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Abstract

We propose a formal method for reasoning both under uncertainty and under vague-
ness in a coherent way. We deal with implicational relationships where an explicit
numerical degree is used to express uncertainty. The approach relies on Dubois
and Prade’s Possibilistic Logic. Furthermore, we take the possible vagueness of
the involved properties into account. Namely, we deal with properties of the form
that some vague criterion is fulfilled to a specific degree. Thus vague properties
are treated as parametrised sets of crisp properties. Finally, a rule is included to
ensure smoothness of the uncertainty degree with regard to changes of the degrees
to which the properties under consideration hold.

The calculus is applicable wherever graded properties are subject to uncertainty.
Vagueness and uncertainty are treated independently, but can optionally be inter-
connected in a controlled way. A specific application suggests itself in the field of
medical expert systems.

Keywords:Reasoning about uncertainty, Reasoning under vagueness, Possibilistic
Logic, Gradedness, Fuzzy set theory.

1 Introduction

The difficult task to represent experience-based knowledgeincludes the necessity to
account for two basic aspects: uncertainty and vagueness. For the formalisation of
knowledge in an area of natural sciences these aspects are met inevitably. For instance,
knowledge representation in medicine requires a frameworkwhich is both capable of
representing uncertain information and flexible enough to cope with the vagueness of
the involved notions.

In this paper we propose a formalism which treats both uncertainty and vagueness.
Uncertainty is understood as plausibility and our general framework is Dubois and
Prade’s Possibilistic Logic [5]. Furthermore, we will not deal directly with vagueness,
as done, e.g., in [7, 4]; we will rather formalise the gradedness of properties.
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Modelling uncertainty

The development of formal systems dealing with uncertaintyis the subject of a lively
research field. Numerous formal systems for reasoning underuncertainty have been
proposed in the past and several branches have emerged. For arecent overview we refer
to the comprehensive paper [6] and the references given there; among the introductory
monographs we may mention [16] and [12]. The picture is rather inhomogeneous; the
approaches are motivated by different types of applications and by different ways to
understand uncertainty.

Here, we are guided by the following considerations. We assume to be in a situation
where we do not have the possibility to tell about the truth orfalsity of certain facts. We
treat this uncertainty as ignorance, leaving it open if the facts under consideration actu-
ally generally hold, sometimes hold, or generally do not hold. We furthermore quantify
our ignorance numerically; this simply mirrors the fact that we can be uncertain about
something to a smaller or larger extent. To this end, we use real values between0 and
1.

Assume, for instance, that we want to express that some property α implies another
propertyβ. Assume furthermore that the truth of this claim is actuallynot established
and the claim is just found plausible to a certain extent. We shall formally express such
statements by

α
d
⇒ β, (1)

whered is an element of the real unit interval[0, 1] and chosen the higher the more
plausible the implication is. The role ofd is as follows. To concludeβ from α is
the more plausible the less plausible the situation specified byα ∧ ¬β is. We will in
this paper actually not work with degrees of plausibility, but dually with degrees of
“implausibility” or “surprise”; cf. [10]. Thus,d quantifies the degree of implausibility
of α ∧ ¬β.

Our logic deals with what can be derived from available factsby means of implica-
tional relationships; and both the available facts and the implications are possibly of
limited plausibility. (1) is the example of an implication.Moreover, to express that it
is plausible to the degreet that a factα holds, we use the implication

⊤
d
⇒ α, (2)

where⊤ is the constant “true”. (2) actually says that¬α is implausible to the degree
d; but this amounts to the statement thatα is plausible to the degreed.

We note that we do not need anything more in our logic than implication of the form
(1). In fact, only implications (1) will be allowed, together with the possibility to
use multiple assumptions. In particular, there will be no implication connective. This
procedure has a practical advantage: the meaning of nested implications is in general
hard to explain and is avoided here since not needed. In addition, as we will see, the
procedure has also advantages from the theoretical viewpoint: the formulae we deal
with can be used without modification as the syntactical objects of our proof system.
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The next point to be clarified is how the degree of implausibility should be related to the
partial order. It is natural to assume antitonicity: ifα is a property stronger thanβ, then
β should be less implausible thanα. We shall go further: We also let the implausibility
of disjunctions be lower bounded by a function combining theimplausibilities of the
disjuncts. As a combining function we allow any fixed t-norm.

In practise, we guess that one of the three basic continuous t-norms, the Łukasiewicz,
product, or Gödel t-norm, will be used; and among these, theGödel t-norm will be
most important. In the first two cases we are led to (the dual analog of) subadditive
measures. In the third case we arrive at possibility measures; the implausibility of
α∨β is in this case uniquely determined as the smaller value among the implausibility
of α andβ.

In this latter case we are led to Possibilistic Logic, a logicwhich was introduced by
Dubois and Prade and has been intensively developed since then. For an overview see,
e.g., [5]. Moreover, an axiomatisation of first-order Possibilistic Logic is presented by
J. Lang in [14].

Modelling vagueness

Having chosen a calculus to deal with uncertainty, the aim ofthe paper is to incorporate
the vagueness of properties. Vague properties have been dealt with in the framework of
Possibilistic Logic several times; see, for instance, [7, 4]. However, these approaches
are not comparable to ours. Here, we do not directly deal withvague properties; we
rather deal with sets of crisp properties which stepwise or continuously lead from the
full truth to the full falsity of a vague property. Possibilistic reasoning about “properly”
vague properties is the subject of [7, 4], where possibilistic measures are generalised
from Boolean algebras to MV-algebras and Gödel algebras offuzzy sets, respectively.

Vagueness can be characterised along the following lines [18]. Vague properties in-
volve two levels of perception. A property expressed in natural language, like “large”
relies on a coarse level of perception. To say that somethingis large means to say it is
observably larger than average-sized. To model the situation it is sufficient to take, for
instance, the three categories “small”, “average-sized”,and “large”. We furthermore
have a fine level of perception, which is the result of an iterative process reflecting
the underlying intuition, which is “size” in our example. Weare then led to the struc-
tures commonly used in mathematics, like, e.g., the positive reals. If both levels are
dealt with, the elements of the coarse structure need to be represented within the fine
structure. A common way to do so is use fuzzy sets.

In this paper, we follow this standard approach. Let a property α be modelled by a
fuzzy setu with the domainS. Let furthermore a degreet ∈ [0, 1] be given, and letA
be the set ofx ∈ S such thatu(x) = t. We may then say thatA models the property
thatα holds to the degreet. In other word, to each propertyα and eacht ∈ [0, 1]
we may associate the statement thatα holds to the degreet. We will symbolise this
statement by(α, t); note that(α, t) is crisp.

It is this kind of statements we shall deal with. Their collection forms a Boolean algebra
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and possibilistic reasoning can be applied to them in a straightforward way.

The paper is organised as follows. In Section 2, we introduceour framework, which is
a slight generalisation of Possibilistic Logic. But in fact, only Possibilistic Logic itself
plays a role in the remainder of the paper. In Section 3, we extend the calculus so as to
include reasoning with graded vague properties, whose model will be refined in Section
4. A rule with the effect that the implausibility degree cannot arbitrarily “jump” under
slight changes of the degrees to which the involved properties hold is introduced in
Section 5. Finally, Section 6 contains, in addition to a summary, the example of an
application of the formalism in a medical expert system.

2 Generalised possibilistic logic

In his Ph.D. Thesis [14], Lang presents an axiomatisation ofPossibilistic Logic. In the
present section, we will provide a logical calculus which isvery similar to Lang’s. We
will however make use of the fact that a simple generalisation is possible.

As usual we distinguish the content level and the belief level. On the content level, we
refer to the factual content of our reasoning. This is a set ofsituations about which we
assume that exactly one of it always holds. We distinguish between these situations
classically: we choose a set of yes-no properties; each property holds in a given situ-
ation or not; and each considered situation is uniquely determined by knowing which
properties hold and which do not hold in it. So in particular,a property is identified
with a subset of a fixed set of situations.

We do not assume that a property can be checked to hold or not tohold in any sit-
uation. This gives rise to a second level, called the belief level. Here the subjective
sphere of the “agent”, that is, the one who reasons about the given set of situations,
comes into play. Namely, we allow statements about the mutual relationship of prop-
erties which rely on possibly non-conclusive experience. That is, we allow to take into
account knowledge about relationships between propertieseven if this knowledge is
speculative. Ifα1, . . . , αk, β denote properties, a typical statement will look like

α1, . . . , αk
d
⇒ β; (3)

hered is an element of the real unit interval expressing the agent’s ignorance in a
quantitative way. Starting fromd = 1 expressing certainty, we may decreased to
express a reduced confidence in the correctness of the implication (3), which ford = 0
is true in any case.

Note that, at least in principle, the valued in (3) can always be provided; in the worst
case, if the agent does not have a clue,d = 0 is chosen.

Let’s now proceed to specify our formal framework. There is nothing special on the
content level. As usual, situations are modelled by an unstructured setS and each
property by a subset ofS. We use the usual connectives, namely conjunction, disjunc-
tion, and negation; and we will include the always false and always true property as
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well. We note that the classical implication plays no role. The interpretation of the
connectives is standard. In short, the collection of properties is modelled by a Boolean
algebraB of subsets ofS.

To see how we proceed on the belief level, consider two elementsA,B ∈ B and let
us identify them with the two properties which they model. The degree of uncertainty
about the question if we can concludeB fromA should depend in some way on numer-
ical values associated to the elements of the Boolean subalgebra generated byA and
B. In contrast to the probabilistic approach, where we have a measure onB and take
the quotient of the values associated toA ∧ B andA, we follow here a much simpler
way, adopting the concepts of Possibilistic Logic. Namely,we will use only one ele-
ment of the subalgebra, namelyA ∧ ¬B, to which we associate a “degree of surprise”
d = ̺(A ∧ ¬B). The largerd is, the less plausible is a situation in whichA holds and
B does not hold. This will be our interpretation of the statement thatA impliesB to
the degreed.

We may understand this degree of implausibility also “positively”, namely as a degree
of certainty, in the straightforward way. To say thatA impliesB to the degree1 means
thatA impliesB; that is,1 expresses full certainty. Similarly, to say thatA impliesB to
the degree0 means not to say anything; this relationship holds between an arbitrary pair
of properties. The remaining values refer to a smaller or larger degree of certainty, and
specific values of certainty strictly in between0 and1 refer to subjectively quantified
amount of certainty.

So our basic model consists of the Boolean algebraB together with a mapping̺ from
B to the real unit interval[0, 1]. We call̺ here a rejection function; with regard to the
setting of [5],̺ plays the role of a necessity measure (or alternatively of a possibility
measure). IfA ∈ B, ̺(A) expresses the degree to which the property modelled by
A would be found surprising if found to hold. We assume̺ to be order-reversing
and̺(1) = 0. Furthermore we assume thatB does not model situations which are
considered as definitely impossible; so we require that̺(A) = 1 holds exactly ifA =
0. Furthermore, a property may consist of alternatives, say,we may haveA = B ∨ C.
In this case, we allow the assumption thatA is not more surprising thanB or C and
also not less than both; then̺(A) = min {̺(B), ̺(C)}. However, we also allow to
use an alternative combining function as long as it is fixed; our actual assumption about
̺ is that̺(A) ≥ ̺(B)⊙ ̺(C) for some fixed t-norm⊙.

Let us fix a t-norm⊙ : [0, 1]× [0, 1] → [0, 1]. Furthermore, we will denote the opera-
tions minimum, maximum, and standard negation on[0, 1] by ∧, ∨, ∼, respectively.

Definition 2.1. Let (B;∧,∨,¬, 0, 1) be a Boolean algebra. Arejection functiononB
w.r.t. ⊙ is a mapping̺ : B → [0, 1] such that, for anyA,B ∈ B, (i) ̺(1) = 0, (ii)
̺(A) = 1 if and only ifA = 0, (iii) A ≤ B implies̺(B) ≤ ̺(A), and (iv) we have

̺(A ∨B) ≥ ̺(A) ⊙ ̺(B).

