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Abstract

An orthogonality space is a set endowed with a symmetric, irreflexive binary
relation. By means of the usual orthogonality relation, each anisotropic quadratic
space gives rise to such a structure. We investigate in this paper the question
to which extent this strong abstraction suffices to characterise complex Hilbert
spaces, which play a central role in quantum physics. To this end, we consider
postulates concerning the nature and existence of symmetries. Together with a
further postulate excluding the existence of non-trivial quotients, we establish a
representation theorem for finite-dimensional orthomodular spaces over a dense
subfield of C.
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1 Introduction

Quantum physics uses the complex Hilbert space as its basic model. The reason why
this particular structure has proven suitable is not obvious and has in fact been the topic
of much debate. The probably oldest approach towards a better understanding of the
quantum physical formalism investigates the possibility of a structural reduction. The
question is whether the Hilbert space can be recovered from a simpler structure. In
the field that has become known under the name “quantum logic”, several algebraic
approaches have been proposed to this end and have led to a wide range of results;
see, e.g., [EGL2, EGL3]. There are, for instance, ways to characterise the infinite-
dimensional complex Hilbert space by means of its orthomodular lattice of closed sub-
spaces [Wlb].
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The present paper is a further contribution along these lines. However, in contrast to
certain previous works including [Wlb], it is not our objective to find a characterisation
of purely algebraic nature, that is, to restrict to what a first-order language associated
with some class of algebras has to offer. Our guidelines are the following. First of all,
we choose a structure that we think is a particularly modest one. If a quantum physical
model is to be based on any principle at all, it is probably the principle of distinguishab-
ility: an observation of a certain kind may lead to one out of several mutually exclusive
descriptions of a quantum system. The concept of orthogonality can be found, in one
form or another, in all algebraic frameworks that have been proposed in the present
context, most obviously in cases like orthomodular lattices, partial Boolean algebras,
or orthoalgebras. The notion of an orthogonality space, which is due to D. J. Foulis
and his collaborators, is solely based on this idea. An orthogonality space is a set
endowed with a symmetric, irreflexive binary relation, the prototype consisting of the
one-dimensional subspaces of a Hilbert space together with the usual orthogonality
relation. We remark that test spaces, which have been proposed at a later time by
D. J. Foulis and C. H. Randall, are structures following a closely related concept; see
[Wlc].

In spite of its simplicity, the notion of an orthogonality space is amazingly powerful.
The binary relation gives rise to a closure operator and the closed sets form a complete
ortholattice. However, without a further extension of the concept, we can hardly derive
any specific structure; we are certainly in a quite general context when compared to the
prototype.

A further aspect that we consider as central is associated with the notion of symmetry.
Indeed, any quantum physical model should be able to describe a change of perspective
and it is natural to assume that this is done by means of symmetries of the model. We
are thus led to the idea of requiring an orthogonality space to possess a suitable amount
of automorphisms.

In the lattice-theoretic context, postulates involving automorphisms have been pro-
posed by several authors. We may for instance mention the work of Holland [Hol3],
Mayet [May], Aerts and Van Steirteghem [AeSt], Engesser, Gabbay, and Lehmann
[EGL1], and Cassinelli and Lahti [CaLa1, CaLa2]. Mayet discusses in [May] the sub-
space lattices of the classical Hilbert spaces and he showed a way of singling out the
field of complex numbers among the three classical division rings. In the present work,
we will investigate the effect of such postulates in a more general context.

Let us give an idea of what we have in mind. LetX be an orthogonality space. We may
postulate that there is an automorphism changing the relationship of certain elements
of X with regard to other elements in a specific way. Most simply, we may require
that, for any e, f ∈ X there is an automorphism mapping e to f ; cf. [Hol3, AeSt].
Similarly, we may require that, for any distinct e, f ∈ X there is an automorphism
mapping e to an element orthogonal to f . In both cases, we may add the condition that
all elements not involved, that is, the elements orthogonal to e and f , remain fixed. A
further concern may be the existence of “roots” of automorphisms: we may require for
an automorphism ϕ and any k > 2 a further automorphism ψ to exist such that ψk = ϕ
and ψ leaves an element of X fixed if so does ϕ.
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We will propose four postulates along these lines and show them to be sufficient
to characterise the orthogonality spaces arising from an orthomodular space over an
ordered ?-field K. If Archimedean, K is by a theorem of Holland [Hol1] embeddable
into one of the classical fields, R or C. We further show that otherwise the orthogon-
ality space possesses a quotient that is representable by a space over an Archimedean
?-field. The formation of the quotient has the peculiar property that any automorphism
is compatible with it, provided that it is induced by a unitary operator. By excluding
such a situation, we are able to conclude that K is a subfield of C.

As indicated in the title, the present work depends largely on a finiteness assumption.
Indeed, for the issue of characterising the complex Hilbert space it makes a big differ-
ence whether we deal with the case of finite or infinite dimensions. In the present paper,
we deal exclusively with the former. This is to say that our orthogonality spaces will
be assumed to contain only finitely many mutually orthogonal elements and the rep-
resenting spaces will accordingly be finite-dimensional. In the infinite case, additional
tools might greatly simplify the axiomatics. In particular, Solèr’s Theorem would be
available and we might be lead to a procedure that differs not just in some details. We
will turn to this case in a separate paper. Presently, we may refer to [Vet], where we
have proposed a representation theorem for partial Boolean algebras.

We proceed as follows. We establish in Section 2 that an orthogonality space, assumed
to be of finite rank and to possess automorphisms of a certain type, gives rise to an
irreducible atomistic modular ortholattice. Before applying this result to the algeb-
raic theory of linear spaces, we establish in Section 3 the necessary facts on ordered
?-sfields (skew fields with an involutorial antiautomorphism) and orthomodular spaces
over them. The subsequent Section 4 is then devoted to the representation of the or-
thogonality space by an orthomodular space. Next we address the problem that we
cannot yet delimit the ?-sfield in a reasonable way; the Archimedean property may
fail. In Section 5 we show that in the non-Archimedean case the orthogonality space
possesses a quotient with the desired properties. We conclude in Section 6 that a pos-
tulate on the non-existence of such quotients leads us to an orthomodular space over a
subfield of C. Finally, Section 7 contains some concluding remarks.

2 Orthogonality spaces

The objective of this paper is to characterise complex Hilbert spaces by means of the
orthogonality relation between its one-dimensional subspaces. The following structure
represents the corresponding abstraction [Dac].

Definition 2.1. An orthogonality space consists of a non-empty set X and a symmet-
ric, irreflexive binary relation ⊥, called the orthogonality relation. The supremum of
the number of mutually orthogonal elements of X is called the rank of (X,⊥).

Example 2.2. Let P (H) be the set of one-dimensional subspaces of a Hilbert space
H and let ⊥ be the usual orthogonality relation. Then (P (H),⊥) is an orthogonality
space and the dimension of H coincides with the rank of (P (H),⊥).
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Given a complex Hilbert space H , our concern is to investigate the characteristic prop-
erties of (P (H),⊥). Our focus is on the finite-dimensional case. We will in fact
discuss exclusively orthogonality spaces of finite rank.

Let us consider a further example, which is of a completely different kind.

Example 2.3. LetB be a Boolean algebra with at least two elements and letB? consist
of its non-zero elements. For a, b ∈ B?, put a ⊥ b if a ∧ b = 0. Then (B?,⊥) is an
orthogonality space. If B is finite, then the rank of (B?,⊥) is the number of atoms of
B.

A homomorphism between orthogonality spaces (X,⊥) and (Y,⊥) is a map ϕ : X →
Y preserving the orthogonality relation. An injective homomorphism ϕ : X → Y
is called full if, for any x1, x2 ∈ X , we have x1 ⊥ x2 if and only if ϕ(x1) ⊥ ϕ(x2).
Moreover, a surjective homomorphism ϕ : X → Y is called faithful if, for any y1, y2 ∈
Y such that y1 ⊥ y2, there are x1, x2 ∈ X such that x1 ⊥ x2, ϕ(x1) = y1, and
ϕ(x2) = y2. An automorphism of an orthogonality space is a bijection ϕ such that
both ϕ and ϕ−1 are homomorphisms. Clearly, an automorphism is full and faithful.

