
Normal orthogonality spaces

Jan Paseka1 and Thomas Vetterlein2

1Department of Mathematics and Statistics, Masaryk University
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Abstract

An orthogonality space is a set X together with a symmetric and irreflexive bin-
ary relation ⊥, called the orthogonality relation. A block partition of X is a
partition of a maximal set of mutually orthogonal elements of X , and a decom-
position of X is a collection of subsets of X each of which is the orthogonal
complement of the union of the others. (X,⊥) is called normal if any block
partition gives rise to a unique decomposition of the space. The set of one-
dimensional subspaces of a Hilbert space equipped with the usual orthogonality
relation provides the motivating example.

Together with the maps that are, in a natural sense, compatible with the form-
ation of decompositions from block partitions, the normal orthogonality spaces
form a category, denoted byNOS . The objective of the present paper is to char-
acterise both the objects and the morphisms of NOS from various perspectives
as well as to compile basic categorical properties of NOS .

Keywords: Orthogonality space; orthoset; Hilbert space; block partition; de-
composition; normal orthogonality space; Boolean subalgebra
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1 Introduction

The motivation underlying the present work is to contribute to a characterisation of
Hilbert spaces, the basic models underlying quantum physics. There are various
possibilities of associating with a Hilbert space H an algebraic or relational struc-
ture. Following the traditional approach, for instance, we may consider the collection
C(H) of closed subspaces of H . Partially ordered by set-theoretic inclusion, C(H)
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is a complete lattice and equipped with the orthogonality relation, C(H) becomes an
ortholattice, in fact an orthomodular lattice [BrHa]. Alternatively, let P (H) be the
collection of one-dimensional subspaces of H . Endowed with the triple relation of
linear dependence, P (H) is a projective geometry and taking into account also the
orthogonality relation, we are led to an orthogeometry [FaFr]. An enormous amount
of work has been devoted to the investigation of these as well as numerous related
structures, see, e.g., [EGL1, EGL2].

It is an easy, yet interesting observation that the relation of linear dependence in P (H)
and hence also the lattice structure of C(H) can be derived from the orthogonality re-
lation alone. Accordingly, a further option is to start from structures that were once
proposed by D. Foulis and his collaborators: a so-called orthogonality space (some-
times also referred to as an orthoset) is solely based on a binary relation, assumed to
be symmetric and irreflexive. This idea is exploited in the present paper. Our guiding
example is (P (H),⊥), where ⊥ is the usual orthogonality relation.

The first systematic account of orthogonality spaces from the point of view of the
foundations of quantum physics is due to J. R. Dacey [Dac]. In subsequent years,
research focused to a large extent on the more general concept of a test space [Wlc].
Since recently, orthogonality spaces have been considered again and the question
was raised whether they allow a reasonable characterisation of inner-product spaces.
It has turned out that, under a quite simple combinatorial condition called linearity,
orthogonality spaces of finite rank are exactly those of the form (P (H),⊥), where
H is a Hermitian space [Vet3]. Further work focused on the characterisation of real
or complex Hilbert spaces [Bru, Vet1, Rum1, Vet2, Vet3]. In this context, actually
a variety of further issues is touched. Rump’s paper [Rum1], e.g., is also motivated
by properties of the structure group of a set-theoretic solution of the Yang-Baxter
equation; cf. also [Rum2]. We may furthermore observe that the structures considered
in this paper occur in more general frameworks. For example, the collection of pure
states on any C?-algebra carries naturally the structure of an orthogonality space, see,
e.g., [DiNg].

The question seems natural whether there exists a reasonable categorical framework
for orthogonality spaces. A first discussion of this issue is contained in our preceding
paper [PaVe]. The category of all orthogonality spaces and orthogonality-preserving
maps has turned out to be unsuitable. Indeed, in this case an aspect that is central in
the quantum-physical formalism is left out of account: the possibility of decomposing
a Hilbert space into the direct sum of closed subspaces. As a consequence, we restrict
our attention to those orthogonality spaces in which decompositions are determined
analogously to the case of Hilbert spaces. More specifically, a block partition is a
collection (Eα)α<κ of pairwise disjoint non-empty subsets of X whose union is a
maximal set of orthogonal elements. A decomposition ofX is a collection (Aα)α<κ of
non-empty subsets of X each of which is the orthogonal complement of the union of
the others. We call an orthogonality space normal if for any block partition (E1, E2),
there is a unique decomposition (Ē1, Ē2) of the space such that E1 ⊆ Ē1 and E2 ⊆
Ē2. The number of cells of the block partition plays no role here; normality implies
that, for any block partition (Eα)α<κ, there is a unique decomposition (Ēα)α<κ of
the space such that Eα ⊆ Ēα for all α < κ. In order to define a category of normal
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orthogonality spaces, we choose a notion of morphism that takes the formation of
decompositions from block partitions in a natural way into account. We say that an
orthogonality-preserving map ϕ : X → Y between orthogonality spaces is normal if
the following holds true: whenever the image of each cell of a block partition of X
is a cell of a block partition of Y , then ϕ maps, in the obvious sense, the associated
decomposition of X into the associated decomposition of Y . Together with these
maps, normal orthogonality spaces become a category, denoted by NOS .

A detailed discussion of NOS , both from the conceptual and the categorical view-
point, is the objective of the present paper. We proceed as follows. We start in Sec-
tion 2 with an introduction to the notion of normality of orthogonality spaces, provid-
ing a comprehensive list of equivalent formulations. For instance, an orthogonality
space is normal if and only if any maximal set of mutually orthogonal elements gives
rise to a Boolean subalgebra of the associated ortholattice. We moreover draw the
connection to test spaces and the corresponding notion of algebraicity. Sets of the
form E⊥⊥, where E consists of mutually orthogonal elements of some orthogonality
space (X,⊥), are called propositions and we consider the collection Π(X,⊥) of all
propositions, which is the analogue of the logic of a test space. It turns out that (X,⊥)
is normal if and only if Π(X,⊥) has the structure of an orthomodular poset. We also
characterise Dacey spaces among the normal orthogonality spaces, that is, those that
give rise to an orthomodular lattice.

The subsequent Section 3 is devoted to the structure-preserving maps between nor-
mal orthogonality spaces, that is, to the normal homomorphisms. Also for maps,
normality can be characterised from various different viewpoints. For instance, nor-
mality ensures a property reminding of the preservation of linear dependence by maps
between linear spaces. Indeed, the double complementation ⊥⊥ makes any orthogon-
ality space into a closure space and an orthogonality-preserving map ϕ between nor-
mal orthogonality spaces is normal if and only if, for any setA of mutually orthogonal
elements, we have ϕ(A⊥⊥) ⊆ ϕ(A)⊥⊥.

Section 4 contains the categorical part. We characterise the mono- and epimorphisms
and we show that any morphism factorises into a quasi-surjective map followed by an
embedding. We define horizontal sums and direct products inNOS . These construc-
tions also make negative results apparent; horizontal sums or direct products are not
a categorical sum. We finally deal with the decomposition of normal orthogonality
spaces into what we call its irreducible subspaces.

2 Normal orthogonality spaces

We deal in this paper with the following relational structures [Dac, Wlc].

Definition 2.1. An orthogonality space is a non-empty set X equipped with a sym-
metric, irreflexive binary relation ⊥, called the orthogonality relation.

A subset of X consisting of mutually orthogonal elements is called a ⊥-set. The
supremum of the cardinalities of ⊥-sets is called the rank of (X,⊥).

The examples that we have in mind are associated with Hilbert spaces. Equipped
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with the usual orthogonality relation, the set P (H) of one-dimensional subspaces
of a Hilbert space H is obviously an orthogonality space. The rank of (P (H),⊥)
coincides with the (Hilbert) dimension of H .

Orthogonality spaces are essentially the same as undirected graphs and hence must
be considered as very general when considered in the context of the foundations of
quantum physics. We will restrict our discussion to orthogonality spaces of a specific
type, requiring a property that corresponds to a basic feature of the quantum-physical
model. We follow the lines of our previous work [PaVe]. However, to make ideas as
transparent as possible, we will introduce our main notions in a different way. The
equivalence with previous definitions will be apparent from subsequent lemmas.