A pair (B, ̺) of a Boolean algebraB and a rejection function̺ onB will be called a
Boolean uncertainty algebra.

Let us consider the case that⊙ = ∧; this choice for⊙ will actually be predominant in
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our paper. Then condition (iv) can be formulated as

̺(A ∨B) = ̺(A)∧̺(B), (4)

where we have made use of the antitonicity of̺. It further follows that

N : B → [0, 1], A 7→ ̺(¬A)

is a necessity measure – see [5] –, and our logic will turn out to be equivalent with
Possibilistic Logic.

We proceed with the model-theoretic definition of what we call Generalised Possibilis-
tic Logic, denoted byI⊙, where the “I” stands for “ignorance”. The choice of this
name is motivated by the fact thatI∧ is essentially Possibilistic Logic andI⊙ is a
straightforward generalisation ofI∧. In this paper,I∧ is still most important, and we
will write in the sequelI instead ofI∧.

Our language will be finite; let’s fix a numberN ≥ 1 of variable symbols. Several
results in the sequel would remain the same if we allowed a countably infinite set of
variables; however, we do not see an important reason to do so.

Definition 2.2. Thepropositionsof I⊙ are built up fromvariablesϕ1, . . . , ϕN and the
truth constants⊥,⊤ by means of the binary connectives∧,∨ and the unary connective
¬. We will denote the set of propositions byP .

An implication of I⊙ is a triple consisting of a finite non-empty set of propositions
α1, ..., αk, a propositionβ, and an elementd of the real unit interval, denoted

α1, ..., αk
d
⇒ β.

Hereα1, ..., αk are called theantecedents, β is thesuccedent, andd is thedegree of
certainty.

An evaluationfor I⊙ is a mappingv from P to a Boolean uncertainty algebra(B, ̺)
such thatv(α ∧ β) = v(α) ∧ v(β), v(α ∨ β) = v(α) ∨ v(β), v(¬α) = ¬v(α) for

α, β ∈ P andv(⊥) = 0, v(⊤) = 1. An implicationα1, ..., αk
d
⇒ β is thensatisfied

by v if
̺(v(α1 ∧ . . . ∧ αk ∧ ¬β)) ≥ d.

A theoryis a set of implications. We say that a theoryT semantically entailsan impli-

cationα1, ..., αk
d
⇒ β if, for all evaluationsv, whenever all elements ofT are satisfied

by v, then alsoα1, ..., αk
d
⇒ β is satisfied byv.

We axiomatise the logicI⊙ as follows. Here, rules are pairs of a possibly empty finite
set of implications and one further implication. The GreekΓ denotes a finite set of
antecedents, and as usual, expressions likeΓ, α, β denoteΓ ∪ {α, β}, where it is not
assumed that these sets must not overlap or thatα andβ must be distinct. The setΓ
can be empty; recall however that an implication has at leastone antecedent; thus in an

expression likeΓ
d
⇒ α, Γ must be non-empty.

6



For the case that⊙ = ∧ the following calculus is the propositional part of Lang’s
calculus in [14], just presented in a modified way. The main point concerns our use of
a rejection function. Indeed, instead of a necessity measure, we use the complemented
possibility measure.

Definition 2.3. The following are the rules ofI⊙, whereα, β, γ are propositions,Γ is
a finite set of propositions, andc, d ∈ [0, 1]:

⊥
d
⇒ α α

d
⇒ α α

d
⇒ ⊤ α,¬α

d
⇒ ⊥

α
0
⇒ β

Γ
d
⇒ α

Γ
c
⇒ α

wherec < d
Γ

c
⇒ α α

d
⇒ β

Γ
c⊙d
⇒ β

Γ
d
⇒ α

Γ, β
d
⇒ α

Γ, α, β
d
⇒ γ

Γ, α ∧ β
d
⇒ γ

Γ
c
⇒ α Γ

d
⇒ β

Γ
c⊙d
⇒ α ∧ β

Γ, α
c
⇒ γ Γ, β

d
⇒ γ

Γ, α ∨ β
c⊙d
⇒ γ

Γ
d
⇒ α

Γ
d
⇒ α ∨ β

Γ
d
⇒ β

Γ
d
⇒ α ∨ β

α
d
⇒ β

¬β
d
⇒ ¬α

¬α
d
⇒ β

¬β
d
⇒ α

α
d
⇒ ¬β

β
d
⇒ ¬α

The notion of a proof of an implicationα
d
⇒ β from a theoryT is defined in the usual

way. We writeT ⊢ α
d
⇒ β if there exists one.

A theoryT is calledconsistentif T ⊢ ⊤
d
⇒ ⊥ impliesd = 0.

The proof of the completeness Theorem 2.7 forI
⊙ below is possible along routine

lines; we calculate the Lindenbaum algebra associated to a given theory, and the max-

imal d such that the theory provesα
d
⇒ ⊥ is taken as the value to which̺maps the

equivalence class ofα. ForI, a proof is moreover contained in [14].

In spite of this, we will devote the remainder of this sectionto present a fully detailed
proof which is even more involved than necessary. We do so because in the subsequent
sections, we will present three logics which are successively more special thanI⊙; we
shall proceed then in full analogy to the easy case discussedhere.

For propositionsα andβ, we writeα → β to abbreviate¬α ∨ β.

Lemma 2.4. Letα, β be propositions ofI⊙. Then⊢ α
1
⇒ β if and only ifα → β is a

tautology of classical propositional logic.

Proof. Let I⊙ proveα
1
⇒ β. Since the degree associated to the conclusion is in each

rule smaller or equal to each degree in the assertions, a proof α
1
⇒ β can be assumed

to involve the degree1 only. It followsα→ β is a classical tautology.

Conversely, assume thatα → β is a classical tautology. Then the sequentα ⊢ β

is derivable in Gentzen’s calculus for classical propositional logic [8]. By obvious
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modifications this proof can be transformed into a proof ofα
1
⇒ β in I

⊙, where all
degrees equal1.

For some setΩ, let us denote the Boolean algebra of subsets ofΩ by PΩ. For in-
stance,P{0, 1} is the set of subsets of{0, 1} and can be identified with the two-element
Boolean algebra.

Furthermore,P{0, 1}N denotes the free Boolean algebra withN generators. We
will identify the latter with the Boolean algebra of subsetsof {0, 1}N , that is, with
P ({0, 1}N).

We will now consider the Lindenbaum algebra associated toI
⊙, where equivalence of

propositions will mean that one implies the other one to the degree1. Accordingly, the
somewhat loose statements “α impliesβ” and “α andβ are equivalent” mean thatI⊙

provesα
1
⇒ β, or bothα

1
⇒ β andβ

1
⇒ α, respectively. Analogous remarks apply to

all logics considered in subsequent sections as well.

Lemma 2.5. For propositionsα andβ of I⊙, we putα ≈ β if I⊙ provesα
1
⇒ β

andβ
1
⇒ α. Then the quotient〈P〉 ofP w.r.t.≈, endowed with the induced operations

∧,∨,¬ and the constants〈⊥〉, 〈⊤〉, is a Boolean algebra isomorphic tōB = P{0, 1}N .
The isomorphism is given by

w(〈ϕi〉) = {(r1, . . . , rN ) ∈ {0, 1}N : ri = 1}, i = 1, . . . , N

Furthermore, let̺ : B̄ → [0, 1] be0 on all non-zero elements; then(B̄, ̺) is a Boolean
uncertainty algebra.

Definev̄ : P → {0, 1}N , α 7→ w(〈α〉). Thenv̄ is an evaluation ofI⊙ such that

v̄(α) = ∅ if and only if⊢ α
1
⇒ ⊥.

Proof. By Lemma 2.4,〈P〉 is the free Boolean algebra withN generators.

Clearly, (B̄, ̺) is a Boolean uncertainty algebra andv̄ is an evaluation forI⊙. Fur-

thermore,I⊙ provesα
1
⇒ ⊥ iff 〈α〉 = 〈⊥〉 iff w(〈α〉) = w(〈⊥〉). Given that

v̄(α) = w(〈α〉) andw(〈⊥〉) = ∅, the last part follows.

In the next lemma, two theories proving the same implications are called equivalent.

Lemma 2.6. LetT be a theory ofI⊙. Then there is a theoryT ′ which is equivalent to
T and consists of

χ0
d0⇒ ⊥, χ1

d1⇒ ⊥, . . . , χm
dm⇒ ⊥,

where⊢ χi ∧ χj
1
⇒ ⊥ for i 6= j, ⊢ ⊤

1
⇒ χ0 ∨ . . . ∨ χm, and1 = d0 > d1 ≥ . . . ≥

dm−1 > dm = 0.

In case⊙ = ∧ we may required0 > d1 > . . . > dm.

Proof. We claim thatT is equivalent to a finite theory. Indeed, any proposition appear-
ing in T can be substituted by any equivalent one. Furthermore, by Lemma 2.5 there
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are, up to equivalence, only finite many propositions. Finally, if there are two impli-
cations inT differing only in the degree of certainty, the implication with the lower
degree of certainty can be dropped.

Next, using Lemma 2.4, it is not difficult to see thatα1, ..., αk
d
⇒ β andα1 ∧ . . . ∧

αk ∧ ¬β
d
⇒ ⊥ are inI⊙ mutually derivable. So we assume thatT contains only

implications of the latter form.

If there areα1
e1⇒ ⊥ andα2

e2⇒ ⊥, wheree1 ≤ e2 and0 α1∧α2
1
⇒ ⊥, we may replace

the first implication byα1 ∧ ¬α2
e1⇒ ⊥.

Finally, the implications with the degree0 or 1 can be replaced by a single implication,
combining the antecedents disjunctively. If⊙ = ∧, the same can be done with any
implications whose degrees of certainty coincide.

On the basis of these preliminaries we prove the completeness ofI⊙.

Theorem 2.7. Let T be a consistent theory ofI⊙ andΓ
e
⇒ δ an implication ofI⊙.

ThenT semantically entailsΓ
e
⇒ δ if and only ifT provesΓ

e
⇒ δ.

Proof. It is easily checked that all rules are sound. The “if” part follows.

By Lemma 2.6, we can assume thatT = {χ0
d0⇒ ⊥, χ1

d1⇒ ⊥, . . . , χm
dm⇒ ⊥}, where

theχi are pairwise disjoint and jointly exhaustive, and1 = d1 > d2 ≥ . . . ≥ dm−1 >

dm = 0.

Let v̄ : P → B̄ be the evaluation according to Lemma 2.5. LetS = v̄(¬χ0), and let
B = [0, S] be endowed with the Boolean structure induced byB̄. Let

v : P → B, α 7→ v̄(α) ∩ S.

We furthermore define

̺ : B → [0, 1], A 7→
⊙

{di : 1 ≤ i ≤ m andA ∧ v(χi) 6= 0},

where the result is1 in case the set is empty. This is obviously a rejection function
onB. Thenv is an evaluation ofI⊙ in the Boolean uncertainty algebra(B, ̺). Since
̺(v(χi)) = di for all i, all elements ofT are satisfied byv.

Assume now thatT does not proveΓ
e
⇒ δ. SoT does not proveα

e
⇒ ⊥, whereα is

the conjunction ofΓ ∪ {¬δ}. Let d = ̺(v(α)). We easily check thatT ⊢ α
d
⇒ ⊥. It

follows d < e, so in particularΓ
e
⇒ δ is not satisfied byv andT does not semantically

entailΓ
e
⇒ δ. The proof of the “only if” part is complete.

We note that the model constructed in this proof is finite; so Theorem 2.7 could be
reformulated to involve finite Boolean uncertainty algebras only.
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3 Inclusion of graded properties: the finite case

We extend our framework to include properties which are not in every situation as-
sumed to hold or not to hold. We still work with a Boolean algebra of subsets of some
setS, and properties which, as it has been the case by now, are modelled by subsets of
S will be called crisp. The variable symbols however will fromnow on denote vague
properties and are interpreted by fuzzy sets overS. It will still be possible to reason
about crisp properties because crispness is expressible inour framework.

