that 0 = iy < iy < .... For every k < p, let (Ly;<,+,0) be
a partial substructure of a standard l.o. group cone ((I's,<i<i,,, Ri)*; <
,+,0). Assume that the total algebras belonging to (Ly; <, +1,0), k < p
are dbs-algebras.

Furthermore, let A = sup,_, ix+1 and
L={aec (TicxR)*: for somek < p, a; =0 fori <ij ori > g1}

Let ¢p: Ly — L be for k < p be the natural embedding, and define a+0b
in L if a,b € ¢i(Ly) for some k and ¢; ' (a) +1, ¢, ' (b) are defined in
Ly. Then the total algebra belonging to (L; <,+,0) is dbs-chain.

We now turn to non-continuous left-continuous t-norms, first to the
annihilation construction [10, 15].

Example 4.3 Let ®, be the nilpotent minimum t-norm: for a,b €
0,1], let

Wo b= aNb ifa+b>1,
0 else.
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Then we have

a®,b {

1

a—+n,b

aVb
1

incasea+b=1.

ifa+b<1,
else;

For the po-group representation, we let R = R, L = R|0, 1], and for
a,b > 0, we define a + b in case a + b = 1.

Next, we consider the t-norm ©;: for a,b € [0, 1], let

alNb ifa+b>1 and a§%ora>§,
a®yb= a+b—§ ifa+b>1 and §<a,b§§,
0 ifa+b<1.
Then we have
aVb ifa+b<1 and a<3iora> 2,
a®;b = a+b—% ifa+b<1 and %Sa,b<§,
1 if a+b>1;
B a+b—% ifa+b<1 and %<a,b<§,
atsb = {1 ifatb=1.

For the po-group representation, we let Ry = R = R, R = Ry Xjex R1,
we define a +; b for a,b € Ry if a +b =0, and we set

L={(a,b) eR": a=0,0<b<1 or0<a<1,b=0

ora=1, -1 <b<0}.
Next, we turn to the rotation construction [16].

Example 4.4 Let @,p the rotated product t-norm: for a,b € [0, 1], let

2ab—a—b+1 ifa,b>%,
a®pb={ &l ifa>3, b<3 anda+b>1,
0 if a+b<1.
Then we have
a+b—2ab ifa,b<%,
a®pb = { L ifa<i b>1 anda+b<l,
1 ifa+02>1;
a+b—2ab ifa,b<%,
a+,pb = lb:;a ifa<%, b>%, and a +b <1,
1 ifa:b:%.
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For the po-group representation, we let Ry = N, Ry = R, R = Ry Xjex
Ry, and

L={(a,b)eR": a=0,b>00ra=1,b=00ra=2, b<0}.

The isomorphism between ([0, 1]; <, +,p,0) and (L; <,+,0) is given by
¢: [0,1] — L, where for a € [0, 1]

(0,—In(1 —2a)) ifa<
(1,0) if a =
(2,In(2a — 1)) if a > 1.

I

p(a) =

We now consider one case of the rotation-annihilation construction [17].

Example 4.5 Let ®,,.1 be the rotation-annihilation of two Lukasie-
wicz t-norms: for a,b € [0, 1], let

(

a+b—1 ifa,b>§anda+b>§
oragé,b>§anda+b>1,
ifa,b>§anda+b§§,

+b—§ ifl<a,b§§anda+b>1,

2
a®raLLb: 2 %
a if <a§§,b>§,
0

3
if a+b<1.

Then we have

a+b ifa,b<§anda+b<é
ora<é,b2§anda+b<1,

1 ifa,b<ianda+0b> 1,
@ Grorr b = cgz+b—% if%ga,%<§anda+?}<1,
a if §<a<Zandb< g,
L1 ifa+b>1:
a+b ifa—i—b<% or a<§,62§,a+b<1,
a+rarr b = a+b—% if%<a,b<§anda+b<1,
1 ifa+b=1.

For the po-group representation, we let Ry = Ry =R, R = Ry Xjex R1,
and

L={(a,b)eR": a=0,0<b<1 or0<a<l1l b=0
ora=1, =1 <b<0}.
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We conclude by giving two more examples of t-norms; in these cases,
however, we will just describe their associated partial algebras.

Example 4.6 Let Rp = R =N, Ry =R and R = Ry X1ex R1 Xiex R2;
let

L={(a,b,c) e R": a=0,b>0,c>00ra=1, b=c=0}.

Then from (L; <, +,0), the t-norm suggested by P. Héjek in [14] arises.
Finally, let Roy=R;=... =N, R=T1,,R;, and

L={(a;)i€ R": aqp=00rapy=1, a;=ay=...=0}.

This gives rise to the t-norm constructed by D. Hlinénd in [23]; cf. also
[4].

These two last examples give rise to a comparison of our approach to
the method developed by S. Jenei and F. Montagna in [19]. Expressed
in our terminology, in [19] standard l.o. group cones (I';-yR;)" are con-
sidered, where R;, i < A, are the integers with the possible exception of
the last index, for which it may be the reals. The construction is fur-
thermore based on any monoidal operations on the R;, not necessarily
on the group operation like in our case. On the other hand, restrictions
of the base set as proposed in this paper are not supposed in [19].

In both cases of Example 4.6, when removing the largest element from
L, we have the full positive cone of an l.o. group, and the partial ad-
dition is a total operation on it. In such a situation, our construction
does not differ from [19]; we just work in a different formal setting.

5 Conclusion

Any basic semihoop, so in particular any MTL-algebra, can be identi-
fied with an algebra (L; <, +,0) whose crucial property is the cancella-
tivity of the partial operation 4. We have provided numerous examples
in which L can be isomorphically embedded into the positive cone of a
partially ordered group. Furthermore, with reference to the group we
have given sufficient conditions that this type of representation exists.
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The most important open question is how to characterize algebraically
those basic semihoops which allow a description by means of a po-group
in the indicated way.
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