Our considerations circle around ways of decomposing an orthogonality space into
constituents. For the definition of what this means, let us start with the case of de-
composing the space just into two parts. For a subset A of an orthogonality space X ,
the (orthogonal) complement of A is

A⊥ = {x ∈ X : x ⊥ a for all a ∈ A}.

By a (two-fold) decomposition of X , we mean a pair (A1, A2) of non-empty subsets
of X such that A1 = A⊥2 and A2 = A⊥1 . The sets A1, A2 are called the components
of the decomposition. Note that for the two components of a decomposition we have
A1 ⊥ A2 and (A1 ∪ A2)

⊥ = ∅.

An essential feature of the quantum-physical formalism is the property of Hilbert
spaces to decompose into direct sums. In particular, let B be an orthonormal basis of
a Hilbert space H and let (B1, B2) be a partition of B into two non-empty subsets.
Then H is the direct sum of closed subspaces one of which contains B1 and the other
B2. Clearly, the decomposition is uniquely determined: the subspaces are the closure
of the linear span of B1 and B2, respectively.

We will require orthogonality spaces to have the analogous property. For an ortho-
gonality space (X,⊥), a maximal ⊥-set of X is a block, and by a block partition,
we mean a partition of a block of X into non-empty subsets, called its cells. Given
a block partition (E1, E2), we can always decompose X in such a way that each cell
of the partition is contained in exactly one component of the decomposition: simply
consider (E⊥⊥1 , E⊥1 ). But also (E⊥2 , E

⊥⊥
2 ) is a decomposition with this property and

can differ from the former. What we are interested in is the case that there is not more
than one possibility.

Definition 2.2. We call an orthogonality space (X,⊥) normal if, for any block par-
tition (E1, E2), there is a unique decomposition (Ē1, Ē2) such that E1 ⊆ Ē1 and
E2 ⊆ Ē2.

As already indicated, our prototypical example has this property.

Example 2.3. Let H be a Hilbert space. Let S1 and S2 be closed subspaces of H
such that S1 ⊥ S2 and H = S1 + S2. Writing P (S) for the set of one-dimensional
subspaces of a subspace S of H , we have that (P (S1), P (S2)) is a decomposition of
the orthogonality space (P (H),⊥). Moreover, any two-fold decomposition is of this
form.
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Let E be a block of (P (H),⊥). Then E = {span(b) : b ∈ B} for some orthogonal
basis B of H . Let (E1, E2) be any partition of E into two non-empty subsets. Then
E1 = {span(b) : b ∈ B1} and E2 = {span(b) : b ∈ B2} for a partition (B1, B2)
of B. Let cl(span(B1)) and cl(span(B2)) be the closed linear span of B1 and B2,
respectively. Then

(
P
(
cl(span(B1))

)
, P
(
cl(span(B2))

))
is the unique decomposition

of (P (H),⊥) whose components contain E1 and E2, respectively. Hence (P (H),⊥)
is normal.

For later use we include a further, particularly simple example.

Example 2.4. For n ∈ N \ {0}, let n denote an n-element set. Then (n, 6=) is an or-
thogonality space and the two-fold decompositions are in one-to-one correspondence
with partitions of n into two subsets. Obviously, (n, 6=) is normal.

In this section, we will reformulate the property of an orthogonality space to be nor-
mal in a number of alternative ways.

We recall that any orthogonality space (X,⊥) can be regarded in a natural way as a
closure space; cf. [PaVe]. Indeed, the map P(X) → P(X), A 7→ A⊥⊥ is a closure
operator [Ern]. A set A ⊆ X closed w.r.t. ⊥⊥ is called orthoclosed. Thus A is
orthoclosed if and only if A = A⊥⊥ if and only if there is a B ⊆ X such that
A = B⊥.

Note that the decompositions of X are exactly the pairs (A,A⊥), where A is ortho-
closed. Indeed, for any orthoclosed set A ⊆ X , (A,A⊥) is clearly a decomposition.
Conversely, if (A1, A2) is a decomposition of X , then A1 = A⊥2 is orthoclosed and
A2 = A⊥1 .

Proposition 2.5. Let (X,⊥) be an orthogonality space. Then the following condi-
tions are equivalent.

(1) (X,⊥) is normal.

(2) For any block partition (E1, E2), there is a decomposition (Ē1, Ē2) of X such
that E⊥2 ⊆ Ē1 and E⊥1 ⊆ Ē2.

(3) For any block partition (E1, E2), (E⊥2 , E
⊥
1 ) is a decomposition of X .

(4) For any block partition (E1, E2), (E⊥⊥1 , E⊥⊥2 ) is a decomposition of X .

(5) For any block partition (E1, E2), we have E⊥1 ⊥ E⊥2 .

Proof. (1)⇒ (3): Let X be normal and let (E1, E2) be a block partition. That is, E1

and E2 are disjoint and E1 ∪E2 is a block. Then (E⊥⊥1 , E⊥1 ) is a decomposition such
that E1 ⊆ E⊥⊥1 and E2 ⊆ E⊥1 . Likewise, (E⊥2 , E

⊥⊥
2 ) is a decomposition such that

E1 ⊆ E⊥2 and E2 ⊆ E⊥⊥2 . By uniqueness, we conclude E⊥2 = E⊥⊥1 and E⊥1 = E⊥⊥2 .
In particular, (E⊥2 , E

⊥
1 ) is a decomposition.

(3)⇒ (4): Let (E1, E2) be a block partition and assume that (E⊥2 , E
⊥
1 ) is a decom-

position. Then E⊥⊥2 = E⊥1 and E⊥⊥1 = E⊥2 .
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(4)⇒ (1): Let (E1, E2) be a block partition and assume that (E⊥⊥1 , E⊥⊥2 ) is a decom-
position. Let (Ē1, Ē2) be a further decomposition such that E1 ⊆ Ē1 and E2 ⊆ Ē2.
Then Ē1 is orthoclosed and hence E⊥⊥1 ⊆ Ē1. Moreover, Ē1 = Ē2

⊥ ⊆ E⊥2 = E⊥⊥1

and we conclude Ē1 = E⊥⊥1 . Hence we also have Ē2 = E⊥⊥2 . Normality follows.

(4)⇒ (5): Let (E1, E2) be a block partition and assume that (E⊥⊥1 , E⊥⊥2 ) is a decom-
position. Then E⊥1 = E⊥⊥⊥1 = E⊥⊥2 and hence E⊥1 ⊥ E⊥2 .

(5) ⇒ (4): Let (E1, E2) be a block partition and assume that E⊥1 ⊥ E⊥2 . Then
E2 ⊆ E⊥1 ⊆ E⊥⊥2 implies thatE⊥1 = E⊥⊥2 . It followsE⊥2 = E⊥⊥1 , hence (E⊥⊥1 , E⊥⊥2 )
is a decomposition.

Finally, it is obvious that (4) implies (2) and that (2) implies (5).

We note that criterion (5) in Proposition 2.5 is the one that we chose to define nor-
mality in [PaVe].

For any non-zero cardinal κ, a (κ-fold) decomposition of X is meant to be a col-
lection (Aα)α<κ of non-empty subsets of X such that, for any α < κ, we have
Aα = (

⋃
β<κ, β 6=αAβ)⊥. We again refer to the sets Aα, α < κ, as the compon-

ents of the decomposition. Clearly, for a κ-fold decomposition to exist a necessary
condition is that κ is at most the rank of X .

Note again that a κ-fold decomposition (Aα)α<κ consists of orthoclosed subsets.
Moreover, we have Aα ⊥ Aβ for any α 6= β, as well as (

⋃
α<κAα)⊥ = ∅.

It turns out that the notion of normality would not change if we based its definition
on κ-fold decompositions for arbitrary cardinals κ. Proposition 2.5 could also be
modified accordingly; we do so, as an example, for criterion (4).

Proposition 2.6. Let (X,⊥) be an orthogonality space. The following conditions are
equivalent.

(1) (X,⊥) is normal.

(2) Let (Eα)α<κ be a block partition. Then there is a unique decomposition (Ēα)α<κ
of X such that Eα ⊆ Ēα, α < κ.

(3) Let (Eα)α<κ be a block partition. Then (Eα
⊥⊥)α<κ is a decomposition of X .