It must be stressed that we will not allow statements of the form ϕ
d
⇒ ψ whereϕ and

ψ model vague properties. We will rather denote by(ϕ, s) the property thatϕ holds to
the degrees, modelled by the subset ofS consisting of those points which are mapped
to s. The values will be referred to as the degree of presence ofϕ in such situations.

We allow then statements of the form(ϕ, s)
d
⇒ (ψ, t) and, as relationships between

crisp properties, we will interpret them just as before.

We will furthermore allow vague properties to be combined bymeans of a conjunc-
tion ∧, a disjunction∨, and a negation∼. These connectives are interpreted by the
minimum, maximum, and standard negation applied pointwiseto the respective fuzzy
sets. For example, for some evaluationv, (ϕ ∨ ∼ψ , t) is interpreted by{a ∈ S :
v(ϕ)(a) ∨ ∼v(ψ)(a) = t}.

Our t-norm will from now on always be the Gödel t-norm, that is, we put⊙ = ∧. So
in all what follows we stay in the realm of the Possibilistic LogicI. The more general
case remains to be explored.

Furthermore, for the moment we will restrict to a finite set ofdegrees of presence: let
fix a finite setV ⊂ [0, 1] containing0 and closed under∼. As a matter of fact, the
approach chosen in this section cannot be easily generalised to the infinite case; it has
turned out that the use of an infinite set like the rational unit interval would lead to
technical difficulties. In the subsequent section, we will modify our approach and the
restriction will be dropped.

Definition 3.1. Let S be a nonempty set. AV -valuedfuzzy setoverS is a mapping
fromS to V .

For two fuzzy setsu, v : S → V , we letu ∧ v andu ∨ v be the pointwise minimum
and maximum ofu andv, respectively; we let∼u be the pointwise standard negation
of u; and we let̄0 and 1̄ be the constant0 and1 fuzzy set, respectively. LetM be a
collection ofV -valued fuzzy sets overS containinḡ0, 1̄ and closed under∧,∨,∼; then
we call(M ;∧,∨,∼, 0̄, 1̄) aKleene algebra of fuzzy sets.

For anyu ∈M andt ∈ V , we define

[u]t = {a ∈ S : u(a) = t}.

The Boolean algebra of subsets ofS generated by[u]t, whereu ∈ M andt ∈ V , will
be called theBoolean algebra associated withM , denoted byBM .

Finally, let ̺ be a rejection function onBM w.r.t. ∧. Then(M,̺) is called aKleene
uncertainty algebra.
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We will now define the Possibilistic Logic with Sharp Gradation, denoted byIG0.

Definition 3.2. Thegradable propositionsof IG0 are built up fromvariablesϕ1, . . . ,

ϕN and the constants0, 1 by means of the binary connectives∧,∨ and the unary con-
nective∼. We denote the set of gradable propositions byF . Thegraded propositions
of IG0 are of the form(ϕ, t) whereϕ is a gradable proposition andt ∈ V . Thecrisp
propositionsof IG0, or propositionsfor short, are built up from graded propositions
and thetruth constants⊥,⊤ by means of the binary connectives∧,∨ and the unary
connective¬. We denote the set of propositions byP .

An implicationof IG0 is a triple consisting of a finite non-empty set of propositions

α1, ..., αk, a propositionβ, and an elementd ∈ V , denotedα1, ..., αk
d
⇒ β.

An evaluationfor IG0 is, for some Kleene uncertainty algebra(M,̺), a pair of map-
pingsvf : F →M andvb : P →MB such that the following holds:

(i) vf (ϕ∧ψ) = vf (ϕ)∧vf (ψ), vf (ϕ∨ψ) = vf (ϕ)∨vf (ψ), vf (∼ϕ ) = ∼ vf (ϕ)
for gradable propositionsϕ, ψ, andvf (0) = 0̄, vf (1) = 1̄;

(ii) for ϕ ∈ F andt ∈ V we have

vb((ϕ, t)) = [vf (ϕ)]t (5)

and furthermorevb(α ∧ β) = vb(α) ∧ vb(β), vb(α ∨ β) = vb(α) ∨ vb(β),
vb(α ∧ β) = ¬vb(α) for propositionsα, β, andvb(⊥) = 0, vb(⊤) = 1.

The notions ofsatisfaction, of a theory, and ofsemantic entailmentis defined forIG0

similarly as forI.

Note that the variables are now gradable propositions and infact are interpreted by
fuzzy sets. If this is not intended for some variableϕ, we may make use of the fact

that the implications(ϕ, 0)
1
⇒ ¬(ϕ, 1) and(ϕ, 1)

1
⇒ ¬(ϕ, 0) are satisfied only ifϕ

is interpreted by a characteristic function; they can be asserted to ensure crispness.
Moreover, if a variableϕ is not going to be connected with further gradable variables,
this is not even necessary; simply(ϕ, 1) can be used to model a crisp property.

We axiomatise the logicIG0 as follows.

Definition 3.3. The rules ofIG0 split into three groups:

Thebasic rulesare those ofI (see Def. 2.3) where propositions are understood as those
of IG0.

Thedegree-of-presence rulesare the following, whereϕ is a gradable proposition, and
s, s0, ..., t ∈ V :

(ϕ, s)
d
⇒ ¬(ϕ, t) wheres 6= t

¬(ϕ, s0), . . . ,¬(ϕ, sM )
d
⇒ ⊥ whereV = {s0, . . . , sM}

11



The fuzzy-set rulesare the following, whereΓ is a finite set of propositions,ϕ, ψ are
gradable propositions,α is a proposition,c, d ∈ [0, 1], andr, s, t ∈ V :

Γ, (ϕ ∧ ψ, s∧t)
d
⇒ α

Γ, (ϕ, s), (ψ, t)
d
⇒ α

Γ,¬(ϕ ∧ ψ, t)
d
⇒ α

Γ, (ϕ, r), (ψ, s)
d
⇒ α

wherer, s > t

Γ,¬(ϕ ∧ ψ, t)
d
⇒ α

Γ, (ϕ, s)
d
⇒ α

wheres < t
Γ,¬(ϕ ∧ ψ, t)

d
⇒ α

Γ, (ψ, s)
d
⇒ α

wheres < t

Γ, (ϕ ∨ ψ, s∨t)
d
⇒ α

Γ, (ϕ, s), (ψ, t)
d
⇒ α

Γ,¬(ϕ ∨ ψ, t)
d
⇒ α

Γ, (ϕ, r), (ψ, s)
d
⇒ α

wherer, s < t

Γ,¬(ϕ ∨ ψ, t)
d
⇒ α

Γ, (ϕ, s)
d
⇒ α

wheres > t
Γ,¬(ϕ ∨ ψ, t)

d
⇒ α

Γ, (ψ, s)
d
⇒ α

wheres > t

Γ, (ϕ, c)
d
⇒ α

Γ, (∼ϕ,∼c)
d
⇒ α

Γ, (∼ϕ, c)
d
⇒ α

Γ, (ϕ,∼c)
d
⇒ α

The notion of aproofof some implication from a theory as well as theconsistencyof a
theory is defined like forI.

The soundness causes again no difficulties.

Theorem 3.4. Let T be a theory ofIG0 andΓ
e
⇒ δ an implication ofIG0. ThenT

semantically entailsΓ
e
⇒ δ if T provesΓ

e
⇒ δ.

For the completeness proof, several preparatory lemmas arenecessary. Our procedure
in case of the logicI⊙ will serve as a pattern.

In what follows, by a graded variable we will mean a graded proposition(ϕ, t) such
thatϕ is a variable. In our first step we will show that compound gradual proposi-
tions are eliminable from the calculus; graded propositions are replaceable by Boolean
combination of graded variables.

Lemma 3.5. Letϕ, ψ be gradable propositions ofIG0, and lett ∈ V . Then(ϕ ∧ ψ, t)
is equivalent to

∨

{(ϕ, r) ∧ (ψ, s) : r = t ands ≥ t, or r ≥ t ands = t}; (6)

(ϕ ∨ ψ, t) is equivalent to
∨

{(ϕ, r) ∧ (ψ, s) : r = t ands ≤ t, or r ≤ t ands = t}, (7)

and(∼ϕ, t) is equivalent to
(ϕ,∼t). (8)

Furthermore,¬(ϕ, t) is equivalent to
∨

s6=t(ϕ, s). Finally, any proposition ofIG0 is
equivalent to the disjunction of conjunctions of graded variables.
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Proof. Every disjunct in (6), so (6) itself, implies(ϕ∧ψ, t). Furthermore, the negation
of (6) is equivalent to the disjunction of

∨

r,s>t((ϕ, r) ∧ (ψ, s)) and
∨

r<t(ϕ, r) and
∨

s<t(ψ, s), each of which implies¬(ϕ ∧ ψ, t).

Similarly, we proceed for (7). The claims concerning(∼ϕ, t) and¬(ϕ, t) are easy.

The last assertion follows, for a graded proposition, by induction over the complexity of
the involved gradable proposition. For a proposition, the assertion follows by induction
over its complexity.

We recall thatPV is the Boolean algebra of subsets ofV , whereV is the set of degrees
of presence. Furthermore, we denote byPV N theN -fold free product of the Boolean
algebrasPV ; for the notion of free products of algebras see, e.g., [11, Chapter VI]. We
may, and we actually will, identifyPV N with P (V N ), the Boolean algebra of subsets
of V N .

Lemma 3.6. For propositionsα andβ of IG0, we putα ≈ β if IG0 provesα
1
⇒ β

andβ
1
⇒ α. Then the quotient〈P〉 ofP w.r.t.≈, endowed with the induced operations

∧,∨,¬ and the constants〈⊥〉, 〈⊤〉, is a Boolean algebra isomorphic toPV N . The
isomorphism is given by

w(〈(ϕi, t)〉) = {(r1, ..., rN ) ∈ V N : ri = t}, i = 1, . . . , N, t ∈ V. (9)

Furthermore, let
ui : V

N → V, (r1, ..., rN ) 7→ ri,

and letM̄ be the Kleene algebra generated byu1, . . . , uN . ThenBM̄ = PV N . Define
̺ : BM̄ → [0, 1] to be0 on all non-zero elements; then(M̄, ̺) is a Kleene uncertainty
algebra.

Definev̄f (ϕi) = ui for i = 1, . . . , N , and extend̄vf to F such that∧,∨,∼ and 0̄, 1̄
are preserved. Definēvb(α) = w(〈α〉) for α ∈ P . Then(v̄f , v̄b) is an evaluation of

IG
0 such that̄vb(α) = ∅ if and only if⊢ α

1
⇒ ⊥.

Proof. Note first that in all the degree-of-presence and fuzzy-set rules, we may w.l.o.g.
assume thatd = 1. Let us modifyIG0 as follows: We drop all fuzzy-set rules and add as
new axioms the six implications expressing the equivalences of (ϕ ∧ ψ, t), (ϕ ∨ ψ, t),
(∼ϕ, t) with the expressions (6), (7), and (8), respectively, whereϕ, ψ are gradable
propositions andt ∈ [−ζ, 1 + ζ]. By Lemma 3.5 all these implications are provable,
and from the added axioms we may easily derive any of the dropped rules. So the
change has no effect for the set of provable implications.

Note next that a proof of an implication of the formα
1
⇒ β in IG

0 can be chosen such
that all occurring degrees of certainty are equal to1. Let IG0c be the calculus differing
fromIG

0 in that only degree of certainty1 are allowed. InIG0c , the relation≈ obviously
does not change.

By Lemma 2.4,IG0c can be viewed as an extension of classical propositional logic: the
variables are identified with the graded propositions; and the extension consists of the

axioms ofIG0c where each implicationα
1
⇒ β is understood asα → β. We keep this
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viewpoint implicitly in the background. We get as an immediate consequence that〈P〉
is a Boolean algebra.