Studying orthogonality spaces is facilitated by the fact that we are directly led to lattice
theory. We may associate with any orthogonality space a complete ortholattice, in a
way that automorphisms of the former structure become automorphisms of the latter.

For the remainder of this section, let us fix an orthogonality space (X,⊥). ForA ⊆ X ,
we put A⊥ = {x ∈ X : x ⊥ a for all a ∈ A}. Then the map P(X) → P(X), A 7→
A⊥⊥ is a closure operator. The sets A such that A⊥⊥ = A are called orthoclosed and
the set of all orthoclosed subsets is denoted by C(X,⊥).

For the lattice-theoretic facts of which we make use in this paper, we may refer, e.g.,
to [MaMa].

Lemma 2.4. C(X,⊥), partially ordered by set-theoretical inclusion and endowed with
the unary operation ⊥, is a complete ortholattice. The bottom element is ∅, the top
element is X .

Furthermore, let ϕ : X → X be an automorphism of (X,⊥). Then the mapping
ϕ̄ : C(X,⊥) → C(X,⊥), A 7→ {ϕ(x) : x ∈ A} is an automorphism of the ortholat-
tice C(X,⊥).

We note that it is in general not possible to reconstruct the orthogonality space (X,⊥)
from the ortholattice C(X,⊥). When (X,⊥) is based on a Boolean algebra as in
Example 2.3, then C(X,⊥) is its Dedekind-MacNeille completion and thus in a sense
a finer structure, from which we cannot in general deduce the original one. A converse
situation arises when X contains distinct elements x and y such that {x}⊥ = {y}⊥.
The distinguishability of x and y being lost, we might then view C(X,⊥) as a coarser
structure, from which we cannot recover the original one either. The latter case implies
that there is in general also no one-to-one correspondence between the automorphisms
of (X,⊥) and of C(X,⊥). We will get back to these issues below.

In order to characterise the canonical orthogonality space, our strategy consists of find-
ing natural conditions regarding the existence of automorphisms of (X,⊥). In par-
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ticular, we will require that, for any two elements e and f , there is an automorphism
mapping e to an element e′ that is compatible with f . Here, compatibility of e′ with
f means that e′ either coincides with f or is orthogonal to f . A guiding principle will
furthermore be that the automorphisms are required to act “locally”, that is, to leave
any element orthogonal to the involved elements unchanged.

We say that an automorphism ϕ of (X,⊥) fixes an x ∈ X if ϕ(x) = x. If ϕ fixes every
x ∈ A for some A ⊆ X , we say that ϕ is the identity on A.

We define the following properties of (X,⊥).

(F1) Let e, f ∈ X be distinct. Then there is an automorphism ϕ : X → X such that

(i) ϕ(e)⊥ f ,

(ii) ϕ fixes any x ∈ X such that x⊥ e, f or x⊥ ϕ(e), f .

(F2) Let e, f ∈ X be distinct. Then there is an automorphism ϕ : X → X such that

(i) ϕ(e) = f ,

(ii) ϕ fixes any x ∈ X such that x⊥ e, f .

We will see that condition (F1) has amazingly strong consequences. To begin with,
Example 2.3 shows that the lattice C(X,⊥) is in general not atomistic. It follows from
(F1) that C(X,⊥) does have this property.

Lemma 2.5. Let (X,⊥) fulfil (F1). Then C(X,⊥) is atomistic, the atoms being {e}⊥⊥,
e ∈ X .

Proof. Let e ∈ X . We will show that {e}⊥⊥ is an atom of C(X,⊥); the assertion will
then follow.

Assume that {e}⊥⊥ is not an atom. Then there is an f ∈ X such that {f}⊥⊥ $ {e}⊥⊥.
In particular e 6= f and hence, by (F1), there is an automorphism ϕ of X such that
ϕ(f)⊥ e and ϕ fixes any x ∈ X such that x⊥ e, f . Then ϕ(x) = x for any x ∈ {e}⊥,
because x⊥ e implies x⊥ f . Hence f ⊥{e}⊥ implies ϕ(f)⊥{e}⊥. But we also have
ϕ(f) ∈ {e}⊥, a contradiction.

An orthogonality space (X,⊥) is called irredundant if, for any x, y ∈ X , {x}⊥ =
{y}⊥ implies x = y. Condition (F1) happens to imply this property.

Lemma 2.6. Let (X,⊥) fulfil (F1). Then (X,⊥) is irredundant.

Proof. Let x, y ∈ X be such that {x}⊥ = {y}⊥ and assume that x and y are distinct.
By (F1), there is an automorphism ϕ such that ϕ(x)⊥y and ϕ(z) = z for any z⊥x, y.
Then ϕ(z) = z for any z ⊥ y, in particular ϕ(ϕ(x)) = ϕ(x) and hence ϕ(x) = x. But
this means x⊥ y, a contradiction.

Proposition 2.7. Let (X,⊥) fulfil (F1). Then the set of atoms of C(X,⊥) is the set of
singletons {{x} : x ∈ X} and, endowed with the orthogonality relation inherited from
C(X,⊥), is isomorphic with (X,⊥).
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Proof. We have to show that the singletons are orthoclosed, that is, {x}⊥⊥ = {x} for
any x ∈ X . Let y ∈ {x}⊥⊥. Then {y}⊥⊥ ⊆ {x}⊥⊥, and from Lemma 2.5 it follows
that {y}⊥⊥ = {x}⊥⊥. Hence {y}⊥ = {x}⊥. Since X is by Lemma 2.6 irredundant,
we conclude y = x.

By Lemma 2.5, {{x} : x ∈ X} is the set of atoms of C(X,⊥). The lemma follows.

Proposition 2.8. Let (X,⊥) fulfil (F1). Then the automorphisms of (X,⊥) and those
of the ortholattice C(X,⊥) are in a one-to-one correspondence.

Proof. Recall from Lemma 2.4 that any automorphism ϕ of X induces an automorph-
ism ϕ̄ of C(X,⊥).

Conversely, let ϕ̄ be an automorphism of C(X,⊥). In view of Proposition 2.7, we may
define ϕ : X → X to be the map such that, for any x ∈ X , ϕ(x) is the single element
of ϕ̄({x}). Clearly, ϕ is a bijection. Let x, y ∈ X . Then x ⊥ y in X iff {x} ⊥ {y} in
C(X,⊥) iff ϕ̄({x}) ⊥ ϕ̄({y}) in C(X,⊥) iff ϕ(x) ⊥ ϕ(y) in X . We conclude that ϕ
is an automorphism of (X,⊥).

Clearly, the assignment ϕ 7→ ϕ̄ defines a one-to-one correspondence.

Our next aim is to show the modularity of C(X,⊥), provided that X is of finite rank.
To this end, we cite a lemma of J. R. Dacey containing a criterion for C(X,⊥) to
be orthomodular; see [Dac] or [Wlc, Theorem 35]. For an overview of orthomodular
lattices, see, e.g., [BrHa].

In what follows, a subsetD ofX is called orthogonal if so are any two distinct elements
of D.

Lemma 2.9. Let (X,⊥) be an orthogonality space. Then C(X,⊥) is orthomodular if
and only if, for any A ∈ C(X,⊥) and any maximal orthogonal subset D of A, we have
A = D⊥⊥.

Lemma 2.10. Let (X,⊥) have finite rank and fulfil (F1). Let D ⊆ X be orthogonal
and let e ∈ X be such that e /∈ D⊥⊥. Then there is an f⊥D such that (D∪{e})⊥⊥ =
(D ∪ {f})⊥⊥.

Proof. Since X has finite rank, D is finite; let D = {d1, . . . , dk}.
If e ⊥ D, we let f = e and we are done. Assume e 6⊥ D. Then there is a smallest
j ∈ {1, . . . , k} such that e⊥d1, . . . , dj−1 but e 6⊥dj . By (F1), there is an automorphism
ϕ such that e′ = ϕ(e)⊥dj and ϕ(x) = x if x⊥dj , e or x⊥dj , e′. Since d1, . . . , dj−1⊥
dj , e, we have that d1, . . . , dj−1 are fixed by ϕ and we conclude e′ ⊥ d1, . . . , dj . We
furthermore have that x ⊥D, e if and only if x ⊥D, e′. This means (D ∪ {e})⊥⊥ =
(D ∪ {e′})⊥⊥.