Proof. (1)⇒ (3): Assume that X is normal and that (Eα)α<κ is a block partition. By
Proposition 2.5, (E⊥⊥α , (

⋃
β<κ, β 6=αEβ)⊥⊥) is a decomposition for any α < κ, hence

(
⋃
β<κ, β 6=αE

⊥⊥
β )⊥ = (

⋃
β<κ, β 6=αEβ)⊥ = E⊥⊥α for all α < κ. We conclude that

(Eα
⊥⊥)α<κ is a decomposition of X .

(3) ⇒ (2): Let (Eα)α<κ be a block partition and assume that (Eα
⊥⊥)α<κ is a de-

composition of X . Let (Ēα)α<κ be a further κ-fold decomposition of X such that
Eα ⊆ Ēα, α < κ. For all α < κ, we then have E⊥⊥α ⊆ Ēα = (

⋃
β<κ, β 6=α Ēβ)⊥ ⊆

(
⋃
β<κ, β 6=αEβ)⊥ = (

⋃
β<κ, β 6=αE

⊥⊥
β )⊥ = E⊥⊥α , that is, E⊥⊥α = Ēα. This shows (2).

Clearly, (2) implies (1).
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We conclude that any block partition of a normal orthogonality space gives rise to a
unique decomposition such that each cell of the partition is contained in exactly one
component. In this case, each component is the closure of the cell that it contains.
Given a block partition E = (Eα)α<κ, we shall write accordingly

Ē = (Eα
⊥⊥)α<κ. (D)

We call a decomposition of this form propositional. It should be noted that in general
a decomposition need not be of this type.

We shall next see what the condition of normality means when orthogonality spaces
are considered as test spaces. We recall that an (irredundant) test space is a collection
of subsets of a non-empty set such that none of these subsets is properly contained in
another one. For a comprehensive overview of test spaces, we refer the reader to the
A. Wilce’s handbook chapter [Wlc].

For any orthogonality space (X,⊥), the collection of blocks of X is an example of a
test space. For a test space of this form, we recall the common notions. A ⊥-set E
is called a complement of another ⊥-set F if (E,F ) is a block partition. Moreover,
the test space is called algebraic if any two ⊥-sets E and F that possess a common
complement possess the same set of complements.

The following lemma shows that an orthogonality space is normal exactly if the as-
sociated test space is algebraic. In its proof as well as at some places in the sequel,
we denote the union of sets A and B by A ∪̇ B in order to express that A and B are
disjoint.

Proposition 2.7. Let (X,⊥) be an orthogonality space. Then the following condi-
tions are equivalent.

(1) (X,⊥) is normal.

(2) If (E1, E2), (F1, E2), and (E1, F2) are block partitions, then so is (F1, F2).

Proof. (1) ⇒ (2): Let X be normal and let (E1, E2), (F1, E2), (E1, F2) be block
partitions. By criterion (4) of Proposition 2.5, we have that F⊥⊥1 = E⊥2 = E⊥⊥1 and
hence (F⊥⊥1 , F⊥⊥2 ) = (E⊥⊥1 , F⊥⊥2 ) is a decomposition of X . It follows that (F1, F2)
is a block partition as well.

(2) ⇒ (1): Assume that condition (2) holds and that (E1, E2) is a block partition.
Let f2 ⊥ E1 and f1 ⊥ E2. Then we extend E1 ∪ {f2} to a block E1 ∪̇ F2, and we
choose similarly F1. Then (E1, E2), (F1, E2), and (E1, F2) are block partitions and
by assumption it follows F1 ⊥ F2. In particular we have f1 ⊥ f2 and by criterion (5)
of Proposition 2.5, the normality follows.

We next turn to a lattice-theoretic characterisation of normality. We consider to this
end the collection of all orthoclosed subsets of X , denoted by C(X,⊥). W.r.t. the
set-theoretical inclusion, C(X,⊥) is a complete lattice. Together with the orthocom-
plementation, C(X,⊥) is in fact a complete ortholattice. The meet of closed subsets
Aα, α < κ, is given by

⋂
α<κAα and the join is (

⋃
α<κAα)⊥⊥. Furthermore, the
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orthocomplement of an orthoclosed subset A is A⊥, and the bottom and top elements
are ∅ and X , respectively.

With reference to the ortholattice (C(X,⊥);∩,∨,⊥ ,∅, X), we may express normal-
ity as follows. A subalgebra B of an ortholattice is called Boolean if B is distributive,
that is, a Boolean algebra. Moreover, we call a Boolean subalgebra B of C(X,⊥)
complete if B is closed under arbitrary meets and joins. This means that arbitrary
meets and joins exist in B and coincide with those in C(X,⊥). We note that, in con-
trast, the atomicity of a Boolean subalgebra B will be meant to refer to B only. Thus
B is atomic if below any of its elements there is an atom of B, but this atom is not
required to be an atom of C(X,⊥).

Proposition 2.8. Let (X,⊥) be an orthogonality space. Then X is normal if and
only if, for any block E of X , BE = {A⊥⊥ : A ⊆ E} is a Boolean subalgebra of
C(X,⊥). In this case, BE is in fact a complete atomic Boolean subalgebra, and
γ : P(E) → BE, A 7→ A⊥⊥ is an isomorphism between the Boolean algebra of
subsets of E and BE .

Proof. Assume that X is normal and let E ⊆ X be a block. Then BE ⊆ C(X,⊥).
Obviously, we have ∅, X ∈ BE .

For subsets Aα, α < κ, of E we have

∨
α<κ

A⊥⊥α =

(⋃
α<κ

A⊥⊥α

)⊥⊥
=

(⋃
α<κ

Aα

)⊥⊥
∈ BE,

hence BE is closed under arbitrary joins. Furthermore, BE is closed under the or-
thocomplement. Indeed, for any A ⊆ E, ((E \ A)⊥, A⊥) is, by Proposition 2.5, a
decomposition and hence

(A⊥⊥)⊥ = A⊥ = (E \ A)⊥⊥ ∈ BE.

We conclude that BE is closed under joins, meets, and the orthocomplementation. In
particular, BE is a subalgebra of C(X,⊥) and γ defines an isomorphism between the
Boolean algebra of subsets of E and BE . Hence BE is a complete atomic Boolean
algebra.

For the converse direction, assume that (E1, E2) is a block partition and that BE =
{A⊥⊥ : A ⊆ E} is a Boolean subalgebra of C(X,⊥), where E = E1 ∪ E2. Then
E⊥1 = (E⊥⊥1 )⊥ = F⊥⊥ for some F ⊆ E. We have on the one hand F ∩ E1 = ∅
and hence F ⊆ E2. On the other hand, E \ F ⊆ F⊥ = E⊥⊥1 ⊥ E2 and thus
E2 ∩ (E \ F ) = ∅, that is, E2 ⊆ F . We conclude F = E2, that is, E⊥1 = E⊥⊥2

and E⊥2 = E⊥⊥1 . But this means that (E⊥⊥1 , E⊥⊥2 ) is a decomposition of X . By
Proposition 2.5, it follows that (X,⊥) is normal.

Let E be a block in a normal orthogonality space X . Then {e}⊥⊥, e ∈ E, generate
by Proposition 2.8 a complete Boolean subalgebra of C(X,⊥), which we will, as in
Proposition 2.8, denote by BE . More generally, for any ⊥-set A ⊆ X , we denote by
BA the complete Boolean algebra consisting of the joins of {e}⊥⊥, e ∈ A, and whose
top element is A⊥⊥.
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The orthoclosed subsets occurring in propositional decompositions are of a particular
form and we next focus our attention on these. We call an orthoclosed subset A of
an orthogonality space a proposition if there is a ⊥-set E such that A = E⊥⊥. We
denote by Π(X,⊥) the set of all propositions of C(X,⊥). In analogy to the case of
test spaces, we could refer to Π(X,⊥) as the logic of (X,⊥).

As shown in [FGR, Theorem 6.5], a coherent algebraic test space gives rise to an
orthomodular poset. In the present, more special context, we may observe that the
occurrence of an orthomodular structure is characteristic for normality.

Proposition 2.9. Let (X,⊥) be an orthogonality space. Then X is normal if and
only if Π(X,⊥) is closed under orthocomplementation and, partially ordered by set-
theoretic inclusion and equipped with the orthocomplementation, is an orthomodular
poset.