Each graded proposition in which a compound gradual proposition occurs, is by as-
sumption equivalent to an expression in graded variables. So to determine the Boolean
algebra〈P〉, we need to consider only〈(ϕi, t)〉 wherei ∈ {1, ..., N} andt ∈ V .

Consider now the degree-of-presence rules. We can restrictthem to the case of graded
variables. Indeed, it is not difficult, based on an inductiveargument, to derive these
axioms for compound gradable propositions from those for graded variables.

So we are left with the degree-of-presence rules restrictedto graded variables. These
axioms split intoN disjoint subsets, one for eachi. Furthermore, for anyi ∈ {1, ..., N},
the Boolean subalgebra〈P〉i of 〈P〉 generated by〈(ϕi, t)〉, t ∈ V , is clearly isomor-
phic toPV under the assignment

wi : 〈P〉i → PV, 〈(ϕi, t)〉 7→ {t}.

Consequently,〈P〉 itself is isomorphic to the free product ofN copies ofPV under
that assignment (9). The proof of the first half of the theoremis complete.

Clearly,(M̄, ̺) is a Kleene uncertainty algebra such thatBM̄ = PV N .

It is furthermore clear that̄vb preserves the Boolean structure ofP , and like in the

proof of Theorem 2.7 we see thatv̄b(α) = ∅ iff ⊢ α
1
⇒ ⊥. Moreover,̄vf preserves the

Kleene structure ofF by construction.

To establish that(v̄f , v̄b) is an evaluation, it remains to check (5), that is, we have
to showw(〈(ϕ, t)〉) = [v̄f (ϕ)]t for all ϕ ∈ F and t ∈ V . If ϕ is a variable, this
equation holds by construction. For the general case, we proceed by induction over the
complexity ofϕ and use Lemma 3.5.

Lemma 3.7. Let T be a finite theory ofIG0. Then there is a theoryT ′ which is
equivalent toT and consists of

χ0
d0⇒ ⊥, χ1

d1⇒ ⊥, . . . , χm
dm⇒ ⊥,

where⊢ χi ∧ χj
1
⇒ ⊥ for i 6= j, ⊢ ⊤

1
⇒ χ0 ∨ . . . ∨ χm, and1 = d0 > d1 > . . . >

dm−1 > dm = 0.

Proof. As we assumed thatT is finite, we may proceed like in the proof of Lemma
2.6.

Theorem 3.8. LetT be a consistent finite theory ofIG0 andΓ
e
⇒ δ an implication of

IG
0. If T semantically entailsΓ

e
⇒ δ, thenT provesΓ

e
⇒ δ.

Proof. It is easily checked that all rules are sound. The “if” part follows.

We can assume thatT = {χ0
1
⇒ ⊥, χ1

d1⇒ ⊥, . . . , χm
dm⇒ ⊥}, where theχi are

pairwise disjoint and jointly exhaustive, and1 > d1 > . . . > dm = 0.
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Let (v̄f , v̄b) be the evaluation in(M̄, ̺) according to Lemma 3.6. LetS = v̄b(¬χ0).

By consistency,T does not prove¬χ0
1
⇒ ⊥, henceS 6= ∅. Let M be the Kleene

algebra generated byui|S , i = 1, . . . , N . ThenBM = PS.

Let vf : F →M, ϕ 7→ v̄f (ϕ)|S andvb : P → BS , α 7→ v̄b(α) ∩ S.

We define

̺ : BM → [0, 1], A 7→ min {di : 1 ≤ i ≤ m andA ∩ v(χi) 6= ∅},

where the minimum of the empty set is1. This is obviously a rejection function.

Then(vf , vb) is an evaluation in the Kleene uncertainty algebra(M,̺). Since̺ (χi) =
di for all i, all elements ofT are satisfied by(vf , vb).

If T does not proveΓ
e
⇒ δ, we conclude like in the proof of Theorem 2.7 thatΓ

e
⇒ δ

is not satisfied byv. This completes the proof of the “only if” part.

We again note that the completeness theorem could obviouslybe modified so as to
involve finite Kleene uncertainty algebras only.

4 Inclusion of graded properties: the continuous case

A propertyϕ is called vague if not under all circumstances it can be told if ϕ applies or
not. We have proposed to model this generalised type of a property in the usual way: as
a fuzzy set over the set of all considered situations. A vaguepropertyϕ is furthermore
characterised by a continuous transition fromϕ to non-ϕ. Hence it would actually
make sense to allowϕ to be assigned any degree of presence taken from the real unit
interval[0, 1], rather than using a finite subset of[0, 1] as we did in the previous section.

The statements(ϕ, t), wheret varies over[0, 1], let us then distinguish between an
infinity of pairwise exclusive situations. This fact in turnis not well in line with the
idea that(ϕ, t) reflects an agent’s impression, given the fact that there is no infinity
of situations observable as pairwise exclusive. Nevertheless our intention might be to
work with a continuity of situations.

We have chosen the following solution. Roughly speaking, wewill assume that situa-
tions which are close to each other, that is, situations characterised by similar degrees
of presence of the involved properties, are not necessarilydistinguishable. Let us won-
der what it actually means that an agent is asked to evaluateϕ and answers0.3. In fact,
such an answer might mean not more than thatϕ is neither true nor false but fits some-
what better to the latter possibility. Thus the agent could have chosen equally well, say,
the value0.28 or 0.32. Accordingly we postulate that graded propositions(ϕ, s) and
(ϕ, t) are treated as mutually exclusive only ifs andt differ at least by a fixed minimal
value, denoted byζ.

The choice ofζ is to a certain extent arbitrary. Note however that in practise, also the
degrees themselves are to a certain extent arbitrary. The introduction of the valueζ
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takes exactly this point into account: it does in general notmake sense to distinguish
between arbitrary close degrees of presence.

We will modify the interpretation of(ϕ, t), t ∈ [0, 1], as follows. Letϕ be interpreted
by a fuzzy setu over a setS. Then(ϕ, t) will no longer be interpreted by[u]t but by
the set[u]ζt which is, roughly speaking, consists of thosex ∈ S such thatu(x) differs
from t less thanζ.

We note this idea is unrelated to any of the formalisms based on interval-valued fuzzy
sets. In fact, gradable propositions will still be modelledby ordinary fuzzy sets. What
we intend to account for is rather the idea that statements involving truth degrees should
have a more “tolerant” interpretation; close truth degreesare allowed to overlap in their
interpretation.

Our solution forces us to overcome several technical difficulties. To replace[u]t by the
larger set[u]ζt makes perfect sense ift is an intermediate truth degree, in particular if
ζ ≤ t ≤ 1 − ζ. For sharp truth degrees, the situation is different; we should still be
able to express that a property is clearly false or clearly true. In our formalism, the sets
[u]0 and[u]1 will no longer appear; however, it will be possible to express the property
to be clearly false or clearly true in an approximate way. We will simply extend the
set of available degrees of presence from[0, 1] to (−ζ, 1 + ζ). The negative degrees
and the degree larger than1 are so-to-say virtual ones. A degreet ∈ (−ζ, 0) represents
falsity, like 0, but in contrast to0 the tolerance around0 is t+ ζ, a value which can be
arbitrarily small. Similarly, we use the degrees of presence above1.

Remark 4.1. Our formalism could be simplified in an easy way: we could interpret
(ϕ, t) by the set of alla ∈ S which are mapped tot or a larger value. This interpre-
tation is indeed common in fuzzy logics. It would include, upto marginal points, the
concept of intervals used in this section and the concept of points from the previous
section. Even better, the fuzzy-set rules would simplify and in fact look more elegant.
However, we do not adopt this approach here. We would see it asa lack of elegance to
declare statements like “propertyϕ holds to a degree of at least0.4” as basic.

In the area of application which we have in mind, an agent’s utterance of this form, or
a technical specification in this form, would come as a surprise. Statements providing
a lower bound for the degree of presence of some property may still reasonably occur
as the result of some inference step; but not typically as itsassumption.

As a further consequence of our decision to work with the sets[u]ζt which involve an
“extended” set of degrees aroundt, we will no longer use the set-theoretical operations
to interpret Boolean connectives. Our motivation is that single degrees of presence
should no longer play a role. It should not matter if the marginal pointst− ζ or t + ζ

are included or not, and by use of Boolean connectives it should never be possible to
arrive at sets of the form[u]t.

Hence we need to endow our fuzzy set model with more structurethan before. As a
prototype consider the following simple fuzzy setu, modelling “having fever”.
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A fuzzy set modelling the property to have fever

u

We abstract from this example the following facts. The base set and the set of degrees
of presence are endowed with a topology in a natural way, and w.r.t. these topologies
the fuzzy setu is continuous. Furthermore, each intermediate truth degree is assigned
to a single point only; each set[u]t, where0 < t < 1, has an empty interior. In contrast,
each set{s ∈ [36.5, 42] : t− ζ < u(s) < t+ ζ} is the interior of a closed set.

Remark 4.2. We compile for what follows the basics about the used topological no-
tions. For more information see, e.g., [9].

LetS be a topological space. ForA ⊆ S, we denote byA◦ the open interior ofA, and
byA− the closure ofA. A setA ⊆ S is called regular open if it is the open interior of
a closed set. So exactly all sets of the formA−◦ are regular open; we have

A−◦ = {x ∈ S : A is dense in some open neighbourhood ofx}.

We denote byR(S) the set of all regular open subsets ofS. Under set-theoretical
inclusion,R(S) is a distributive0, 1-lattice. ForA,B ∈ R(S), the infimum isA ∩B;
the supremum isA ∨ B = (A ∪B)−◦; and ∅, S are the bottom and top element,
respectively. Furthermore,

⊥ : R(S) → R(S), A 7→ (S\A)◦

is a complementation function; in particular,A⊥⊥ = A−◦ = A, A ∩ A⊥ = ∅, and
A ∪ A⊥ is dense inS. So(R(S);∩,∨,⊥ , ∅, S) is a Boolean algebra.

For later use we remark the following. For open setsA,B ⊆ S we have

(A ∪B)
−◦

= A−◦ ∨B−◦, (10)

(A ∩B)
−◦

= A−◦ ∩B−◦, (11)

where the supremum refers to the posetR(S).

Note first that for anyC,D ⊆ S we have(C ∪ D)⊥ = C⊥ ∩D⊥ andC⊥⊥ = C−◦.
We conclude

(A ∪B)
−◦

=(A ∪B)⊥⊥ = (A⊥ ∩B⊥)⊥ = (A⊥⊥⊥ ∩B⊥⊥⊥)⊥ =

(A⊥⊥ ∪B⊥⊥)⊥⊥ = (A−◦ ∪B−◦)
−◦

= A−◦ ∨B−◦.

This is (10); for (11) see [9, Lemma 4 of Chapter 10]. Finally,(11) implies that for
closed setsA,B ⊆ S

(A ∪B)◦ = (A◦ ∪B◦)−◦
. (12)
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Definition 4.3. Let S be a topological space. A fuzzy setu : S → [0, 1] is called
regular if the following conditions hold:

(R1) u is continuous w.r.t. the standard topology of[0, 1];

(R2) for anyt ∈ (0, 1), [u]t has an empty interior.

A Kleene algebraM of regular fuzzy sets overS is calledregular.

The notion of a regular Kleene algebra would not make sense ifthe conditions (R1)
and (R2) were not preserved under the Kleene algebra operations.

Lemma 4.4. LetM be a Kleene algebra of fuzzy sets over some topological space.
Assume thatM is generated by regular fuzzy sets. ThenM is a regular Kleene algebra.

Proof. Evidently, the constant fuzzy sets are regular. Letu, v ∈M be regular. Clearly,
u ∧ v, u ∨ v, and∼u are continuous.