Thus we have determined an e′ /∈ D⊥⊥ such that e′ ⊥ d1, . . . , dj and (D ∪ {e})⊥⊥ =
(D∪{e′})⊥⊥. Repeating the argument, we eventually get an element f as desired.

We will abbreviate “modular ortholattice” by “MOL”.
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Lemma 2.11. Let (X,⊥) be of finite rank n and fulfil (F1). Then C(X,⊥) is an
atomistic MOL of length n.

Proof. By Lemma 2.5, the ortholattice C(X,⊥) is atomistic.

Furthermore, from Lemma 2.10 and Dacey’s criterion (Lemma 2.9), it follows that
C(X,⊥) is orthomodular. Since the maximal number of orthogonal atoms is n, it also
follows that C(X,⊥) has length n.

We next show that C(X,⊥) fulfils the covering property. As an atomistic ortholattice
of finite length with this property is modular [MaMa, Lemma 30.3], the assertion will
then follow.

Let A ∈ C(X,⊥) and let e ∈ X be such that e /∈ A. According to Dacey’s criterion,
let D be an orthogonal set such that A = D⊥⊥. By Lemma 2.10, there is an f ⊥ D
such that A ∨ {e} = (D ∪ {e})⊥⊥ = (D ∪ {f})⊥⊥ = A ∨ {f}. Note that {f} is
an atom orthogonal to A. Hence it follows by the orthomodularity of C(X,⊥) that
A ∨ {e} covers A.

We continue by introducing our third condition on (X,⊥). This time the idea is that
certain automorphisms should possess “roots” of all orders.

For an automorphism ϕ of X and k > 1, we write ϕk for ϕ ◦ . . . ◦ ϕ (k times). Let us
consider the following property of (X,⊥).

(F3) Let e, f ∈ X be distinct and let ϕ : X → X be an automorphism such that ϕ
fixes any x ⊥ e, f . Then, for any k > 1, there is an automorphism ψ : X → X
such that

(i) ψk = ϕ,

(ii) ψ fixes any x ∈ X fixed by ϕ.

An immediate consequence of (F3), together with (F2), is as follows. We will say that
the orthogonality space (X,⊥) is reducible ifX is the union of two non-empty disjoint
subsets A and B such that x ⊥ y for any x ∈ A and y ∈ B. Otherwise, we will call
(X,⊥) irreducible.

Proposition 2.12. Let (X,⊥) fulfil (F2) and (F3). Then (X,⊥) is irreducible.

Proof. We shall show that for any orthogonal e, f ∈ X there is a g ∈ X such that
g 6⊥ e, f . The assertion will obviously then follow.

Let e ⊥ f . By (F2) and (F3), there is an automorphism ϕ such that ϕ2(e) = f and
ϕ(x) = x whenever x⊥ e, f . Let g = ϕ(e) and assume that g ⊥ e. Then g = ϕ(e)⊥
ϕ(g) = f . Hence ϕ fixes g, that is, e = ϕ−1(g) = g = ϕ(g) = f , a contradiction.
Hence we have g 6⊥e. Similarly, assume g⊥f . Then g = ϕ(e) = ϕ−1(f)⊥ϕ−1(g) = e,
again a contradiction. We conclude that we also have g 6⊥ f .

We call a bounded lattice L reducible if L is isomorphic to the direct product of
bounded lattices with at least two elements, and otherwise irreducible. Note that it
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makes sense to apply these properties also to ortholattices. Indeed, let L be an or-
tholattice and assume that L, viewed as a bounded lattice, is reducible. Then any
decomposition L ∼= L1 × L2, where L1 and L2 are bounded lattices, is a direct de-
composition of L as an ortholattice as well. Note that in such a situation we have
(a, 0)⊥ (0, b) for any a ∈ L1 and b ∈ L2.

We arrive at the main result of this section.

Theorem 2.13. Let (X,⊥) be of finite rank n and fulfil (F1)–(F3). Then C(X,⊥) is
an irreducible atomistic MOL of length n.

Proof. In view of Lemma 2.11, only the irreducibility remains to be shown.

Assume that C(X,⊥) is reducible. Then the collection of atoms of C(X,⊥) can be
partitioned into two non-empty subsets such that any atom contained in the first set is
orthogonal to any atom contained in the second set. Hence also X can be partitioned
in this way. But by Proposition 2.12, (X,⊥) is irreducible, a contradiction.

3 Orthomodular spaces over ordered ?-fields

Atomistic modular ortholattices are representable by means of inner-product spaces,
provided that their length is at least 4. In this section we compile some basic facts on
such spaces. Further information can be found, e.g., in [Bae, Piz, Hol2].

We start by considering the scalars. Recall that a ?-ring is a (unital) ring K equipped
with an involutorial antiautomorphism ?. If K is a skew field (i.e., a division ring) or a
field, we will refer to K as a ?-sfield or a ?-field, respectively.

For a ?-sfield K, we define SK = {α ∈ K : α? = α} to be the set of symmetric
elements. Note that SK is an additive subgroup of K, but SK is a sub-sfield only if K
is commutative.

Following Baer [Bae], an order on K actually means an order on SK .

Definition 3.1. An ordered ?-sfield is a ?-sfield K together with a subset S+
K ⊆ SK ,

called the domain of positivity, such that

(1) S+
K + S+

K ⊆ S
+
K ,

(2) 1 ∈ S+
K ,

(3) if α ∈ S+
K , then βαβ? ∈ S+

K for any β ∈ K,

(4) S+
K ∩ −S

+
K = {0},

(5) S+
K ∪ −S

+
K = SK .

For instance, the classical ?-sfields R, C, and H are canonically endowed with the set
of positive reals as their domain of positivity.
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By properties (1) and (4) of Definition 3.1, we may partially order the set of symmetric
elements of an ordered ?-field K by defining

α 6 β if β − α ∈ S+
K ,

where α, β ∈ SK . In the following lemma, we list some elementary properties of SK ,
which are (in case thatK is a field) due to A. Prestel [Pre1]. Here, Q is seen as a subset
of SK and, w.r.t. to the natural order of the rationals, we put Q+ = {% ∈ Q : % > 0}.

Lemma 3.2. Let K be an ordered ?-field. Then (SK ;6,+, 0), the additive group
of the symmetric elements endowed with 6, is a totally ordered abelian group. We
moreover have:

(i) For any α, β ∈ SK and γ ∈ K \ {0}, α < β if and only if γαγ? < γβγ?.

(ii) For any α, β ∈ SK and % ∈ Q+ \ {0}, α < β if and only if %α < %β.

(iii) Q is ordered in the natural way.

(iv) For α, β ∈ SK , 0 < α < β implies αβ−1α < α and β < βα−1β.

(v) For α, β ∈ SK , 0 < α < β if and only if 0 < β−1 < α−1.

(vi) Let α ∈ S+
K , % ∈ Q+, and k > 1. Then α < % iff αk < %k, and % < α iff

%k < αk.

Proof (sketched). 6 makes SK into a totally ordered group by (1), (4), and (5). Fur-
thermore, (3) implies (i).

Let α, β ∈ SK such that α < β and let n ∈ N \ {0}. Then nα < nβ by (1).
Furthermore, 1

nβ 6 1
nα would imply β 6 α, hence 1

nα < 1
nβ. Both facts together

show (ii). Setting α = 0 and β = 1 in (ii) and using (2), we also see (iii).

We note next that, for any α > 0, we have α−1 ∈ SK and hence by (i) α−1 =
α−1αα−1 > 0.

Assume now 0 < α < β. Then 0 < ((β−α)−1 +α−1)−1 = (α(β−α)−1 +1)−1α =
(β−α)(α+β−α)−1α = α−αβ−1α and hence αβ−1α < α. By (i), it further follows
β−1 < α−1αα−1 = α−1. Once again by (i), we conclude β = ββ−1β < βα−1β.
(iv) and (v) are shown.