Proof. Assume that X is normal. For any A ∈ Π(X,⊥), there is a ⊥-set E such that
A = E⊥⊥. Let F ⊆ X be such that (E,F ) is a block partition. Then A⊥ = E⊥ =
F⊥⊥ by Proposition 2.5, hence Π(X,⊥) is closed under orthocomplementation. Fur-
thermore, let A,B ∈ Π(X,⊥) be such that A ⊆ B. Then we may choose ⊥-sets
E,F ⊆ X such that E⊥⊥ = A and F⊥⊥ = B⊥, and we may extend E ∪F to a block
(E ∪ F ) ∪̇ G. Then B = B⊥⊥ = F⊥ = (E ∪ G)⊥⊥ = (A ∪ G⊥⊥)⊥⊥. In C(X,⊥),
and consequently also in Π(X,⊥), we hence have B = A ∨ G⊥⊥, where G⊥⊥ ⊥ A.
Hence Π(X,⊥) is an orthomodular poset.

Conversely, assume that Π(X,⊥) is closed under orthocomplementation and is in fact
an orthomodular poset. Let (E1, E2) be a block partition. In C(X,⊥) and hence in
Π(X,⊥), we then have E⊥⊥1 ∨ E⊥⊥2 = X and E⊥⊥1 ⊥ E⊥⊥2 . By orthomodularity,
it follows E⊥1 = E⊥⊥2 and E⊥2 = E⊥⊥1 , that is, (E⊥⊥1 , E⊥⊥2 ) is a decomposition. By
Proposition 2.5, we conclude that X is normal.

Dacey spaces

Normality of an orthogonality space means that any block partition gives rise to a
unique decomposition of the space. We consider now the condition that all decom-
positions arise in this way.

Definition 2.10. An orthogonality space (X,⊥) is called Dacey if X is normal and
any two-fold decomposition of X is propositional.

In other words, an orthogonality space X is Dacey if any block partition with two
cells gives rise to a unique decomposition of X and any two-fold decomposition of
X arises in this way. As usual we refer to X in this case as a “Dacey space” rather
than a “Dacey orthogonality space”. For an overview of results on Dacey spaces, we
refer again to [Wlc].

The following proposition contains some alternative characterisations of Dacey
spaces. We see in particular that also the property of being Dacey would not change
if its definition was based on partitions and decompositions with more than two con-
stituents.
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Proposition 2.11. Let (X,⊥) be a normal orthogonality space. The following are
equivalent:

(1) X is Dacey.

(2) Any orthoclosed subset of X is a proposition, that is, Π(X,⊥) = C(X,⊥).

(3) Any κ-fold decomposition, where κ is a non-zero cardinal, is propositional.

(4) For every atomic complete Boolean subalgebra B of C(X,⊥) there is a block
E such that B is a subalgebra of {A⊥⊥ : A ⊆ E}.

Proof. (1) ⇒ (2): Let A ∈ C(X,⊥). Then (A,A⊥) is a decomposition. If X is
Dacey, there is a ⊥-set E such that A = E⊥⊥.

(2) ⇒ (3): Assume that every orthoclosed set is a proposition and let (Aα)α<κ be
a decomposition of X . For each α < κ, choose a ⊥-set Eα ⊆ X such that Aα =
E⊥⊥α . Then

⋃
α<κEα is a block, that is, (Eα)α<κ is a block partition. Hence the

decomposition is propositional.

(3) ⇒ (4): Let B be an atomic complete Boolean subalgebra of C(X,⊥) and let
(Aα)α<κ be the atoms of B. Then (Aα)α<κ is a decomposition ofX . Assume now that
there is a block partition (Eα)α<κ such that Aα = E⊥⊥α for all α < κ. By normality,
we have from Proposition 2.8 that BE = {A⊥⊥ : A ⊆ E}, where E =

⋃
α<κ, is a

complete Boolean subalgebra of C(X,⊥), and B is a subalgebra of BE .

(4)⇒ (1): Let (A1, A2) be a decomposition of X . Then {X,A1, A2,∅} is an atomic
Boolean subalgebra of C(X,⊥). Assume (4). Then there is block partition (E1, E2)
such that A1 = E⊥⊥1 and A2 = E⊥⊥2 . We conclude that X is Dacey.

Dacey spaces are usually defined without reference to normality. We next see that the
common definition coincides with ours. The equivalence of condition (3) and (4) in
the following lemma is due to Dacey [Dac].

Proposition 2.12. Let (X,⊥) be an orthogonality space. Then the following are
equivalent:

(1) X is Dacey.

(2) Every two orthogonal elements of C(X,⊥) are contained in a Boolean subal-
gebra of C(X,⊥).

(3) C(X,⊥) is an orthomodular lattice.

(4) For any A ∈ C(X,⊥) and any maximal ⊥-set E contained in A, we have
A = E⊥⊥.

Proof. (1) ⇒ (2): Assume that X is Dacey and let A,B ∈ C(X,⊥) be such that
A ⊥ B. By Proposition 2.11, there are ⊥-sets E,F ⊆ X such that A = E⊥⊥

and B = F⊥⊥. Choose G ⊆ X to extend E ∪ F to a block (E ∪ F ) ∪̇ G. By
Proposition 2.8, A and B belong to a Boolean subalgebra of C(X,⊥).
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(2) ⇒ (3): Let A,B ∈ C(X,⊥) such that A ⊆ B. Then A ⊥ B⊥. Assume that A
and B⊥ are contained in a Boolean subalgebra. This means that the subalgebra of
C(X,⊥) generated by A and B is Boolean. It follows B = A ∨ (A⊥ ∩ B) and we
conclude that C(X,⊥) is orthomodular.

(3)⇒ (4): Assume that C(X,⊥) is orthomodular. Let A ∈ C(X,⊥) and let E be a
maximal ⊥-set contained in A. If E⊥⊥ was strictly contained in A, there would be an
e ∈ A such that e ⊥ E, in contradiction to the maximality of E.

(4)⇒ (1): Assume that (4) holds. Then any orthoclosed subset of X is a proposition.
Hence, by Proposition 2.11, it suffices to prove that X is normal. Let (E1, E2) be
a block partition. Then E1 is a maximal ⊥-set contained in E⊥2 and by assumption
it follows E⊥⊥1 = E⊥2 . Hence (E⊥2 , E

⊥
1 ) is a decomposition and we conclude by

Proposition 2.5 that X is normal.

3 Normal homomorphisms

We now turn to the question which maps between orthogonality spaces we should
consider as structure-preserving. The most fundamental aspect is certainly the pre-
servation of the orthogonality relation.

Definition 3.1. A map ϕ : X → Y between the orthogonality spaceX and Y is called
a homomorphism if, for any e, f ∈ X , e ⊥ f implies ϕ(e) ⊥ ϕ(f).

Homomorphisms can be considered as the structure-preserving maps between ortho-
gonality spaces in general. For a discussion of categories of orthogonality spaces,
see, e.g., [Faw]. Here, our focus is on normal orthogonality spaces and a more spe-
cial choice of morphisms seems to be natural.

Let ϕ : X → Y be a homomorphism between orthogonality spaces. Let E be a block
partition of X and let F be a block partition of Y . We say that ϕ maps E into F if, for
any cell E of E, ϕ(E) is a cell of F. Likewise, we say that ϕ maps the decomposition
A = (Aα)α<κ of X into the decomposition B of Y if there are pairwise distinct
components Bα ∈ B, α < κ, such that ϕ(Aα) ⊆ Bα, α < κ.

By Proposition 2.6, a characteristic property of the normality of orthogonality spaces
is the following: each block partition E gives rise to the decomposition Ē consisting
of the closures of the cells of E, cf. (D). This fact motivates the following definition
of normality for homomorphisms.

Definition 3.2. Let (X,⊥) and (Y,⊥) be normal orthogonality spaces. We call a
homomorphism ϕ : X → Y normal if the following condition holds:

(N) Let ϕ map the block partition E of X into the block partition F of Y . Then ϕ
maps the decomposition Ē into the decomposition F̄.

Also the normality of homomorphisms allows a number of different formulations.
Probably most important, a normal homomorphism fulfils for ⊥-sets the continuity
condition w.r.t. the closure operator ⊥⊥ [Ern].

11



Proposition 3.3. Let ϕ : X → Y be a homomorphism between normal orthogonality
spaces. Then the following are equivalent.

(1) ϕ is normal.

(2) For any ⊥-set A ⊆ X , we have ϕ(A⊥⊥) ⊆ ϕ(A)⊥⊥.