Let 0 < t < 1; we have to show that[u ∧ v]t has an empty interior. Leta ∈ S be
such that(u ∧ v)(a) = t, and letU be an open neighbourhood ofa. W.l.o.g. assume
t = u(a) ≤ v(a). If there is ab ∈ U such thatu(b) < t, we have(u ∧ v)(b) =
u(b) ∧ v(b) < t. Otherwise there is ab ∈ U such thatu(b) > t and consequently there
is an openV ⊆ U such thatu(b) > t for all b ∈ V . Choose somec ∈ V such that
v(c) 6= t; then(u ∧ v)(b) 6= t. It follows that[u ∧ v]t does not contain an open set.

Similarly we argue in case of[u ∨ v]t. Finally [∼u ]t = [u]∼t clearly has an empty
interior as well.

We fix now a rational value0 < ζ < 1
2 . ζ is supposed to quantify the distinguishability

between different degrees to which a vague property holds;(ϕ, s) and(ϕ, t) will be
modelled as disjoint only if|s − t| ≥ 2ζ. We will switch from [u]t to [u]ζt ; here[u]ζt
does not simply denote the set of all points mapping to the interval [t − ζ, t + ζ] or
(t − ζ, t + ζ); we will rather use a definition which ensures that[u]ζt is regular open.
Accordingly, rather than using the Boolean algebra generated by the sets[u]t, we will
work with the Boolean algebra of regular open sets generatedby the sets of the form
[u]ζt .

For a generalised degree of presencet, we will denote byt′ the degree of presence
which is actually meant byt, disregarding the amount of tolerance: fort ∈ (−ζ, 1+ζ),
we putt′ = (t∨0)∧1. ForI ⊆ (−ζ, 1 + ζ), we will write I ′ = {t′ : t ∈ I}.

Finally, for I ⊆ [0, 1], we put[u]I = {a ∈ S : u(a) ∈ I}.

Definition 4.5. Let M be a regular Kleene algebra of fuzzy sets over a topological
spaceS. Foru ∈M andt ∈ (−ζ, 1 + ζ), we define

[u]ζt = [u][t−ζ,t+ζ]′
◦
.

Furthermore, the Boolean subalgebra ofR(S) generated by[u]ζt , whereu ∈ M and
t ∈ (−ζ, 1 + ζ), will be called theBoolean algebra associated withM , denoted by
RM .

18



Finally, let ̺ be a rejection function onRM w.r.t. ∧. Then(M,̺) is called aregular
Kleene uncertainty algebra.

The following lemma provides an explicit description of theinterpretation which we
are going to apply.

Lemma 4.6. Let (M,̺) be a regular Kleene uncertainty algebra. Letu ∈ M . For
ζ < t < 1− ζ we have

[u]ζt = [u][t−ζ,t+ζ]
◦

= {a ∈ S : u(a) ∈ (t− ζ, t+ ζ)

or u(a) ∈ {t− ζ, t+ ζ} andu maps a neighbourhood ofa to [t− ζ, t+ ζ]};

for −ζ < t ≤ ζ, we have

[u]ζt = [u][0,t+ζ]
◦

= {a ∈ S : u(a) ∈ [0, t+ ζ)

or u(a) = t+ ζ andu maps a neighbourhood ofa to [0, t+ ζ]};

and similarly for1− ζ ≤ t < 1 + ζ.

So given a regular fuzzy setu, we see that[u]ζt contains basically all pointsa ∈ S such
thatu(a) ∈ (t − ζ, t + ζ), but if, for instance,u has at the pointa ∈ S the strict local
minimumt− ζ thena is joined to[u]ζt as well.

In the above example, takeζ = 0.1. Then we have, say,[u]ζ0.3 = u−1((0.2, 0.4)) =

(37.6, 37.7), [u]ζ0.1 = u−1([0, 0.2)) = (36.5, 37.6). As the associated property to be
clearly false we can take, e.g.,[u]ζ−0.099 = u−1([0, 0.001)) = [36.5, 37.5005).

We define the Possibilistic Logic with Soft Gradation, denoted byIGζ , as follows.

Definition 4.7. Thepropositions, the set of which will still be denoted byP , as well as
the implicationsof IGζ coincide with those ofIG0, respectively (see Def. 3.2) except
that we use the real interval(−ζ, 1 + ζ) as the set of degrees of presence.

An evaluationv of IGζ is defined like forIG0 except that forϕ ∈ F andt ∈ (−ζ, 1+ζ)
we define

vb((ϕ, t)) = [vf (ϕ)]
ζ
t

and thatvb maps toRM .

A theoryof IGζ andsemantic entailmentfor IGζ is defined mutatis mutandis like for
I.

To axiomatise the logicIGζ we have to modify all rules except the basic ones.

Definition 4.8. The rules ofIGζ split into three groups:

Thebasic rulesare those ofI (see Def. 2.3) where propositions are understood as those
of IGζ .
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Thedegree-of-presence rulesare the following, whereϕ is a gradable proposition and
s, s1, ..., t ∈ (−ζ, 1 + ζ):

(ϕ, s)
d
⇒ ¬(ϕ, t) where|s− t| ≥ 2ζ

(ϕ, s)
d
⇒ (ϕ, t) wheres ≤ t ≤ ζ or 1− ζ ≤ t ≤ s

(ϕ, r)
d
⇒ (ϕ, s) ∨ (ϕ, t) wheres ≤ r ≤ t ≤ s+ 2ζ

(ϕ, r), (ϕ, s)
d
⇒ (ϕ, t) wherer ≤ t ≤ s

¬(ϕ, s1), . . . ,¬(ϕ, sk)
d
⇒ ⊥ wheres1 ≤ ζ; s2 − s1, . . . , sk − sk−1 ≤ 2ζ; sk ≥ 1− ζ

The fuzzy-set rulesare the following, whereϕ, ψ are gradable propositions,α is a
proposition,Γ is a finite set of propositions,c, d ∈ [0, 1], ands, t ∈ (−ζ, 1 + ζ):

Γ, (ϕ ∧ ψ, s∧t)
d
⇒ α

Γ, (ϕ, s), (ψ, t)
d
⇒ α

Γ,¬(ϕ ∧ ψ, t)
d
⇒ α

Γ, (ϕ, r), (ψ, s)
d
⇒ α

wherer, s ≥ t+ 2ζ

Γ,¬(ϕ ∧ ψ, t)
d
⇒ α

Γ, (ϕ, s)
d
⇒ α

wheres+ 2ζ ≤ t
Γ,¬(ϕ ∧ ψ, t)

d
⇒ α

Γ, (ψ, s)
d
⇒ α

wheres+ 2ζ ≤ t

Γ, (ϕ ∨ ψ, s∨t)
d
⇒ α

Γ, (ϕ, s), (ψ, t)
d
⇒ α

Γ,¬(ϕ ∨ ψ, t)
d
⇒ α

Γ, (ϕ, r), (ψ, s)
d
⇒ α

wherer + 2ζ, s+ 2ζ ≤ t

Γ,¬(ϕ ∨ ψ, t)
d
⇒ α

Γ, (ϕ, s)
d
⇒ α

wheres ≥ t+ 2ζ
Γ,¬(ϕ ∨ ψ, t)

d
⇒ α

Γ, (ψ, s)
d
⇒ α

wheres ≥ t+ 2ζ

Γ, (ϕ, c)
d
⇒ α

Γ, (∼ϕ,∼c)
d
⇒ α

Γ, (∼ϕ, c)
d
⇒ α

Γ, (ϕ,∼c)
d
⇒ α

The notion of aproof as well as theconsistencyof a theory is defined like forI (see
Def. 2.3).

We split up the soundness and completeness proof forIG
ζ in a series of lemmas.

To establish the soundness of the rules, we have to examine the structure of our model
in some more detail. In the next lemma we see how the Boolean operations act, for
some fixed fuzzy setu, on the sets[u]ζt wheret ∈ (−ζ, 1 + ζ).

We will assume that the real unit interval[0, 1] is endowed with the subspace topology
inherited from the reals endowed with the standard topology. R([0, 1]), the regular
subsets of[0, 1] contains then the intervals of the form[0, a) or (a, b) or (b, 1], where
0 < a < b < 1, as well as the unions of such intervals if no two of them have a
common endpoint. ByRf([0, 1]), we will denote the Boolean subalgebra ofR([0, 1])
consisting only of the finite unions of intervals of the form[0, a) or (a, b) or (b, 1],
where0 < a < b < 1.
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Lemma 4.9. Let (M,̺) be a regular Kleene uncertainty algebra. Letu ∈ M , and let
Ru be the Boolean subalgebra generated by[u]ζt , t ∈ (−ζ, 1 + ζ) in RM .

The mapping
ιu : R

f([0, 1]) → Ru, I 7→ [u]I−
◦

is an epimorphism of Boolean algebras.

Proof. For0 ≤ s1 < t1 ≤ s2 < t2 ≤ 1, we have by the regularity ofu

[u][s1,t1]
◦ ∨ [u][s2,t2]

◦
=

{

[u][s1,t2]
◦ if t1 = s2,

[u][s1,t1]∪[s2,t2]
◦ if t1 < s2

= [u](s1,t1)∨(s2,t2)
◦
;

we conclude thatιu preserves∨. Similarly, we check thatιu preserves∼.

ιu is surjective by construction.

For the next lemma we introduce some technical notation. Fort ∈ (−ζ, 1 + ζ), we
define the finite subsetV≥t of (−ζ, 1 + ζ) to contain all valuest, t + 2ζ, t + 4ζ, . . .
which are strictly smaller than1 + ζ. Similarly, we defineV≤t to contain those values
t, t− 2ζ, . . . which are strictly larger than−ζ. Finally, we letV¬t contain those values
t − 2ζ, t − 4ζ, . . . as well ast + 2ζ, t + 4ζ, . . . which are contained in(−ζ, 1 + ζ).
Finally, for an elementu of a regular Kleene algebra, we put[u]ζ≥t = [u][t−ζ,1+ζ]′

◦

and[u]ζ≤t = [u][−ζ,t+ζ]′
◦.

Lemma 4.10. Let (M,̺) be a regular Kleene uncertainty algebra. Letu, v ∈ M and
let t ∈ (−ζ, 1 + ζ). Then

[u ∧ v]ζt = ([u]t ∩ [v]ζ≥t) ∨ ([u]ζ≥t ∩ [v]t)

=
∨

{[u]ζr ∩ [v]ζs : r = t ands ∈ V≥t, or r ∈ V≥t ands = t},

[u ∨ v]ζt = ([u]t ∩ [v]ζ≤t) ∨ ([u]ζ≤t ∩ [v]t)

=
∨

{[u]ζr ∩ [v]ζs : r = t ands ∈ V≤t, or r ∈ V≤t ands = t},

[∼u ]ζt = [u]ζ∼t .

Proof. Using (10)–(12) we calculate

[u ∧ v]ζt = [u ∧ v][t−ζ,t+ζ]′
◦

= (([u][t−ζ,t+ζ]′ ∩ [v][t−ζ,1]) ∪ ([u][t−ζ,1] ∩ [v][t−ζ,t+ζ]′))
◦

= (([u][t−ζ,t+ζ]′ ∪ [v][t−ζ,t+ζ]′) ∩ [u][t−ζ,1] ∩ [v][t−ζ,1])
◦

= ([u][t−ζ,t+ζ]′ ∪ [v][t−ζ,t+ζ]′)
◦ ∩ [u][t−ζ,1]

◦ ∩ [v][t−ζ,1]
◦

= ([u][t−ζ,t+ζ]′
◦ ∪ [v][t−ζ,t+ζ]′

◦
)
−◦

∩ [u][t−ζ,1]
◦−◦

∩ [v][t−ζ,1]
◦−◦

= (([u][t−ζ,t+ζ]′
◦ ∪ [v][t−ζ,t+ζ]′

◦) ∩ [u][t−ζ,1]
◦ ∩ [v][t−ζ,1]

◦)
−◦

= (([u][t−ζ,t+ζ]′
◦ ∩ [v][t−ζ,1]

◦
) ∪ ([u][t−ζ,1]

◦ ∩ [v][t−ζ,t+ζ]′
◦
))

−◦

= ([u]ζt ∩ [v]ζ≥t) ∨ ([u]ζ≥t ∩ [v]ζt );
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furthermore, we clearly have[u]ζ≥t =
∨

s∈V≥t
[u]ζs and[v]ζ≥t =

∨

s∈V≥t
[v]ζs, and the

assertion follows by distributivity. Similarly we proceedfor [u ∨ v]ζt . The expression
for [∼u ]ζt is obvious.