To see (vi), let α ∈ S+
K and % ∈ Q+. Assume α < %. We intend to show that αk < %k

holds for all k > 1. If α = 0, this is clear by (iii). Let α 6= 0. Then %−1α2 < α < % by
(iv) and hence α2 < %2 by (ii). By (i) and (ii), it follows α4 < %2α2 < %4 and similarly
αk < %k for all even k. Furthermore, α < % and α2 < %2 imply α3 < %α2 < %3 by (i)
and (ii), thus we get αk < %k also for all uneven k.

Assume now % < α. We shall show that %k < αk for all k > 1. Consider first the case
% = 0. We have 0 < α2 by (2) and (3), thus 0 < αk follows for any k by (i). Let now
% 6= 0. Then α < %−1α2 by (iv), hence %2 < %α < α2 by (ii). We argue similarly as
in the previous paragraph to see that %k < αk holds for all k. Part (vi) follows.
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We follow now the lines of Holland’ work [Hol2]. For an ordered ?-field K, we define
the sets

IK = {α ∈ K : αα? < 1
n for all n ∈ N \ {0}},

FK = {α ∈ K : αα? 6 n for some n ∈ N}

of infinitesimal and finite elements ofK, respectively. We note that, by Lemma 3.2(vi),
an element α ∈ S+

K is infinitesimal if and only if α < 1
n for all n, and α ∈ S+

K

is finite if and only if α 6 n for some n. We moreover have that IK + IK = IK ,
FK + FK = FK , IK · FK = FK · IK = IK , and FK · FK = FK , and both IK and
FK are closed under ?.

We define in addition
MK = FK \ IK

to be the set of medial elements. From Lemma 3.2(v) we see that MK is a subgroup of
the multiplicative group K \ {0}.
We call K Archimedean if IK = {0}. By Lemma 3.2(v), K is Archimedean if and
only if FK = K. This property has strong consequences [Hol1, Theorem 2].

Theorem 3.3. An Archimedean ordered ?-sfield is order-isomorphic to an ordered
sub-?-sfield of R, C, or H.

In the general case, we may form the quotient of the finite elements modulo the infin-
itesimals and we are led to an Archimedean ordered ?-sfield [Hol2, Theorem 4.3]

Theorem 3.4. Let K be an ordered ?-field. Then FK is a sub-?-ring of K and IK
is the unique maximal left (right) ideal of FK . Hence K̂ = FK/IK is a skew field.
Moreover, FK and IK are closed under ? and by defining

(α/IK)? = α?/IK , α ∈ K,

we make K̂ into a ?-sfield. The set of symmetric elements of K̂ is SK̂ = (SK∩FK)/IK .

Finally, letting S+

K̂
= (S+

K ∩ FK)/IK the domain of positivity, we make K̂ into an
ordered ?-sfield, which is Archimedean.

This finishes our discussion of ordered ?-sfields and we now turn to linear spaces
equipped with an inner product.

Definition 3.5. Let H be a linear space over a ?-sfield K. A map (·, ·) : H ×H → K
is called a hermitian form if, for any x, y, z ∈ H and α, β ∈ K, we have:

(αx+ βy, z) = α (x, z) + β (y, z) ,

(z, αx+ βy) = (z, x)α? + (z, y)β?,

(x, y) = (y, x)
?
.

Moreover, the form is called anisotropic if (x, x) = 0 holds only in case x = 0.
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Let H be a linear space equipped with an anisotropic hermitian form. For x, y ∈ H ,
we write x⊥y if (x, y) = 0, and for a subspaceE ofH , we defineE⊥ = {x ∈ H : x⊥
y for all y ∈ E}. Note that we have E ∩ E⊥ = {0}. In case that also H = E + E⊥

holds,E is called splitting. Moreover,E is closed ifE = E⊥⊥ and we denote by C(H)
the set of closed subspaces of H . Any splitting subspace is closed but the converse
does not in general hold. We partially order C(H) by set-theoretic inclusion and we
equip C(H) with the orthocomplementation ⊥. Then C(H) is an ortholattice, which is
orthomodular if and only if any closed subspace is splitting.

Definition 3.6. A linear spaceH over a ?-sfield together with an anisotropic hermitian
form is called an orthomodular space if all closed subspaces are splitting.

Here, we are primarily interested in the case of finite dimensions. If H is a finite-
dimensional space equipped with an anisotropic hermitian form, then all subspaces are
splitting and hence H is an orthomodular space. Moreover, C(H) consists simply of
all subspaces of H and is a modular ortholattice.

We write [x1, . . . , xk] for the subspace spanned by x1, . . . , xk ∈ H . For a subspace E
of H we put E• = E \ {0}. We let P (H) = {[x] : x ∈ H •} and we define [x]⊥ [y] if
x⊥ y, where x, y ∈ H •. Then (P (H);⊥) is an orthogonality space, giving rise to the
ortholattice C(P (H),⊥).

Obviously, the orthoclosed subsets of P (H) correspond one-to-one to the closed sub-
spaces of H , that is, the ortholattices C(P (H),⊥) and C(H) can be identified. In the
sequel, it will usually be more convenient to refer to the latter.

Definition 3.7. Let H be an orthomodular space over the ?-sfield K. A bijective map
U : H → H is called semiunitary if there is an automorphism σ of K (as a skew field)
and an element λ ∈ K such that, for any x, y ∈ H and α ∈ K, we have:

U(x+ y) = U(x) + U(y);

U(αx) = ασ U(x);

(U(x), U(y)) = (x, y)
σ
λ.

Moreover, U is called unitary if σ is the identity and λ = 1.

The following version of Wigner’s Theorem is due to Piron [Pir, Theorem 3.28]; see
also [May, Lemma 1].

Theorem 3.8. Let H be an orthomodular space of dimension > 3 and let ϕ be an
automorphism of the ortholattice C(H). Then there is a semiunitary map U inducing
ϕ, that is, such that

ϕ(E) = {U(x) : x ∈ E}, E ∈ C(H).

Moreover, if there is an at least two-dimensional subspace F such that ϕ|[0,F ] is the
identity, then U can uniquely be chosen as a unitary operator such that U |F is the
identity.
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We have seen that we may form the quotient K̂ of the subring FK of finite elements of
an ordered ?-sfield K modulo the infinitesimal elements. Holland has established that
we may proceed analogously for linear spaces equipped with a hermitian form [Hol2].

For a finite-dimensional orthomodular space H over the ordered ?-sfield K, we define
the sets

IH = {x ∈ H : (x, x) ∈ IK},
FH = {x ∈ H : (x, x) ∈ FK}

of infinitesimal and finite vectors in H , respectively. We also define

MH = FH \ IH = {x ∈ H : (x, x) ∈MK}

to be the set of medial vectors, which that are finite but not infinitesimal.

We recall that the form ofH is called positive definite if (x, x) > 0 for any x 6= 0. Note
that the existence of a unit vector in each one-dimensional subspace implies positive
definiteness. A vector x is in this case infinitesimal if and only if (x, x) < 1

n for all n,
and x is finite if and only if (x, x) < n for some n.

The finite vectors of H modulo the infinitesimal ones give rise to a linear space over
the Archimedean ?-sfield K̂ [Hol2, Theorem 5.4].

Theorem 3.9. Let H be a finite-dimensional orthomodular space over the ordered ?-
sfield K and assume that each one-dimensional subspace contains a unit vector. Then
FH is a FK-module and IH is a FK-submodule; moreover, αx ∈ IH if α ∈ IK and
x ∈ FH . Let Ĥ = FH/IH be the quotient FK-module and let K̂ = FK/IK be the
?-sfield as specified in Theorem 3.4. Defining

α/IK · x/IH = (αx)/IH , α ∈ FK , x ∈ FH ,

we make Ĥ into a linear space over K̂.

Furthermore, (x, y) ∈ FK for any x, y ∈ FH and (x, y) ∈ IK for any x, y ∈ FH such
that x ∈ IH or y ∈ IH . Defining

(x/IH , y/IH) = (x, y) /IK , x, y ∈ FH ,

we make Ĥ into an orthomodular space such that each one-dimensional subspace
contains a unit vector. Moreover, the dimensions of H and Ĥ coincide.

4 Orthomodular spaces
arising from orthogonality spaces

We discuss in this section the representation of orthogonality spaces by orthomodular
spaces.