(3) For any block E ⊆ X , we have ϕ(X)⊥⊥ = ϕ(E)⊥⊥.

Proof. (1) ⇒ (2): Let ϕ be normal and let A be a ⊥-set. Let B ⊆ X be such that
(A,B) is a block partition of X , and let C ⊆ Y be such that (ϕ(A), ϕ(B), C) is a
block partition of Y . Then, by normality, ϕ maps the decomposition (A⊥⊥, B⊥⊥) of
X into the decomposition (ϕ(A)⊥⊥, ϕ(B)⊥⊥, C⊥⊥) of Y . It follows that ϕ(A⊥⊥) ⊆
ϕ(A)⊥⊥.

(2) ⇒ (3): Let E be a block of X . Then (2) implies that ϕ(X) = ϕ(E⊥⊥) ⊆
ϕ(E)⊥⊥ ⊆ ϕ(X)⊥⊥ and we conclude ϕ(X)⊥⊥ = ϕ(E)⊥⊥.

(3) ⇒ (2): Let A be a ⊥-set of X . Extend A to a block E and let C ⊆ Y be such
that ϕ(E) ∪̇ C is a block of Y . Then x ∈ A⊥⊥ implies x ⊥ E \ A and hence
ϕ(x) ⊥ ϕ(E \ A). Assume now that ϕ(X)⊥⊥ = ϕ(E)⊥⊥. Then we also have
that ϕ(x) ⊥ C. By normality, it follows ϕ(x) ∈ ϕ(A)⊥⊥. We have shown that
ϕ(A⊥⊥) ⊆ ϕ(A)⊥⊥.

(2)⇒ (1): This is obvious.

An automorphism of an orthogonality space is a bijection ϕ : X → X such that both
ϕ and ϕ−1 are homomorphisms. We remark that automorphisms are always normal.

Proposition 3.4. Let X be a normal orthogonality space and let ϕ : X → X be an
automorphism. Then ϕ is normal.

Proof. Let E be a block. Then also ϕ(E) is a block and hence ϕ(E)⊥⊥ = X =
ϕ(X) = ϕ(X)⊥⊥. By criterion (3) of Proposition 3.3, ϕ is normal.

We shall next see that normality implies the preservation of a preorder with which
any orthogonality space is naturally equipped.

Definition 3.5. Let (X,⊥) be an orthogonality space. We define the specialisation
order 4 on X as follows: For e, f ∈ X , we let e4f if, for any x ∈ X , x ⊥ f implies
x ⊥ e.

Our choice of terminology should remind of the analogous situation in closure spaces
[Ern].

Note that the specialisation order is reflexive and transitive but in general not a partial
order. An orthogonality space whose specialisation order is antisymmetric, and hence
a partial order, is called irredundant [Vet3]. In case of our guiding examples, ortho-
gonality spaces associated to Hermitian spaces as in Example 2.3, the specialisation
order is in fact trivial, that is, for any e, f , e4f implies e = f . We call an orthogonal-
ity space with this property strongly irredundant [PaVe]. Unlike in our work [PaVe],
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our present discussion is not restricted from the outset to irredundant or even strongly
irredundant spaces.

For elements e and f of an orthogonality space, we have e4 f if and only if {f}⊥ ⊆
{e}⊥ if and only if {e}⊥⊥ ⊆ {f}⊥⊥ if and only if e ∈ {f}⊥⊥. A homomorphism
does not in general preserve the specialisation order. It does so, for instance, under
the particular situation described in the next lemma.

Lemma 3.6. Let ϕ ∈ X → Y be a surjective map between the orthogonality spaces
X and Y such that, for any e, f ∈ X , e ⊥ f if and only if ϕ(e) ⊥ ϕ(f). Then ϕ is a
homomorphism that preserves the specialisation order.

Proof. Let e, f ∈ X be such that e 4 f . Let z ⊥ ϕ(f). Then there is an x ∈ X
such that z = ϕ(x). It follows x ⊥ f , hence x ⊥ e and z = ϕ(x) ⊥ ϕ(e), that is
ϕ(e) 4 ϕ(f).

The normality of homomorphisms can be understood as a sharpening of the condition
to preserve the specialisation order.

Proposition 3.7. Let ϕ : X → Y be a homomorphism between normal orthogonality
spaces. Then the following are equivalent.

(1) ϕ is normal.

(2) Let e ∈ X and let A ⊆ X be a ⊥-set. If, for any x ∈ X , x ⊥ A implies x ⊥ e,
then, for any y ∈ Y , y ⊥ ϕ(A) implies y ⊥ ϕ(e).

In this case, ϕ preserves the specialisation order.

Proof. For any e ∈ X and any ⊥-set A ⊆ X , we have that A⊥ ⊆ {e}⊥ implies
ϕ(A)⊥ ⊆ {ϕ(e)}⊥ if and only if {e}⊥⊥ ⊆ A⊥⊥ implies {ϕ(e)}⊥⊥ ⊆ ϕ(A)⊥⊥ if and
only if e ∈ A⊥⊥ implies ϕ(e) ∈ ϕ(A)⊥⊥ if and only if ϕ(A⊥⊥) ⊆ ϕ(A)⊥⊥. Hence
the asserted equivalence follows from Proposition 3.3.

For the final assertion, apply condition (2) to a singleton.

We next consider the normality of homomorphisms in relation to the partial order
among decompositions. As is common in case of partitions, we say that a decom-
position A is finer than a decomposition B if any component of A is contained in a
component of B. In this case, we also call A a refinement of B and B a coarsening
of A.

The normality of a homomorphism between normal orthogonality spaces means, in
the sense of the following proposition, its compatibility with the partial order among
propositional decompositions.

Proposition 3.8. Let ϕ : X → Y be a homomorphism between normal orthogonality
spaces. Then the following are equivalent.

(1) ϕ is normal.
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(2) ϕ preserves the specialisation order and the following condition holds: If ϕ
maps the propositional decomposition A of X into the propositional decom-
position B of Y , then for any coarsening B′ of B there is a coarsening A′ of
A such that ϕ maps A′ into B′.

Proof. (1) ⇒ (2): This follows from Proposition 3.7 and criterion (2) of Proposi-
tion 3.3.

(2) ⇒ (1): Assume that (2) holds. Let E ⊆ X be a block and let F ⊆ Y be
such that ϕ(E) ∪̇ F is a block. As ϕ preserves the specialisation order, ϕ maps
the decomposition ({e}⊥⊥)e∈E into the decomposition of Y consisting of {ϕ(e)}⊥⊥,
e ∈ E, and F⊥⊥. Moreover, (ϕ(E)⊥⊥, F⊥⊥) is a coarsening of the latter decompos-
ition. The only coarsening of ({e}⊥⊥)e∈E that is mapped by ϕ into (ϕ(E)⊥⊥, F⊥⊥)
is the decomposition consisting of a single component and we conclude that ϕ(X) ⊆
ϕ(E)⊥⊥. Hence ϕ is normal by criterion (3) of Proposition 3.3.

Finally, with regard to the associated ortholattices, the normality of homomorphism
reads as follows. It is this characterisation that we have used in [PaVe].

Any homomorphism ϕ : X → Y between orthogonality spaces induces a map ϕ̄
between the associated ortholattices:

ϕ̄ : C(X,⊥)→ C(Y,⊥), A 7→ ϕ(A)⊥⊥.

In general, all we can say about this map is that it preserves the order and the ortho-
gonality relation.

Proposition 3.9. Let (X,⊥) and (Y,⊥) be normal orthogonality spaces. A map
ϕ : X → Y is a normal homomorphism if and only if, for any block E of X , ϕ̄ maps
BE isomorphically to Bϕ(E).

Proof. Assume first that ϕ : X → Y is a normal homomorphism. Let E be a block of
X and extend ϕ(E) to a block F of Y . Then, for A ⊆ E, we have by Proposition 3.3
that ϕ̄(A⊥⊥) = ϕ(A⊥⊥)⊥⊥ ⊆ ϕ(A)⊥⊥ ⊆ ϕ(A⊥⊥)⊥⊥ = ϕ̄(A⊥⊥), that is, ϕ̄(A⊥⊥) =
ϕ(A)⊥⊥. By Proposition 2.8, BE = {A⊥⊥ : A ⊆ E} and Bϕ(E) = {B⊥⊥ : B ⊆
ϕ(E)} are Boolean algebras, isomorphic to the Boolean algebras of subsets of E and
ϕ(E), respectively. We conclude that ϕ̄ establishes an isomorphism between B(E)
and B(ϕ(E)).