Theorem 4.11. Let T be a theory ofIGζ andΓ
e
⇒ δ an implication ofIGζτ . ThenT

semantically entailsΓ
e
⇒ δ if T provesΓ

e
⇒ δ.

Proof. The basic rules are sound by Theorem 2.7.

The soundness of the degree-of-presence and fuzzy-set rules follows from Lemmas 4.9
and 4.10.

We will now work towards the completeness part. We will proceed in analogy to the
case of the logicIG0 whenever possible.

We first see how graded propositions decompose to Boolean expressions in graded
variables, in the same way as described in Lemma 4.10.

Lemma 4.12. Letϕ, ψ be gradable propositions ofIGζ , and lett ∈ (−ζ, 1+ ζ). Then
(ϕ ∧ ψ, t) is equivalent to

∨

{((ϕ, r) ∧ (ψ, s)) : r = t ands ∈ V≥t, or r ∈ V≥t ands = t}; (13)

(ϕ ∨ ψ, t) is equivalent to

∨

{((ϕ, r) ∧ (ψ, s)) : r = t ands ∈ V≤t, or r ∈ V≤t ands = t}, (14)

and(∼ϕ, t) is equivalent to(ϕ,∼t).

Furthermore,¬(ϕ, t) is equivalent to

∨

s∈V¬t

(ϕ, s). (15)

Finally, any proposition ofIGζ is equivalent to the disjunction of conjunctions of
graded variables.

Proof. (13) implies(ϕ ∧ ψ, t). Furthermore, the negation of this proposition is equiv-
alent to a finite disjunction of propositions(ϕ, r)∧ (ψ, s) where eitherr, s ≥ t+2ζ or
r ≤ t− 2ζ or s ≤ t− 2ζ, each of which implies¬(ϕ ∧ ψ, t).

Similarly, we proceed to show that(ϕ∨ψ), t) is equivalent to (14). The assertion about
(∼ϕ, t) is easy.

It is easily seen that¬(ϕ, t) is equivalent to (15).

By induction over its complexity we conclude that each graded proposition is the dis-
junction of conjunctions of graded variables. It follows that the same is the case for
each proposition.
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For a Boolean algebraR of open regular sets of a topological spaceS, we again denote
byRN theN -fold free product ofR. We can, and will, identifyRN with a subalgebra
of R(SN ), the algebra of regular open sets in the product spaceSN ; RN is generated
by the sets of the formA1 × . . .× AN , whereA1, . . . , AN ∈ R. We will call the sets
of the latter form cubic.

In the following lemma, we define fort ∈ (−ζ, 1 + ζ) the open set of[0, 1]

Uζ(t) = [(t− ζ)∨0, (t+ ζ)∧1]
◦
.

Lemma 4.13. For propositionsα andβ of IGζ , we putα ≈ β if IGζ provesα
1
⇒ β

andβ
1
⇒ α. Then the quotient〈P〉 ofP w.r.t.≈, endowed with the induced operations

∧,∨,¬ and the constants〈⊥〉, 〈⊤〉, is a Boolean algebra isomorphic toRf([0, 1])
N

.
The isomorphismw is given by

w(〈(ϕi, t)〉) = {(r1, ..., rN ) ∈ [0, 1]N : ri ∈ Uζ(t)},

i = 1, . . . , N, t ∈ (−ζ, 1 + ζ).
(16)

Furthermore, let
ui : [0, 1]

N → [0, 1], (r1, ..., rN ) 7→ ri,

and letM̄ be the Kleene algebra generated byu1, . . . , uN . ThenRM̄ = Rf([0, 1])
N

.
Define̺ : RM̄ → [0, 1] to be0 on all non-zero elements; then(M̄, ̺) is a regular
Kleene uncertainty algebra.

Definev̄f (ϕi) = ui for i = 1, . . . , N , and extend̄vf to F such that∧,∨,∼ and 0̄, 1̄
are preserved. Definēvb(α) = w(〈α〉) for α ∈ P . Then(v̄f , v̄b) is an evaluation of

IG
ζ such that̄vb(α) = ∅ if and only if⊢ α

1
⇒ ⊥.

Proof. Again, for the degree-of-presence and fuzzy-set rules we may assumed = 1.
We modifyIGζ : We drop the fuzzy-set rules and add six axiom schemes expressing
the equivalences of(ϕ ∧ψ, t), (ϕ∨ ψ, t), (∼ϕ, t) with the expressions (13), (14), and
(15), respectively. By Lemma 4.12 we see that this change hasno effect.

Let IGζc be the restriction ofIGζ to degrees of certainty1. In the same way as in the
proof of Lemma 3.6, we may viewIGζc as an extension of classical propositional logic.

We have to determine the Boolean algebra〈P〉. It is tedious but not difficult to check
that the degree-of-presence rules can be restricted to the case of graded variables. Con-
sequently, we again haveN disjoint groups of axioms involving for eachi ∈ {1, ..., N}
the graded variables(ϕi, t), t ∈ (−ζ, 1 + ζ).

Fix an i ∈ {1, ..., N}. We have to show that the subalgebra〈P〉i of 〈P〉 generated by
〈(ϕi, t)〉, t ∈ (−ζ, 1 + ζ), is isomorphic toRf([0, 1]) under the assignment

wi : 〈P〉i → Rf([0, 1]), 〈(ϕi, t)〉 7→ Uζ(t).

It will then follow that 〈P〉 is isomorphic to the free product ofN copies ofRf([0, 1]),
the isomorphism being determined by (16).
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It is easily checked that all inequalities holding in〈P〉i due to the degree-of-presence
rules between〈(ϕi, t)〉 are preserved bywi. Sowi indeed extends to a Boolean homo-
morphism from the whole〈P〉i toRf([0, 1]). By constructionwi is surjective.

It remains to show thatwi is injective. Let{sj : j ∈ J} and{tk : k ∈ K} be two
finite subsets of(−ζ, 1 + ζ). We have to prove that

⋂

j Uζ(sj) ⊆
∨

k Uζ(tk) implies

thatIGζ proves
∧

j(ϕi, sj)
1
⇒

∨

k(ϕi, tk).

Case 1.J is empty. Then
∨

k Uζ(tk) = (−ζ, 1 + ζ) and consequently{tk} contains
elements≤ ζ and≥ 1 + ζ and neighbouring values differ at most2ζ. It follows that

⊤
1
⇒

∨

k(ϕi, tk) is provable and the assertion follows.

Case 2.J = {j} is one-element. Then eithersj ≤ tk ≤ ζ for somek; or 1 − ζ ≤
tk ≤ sj for somek; otherwise either one valuetk coincides withsj; or there are two
valuestk with distance≤ 2ζ and such thatsj is in between. The assertion follows in
each case.

Case 3.All ≥ 2 values in{sj} are≤ ζ or≥ 1− ζ. This case reduces to Case 2.

Case 4.Two of the values in{sj} differ at least2ζ, that is, the intersection
⋂

j Uζ(sj)

is empty. Then
∧

j(ϕi, sj)
1
⇒ ⊥ is provable and the assertion follows.

Case 5.At least one value in{sj} is in (ζ, 1 − ζ) and all≥ 2 values have a mutual
distance of≤ 2ζ. If there are more than two, we can delete all but the outermost ones.
Let sj , sj′ be the two values and letsj < sj′ . Then either there is asj ≤ tk ≤ sj′ , or
there aretk < sj < sj′ < tk′ such thattk′ − tk < 2ζ. The assertion follows in both
cases.

The proof of the first half of the theorem is complete. For the second we proceed like
in the proof of Lemma 3.6.

We next note that Lemma 3.7 holds by the same proof also forIG
ζ .

Theorem 4.14.LetT be a consistent finite theory ofIGζ andΓ
e
⇒ δ an implication of

IG
ζ
τ . If T semantically entailsΓ

e
⇒ δ, thenT provesΓ

e
⇒ δ.

Proof. Assume to the contrary thatT does not proveΓ
e
⇒ δ. We can assume that

T = {χ0
1
⇒ ⊥, χ1

d1⇒ ⊥, . . . , χm
dm⇒ ⊥}, where theχi are pairwise disjoint and

jointly exhaustive, and1 > d1 > . . . > dm = 0.

Let (v̄f , v̄b) be the evaluation in(M̄, ̺) according to Lemma 4.13. LetS = v̄b(¬χ0);
thenS 6= ∅ by consistency. LetM be the Kleene algebra generated byui|S , i =
1, . . . , N . ThenM is a regular Kleene algebra. FurthermoreRM = {A ∩ S : A ∈
RM̄}.

Let vf : F →M, ϕ 7→ v̄f (ϕ)|S andvb : P → RS , α 7→ v̄b(α) ∩ S.

We define

̺ : RM → [0, 1], A 7→ min {di : 0 ≤ i ≤ m andA ∩ v̄b(χi) 6= ∅},

where the minimum of the empty set is1. This is obviously a rejection function on
RM .
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Then(vf , vb) is an evaluation in the regular Kleene uncertainty algebra(M,̺). As
̺(v̄b(χi)) = di for all i, all elements ofT are satisfied by(vf , vb).

If T does not proveΓ
e
⇒ δ, we conclude like in the proof of Theorem 2.7 thatΓ

e
⇒ δ

is not satisfied byv. This completes the proof of the “only if” part.

5 Smoothing the degree of certainty over gradation

Having started with the (slightly generalised) Possibilistic Logic as our general frame-
work, we have included the possibility to express gradedness of information and we
have subsequently modified the interpretation of graded properties. Doing this, we
have not touched the underlying concept of uncertainty; thedegree of certainty has
remained unrelated to the degrees of presence.

Indeed, inIGζ situations are specified by the propositions(ϕ1, t1), . . . , (ϕN , tN ), that
is, by theN -tuple (t1, . . . , tN ). To each suchN -tuple, there is associated the de-
gree of implausibility of the corresponding situation, namely d = ̺(v(ϕ1, t1) ∧ . . . ∧
v(ϕN , tN)) for some interpretationv. We observe that the valued depends on(t1, . . . ,
tN ) completely arbitrarily.

This arbitrariness might not be ideal for practical applications. Similar situations are
presumably described by closeN -tuples and so the implausibility should depend at
least continuously on theN parameters. The problem is specific for the current ap-
proach; we refer to [2] for a broad overview of approaches to deal with different kinds
of degrees in common frameworks.

In the present chapter, we add a simple rule to our logic with the sole effect of continu-
ity. Disregarding inessential details, we propose the following approach. Situations are
specified byN -tuples(t1, . . . , tN); assume that the associated degree of implausibility
is d. We add a rule to ensure that a situation characterised by(s1, . . . , sN), wheresi
differs fromti less thanλ, is assigned a degree of implausibility of at leastd − τλ. In
other words, we introduce Lipschitz continuity for̺ if seen in dependence on the de-
grees of presence. So for instance, putτ = 2, and assume that we know with certaintyd

that we can conclude that if propertyϕ fully applies so doesψ, that is,(ϕ, 1)
d
⇒ (ψ, 1).

In the calculus introduced below we may conclude that(ϕ, 0.9)
d−0.2
⇒ (ψ, 1) provided

thatd > 0.2.

Our new rule offers a simple way to prevent̺ to “jump” when changing continuously
from one situation to another, in that changes are bounded independence of the “dis-
tance” between situations. This procedure is certainly pragmatic. But it solves in a very
direct and transparent way the problem which we have and its effect can be controlled
by a deliberate choice ofτ .

Let us fix a real parameterτ > 1 throughout this section.