Orthomodular space can be characterised lattice-theoretically as follows [MaMa, The-
orems 34.2 and 34.5]:

12



Theorem 4.1. Let H be a finite-dimensional orthomodular space. Then C(H) is an
irreducible atomistic MOL of finite length.

Conversely, let L be an irreducible atomistic MOL of finite length > 4. Then there is
an orthomodular space H such that L is isomorphic to C(H).

Our first representation theorem is now immediate.

Theorem 4.2. Let (X,⊥) be an orthogonality space of finite rank > 4 and fulfilling
(F1)–(F3). Then (X,⊥) is isomorphic to (P (H),⊥), where H is an orthomodular
space such that each subspace contains a unit vector.

Proof. By Theorems 2.13 and 4.1, there is an orthomodular space H over a ?-sfield
K such that C(X,⊥) is isomorphic to C(H). It follows that (X,⊥) is isomorphic to
(P (H),⊥).

We proceed as, e.g., in [Hol3] to show that we may modify the inner product ofH with
the effect that there exists a unit vector. Let u ∈ H •. We define a new inner product by
(x, y)′ = (x, y) (u, u)

−1 and a new antiautomorphism by α# = (u, u)α? (u, u)
−1. In

this way we get an orthomodular spaceH ′, whose orthogonality relation is the same as
in H . Hence (X,⊥) is isomorphic to (P (H ′),⊥). Moreover, u is in H ′ a unit vector.

Let z ∈ H ′ be linearly independent from u. By (F2), there is an automorphism ϕ of
(P (H ′),⊥) such that ϕ([u]) = [z] and ϕ([x]) = [x] for any x⊥ u, z. By Lemma 2.4,
ϕ extends to an automorphism of C(P (H ′),⊥), that is, of C(H ′). By Theorem 3.8,
ϕ is induced by a unitary map U . This means that U(u) is a unit vector in [z]. We
conclude that there is a unit vector in every one-dimensional subspace of H ′.

We see that, having the usual lattice-theoretic machinery available, we may quite easily
associate with an orthogonality space a suitable inner-product space over some ?-sfield
K. It is, however, less easy to be more specific about K. We will in fact need to add
further assumptions.

We introduce the following condition on an orthogonality space (X,⊥), which is in-
spired by Baer’s “Second Fundamental Theorem of Projective Geometry” [Bae,
Sec. III.3].

(F4) Let e, f ∈ X be such that e 6⊥f . Then any automorphism that fixes e, f , and any
x⊥ e, f is the identity on {e, f}⊥⊥.

For the remainder of this section, let us fix an orthogonality space (X,⊥) that is of
finite rank > 4 and fulfils (F1)–(F4). Moreover, let H be the orthomodular space over
the ?-sfield K that represents (X,⊥) according to Theorem 4.2.

We start with a simple observation; cf. [Jon].

Lemma 4.3. K has characteristic 0.

Proof. By assumption, there is an x1 ∈ H such that (x1, x1) = 1. Clearly, x1 6= 0.
Let now n > 1 and assume that there is an xn ∈ H • such that (xn, xn) = n. Let
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y ∈ H be such that y⊥xn and (y, y) = 1. Putting xn+1 = xn + y, we have xn+1 6= 0
and (xn+1, xn+1) = n+ 1. By induction, we conclude that for any n > 1, there is an
xn ∈ H • such that (xn, xn) = n. By anisotropy, the assertion follows.

Let TK = {ε ∈ K : εε? = 1} be the multiplicative group of unit elements of K.

Lemma 4.4. For any ε ∈ TK and k > 1, there is an ζ ∈ TK such that ζk = ε.

Proof. Let ε ∈ TK and k > 1. H possesses an orthogonal basis, and as we assume
every subspace to contain a unit vector, H actually possesses an orthonormal basis
{e1, . . . , en}. Let U : H → H be the linear map such that

U(e1) = e1, . . . , U(en−1) = en−1, and U(en) = ε en.

Then U is a unitary map, inducing an automorphism ϕ of (P (H),⊥). By (F3), there is
an automorphism ψ of (P (H),⊥), and hence of C(H), such that ψk = ϕ and ψ([x]) =
[x] whenever ϕ([x]) = [x], where x ∈ H •. Then ψ|[0,[e1,...,en−1]] is the identity and
hence, by Theorem 3.8, ψ is induced by a unitary map V such that V |[e1,...,en−1] is the
identity. We have V (e1) = e1, . . . , V (en−1) = en−1 as well as V ([en]) = [en], that is,
V (en) = ζ en for some ζ ∈ TK . The maps V k and U induce the same automorphism
of C(H) and the uniqueness statement in Theorem 3.8 implies V k = U . We conclude
ζk = ε.

Our next aim is to show that K is commutative. Let Z(K) be the centre of K. Note
that Z(K) is a sub-?-sfield of K, which is in fact a ?-field.

Lemma 4.5. K is a ?-field. Moreover, K = SK(i), where i ∈ K is such that i2 = −1
and i? = −i.

Proof. Using the argument of [Bae, Sec. III.3], we first show that TK ⊆ Z(K). Let
ε ∈ TK , and let e1, . . . , en be again an orthonormal basis. Requiring U(e1) = ε e1,
U(e2) = ε e2, and U(ej) = ej , j = 3, . . . , n, we can define a unitary map U ofH . Let
ϕ be the automorphism of (P (H),⊥) induced by U . Note that U(e1 + e2) = ε (e1 +
e2). Hence ϕ fixes [e1] and [e1 + e2] and moreover any [x] such that x ⊥ e1, e1 + e2.
By (F4), ϕ is the identity on {[e1], [e1 + e2]}⊥⊥ = {[e1], [e2]}⊥⊥. Thus [U(x)] = [x]
for every x ∈ [e1, e2], so that we have for any α ∈ K

[e1 + αe2] = [U(e1 + αe2)] = [ε e1 + α ε e2] = [e1 + ε? α ε e2],

and we conclude that α = ε? α ε, or ε α = α ε. Hence ε is in the centre of K.

We have shown that the ?-field Z(K) contains TK . By Lemma 4.4, there is an i ∈ TK
such that i2 = −1. Since i?2 = (i2)? = (−1)? = −1, either i? = i or i? = −i.
Assume i? = i and let u, v ∈ H be orthogonal unit vectors; then (u+ iv, u+ iv) = 0
and thus u = −iv, a contradiction. We conclude that i? = −i.
We claim that SK ⊆ Z(K). Let α ∈ SK . Note that α 6= −i. Let ε = (α − i)(α +
i)−1 = (α+ i)−1(α− i). Then ε ∈ TK and hence ε ∈ Z(K). Note that ε 6= 1. From
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(α+ i) ε = α− i, we conclude α (1−ε) = i (1+ε) and thus α = i (1+ε) (1−ε)−1 ∈
Z(K) as asserted.

Finally, let α ∈ K. We may by Lemma 4.3 define

Reα = 1
2 (α+ α?), Imα = 1

2 i(α
? − α). (1)

Then Reα, Imα ∈ SK , and we have α = Reα + i Imα ∈ Z(K). We conclude that
K is commutative. In particular, SK is a subfield of K, and K = SK(i).

Our final lemma shows that K can be made into an ordered ?-field.

Lemma 4.6. K is orderable.

Proof. We have to specify a domain of positivity P ⊆ SK . Let P0 = {(x, x) : x ∈
H}. We shall show that P0 fulfils the properties (1)–(4) of Definition 3.1. Obviously,
P0 ⊆ SK . Moreover, it follows from (F1) or (F2) that for any x, y ∈ H •, there is a
unitary map U such that U(x)⊥y and hence (x, x)+(y, y) = (U(x), U(x))+(y, y) =
(U(x) + y, U(x) + y); so P0+P0 ⊆ P0. AsH contains a unit vector, we have 1 ∈ P0.
For any x ∈ H and β ∈ K, we have β (x, x)β? = (βx, βx); this means that α ∈ P0

implies βαβ? ∈ P0. Finally, assume that P0 ∩ −P0 contains a non-zero element, that
is, (x, x) = − (y, y) for some x, y ∈ H •. We choose again a unitary map U such that
U(x) ⊥ y and we conclude (U(x) + y, U(x) + y) = 0, so that U(x) + y = 0 and
hence x = 0, a contradiction.