Conversely, assume that for any block E of X , ϕ̄ maps BE isomorphically to Bϕ(E).
Then, any pair of orthogonal elements e, f ∈ X is contained in a block and {e}⊥⊥ ⊥
{f}⊥⊥ implies ϕ̄({e}⊥⊥) ⊥ ϕ̄({f}⊥⊥). Thus we have ϕ(e) ⊥ ϕ(f), that is, ϕ is a
homomorphism. Moreover, for any block E of X , ϕ̄ maps the top element of BE to
the top element of Bϕ(E), that is, ϕ(X)⊥⊥ = ϕ̄(E⊥⊥) = ϕ(E)⊥⊥. From criterion (3)
of Proposition 3.3 we conclude that ϕ is normal.

4 The category NOS of normal orthogonality spaces

The composition of normal homomorphisms between normal orthogonality spaces
is a normal homomorphism again. This is most directly seen from criterion (2) of
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Proposition 3.3. By NOS , we denote the category of normal orthogonality spaces
and normal homomorphisms. We compile in this section a number of properties of
NOS .

We start by characterising the monomorphisms and epimorphisms. We consider to
this end a doubling point construction, which is explained in the following lemma.

To increase clarity, we will occasionally use subscripts for the denotation of ortho-
gonality relations and the complements in the associated ortholattices.

Lemma 4.1. Let (X,⊥X) be a normal orthogonality space and x ∈ X . Let Z arise
from X by replacing x with two new elements x1 and x2. We define the orthogonality
relation⊥Z on Z as follows: For e, f ∈ X \{x1, x2} such that e⊥X f , we let e⊥Z f ;
and for e ∈ X such that e⊥X x, we let x1, x2 ⊥Z e and e⊥Z x1, x2. Then (Z,⊥Z) is
a normal orthogonality space.

Moreover, we define f1, f2 : X → Z as follows: f1(z) = f2(z) = z if z 6= x;
f1(x) = x1; and f2(x) = x2. Then f1, f2 are morphisms in NOS .

Proof. To prove that (Z,⊥Z) is normal, we use criterion (5) of Proposition 2.5. Let
(E1, E2) be a block partition of Z and assume e ⊥Z E2 and f ⊥Z E1. There are the
following two cases.

Case 1. (E1 ∪ E2) ∩ {x1, x2} 6= ∅. We assume that x1 ∈ E1; the other cases work
similarly. Then x2 /∈ E1 and x1, x2 /∈ E2. We have e ⊥X E2 or e ∈ {x1, x2};
moreover, f ⊥X (E1 \ {x1}) ∪ {x} and f ⊥Z x1, x2. As ((E1 \ {x1}) ∪ {x}, E2) is a
block partition of X , we conclude that e⊥Z f .

Case 2. (E1 ∪ E2) ∩ {x1, x2} = ∅. Then e ⊥X E2, or e ∈ {x1, x2} and x ⊥X E2.
Similarly for f . As (E1, E2) is a block partition of X , we conclude that e⊥Z f .

We now show that f1 is a morphism of NOS; the case of f2 is similar. Clearly, f1
is a homomorphism. We use Proposition 3.3 to show that f1 is normal. Let E be a
block of X . Then f1(E) is a block of Z and hence f1(E)⊥Z⊥Z = Z. Furthermore,
we have f1(X)⊥Z⊥Z = ∅⊥Z = Z. We conclude that f1 is normal.

Proposition 4.2. Let ϕ : X → Y be a morphism in NOS . Then we have:

(i) ϕ is a monomorphism in NOS if and only if ϕ is injective.

(ii) ϕ is an epimorphism in NOS if and only if ϕ is surjective.

Proof. Ad (i): Assume that ϕ is a monomorphism in NOS . Let x1, x2 ∈ X be such
that ϕ(x1) = ϕ(x2). Let (1, 6=) = ({p},∅) be the one-element orthogonality space,
cf. Example 2.4. Clearly, ({p},∅) is normal. Then the maps x̂1, x̂2 : {p} → X , given
by x̂1(p) = x1 and x̂2(p) = x2 are morphisms in NOS . It follows ϕ ◦ x̂1 = ϕ ◦ x̂2
and hence x̂1 = x̂2. We conclude x1 = x2, that is, ϕ is injective.

The reverse direction is evident.

Ad (ii): Assume that ϕ is an epimorphism inNOS that is not surjective. Let y ∈ Y be
such that y /∈ ϕ(X). Let Z = (Y \{y})∪{y1, y2}, where y1, y2 are new elements, and
let⊥Z be defined as in Lemma 4.1, such that (Z,⊥Z) becomes a normal orthogonality
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space. Likewise, let f1, f2 : Y → Z be such that f1(z) = f2(z) = z if z 6= y,
f1(y) = y1, and f2(y) = y2. By Lemma 4.1, f1 and f2 are morphisms in NOS . But
from f1 ◦ ϕ = f2 ◦ ϕ we conclude f1 = f2, a contradiction.

The other direction is again evident.

Let ϕ : X → Y be a morphism inNOS . We call ϕ quasi-surjective if Y = ϕ(X)⊥⊥.
Clearly, if ϕ is surjective, ϕ is also quasi-surjective. Moreover, we call ϕ full if, for
any x1, x2 ∈ X such that ϕ(x1) ⊥ ϕ(x2), there are x′1, x

′
2 ∈ X such that x′1 ⊥ x′2 and

ϕ(x1) = ϕ(x′1) and ϕ(x2) = ϕ(x′2). Finally, we call ϕ an embedding if ϕ is injective
and full.

Let A be an orthoclosed subset of an orthogonality space (X,⊥). The restriction of
the orthogonality relation to A, which we will denote by ⊥ as well, makes A into
an orthogonality space as well. We call (A,⊥) a subspace of X . We should, how-
ever, note that a subspace of a normal orthogonality space is not in general normal;
cf. [PaVe].

We may factorise a morphism in NOS as follows.

Theorem 4.3. Let ϕ : X → Y be a morphism in NOS . Then there are morphisms
α : X → Z and β : Z → Y such that ϕ = β ◦ α, where α is quasi-surjective and β is
an embedding.

Proof. In this proof, we mark the ortholattice complement on C(Z,⊥) by a subscript
Z, whereas the unmarked ones refer to C(X,⊥) or C(Y,⊥).

We claim that the subspace Z = ϕ(X)⊥⊥ of Y is normal. Let E be a block of X
and let ϕ(E) ∪̇ F be a block of Y . As ϕ is normal, we have by Proposition 3.3 that
Z = ϕ(E)⊥⊥. From the normality of Y , it furthermore follows that Z = F⊥. Let
now G be a block of Z. We readily see that then G ∪ F is a block of Y . By the
normality of Y , we have Z = F⊥ = G⊥⊥.

Let (G1, G2) be a partition of G. By Proposition 2.8, G ∪ F generates a Boolean
subalgebra of C(Y ). We conclude that G⊥Z

1 = G⊥1 ∩Z = G⊥1 ∩F⊥ = (G1∪F )⊥⊥ =
G⊥⊥2 and similarly G⊥Z

2 = G⊥2 ∩ Z = G⊥⊥1 , hence G⊥Z
1 ⊥ G⊥Z

2 and consequently
G⊥Z

1 ⊥Z G
⊥Z
2 . By criterion (5) of Proposition 2.5, (Z,⊥Z) is normal.

Let α : X → Z, x 7→ ϕ(x) and let β : Z → Y be the inclusion map. Clearly, α and
β preserve the orthogonality, and ϕ = β ◦α. To see that α is normal, let again E be a
block ofX and let F be as above. Then α(X)⊥Z⊥Z = ϕ(X)⊥Z⊥Z = (ϕ(X)⊥∩Z)⊥∩
Z = (Z⊥ ∩ Z)⊥ ∩ Z = Z and α(E)⊥Z⊥Z = ϕ(E)⊥Z⊥Z = (ϕ(E)⊥ ∩ Z)⊥ ∩ Z =
(Z⊥ ∩ Z)⊥ ∩ Z = Z, hence the assertion holds by Proposition 3.3. It also follows
that α is quasi-surjective.