To realise our aim, we will not endow the underlying topological space with a metric.
We will rather fix a subsetU of M and restrict the way in which, for instance,̺([u]t),
u ∈ U , can vary depending ont. The background is the following problem. Assume
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that [u]t is excluded, in which case̺([u]t) = 1 and consequently[ui]t = ∅. Thus, if
we define continuity by means of a metric of the underlying space, we could not infer
anything about̺ ([ui]s) for s close tot.

Definition 5.1. Let (M,̺) be a regular Kleene uncertainty algebra, and letU ⊆ M .
Let v1 . . . , vk be (not necessarily different) elements ofU ; and lets1, t1, . . . , sk, tk ∈
[0, 1] such that|si − sj |, |ti − tj | < 2ζ whenevervi = vj . If under these conditions it
is always the case that|s1 − t1|, . . . , |sk − tk| < λ implies

|̺([v1]
ζ
s1

∩ . . . ∩ [vk]
ζ
sk
)− ̺([v1]

ζ
t1
∩ . . . ∩ [vk]

ζ
tk
)| < τλ (17)

we say that̺ is τ -smoothw.r.t.U .

The arguments of̺ in (17) have a rather specific form; a more general form is possible
as well.

For the proof that follows, note that anyAi, Bi ∈ RM , i ∈ I, whereM is a Kleene
uncertainty algebra, we have

|̺(Ai)− ̺(Bi)| < λ for eachi implies |̺(
⋃

iAi)− ̺(
⋃

iBi)| < λ. (18)

Lemma 5.2. Let (M,̺) be a regular Kleene uncertainty algebra such that̺ is τ -
smooth w.r.t.U ⊆ M . Let v1 . . . , vk ∈ M be expressible from elements ofU in a
way that eachu ∈ U occurs always positively or always negatively. Furthermore, let
s1, t1, . . . , sk, tk ∈ [0, 1] such that|si − sj |, |ti − tj | < 2ζ whenever both invi andvj
someu ∈ U occurs. Then|s1 − t1|, . . . , |sk − tk| < λ implies(17).

Proof. The argument relies on a decomposition of the occurring terms by means of
Lemma 4.10. Namely, we can write[v1]ζs1 ∩ . . . ∩ [vk]

ζ
sk

as the disjunction of con-

junctions of expressions of the form[u]ζs or [u]ζ≥s or [u]ζ≤s, whereu ∈ U ands ∈
{s1,∼s1, . . . , sk,∼sk}. Consider one among these conjunctions, and letu ∈ U occur
in it. Then the conjunction of those conjuncts in whichu appears equals[u]ζs or [u]ζ≥s

or [u]ζ≤s or [u]ζs ∩ [u]ζs′ , where|s − s′| < 2ζ. As we can express the terms of the

form [u]ζ≤s or [u]ζ≥s as a disjunction of expressions of the form[u]ζt , we conclude that
[v1]

ζ
s1

∩ . . . ∩ [vk]
ζ
sk

is the disjunction of terms of the form as specified in Definition
5.1.

Let us next decompose[v1]
ζ
t1
∩ . . . ∩ [vk]

ζ
tk

in exact analogy. The disjuncts are then in
a one-to-one correspondence, and corresponding values differ by less thanλ.

From (18) we conclude the assertion.

Smoothness of a rejection function can be particularly easily expressed in terms of
the natural parametrisation of the Boolean algebraRM associated to a regular Kleene
algebra(M,̺). Namely, we may associate with each cube(r1, s1)× . . .× (rN , sN ) ⊆
[0, 1]N the (not necessarily non-zero) element{x ∈ S : r1 < u1(x) < s1, . . . , rN <

uN(x) < sN} of RM .
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Lemma 5.3. Let(M,̺) be a regular Kleene uncertainty algebra, and letU = {u1, . . . ,

uN} ⊆ M generateM as a Kleene algebra. ForI1 × . . .× IN ∈ Rf([0, 1])
N

, where
I1, . . . , IN ∈ Rf([0, 1]), put

ι(I1 × . . .× IN ) = ιu1
I1 ∩ . . . ∩ ιuN

IN ,

whereιui
, i = 1, ..., N is given according to Lemma4.9. Thenι extends to an epimor-

phism between Boolean algebras fromRf([0, 1])
N

to RM .

Proof. For eachi, ιui
is an homomorphism fromRf([0, 1]) to RM by Lemma 4.9.

These homomorphisms are combined to the homomorphismι from theN -fold free
product ofRf([0, 1]) to RM as indicated [11, Chapter VI].

BecauseM is generated byU and because of Lemma 4.10,ι is surjective.

Before expressing smoothness with respect to a parametrisation of S, we have to fix
some notation. We will use the supremum metric d∞(·, ·) on [0, 1]N :

d∞((x1, ..., xN ), (y1, ..., yN )) = max
i

|xi − yi|,

(x1, ..., xN ), (y1, ..., yN ) ∈ [0, 1]N .

Occasionally, we will use theε-neighbourhoods w.r.t. this metric; forp ∈ [0, 1]N and
ε > 0, we putUε(p) = {q ∈ [0, 1]N : d∞(p, q) < ε}. Moreover, the diameter of some

P ∈ Rf([0, 1])
N

will be meant to be the valuesup{d∞(p1, p2) : p1, p2 ∈ P}.

We furthermore extend d∞(·, ·) to pairs of subsets in the usual way, both asymmetrical

and symmetrical. So qH(·, ·) is the Hausdorff quasimetric onRf([0, 1])
N

:

qH(P,Q) = sup
p∈P

inf
q∈Q

d∞(p, q), P,Q ∈ Rf([0, 1])
N
;

and dH(·, ·) is the Hausdorff metric onRf([0, 1])
N

:

dH(P,Q) = qH(P,Q) ∨ qH(Q,P ), P,Q ∈ Rf([0, 1])
N
.

We are ready to state several alternative formulations of smoothness of the rejection
function.

Definition 5.4. Let (M,̺) be a regular Kleene uncertainty algebra, and letU =

{u1, . . . , uN} ⊆ M generateM . Let ι : Rf([0, 1])
N

→ RM be defined according
to Lemma 5.3; then we will callι thenatural parametrisationof RM w.r.t.U .

Furthermore,̺ is said to beinducedby a functionr : D → [0, 1], whereD is a dense
subset of[0, 1]N , if

̺(ιP ) = inf
p∈P∩D

r(p), P ∈ Rf([0, 1])
N
.

Finally, a functionr : [0, 1]N → [0, 1] is calledτ -Lipschitz continuousif, for any
p, q ∈ [0, 1]N , we have|r(p)− r(q)| < τλ whenever d∞(p, q) < λ.
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Lemma 5.5. Let (M,̺) be a regular Kleene uncertainty algebra, and letU generate
M . Let ι : R([0, 1])

N → RM be the natural parametrisation ofRM w.r.t. U . Then
the following statements are equivalent:

(α) ̺ is τ -smooth w.r.t.U .

(β) For any non-emptyP,Q ∈ Rf([0, 1])
N

, |̺(ιP )− ̺(ιQ)| < τλ if dH(P,Q) <
λ.

(γ) ̺ is induced by aτ -Lipschitz continuous functionr : [0, 1]N → [0, 1].

Proof. Assume (α). To show (β), let P,Q ∈ Rf([0, 1])
N

such that dH(P,Q) < λ.
Assume first thatP andQ are cubic and have a diameter≤ 2ζ. ThenP = I1 ×
. . . × IN andQ = J1 × . . . × JN for intervalsI1, . . . , JN ∈ Rf([0, 1]) such that
dH(I1, J1), . . . , dH(IN , JN ) < λ. Clearly, there ares1, s2, t1, t2 ∈ (−ζ, 1 + ζ) such
that I1 = Uζ(s1) ∩ Uζ(s2) andJ1 = Uζ(t1) ∩ Uζ(t2) and|s1 − t1|, |s2 − t2| < λ;
and the same holds for the remaining indices2, . . . , N . Because, fort ∈ (−ζ, 1 + ζ),
ι(Uζ(t) × [0, 1] × . . . × [0, 1]) = [u1]

ζ
t and similarly for the indices2, . . . , N , the

assertion follows.

Let nowP,Q ∈ Rf([0, 1])
N

be arbitrary such that dH(P,Q) < λ. Then there are
P1, . . . , Pk, Q1, . . . , Qk with diameter≤ 2ζ such thatP =

⋃

i Pi andQ =
⋃

iQi and
furthermore dH(Pi, Qi) < λ for all i. We conclude by (18) that (β) holds.

It is clear that (β) implies (α).

Assume (β); we proceed to show (γ). Forp ∈ [0, 1]N , let

r(p) = sup {̺(ιP ) : P ∈ Rf([0, 1])
N

andp ∈ P}

We claim thatr is τ -smooth. Indeed, letp, q ∈ [0, 1]N such that d∞(p, q) < λ. Letλ′

be such that d∞(p, q) < λ′ < λ and letε > 0. Choose cubic neighbourhoodsUp of
p andUq of q with diameter≤ 2ζ such that|r(p) − ̺(ιUp)|, |r(q) − ̺(ιUq)| ≤ ε and
dH(Up, Uq) < λ′. Then|r(p) − r(q)| ≤ |̺(ιUp) − ̺(ιUq)| + 2ε < τλ′ + 2ε, and the
claim follows.

We next claim that forP ∈ Rf([0, 1])
N

we have̺ (ιP ) = inf {r(p) : p ∈ P}. Indeed,
̺(ιP ) ≤ r(p) for anyp ∈ P . LetP ⊃ P1 ⊃ P2 ⊃ . . . such that̺ (ιPi) = ̺(ιP ) for
all i and such that the diameter ofPi converges to0. Let ε > 0; let i be large enough
such that the diameter ofPi is belowε; then̺(ιQ) < ̺(ιPi) + τε = ̺(ιP ) + τε for
anyQ ⊆ Pi, and it followsr(p) ≤ ̺(ιP ) + τε for anyp ∈ Pi. The claim follows, and
(γ) is shown.

Assume (γ), and let̺ be induced by theτ -smoothr : [0, 1]N → [0, 1]. Let P,Q ∈

Rf([0, 1])
N

such that dH(P,Q) = λ′ < λ. W.l.o.g. we assume̺(ιP ) ≥ ̺(ιQ). Then
|̺(ιP ) − ̺(ιQ)| = infp∈P r(p) − infq∈Q r(q). Let ε > 0, and choose aq ∈ Q

such thatr(q) − ̺(ιQ) ≤ ε; and choosep ∈ P such that d∞(p, q) < λ′ + ε. Then
|̺(ιP )− ̺(ιQ)| ≤ r(p) − r(q) + ε < τ(λ′ + ε) + ε. (β) follows.
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Lemma 5.6. Let (M,̺) be a regular Kleene uncertainty algebra, and letU ⊆ M

generateM . Letι : Rf([0, 1])
N

→ RM be the natural parametrisation ofRM w.r.t.U .

LetR1, . . . , Rm be a partition ofRf([0, 1])
N

; thenD = R1 ∪ . . . ∪ Rm is dense in
[0, 1]N . Let furthermorer1, . . . , rm ∈ [0, 1] such thatri = 0 for at least one indexi.
Let

r : D → [0, 1], p 7→











r1 if p ∈ R1,

. . .

rm if p ∈ Rm,

and let̺ be the rejection function induced byr. Furthermore, let

r′ : [0, 1]N → [0, 1], p 7→ sup
q∈D

(r(q) − τd∞(p, q))∨0,

and let̺′ be the rejection function induced byr′. Then̺′ is the smallestτ -smooth
rejection function such that̺′ ≥ ̺.

Moreover, letP ∈ Rf([0, 1])
N

. Then there are cubesP1, . . . , Pn ∈ Rf([0, 1])
N

such
thatP = P1 ∨ . . .∨Pn, and for eachi = 1, . . . , n there is a cubicQi contained inRj

for somej ∈ {1, ...,m} such that either

̺′(ιPi) = ̺(ιQi)− τdH(Pi, Qi) = ̺′(ιP ) (19)

or
̺′(ιPi) ≥ ̺(ιQi)− τdH(Pi, Qi) > ̺′(ιP ), (20)

where the first case applies for at least onei.