As any vector in H is a multiple of a unit vector, we have P0 = {αα? : α ∈ K}. It
follows that β ∈ P0 \ {0} implies 1

β ∈ P0.

The remaining part of the proof follows the lines of [Pre2, §1]. Let P ⊇ P0 be a
maximal subset of SK fulfilling the properties (1)–(4) of Definition 3.1. Our aim is
to show that P also fulfils property (5). Assume that there is a γ ∈ SK such that
γ,−γ /∈ P and put P ′ = P − γP0. Then P ′ fulfils (1)–(3) and because P ′ properly
contains P , it follows that P ′ does not fulfil (4). Hence there are α1, α2 ∈ P and
β1, β2 ∈ P0 such that α1−γβ1 = −(α2−γβ2) 6= 0, that is, α1 +α2 = γ(β1 +β2). If
β1+β2 6= 0, we would have γ = (α1+α2)(β1+β2)−1 ∈ P , because (β1+β2)−1 ∈ P0

and P ·P0 ⊆ P . But γ /∈ P , hence β1 +β2 = 0 and this implies β1 = β2 = 0, because
P0 ∩ −P0 = {0}. It further follows that α1 + α2 = 0 and hence α1 = α2 = 0 for the
same reason. We conclude that one of γ or −γ is in P , that is, SK = P ∪ −P .

We may summarise the results of this section as follows.

Theorem 4.7. Let (X,⊥) be an orthogonality space of finite rank > 4 and fulfilling
(F1)–(F4). Then (X,⊥) is isomorphic to (P (H),⊥), where H is an orthomodular
space H over an ordered ?-field K such that each subspace contains a unit vector.
Moreover, K = SK(i), where i2 = −1 and i? = −i.
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5 Quotients of orthomodular spaces

In this section we discuss in some more detail Holland’s construction described in
Theorem 3.9. With respect to the notation of that theorem, it is our aim to investigate
how the orthogonality space (P (H),⊥) and the subspace lattice C(H) are related to
the corresponding structures in Ĥ .

Our considerations restrict to the case of a ?-sfield that has the properties according
to the conclusion of Theorem 4.7. Namely, in this section K is an ordered ?-field of
the form SK(i), where SK is what is called the fixed field and i2 = −1, i? = −i.
Moreover,H will be an orthomodular space of finite dimension > 4 overK, containing
a unit vector in every one-dimensional subspace.

We recall that H is the disjoint union of three types of vectors. Considering (x, x) as
the length of an x ∈ H , the infinitesimal vectors are those whose length is below 1

n for
all n ∈ N \ {0}; the medial vectors have a length between 1

n and n for some n ∈ N;
and there are finally those vectors whose length larger than n for all n ∈ N.

By assumption, every one-dimensional subspace ofH contains a medial vector, so that
P (H) = {[x] : x ∈ MH}. The next lemma shows that two medial vectors contained
in a one-dimensional subspace of H differ by a factor that is medial as well.

Lemma 5.1. Let x ∈ MH . Then y ∈ [x] ∩ MH if and only if y = αx for some
α ∈MK .

Proof. Let α ∈ K and assume that y = αx ∈MH . This means (y, y) = αα? (x, x) ∈
MK . It follows that αα? = (y, y) (x, x)

−1 ∈MK ∩ S+
K and consequently α ∈MK .

Conversely, if y = αx for some α ∈ MK , then (y, y) = αα? (x, x) ∈ MK , that is,
y ∈MH .

For x ∈ MH , let |[x]| = [x/IH ] be the subspace of Ĥ spanned by x/IH . Note that if
x is infinitesimal, x/IH is the null vector of Ĥ . Consequently, every one-dimensional
subspace of Ĥ is arises from a medial vector as indicated, that is, P (Ĥ) = {|[x]| : x ∈
MH}.
For x, y ∈ MH , we define [x] ≈ [y] if there are medial vectors x′ ∈ [x] and y′ ∈ [y]
such that x′ − y′ ∈ IH .

Lemma 5.2. Let x, y ∈ MH . Then [x] ≈ [y] if and only if |[x]| = |[y]| if and only if
x = αy + s for some α ∈MK and s ∈ IH .

In particular, ≈ is an equivalence relation on P (H) and we may identify P (H)/≈
with P (Ĥ).

Proof. Assume [x]≈[y]. By Lemma 5.1, there are α, β ∈MK such that αx−βy ∈ IH .
It follows |[x]| = [x/IH ] = [(αx)/IH ] = [(βy)/IH ] = [y/IH ] = |[y]|.
Assume |[x]| = |[y]|. Then x/IH = α/IK · y/IH = (αy)/IH for some α ∈ MK , thus
x = αy + s for some s ∈ IH .

If x = αy+ s for some α ∈MK and s ∈ IH , then αy ∈MH and hence [x]≈ [y].
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We add a further useful criterion for the equivalence w.r.t. ≈ in P (H). Here, the more
special assumptions on K come into play.

Lemma 5.3. Let u, v ∈ H be unit vectors. Then 0 6 (u, v) (u, v)
? 6 1. Moreover,

[u]≈ [v] if and only if 1− (u, v) (u, v)
? ∈ IK .

Proof. The first assertion follows from the Cauchy-Schwarz inequality [Hol2, Sec. 5.1].
Alternatively, it is seen from

0 6 (u− (u, v) v, u− (u, v) v) = 1− (u, v) (u, v)
?
. (2)

Assume now that [u] ≈ [v]. By Lemma 5.2 there are an α ∈ MK and s ∈ IH such
that v = αu+ s. From 1 = (v, v) = (αu+ s, αu+ s) we conclude, on the one hand,
that 1 − αα? ∈ IK . It follows, on the other hand, that (s, s) = (αu− v, αu− v) =
1 + αα? − 2 Re (αu, v) = 2(1 − Re (αu, v)) − (1 − αα?) ∈ IK , where we used the
notation as in (1). We conclude 1− Re (αu, v) ∈ IK and moreover

0 6 αα?(1− (u, v) (u, v)
?
) = αα? − (αu, v) (αu, v)

?

= αα? − (Re (αu, v))2 − (Im (αu, v))2 6 αα? − (Re (αu, v))2

= (1− (Re (αu, v))2)− (1− αα?)
= (1− Re (αu, v))(1 + Re (αu, v))− (1− αα?) ∈ IK ,

because 1 + Re (αu, v) ∈ FK . It follows that αα?(1− (u, v) (u, v)
?
) ∈ IK and hence

1− (u, v) (u, v)
? ∈ IK .

Conversely, if 1−(u, v) (u, v)
? ∈ IK , then we may observe from (2) that [u]≈ [v].

We next turn to the orthogonality relation in P (Ĥ).

Lemma 5.4. Let x, y ∈ MH . Then |[x]| ⊥ |[y]| if and only if [x′] ⊥ [y′] for some
x′, y′ ∈ MH such that [x′] ≈ [x] and [y′] ≈ [y] if and only if [x′] ⊥ [y] for some
x′ ∈MH such that [x′]≈ [x].

Proof. Assume |[x]| ⊥ |[y]|. This means (x/IH , y/IH) = 0/IK , that is, (x, y) ∈ IK .
Putting x′ = x − (x, y) (y, y)

−1
y ∈ MH , we get x − x′ ∈ IH and hence [x′] ≈ [x],

and we have [x′]⊥ [y].

Let now x′, y′ ∈MH be such that [x′]≈ [x], [y′]≈ [y], and [x′]⊥ [y′]. Then x− αx′,
y − βy′ ∈ IH for some α, β ∈MK . It follows (x, y) ∈ IK , that is, |[x]| ⊥ |[y]|.

We wish to describe the natural quotient map from P (H) to P (Ĥ). A key observation
is the following.

Lemma 5.5. Let x, y, z ∈ MH . If |[x]| ⊆ |[y]| ∨ |[z]|, then there is an x′ ∈ MH such
that [x′]≈ [x] and x′ ∈ [y, z]. If [y] 6≈ [z], then also the converse is true.
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Proof. Assume that |[x]| ⊆ |[y]| ∨ |[z]|. This means x/IH ∈ [y/IH , z/IH ], that is, there
are α, β ∈ FK such that αy + βz − x ∈ IH . Then x′ = αy + βz fulfils the indicated
requirements.