To see that β is normal, let again G be a block of Z. We have seen above that then
Z = G⊥⊥. Hence β(Z)⊥⊥ = Z⊥⊥ = Z = G⊥⊥ = β(G)⊥⊥, hence the normality
follows from Proposition 3.3. The fact that β is an embedding is obvious.

The next propositions deal with equalisers as well as with two ways of construct-
ing orthogonality spaces in NOS from given ones. We need the following example
from [PaVe].
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Example 4.4. The following orthogonality space (X,⊥) is normal but not a Dacey
space:

Here, two elements are orthogonal if they lie both on a straight line. For instance, a,
b, and c are mutually orthogonal.

Proposition 4.5. The category NOS does not have equalisers.

Proof. Let us consider the normal orthogonality space (X,⊥X) from Example 4.4.
We define ϕ : X → X, a 7→ a, b 7→ h, c 7→ g, d 7→ f, e 7→ e, f 7→ d, g 7→ c, h 7→
b. Then ϕ is an automorphism of X and hence, by Proposition 3.4, a morphism of
NOS .

Let us assume that the pair of arrows X X
ϕ

idX
in NOS possesses an equaliser

ψ : Y → X . Since the diagram Y X X
ψ ϕ

idX
commutes, the image of ψ

must be contained in {a, e}. We consider two cases.

Case 1. Assume that ψ is a constant map, that is, ψ(Y ) = {a} or ψ(Y ) = {e}. We
assume that ψ(Y ) = {a}; the other case is similar. Let again (1, 6=) = ({p},∅) be the
normal orthogonality space consisting of a single element and consider the morphism
ê : {p} → X, p 7→ e. Then ϕ ◦ ê = idX ◦ ê. But there is no map k : {p} → Y such
that ê = ψ ◦ k.

Case 2. Assume that ψ(Y ) = {a, e}. Let y ∈ Y be such that ψ(y) = a. Because
a 6⊥ e, we have that {y} is a block of Y . Moreover, ψ(Y )⊥X⊥X = {a, e}⊥X⊥X =
{a, e} 6= {a} = {a}⊥X⊥X = {ψ(y)}⊥X⊥X , in contradiction to the normality of ψ.

We conclude that the pair ϕ, idX does not possess an equaliser.

Let (Xi,⊥i), i ∈ I , be normal orthogonality spaces. In the category NOS , we call
an object (X,⊥X) together with morphisms inji : Xi → X , i ∈ I , a horizontal sum if
the following holds: for any morphisms ϕi : Xi → Y , i ∈ I , such that ϕi(Xi)

⊥Y ⊥Y =
ϕj(Xj)

⊥Y ⊥Y for all i, j ∈ I , there is a unique morphism ϕ : X → Y such that
ϕi = ϕ ◦ inji for every i ∈ I .

Proposition 4.6. The category NOS has horizontal sums.

Proof. Let (Xi,⊥i), i ∈ I , be normal orthogonality spaces. We assume that the sets
Xi, i ∈ I , are mutually disjoint. Let X =

⋃
i∈I Xi and for e, f ∈ X , let e ⊥ f if there

is an i ∈ I such that e, f ∈ Xi and e⊥i f .

Clearly, (X,⊥) is an orthogonality space. We claim that (X,⊥) is normal. Let
(E1, E2) be a block partition of X . Then (E1, E2) is a block partition of Xi for
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some i ∈ I . As Xi is normal, we have E⊥i
1 ⊥i E

⊥i
2 and consequently E⊥1 ⊥ E⊥2 . The

normality of X holds by criterion (5) of Proposition 2.5.

For every i ∈ I , let inji : Xi → X be the inclusion map. We claim that inji is a
morphism. By construction, inji is orthogonality-preserving. Let E be a block of Xi.
Then E is also a block of X . Hence inji(E)⊥⊥ = E⊥⊥ = ∅⊥ = X⊥⊥ = X⊥⊥i =
inji(Xi)

⊥⊥ and the normality follows from Proposition 3.3.

Let now (Y,⊥Y ) be a further normal orthogonality space and let ϕi : Xi → Y , i ∈ I ,
be morphisms such that ϕi(Xi)

⊥Y ⊥Y = ϕj(Xj)
⊥Y ⊥Y for all i, j ∈ I . We have to

show that there exists a unique morphism ϕ : X → Y such that ϕi = ϕ ◦ inji for
every i ∈ I . The only map ϕ fulfilling the latter requirement is defined as follows:
for x ∈ X , we let ϕ(x) = ϕi(x) for the unique i ∈ I such that x ∈ Xi. Clearly, ϕ is
a homomorphism. To see that ϕ is normal, let E be a block of X . Then E is a block
of Xj for some j ∈ I . Applying Proposition 3.3 to ϕj , we get

ϕ(E)⊥Y ⊥Y = ϕj(E)⊥Y ⊥Y = ϕj(Xj)
⊥Y ⊥Y =

∨
i∈I

ϕi(Xi)
⊥Y ⊥Y

=

(⋃
i∈I

ϕi(Xi)
⊥Y ⊥Y

)⊥Y ⊥Y

=

(⋃
i∈I

ϕi(Xi)

)⊥Y ⊥Y

= ϕ(X)⊥Y ⊥Y ,

and again from Proposition 3.3 the normality of ϕ follows.

Let again (Xi,⊥i), i ∈ I , be normal orthogonality spaces. InNOS , we call an object
(X,⊥) together with morphisms ini : Xi → X, i ∈ I , a direct product if the following
holds: for any morphisms ϕi : Xi → Y, i ∈ I , such that ϕi(Xi) ⊥Y ϕj(Xj) for all
i 6= j, there is a unique morphism ϕ : X → Y such that ϕi = ϕ ◦ ini for all i ∈ I .

Proposition 4.7. The category NOS has direct products.

Proof. Let (Xi,⊥i), i ∈ I be normal orthogonality spaces. We assume again that the
sets Xi, i ∈ I , are mutually disjoint. Let X =

⋃
i∈I Xi and for e, f ∈ X , let e ⊥ f

if either there is an i ∈ I such that e, f ∈ Xi and e ⊥i f , or there are i, j ∈ I , i 6= j
such that e ∈ Xi and f ∈ Xj .

Obviously, (X,⊥) is an orthogonality space. We claim that (X,⊥) is normal. Let
(E,F ) be a block partition and assume e ⊥ F and f ⊥ E. Let e ∈ Xi and f ∈ Xj . If
i 6= j, we have e ⊥ f by construction. Otherwise, e ⊥ F ∩Xi and f ⊥ E∩Xi. Since
(E ∩Xi, F ∩Xi) is a block partition of (Xi,⊥i), the normality of Xi implies e⊥i f ,
that is, we have e ⊥ f also in this case. The assertion follows now from criterion (5)
of Proposition 2.5.

For every i ∈ I , let ini : Xi → X be the inclusion map. We claim that ini is a
morphism in NOS . Evidently, ini preserves the orthogonality. Moreover, let Ei
be a block of Xi. Then E⊥i =

⋃
j∈I,j 6=iXj and hence E⊥⊥i = Xi. We conclude

ini(Ei)⊥⊥ = E⊥⊥i = Xi = X⊥⊥i = ini(Xi)
⊥⊥ and by Proposition 3.3, ini is normal.

Let now (Y,⊥Y ) be a further normal orthogonality space and let ϕi : Xi → Y , i ∈ I ,
be morphisms in NOS such that ϕi(Xi) ⊥Y ϕj(Xj) for all i 6= j. We have to show
that there exists a unique morphism ϕ : X → Y such that ϕi = ϕ ◦ ini for every
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i ∈ I . Again, there is only one map ϕ fulfilling the latter requirement: for x ∈ X , we
let ϕ(x) = ϕi(x) for the unique i ∈ I such that x ∈ Xi. We readily observe that ϕ
preserves the orthogonality. It remains to show that ϕ is normal. Let E be a block of
X . Then Ei = E ∩Xi is a block of Xi for every i ∈ I . By Proposition 3.3 applied to
ϕi, i ∈ I , we get

ϕ(E)⊥Y ⊥Y =

(⋃
i∈I

ϕ(Ei)

)⊥Y ⊥Y

=

(⋃
i∈I

ϕ(Ei)
⊥Y ⊥Y

)⊥Y ⊥Y

=

(⋃
i∈I

ϕi(Xi)
⊥Y ⊥Y

)⊥Y ⊥Y

=

(⋃
i∈I

ϕi(Xi)

)⊥Y ⊥Y

= ϕ(X)⊥Y ⊥Y ,

and the normality of ϕ follows once more from Proposition 3.3.