Proof. We first show thatr′ is τ -smooth. Letp, q ∈ [0, 1]N such that d∞(p, q) < λ.
Let ε > 0, and choosesq ∈ D such thatr′(q) ≤ r(sq) − τd∞(q, sq) + ε. Then
r′(p) ≥ r(sq)−τd∞(p, sq) ≥ r(sq)−τd∞(p, q)−τd∞(q, sq) ≥ r′(q)−τd∞(p, q)−ε.
Sor′(q)− r′(p) < τλ, and by symmetry we conclude|r′(p)− r′(q)| < τλ.

Clearlyr′|D ≥ r, hence̺ ′ ≥ ̺. Let now̺′′ ≥ ̺ anotherτ -smooth rejection function.
Let ̺′′ be induced byr′′. Let p ∈ D, and leti be such thatp ∈ Ri. Thenr′′(p) ≥
̺′′(ιRi) ≥ ̺(ιRi) = ri = r(p); hencer′′ ≥ r. For anyq ∈ D, it follows r′′(p) ≥
r′′(q)− τd∞(p, q) ≥ r(q)− τd∞(p, q); hence evenr′′ ≥ r′.

It remains to show the last assertion. W.l.o.g. we may assumethatR1, . . . , Rm andP
are all cubic. We have

̺′(ιP ) = inf
p∈P

sup
q∈D

(r(q) − τd∞(p, q))

= inf
p∈P

max
i

(ri − τqH({p}, Ri)).
(21)

Let us consider a pointp = (z1, . . . , zN) ∈ P−. There are two cases:

(A) maxi (ri − τqH({p}, Ri) = ̺′(ιP )

(B) maxi (ri − τqH({p}, Ri)) > ̺′(ιP ).
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If (A) applies, we will associate withp a cubic neighbourhoodUp and a partition of
Up ∩P such that, for each elementU of this partition,̺ (ιU) can be calculated accord-
ing to (19). Note that by the continuity of the mappingp 7→ maxi (ri − τqH({p}, Ri)
there is at least onep ∈ P− fulfilling (A). If (B) applies, we will associate withp a
cubic neighbourhoodUp such that (20) holds forUp ∩P . (Up)p∈P− will be a cover of
P− by open sets; asP− is compact, we may choose a finite subcover, and we will be
done.

Case(A): LetJ = {j ∈ {1, ...,m} : ̺′(ιP ) = rj−τqH({p}, Rj)}. For1 ≤ i ≤ N , let
±i ∈ {+,−} such thatE(±1, ...,±N ) = {(z1 ±1 t1, . . . , zN ±N tN ) : t1, . . . , tN ≥
0} intersectsP non-emptily. Then there must be aj ∈ J and anε > 0 such that
Uε(p)∩E(±1, ...,±N ) ⊆ P and qH({(z1 ±1 t, ..., zN ±N t)}, Rj) ≤ qH({p}, Rj) for
0 < t ≤ ε; indeed, otherwise the infimum (21) would not be attained atp.

It follows that qH({q}, Rj) ≤ qH({p}, Rj) for all q ∈ Uε(p) ∩ E(±1, ...,±N ), and
we conclude qH(Uε(p) ∩ E(±1, ...,±N ), Rj) = qH({p}, Rj). We select a cubicQ ⊆
Rj such that qH(Uε(p) ∩ E(±1, ...,±N ), Rj) = dH(Uε(p) ∩ E(±1, ...,±N), Q). So
we have̺′(ι(Uε(p) ∩ E(±1, ...,±N )) = ̺′(ιP ) = rj − τqH({p}, Rj) = ̺(ιQ) −
τdH(Uε(p) ∩ E(±1, ...,±N ), Q). Decreasingε if necessary, we putUp = Uε(p).

Case(B): Let j be such thatrj − τqH({p}, Rj) > ̺′(ιP ). LetUp be a cubic neigh-
bourhood ofp such that, for somer, we haverj − τqH({q}, Rj) ≥ r > ̺′(ιP ) for all
q ∈ Up and consequentlyrj − τqH({Up ∩ P}, Rj) ≥ r. We select a cubicQ ⊆ Rj

such that qH({Up ∩ P}, Rj) = dH({Up ∩ P}, Q). Then, by the smoothness of̺′, we
conclude̺ ′(ι(Up∩P )) ≥ ̺′(ιQ)−τdH({Up∩P}, Q) ≥ ̺(ιQ)−τdH({Up∩P}, Q) =
rj − τqH({Up ∩ P}, Rj) ≥ r > ̺′(ιP ).

We now modifyIGζ accordingly. The resulting logic will be called the Smooth Possi-
bilistic Logic with Soft Gradation, denoted byIGζτ .

Definition 5.7. Thepropositions, the set of which will still be denoted byP , as well
as theimplicationsof IGζτ coincide with those ofIGζ , respectively (see Def. 4.7).

An evaluation(vf , vb) of IGζτ in some regular Kleene uncertainty algebra(M,̺) is
defined like forIGζ except that̺ is required to beτ -smooth w.r.t.vf (ϕ1), . . . , vf (ϕN ).

The notions ofsatisfaction, of a theory, and ofsemantic entailmentfor IGζ is defined
mutatis mutandis like forI (see Def. 2.3).

For an axiomatisation ofIGζτ we have to add a rule reflecting the restriction to smooth
rejection functions.

Definition 5.8. The rules ofIGζτ are those ofIGζ (see Def. 4.8) and in addition the
following smoothing rule. Here,ψ1, . . . , ψk are gradable propositions such that each
variable occurs in them at all places positively or at all places negatively; furthermore,
s1, . . . , sk, t1, . . . , tk ∈ (−ζ, 1 + ζ) such that|s1 − t1|, . . . , |sk − tk| < λ and if some
variable occurs both inψi1 andψi2 thensi1 − si2 , ti1 − ti2 < 2ζ; and finally,α is a
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graded proposition which has no variable in common withψ1, . . . , ψk; andd ∈ [0, 1]:

(ψ1, t1), . . . , (ψk, tk)
d
⇒ α

(ψ1, s1), . . . , (ψk, sk)
(d−τλ) ∨ 0

⇒ α

The notion of a proof as well as consistency is defined like forIG
ζ .

Theorem 5.9. Let T be a consistent theory ofIGζτ andΓ
e
⇒ δ an implication ofIGζτ .

ThenT semantically entailsΓ
e
⇒ δ if and only ifT provesΓ

e
⇒ δ.

Proof. The soundness of the rules ofIGζ follows from Theorem 4.14; the soundness
of the smoothing rule follows from Lemma 5.2.

To show completeness, assume thatT does not proveΓ
e
⇒ δ. Disregarding the smooth-

ness rule, we proceed like in the proof of Theorem 4.14 to construct the evaluation
(vf , vb) in the regular Kleene uncertainty algebra(M,̺) such that all elements ofT
are satisfied by(vf , vb). Let furthermore̺ ′ be the smallestτ -smooth rejection function
such that̺ ′ ≥ ̺; thenT is satisfied by(vf , vb) also in(M,̺′). Moreover, letα be any
proposition andd = ̺′(vb(α)). By Lemma 5.6 and the presence of the smoothness

rule,T provesα
d
⇒ ⊥.

Letα be the conjunction ofΓ∪ {¬δ}. Assume thatΓ
e
⇒ δ is satisfied in(M,̺′). This

means thate′ = ̺′(vb(α)) ≥ e. It follows thatT provesα
e′

⇒ ⊥, so thatT proves
Γ

e
⇒ δ, in contradiction to the assumption.

6 Conclusion

We have extended Dubois and Prade’s Possibilistic Logic so as to allow the treatment
of vague notions. Our guideline was to integrate, but not to mix, aspects of uncertainty
and of vagueness in a uniform framework. Statements of the form that a property holds
to a specific degree were integrated into the plausibility-based calculus. The degree of
presence of a property has by default no influence on the degree of its plausibility; a
smoothness rule, whose effect can be controlled by a real parameter, can however be
added to ensure the continuity of the degree of uncertainty with regard to changes of
the degrees of presence of the involved properties.

As regards the foundational problem of fuzzy logic, the method has, as we guess, the
advantage that fuzzy sets are treated as parametrised sets of crisp properties, which in
turn are treated classically. The question how to model vague properties by fuzzy sets
is however assumed to be solved and the Kleene algebra structure has to be accepted
as definitional. We may just underline that the choice of an appropriate fuzzy set for
a given property works in practise very well and the decisionabout the shape of fuzzy
sets can in fact be put on firm grounds as, for instance, the work [13] demonstrates.
Even the adequacy of the Kleene algebra structure is supported by results of [13].
But we should certainly remain cautious – in general we should say that the operations
between fuzzy sets chosen here are widely used but in most cases purely pragmatically.
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In the remainder of the paper we will explain how our formalism can be of practical
use. Namely, it is possible to mimic the inference mechanismof a medical expert
system in our logicIGζτ . We have in mind the expert system CADIAG-2 [1, 15], which
has been developed at the Medical University of Vienna. It provides clinical decision
support in several areas of internal medicine.

Assume that the following facts about a patient are known andthat the following rule
is contained in the knowledge base of CADIAG-2; we use the notation of [3]:

(σ1, s), (σ2, t), (σ1 ∧ σ2 → δ, d);

here,σ1 andσ2 denote symptoms,δ denotes a disease, ands, t, d ∈ [0, 1]. These
statements code the following information: the symptomσ1 holds to the degrees;
the symptomσ2 holds to the degreet; and if the conjunction of these two symptoms
evaluate to1, that is, if they both fully apply, we may conclude thatδ is certain to the
degreed. The following rules of the logic underlying CADIAG-2 – herewe show the
appropriate instances – are applied to draw a conclusion in case thats, t, d > 0 (see
[3]):

(σ1, s) (σ2, t)

(σ1 ∧ σ2, s∧t)

(σ1 ∧ σ2, s∧t) (σ1 ∧ σ2 → δ, d)

(δ, d ⋆ (s∧t))
,

where⋆ is a t-norm. We may for instance assume that⋆ is the Łukasiewicz t-norm:

⋆ : [0, 1]× [0, 1] → [0, 1], (t1, t2) 7→ (t1 + t2 − 1)∨0.

Thus, in other words, CADIAG-2 concludes from(σ1, s) and(σ2, t) thatδ is certain
to the degreed+ s∧t− 1, provided that this value is strictly positive.

We switch now to the present framework. We chooseζ = 0.3 andτ = 4. The rule
shown above translates to the following inIG0.34 :

(σ1 ∧ σ2, 1)
d
⇒ (δ, 1);

from this implication we derive inIG0.34

(σ1, 1), (σ2, 1)
d
⇒ (δ, 1),

and using the smoothing rule furthermore

(σ1, s), (σ2, t)
(d+4(s∧t)−4)∨0

⇒ (δ, 1).

Thus in this framework, the conclusion is thatδ is present with the certainty degree
d + 4(s ∧ t) − 4 = d − 4(1 − s∧t), provided that this value is positive. Comparing
this with the valued + s∧t − 1 = d − (1 − s∧t), we see that the conclusion is more
cautious inIG0.34 than in CADIAG-2.

We conclude, first of all, that the shown inference of CADIAG-2, although in a modi-
fied form, is possible inIG0.34 as well. The expert system can in fact be based onIG

0.3
4 .

However, we have not yet examined the question of performance. In the example,
the certainty value provided byIG0.34 is smaller, so that the result is weaker than in
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the original version. There are two further types of rules inthe knowledge base of
CADIAG-2; in case of these rules the results will in general be stronger. Concerning the
overall performance of CADIAG-2 on the one hand and of a system modified according
to the ideas presented in this article on the other hand, thisdoes not imply anything
though. Practical tests with patient data are to follow.
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