For the converse direction, we may, w.l.o.g., assume that x, y, and z are unit vectors.
Let [y] 6≈ [z] and let x′ ∈ MH be such that [x′] ≈ [x] and x′ ∈ [y, z]. By replacing
x′ with a scalar multiple if necessary, we can assume that x′ − x ∈ IH . We have
x′ = αy + βz for some α, β ∈ K and we will show that α, β ∈ FK ; this will imply
that |[x]| ⊆ |[y]| ∨ |[z]|.
Since [y] 6≈[z], we have 1−(y, z) (y, z)

? ∈MK by Lemma 5.3. Putting r = y−(y, z) z
and β′ = β + α (y, z), we have r ⊥ z and x′ = αy + βz = αr + β′z. Then 0 6
αα? (r, r) 6 αα? (r, r) + β′β′

?
= (x′, x′) ∈ MK and hence αα? (r, r) ∈ FK . Since

(r, r) = 1 − (y, z) (y, z)
? ∈ MK , we have αα? ∈ FK and hence α ∈ FK . Similarly,

we see that also β′ ∈ FK and thus β = β′ − α (y, z) ∈ FK .

It is noticeable what Lemma 5.5 entails and what not. Given x, y, z ∈MH such that x
in the linear hull of y and z, this linear dependence is preserved in Ĥ , provided that |[y]|
and |[z]| are distinct subspaces, that is, provided that there is no medial scalar γ such
that γy differs from z by an infinitesimal vector only.

If the latter condition is not fulfilled, however, no conclusion is possible. Indeed, let
there be a non-zero infinitesimal ε ∈ K. Let x, y ∈ MH be any vectors such that
[x] 6≈ [y]. Then, putting z = y + εx, we have that x is in the linear hull of y and z, but
|[x]| * |[y]| = |[z]| = |[y]| ∨ |[z]|.

Theorem 5.6. The map

q : P (H)→ P (Ĥ), [x] 7→ |[x]| (x ∈MH ) (3)

is a faithful surjective homomorphism of orthogonality spaces. Moreover, for x, y, z ∈
MH such that [y] 6≈ [z], we have that [x] ⊆ [y] ∨ [z] implies q([x]) ⊆ q([y]) ∨ q([z]).

Proof. By Lemma 5.4, q preserves the orthogonality relation. Clearly, q is surjective
and q is faithful by Lemmas 5.4 and 5.2. The first assertion follows. The second one
holds by Lemma 5.5.

It is natural to ask whether the quotient map q can be extended from P (H) to the
ortholattice C(H).

Theorem 5.7. The map q given by (3) induces the surjective map

q̄ : C(H)→ C(Ĥ), E 7→
∨
x∈E•

q([x]). (4)

We have:

(i) q̄ is order-preserving;

(ii) q̄ preserves dimensions;
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(iii) q̄ preserves the orthocomplement.

Proof. We first observe that we have

q̄(E) = {x/IH : x ∈ E ∩ FH}, E ∈ C(H).

Indeed, q̄(E) is assumed to contain q([x]) for all x ∈ E•, or equivalently, for all
x ∈ E ∩MH . It follows that q̄(E) ⊇ {x/IH : x ∈ E ∩ FH}, and since the latter set is
a linear subspace of Ĥ , the assertion follows.

We next claim that, for any orthogonal unit vectors e1, . . . , ek ∈ H , we have

q̄([e1, . . . , ek]) = [e1/IH , . . . , ek/IH ]. (5)

Indeed, let x ∈ [e1, . . . , ek] ∩ FH . Then x = α1e1 + . . . + αkek, where we have
αi = (x, ei) ∈ FH . We conclude that x/IH ∈ [e1/IH , . . . , ek/IH ]. This shows one
inclusion in (5); the converse inclusion is obvious.

To show that q̄ is surjective, let B ∈ C(Ĥ). Recall that Ĥ has the same dimension
as H , which is finite. Hence also B is finite-dimensional and we conclude that B
possesses an orthogonal basis e1/IH , . . . , ek/IH such that e1, . . . , ek are unit vectors.
By (5), we then have q̄([e1, . . . , ek]) = B.

(i) is clear by construction, and (ii) holds by (5). To see (iii), let E ∈ C(H) and choose
an orthonormal basis e1, . . . , en of H such that E = [e1, . . . , ek], 0 6 k 6 n. By
(5), q̄(E) = [e1/IH , . . . , ek/IH ] and q̄(E⊥) = [ek+1/IH , . . . , en/IH ]. Again by (5),
e1/IH , . . . , en/IH is an orthonormal basis of Ĥ . We conclude q̄(E⊥) = q̄(E)⊥.

We conclude the section showing the fact of which we will actually make use in the
present paper: the transition from P (H) to P (Ĥ) is compatible with the automorph-
isms of P (H) induced by unitary maps.

Theorem 5.8. Let ϕ be an automorphism of (P (H),⊥) such that, for some linearly
independent vectors x, y ∈ H , ϕ is the identity on {[x], [y]}⊥⊥. Then, for any x, y ∈
H •, we have [x]≈ [y] if and only if ϕ([x])≈ ϕ([y]). Setting

ϕ̂(q([x])) = q(ϕ([x])), x ∈MH ,

we may moreover define an automorphism ϕ̂ of P (Ĥ), where q is given by (3).

Proof. By Lemma 2.4, ϕ extends to an automorphism of the ortholattice C(H). By
Theorem 3.8, there is a unitary map U : H → H such that ϕ([x]) = [U(x)], x ∈ H •.

We have z ∈ IH if and only if U(z) ∈ IH . Hence we may define Û(x/IH) =
U(x)/IH , where x ∈ FH . Then Û is an endomorphism of Ĥ preserving the inner
product, hence a unitary map. Thus Û induces an automorphism ϕ̂ as asserted.

Let now x, y ∈ H •. Then [x]≈ [y] if and only if x′− y′ ∈ IH for some x′ ∈ [x]∩MH

and y′ ∈ [y] ∩MH . Similarly, ϕ([x]) ≈ ϕ([y]) if and only if [U(x)] ≈ [U(y)] if and
only if x′′ − y′′ ∈ IH for some x′′ ∈ [U(x)] ∩MH and y′′ ∈ [U(y)] ∩MH . Since
x′ − y′ ∈ IH is equivalent to Ux′ − Uy′ ∈ IH , and MH is invariant under U , the two
statements are equivalent.
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We may formulate an analogous result with respect to the subspace ortholattices.

Theorem 5.9. Let ϕ be an automorphism of C(H) such that, for some two-dimensional
subspace F of H , ϕ|[0,F ] is the identity. Setting ϕ̂(q̄(E)) = q̄(ϕ(E)), E ∈ C(H), we
may then define an automorphism ϕ̂ of C(Ĥ), where q̄ is given according to (4).

Proof. As in the proof of Theorem 5.8, there is a unitary map U of H such that
ϕ([x]) = [U(x)] for x ∈ H •, and a unitary map Û on Ĥ such that Û(x/IH) =
U(x)/IH for x ∈ FH .

Putting ϕ̂(B) = {Û(y) : y ∈ B}, where B ∈ C(Ĥ), we define an automorphism of
C(Ĥ). Then, for any E ∈ C(H), we have ϕ̂(q̄(E)) = ϕ̂({x/IH : x ∈ E ∩ FH}) =
{Û(x/IH) : x ∈ E ∩FH} = {U(x)/IH : x ∈ E ∩FH} and q̄(ϕ(E)) = q̄{U(x) : x ∈
E} = {U(x)/IH : x ∈ E, U(x) ∈ FH} = {U(x)/IH : x ∈ E ∩ FH}. The assertion
follows.

6 Orthogonality spaces
arising from complex Hilbert spaces

We turn in this section to our primary concern: the description of those orthogonality
spaces that arise from finite-dimensional complex Hilbert spaces. We will not provide
an exact characterisation of this canonical example of an orthogonality space. How-
ever, our main result establishes the representation by an orthomodular space over a
subfield of C, and consequently an embedding into a space of the desired type.

To begin with, we show that for complex Hilbert spaces the conditions that we have
considered so far are fulfilled.