We remark that, if (X,⊥X) is the horizontal sum (respectively, the direct product)
of normal orthogonality spaces (Xi,⊥i), i ∈ I , then C(X,⊥) is the horizontal sum
(respectively, the direct product) of the ortholattices C(Xi,⊥i), i ∈ I .

Proposition 4.8. The horizontal sum as well as the direct product of Dacey spaces is
again a Dacey space.

Proof. Let (Xi,⊥i), i ∈ I , be Dacey spaces and let (Z,⊥Z) be their horizontal sum.
We shall see that (Z,⊥Z) fulfils criterion (4) of Proposition 2.12. Let A ∈ C(Z,⊥Z)
and let D be a maximal ⊥-set contained in A. We have to show that D⊥⊥ = A. This
is clear if A = ∅ or A = Z. Otherwise, there is an i ∈ I such that A is a non-empty,
proper subset of Xi. We have that A⊥i⊥i = A⊥Z⊥Z = A, that is, A ∈ C(Xi,⊥i).
Furthermore, D is a maximal subset of A consisting of mutually orthogonal elements
of Xi. As Xi is Dacey, it follows A = D⊥i⊥i = D⊥Z⊥Z .

Moreover, let (X,⊥) be the direct product of the Dacey spaces (Xi,⊥i), i ∈ I . Then
X⊥⊥i = Xi, that is, Xi ∈ C(X,⊥). Let A ∈ C(X,⊥) and let D be a maximal ⊥-set
contained in A. Let Ai = A ∩ Xi and Di = D ∩ Xi, i ∈ I . Then Di is a maximal
subset of Ai consisting of mutually orthogonal elements of Xi. As Xi is Dacey, it
follows A = D⊥i⊥i = D⊥Z⊥Z . Hence

A =
⋃
i∈I

Ai =
⋃
i∈I

D⊥⊥i ⊆

(⋃
i∈I

Di

)⊥⊥
= D⊥⊥ ⊆ A.

We conclude that (X,⊥) is Dacey.

We may observe that the two preceding constructions do not ensure the existence of
categorical sums in NOS . The following example shows that neither the horizontal
sum nor the direct product, together with the respective injection mappings, is a cat-
egorical sum in NOS .

Example 4.9. Let us consider the orthogonality spaces ({a, b}, 6=) and ({c, d}, 6=),
which by Example 2.4 are normal.
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Let (X,⊥X) = ({a, b, c, d}, 6=) be their direct product. Let ϕ1 : {a, b} → {a, b}
be the identity map and let ϕ2 : {c, d} → {a, b}, c 7→ a, d 7→ b. Then ϕ1 and
ϕ2 are normal homomorphisms. But there is obviously no orthogonality-preserving
map from ({a, b, c, d}, 6=) to ({a, b}, 6=). We conclude that ({a, b, c, d}, 6=) is not a
categorical sum of ({a, b}, 6=) and ({c, d}, 6=).

Let now (Z,⊥Z) be the horizontal sum of ({a, b}, 6=) and ({c, d}, 6=). Then we
have Z = {a, b, c, d} and ⊥Z = {(a, b), (b, a), (c, d), (d, c)}. The inclusion maps
ι1 : {a, b} → X and ι2 : {c, d} → X are normal homomorphisms. If ψ : Z → X
is such that ψ ◦ inj1 = ι1 and ψ ◦ inj2 = ι2, then ψ is the identity map. But ψ is
not normal. Indeed, {a, b} is a block of Z and we have ψ({a, b})⊥X⊥X = {a, b} but
ψ(Z)⊥X⊥X = X . Hence also (Z,⊥Z) is not the categorical sum of ({a, b}, 6=) and
({c, d}, 6=).

The direct product construction may be used to describe the decomposition of an
orthogonality space (X,⊥) into its irreducible components. We say that (X,⊥) is
reducible if there is a decomposition (A,B) of X such that X = A∪B, otherwise X
is called irreducible; cf. [Vet3].

Following the idea of Rump who has studied the connectedness ofL-algebras [Rum1],
we make the following definitions. For an orthogonality space (X,⊥), let ⊥c =
(X × X) \ ⊥. Then ⊥c is a symmetric, reflexive relation. Endowed with ⊥c, X
can be considered as a graph with loops. We say that two elements x and y of X
are dually connected if x and y are connected in this graph, that is, if there is a finite
sequence x0, . . . , xn in X such that x = x0⊥c x1⊥c · · ·⊥c xn = y. We write xdcy in
this case. Note that dc is an equivalence relation on X and the dc-classes are pairwise
orthogonal.

Lemma 4.10. Let (X,⊥) be an orthogonality space. Then the following conditions
are equivalent.

(1) (X,⊥) is irreducible.

(2) Any two elements of X are dually connected, that is, dc = X ×X .

Proof. (1)⇒ (2): Assume that dc possesses more than one equivalence class. Then
there are disjoint non-empty subsets A,B ⊆ X such that X = A ∪ B and e ⊥ f for
any e ∈ A and f ∈ B. ThenA = B⊥ andB = A⊥, that is, (A,B) is a decomposition.

(2)⇒ (1): Assume that there is a decomposition (A,B) such that X = A ∪B. Then
e ⊥ f for any e ∈ A and f ∈ B. Hence the dc-class of any e ∈ A is contained in A,
whereas the dc-class of any f ∈ B is contained in B. In particular, there are at least
two dc-classes.

For any orthogonality space (X,⊥), X is the union of its dc-classes Xi, i ∈ I .
Clearly,Xi is orthoclosed for each i, that is, (Xi,⊥) is a subspace ofX . Hence theXi

are exactly the maximal irreducible subspaces of X and we call them the irreducible
components of (X,⊥).
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Proposition 4.11. Every normal orthogonality space is the direct product of its irre-
ducible components.

Proof. Let (X,⊥) be a normal orthogonality space and let (Xi,⊥) be its irreducible
components. That is, let Xi be the dc-classes endowed with the restriction of the
orthogonality relation.

We have to show that (Xi,⊥) is normal, then the assertion will be clear. We apply
once more criterion (5) of Proposition 2.5. Let (E,F ) be a block partition of Xi and
let e, f ∈ Xi be such that e ⊥ F and f ⊥ E. Let G ⊆ X be such that (E ∪F ) ∪̇G is
a block of X . Then G ⊆

⋃
j 6=iXj and hence e ⊥ F ∪G. By the normality of X , we

conclude e ⊥ f .

Corollary 4.12. The irreducible components of a Dacey space are Dacey as well.
Hence every Dacey space is the direct product of irreducible Dacey subspaces.

Proof. A subspace of a Dacey space is again Dacey. Hence the assertion follows from
Proposition 4.11.

We conclude mentioning a further negative result. Let (Xi,⊥i), i ∈ I , be orthogon-
ality spaces. On

∏
i∈I Xi, we define the orthogonality relation componentwise, that

is, we let (ei)i∈I ⊥ (fi)i∈I if ei ⊥ fi for all i ∈ I . Then, obviously, (
∏

i∈I Xi,⊥) is
an orthogonality space.

However, as the following example shows, normality is in general not preserved under
this construction.

Example 4.13. Consider (P (H1),⊥) and (P (H2),⊥), where H2 is a 4-dimensional
Hilbert space, H1 is a 2-dimensional subspace of H2, and ⊥ denotes the usual ortho-
gonality relations. Then (P (H1)× P (H2),⊥) is not normal.

Indeed, let w, x ∈ H2 be an orthogonal basis of H2, and let w, x, y, z be an or-
thogonal basis of H4. Then {(span(w), span(w)), (span(x), span(x))} is a block of
(P (H1)× P (H2),⊥). Moreover, we have that

(span(x), span(y)) ⊥ (span(w), span(w)),

(span(w), span((y + z))) ⊥ (span(x), span(x))

but (span(x), span(y)) 6⊥ (span(w), span((y + z))). This is in contradiction to cri-
terion (5) for normality in Proposition 2.5.
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