Lemma 6.1. LetH be a Hilbert space of finite dimension > 4 over C. Then (P (H),⊥)
fulfils (F1)–(F4).

Proof. Ad (F1) and (F2): Let u, v ∈ H • be linearly independent. Then there is a
unitary map U such that U(u) ∈ [v]

⊥ ∩ [u, v] or U(u) ∈ [v], respectively, and such
that U |[u,v]⊥ is the identity.

Ad (F3): Let E be a two-dimensional subspace of H and let U be a unitary map such
that U |E⊥ is the identity. Let u, v be an orthonormal basis of E such that Uu = eiαu

and Uv = eiβv, where 0 6 α, β < 2π. Let V be the unitary map such that V u = e
iα
k u

and V v = e
iβ
k v and V |E⊥ is the identity. Then V k = U and we moreover readily

check that, for any x ∈ H , Ux ∈ [x] implies V x ∈ [x].

Ad (F4): Let u, v ∈ H be orthogonal unit vectors and let w = αu + βv, where
α, β 6= 0. Assume that U is a unitary map such that Uu ∈ [u] and Uw ∈ [w]. Then
there are γ1, γ2 ∈ C such that Uu = γ1u and Uw = γ2w. Hence αγ1u + βUv =
Uw = γ2αu + γ2βv and since (Uv, u) = 0 we conclude αγ1 = γ2α. Thus γ1 = γ2
and it follows that U(x) ∈ [x] for any x ∈ [u, v].
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In order to establish the announced representation theorem, we need to consider, in
addition to (F1)–(F4), still one more condition.

An equivalence relation ∼ on an orthogonality space (X,⊥) is called a congruence
if there is a faithful surjective homomorphism ϕ to another orthogonality space such
that, for x, y ∈ X , we have x ∼ y iff ϕ(x) = ϕ(y). Furthermore, we say that an
automorphism ϕ of (X,⊥) is compatible with some equivalence relation ∼ on X if
x ∼ y is equivalent to ϕ(x) ∼ ϕ(y) for any x, y ∈ X .

(F5) Let ≈ be a congruence on (X,⊥) and assume that any automorphism ϕ : X →
X that is the identity on {e, f}⊥⊥ for some distinct e, f ∈ X is compatible with
≈. Then ≈ is the diagonal.

Lemma 6.2. LetH be a Hilbert space of finite dimension > 3 over C. Then (P (H),⊥)
fulfils (F5).

Proof. Let ≈ be an equivalence relation on (P (H),⊥) as specified in condition (F5).
Then [x]≈ [y] implies [Ux]≈ [Uy] for all those unitary operators U on H that are the
identity when restricted to a two-dimensional subspace. As these operators generate
the whole unitary group, the implication holds in fact for any unitary operator U .

Let u, v ∈ H be linearly independent unit vectors such that [u]≈ [v]. Let x, y ∈ H be
arbitrary unit vectors. We shall show that [x]≈ [y]; from this contradiction the assertion
will follow.

Let c = |(u, v)|. Then 0 6 c < 1. We distinguish several cases.

Case 1. Let |(x, y)| = 1. Then [x] = [y] and hence [x]≈ [y].

Case 2. Let |(x, y)| = c. Then there is a unitary map U such that U([u]) = [x] and
U([v]) = [y], hence [x]≈ [y].

Case 3. Let c < |(x, y)| < 1. Let ε ∈ C be such that |ε| = 1 and (x, εy) = |(x, y)|
and let γ = 1√

2(1+|(x,y)|)
. Then w = γx + γεy is a unit vector and 1 > |(x,w)| =

|(y, w)| > |(x, y)| > c. Let z be a unit vector orthogonal to x and y. Then we can find
α, β ∈ R such that t = αw + βz is a unit vector and |(x, t)| = |(y, t)| = c. It follows
from Case 2 that [x]≈ [y].

Case 4. Let |(x, y)| < c. Then we can find a finite sequence of unit vectors, beginning
with x and ending with y, such that the absolute value of the scalar product of each
successive pair is > c. From Case 3, we conclude [x]≈ [y].

We are ready to formulate our main result: an orthogonality space fulfilling conditions
(F1)–(F5) arises from an orthomodular space over a subfield of the complex numbers.

We will call a subfield K of C dense if K is a dense subset of C endowed with the
standard topology.

Theorem 6.3. Let (X,⊥) be an orthogonality space of finite rank n > 4 fulfilling
(F1)–(F5). Then (X,⊥) is isomorphic to (P (H),⊥), where H is an n-dimensional
orthomodular spaceH over a dense sub-?-fieldK of C such that each one-dimensional
subspace contains a unit vector.
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Proof. By Theorem 4.7, there is an orthomodular space H over an ordered ?-field
K such that each one-dimensional subspace contains a unit vector and (X,⊥) is iso-
morphic to P (H).

According to Theorem 3.9, let Ĥ be the orthomodular space over K̂ arising as the
quotient of the finite elements of H modulo the infinitesimals. By Theorem 5.6,
Lemma 5.2, and Theorem 5.8, there is then a faithful surjective homomorphism from
(P (H),⊥) to (P (Ĥ),⊥) such that any automorphism of (P (H),⊥) that is the iden-
tity on a two-dimensional subspace is compatible with the associated congruence on
(P (H),⊥). By (F5), the congruence is the diagonal.

It follows that IK = {0}, that is, K is Archimedean. Indeed, let u, v ∈MH be linearly
independent. If there was a non-zero infinitesimal α ∈ K, then [u] and [u+αv] would
be distinct elements of P (H) such that [u]≈ [u+ αv].

By Holland’s Theorem 3.3, K is isomorphic to a sub-?-field of R or C. By (F3), only
the latter possibility can apply.

Identifying K with a sub-?-field of C, the fixed field SK is a subfield of R, and i ∈ K
can w.l.o.g. be assumed to be the imaginary unit of C. As Q ⊆ SK and K = SK(i),
we conclude that K is dense in C.

We conclude with the following, possibly more intuitive, version of Theorem 6.3. By
an embedding of orthogonality spaces, we mean a full injective homomorphism.

Theorem 6.4. Let (X,⊥) be an orthogonality space of finite rank n > 4 fulfilling
(F1)–(F5). Then (X,⊥) can be embedded into (P (Cn),⊥), where Cn is endowed
with the standard hermitian form.

Proof. Let H be the n-dimensional orthomodular space over a sub-?-field K of C,
representing (X,⊥) according to Theorem 6.3. As H possesses an orthonormal basis,
H is isomorphic to Kn equipped with the standard hermitian form.

We can consider Kn as a subset of Cn. Then each one-dimensional subspace of Kn

is contained in a unique one-dimensional subspace of Cn. Moreover, the natural map
from P (Kn) to P (Cn) is a full injective homomorphism. The assertion follows.

7 Conclusion

To characterise the complex Hilbert space by algebraic means is a demanding en-
deavour, which at least in the infinite-dimensional case has led to a good success
[Wlb, Sol, May]. The conditions that are used, however, are often complex and seem
in some cases fairly arbitrary. Moreover, in the finite-dimensional case, no comparable
results seem to be available.

The present paper is an attempt to revive the issue from a somewhat modified point of
view. Choosing a structure that is even “lighter” than ortholattices, we have put the em-
phasis on symmetries. Namely, we have dealt with orthogonality spaces, which were
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introduced in the 1960s by David Foulis, and we investigated the effect of conditions
concerning the existence of automorphisms. We have moreover focused exclusively
on the finite-dimensional case. The result is not as perfect as it would be desirable, but
we succeeded to delimit the representing inner-product spaces to those over subfields
of C.

Several issues call for further elaboration. First of all, a comparable approach could
well be tried also in the infinite-dimensional case. Some ideas to this end are already
contained our paper [Vet]. As mentioned already above, the procedure would be quite
different, the main tool being Solèr’s Theorem.

A further progress might require conceptual modifications. One idea is the following.
We have worked with automorphisms of the orthogonality space consisting of the one-
dimensional subspaces of a Hilbert space. Each of these one-dimensional subspaces,
however, rise to automorphisms itself, in fact to a group homomorphism from the
unit circle to the unitary group. Understanding the Hilbert space in terms of these
homomorphisms, which have played no major role in the present work, seems to be
worthwhile.
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