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Abstract

We propose a formal method for reasoning both under unogytand under vague-
ness in a coherent way. We deal with implicational relatigos where an explicit
numerical degree is used to express uncertainty. The agpredies on Dubois
and Prade’s Possibilistic Logic. Furthermore, we take thesible vagueness of
the involved properties into account. Namely, we deal wittperties of the form
that some vague criterion is fulfilled to a specific degreeusThague properties
are treated as parametrised sets of crisp properties. fyiaalule is included to
ensure smoothness of the uncertainty degree with regattitmges of the degrees
to which the properties under consideration hold.

The calculus is applicable wherever graded properties #ea to uncertainty.
Vagueness and uncertainty are treated independentlyabubmtionally be inter-
connected in a controlled way. A specific application sutgigself in the field of
medical expert systems.

Keywords:Reasoning about uncertainty, Reasoning under vaguenessibHistic
Logic, Gradedness, Fuzzy set theory.

1 Introduction

The difficult task to represent experience-based knowlédgjades the necessity to
account for two basic aspects: uncertainty and vaguenassth& formalisation of

knowledge in an area of natural sciences these aspects aimgewitably. For instance,

knowledge representation in medicine requires a framewunikh is both capable of
representing uncertain information and flexible enoughotmecwith the vagueness of
the involved notions.

In this paper we propose a formalism which treats both uat#yt and vagueness.
Uncertainty is understood as plausibility and our genemangework is Dubois and
Prade’s Possibilistic Logic [5]. Furthermore, we will naal directly with vagueness,
as done, e.g., in [7, 4]; we will rather formalise the gradestnof properties.



Modelling uncertainty

The development of formal systems dealing with uncertamtie subject of a lively
research field. Numerous formal systems for reasoning umuegrtainty have been
proposed in the past and several branches have emerged.deenaoverview we refer
to the comprehensive paper [6] and the references givee;tasrong the introductory
monographs we may mention [16] and [12]. The picture is ratit@omogeneous; the
approaches are motivated by different types of applicatemd by different ways to
understand uncertainty.

Here, we are guided by the following considerations. We massto be in a situation
where we do not have the possibility to tell about the trutfatsity of certain facts. We
treat this uncertainty as ignorance, leaving it open if st under consideration actu-
ally generally hold, sometimes hold, or generally do nothdVe furthermore quantify
our ignorance numerically; this simply mirrors the facttthve@ can be uncertain about
something to a smaller or larger extent. To this end, we usevedues betwee and

1.

Assume, for instance, that we want to express that some gyopeémplies another
propertys. Assume furthermore that the truth of this claim is actualyy established
and the claim is just found plausible to a certain extent. Wl $ormally express such
statements by

ad s, (1)

whered is an element of the real unit intervi@, 1] and chosen the higher the more
plausible the implication is. The role afis as follows. To concludg from « is
the more plausible the less plausible the situation spddifyjex A -5 is. We will in
this paper actually not work with degrees of plausibilityt llually with degrees of
“implausibility” or “surprise”; cf. [10]. Thusd quantifies the degree of implausibility
of a A —f5.

Our logic deals with what can be derived from available fdgtaneans of implica-
tional relationships; and both the available facts and tihyglications are possibly of
limited plausibility. (1) is the example of an implicatioMoreover, to express that it
is plausible to the degredhat a factn holds, we use the implication

T4, )

whereT is the constant “true”. (2) actually says that is implausible to the degree
d; but this amounts to the statement thas plausible to the degreé

We note that we do not need anything more in our logic thanigapbn of the form
(2). In fact, only implications (1) will be allowed, togethwith the possibility to
use multiple assumptions. In particular, there will be nplication connective. This
procedure has a practical advantage: the meaning of nesfditations is in general
hard to explain and is avoided here since not needed. Iniaddéts we will see, the
procedure has also advantages from the theoretical viewpitie formulae we deal
with can be used without modification as the syntacticalabjef our proof system.



The next pointto be clarified is how the degree of implaugibshould be related to the
partial order. It is natural to assume antitonicityxifs a property stronger that then

B should be less implausible than We shall go further: We also let the implausibility
of disjunctions be lower bounded by a function combiningithplausibilities of the
disjuncts. As a combining function we allow any fixed t-norm.

In practise, we guess that one of the three basic continuoasnts, the Lukasiewicz,
product, or Godel t-norm, will be used; and among these Gbtidel t-norm will be

most important. In the first two cases we are led to (the dualognof) subadditive
measures. In the third case we arrive at possibility measuhe implausibility of

aV gisin this case uniquely determined as the smaller value grti@implausibility

of a andg.

In this latter case we are led to Possibilistic Logic, a loghlich was introduced by
Dubois and Prade and has been intensively developed sieceRbr an overview see,
e.g., [5]. Moreover, an axiomatisation of first-order Pb#istic Logic is presented by
J. Langin [14].

Modelling vagueness

Having chosen a calculus to deal with uncertainty, the aith@paper is to incorporate
the vagueness of properties. Vague properties have bekmvitban the framework of
Possibilistic Logic several times; see, for instance, |7 ,Hbwever, these approaches
are not comparable to ours. Here, we do not directly deal vatjue properties; we
rather deal with sets of crisp properties which stepwiseontinuously lead from the
full truth to the full falsity of a vague property. Possibtic reasoning about “properly”
vague properties is the subject of [7, 4], where possiliilisteasures are generalised
from Boolean algebras to MV-algebras and Godel algebrészaly sets, respectively.

Vagueness can be characterised along the following lingls [fague properties in-
volve two levels of perception. A property expressed in redtlanguage, like “large”
relies on a coarse level of perception. To say that somethilagge means to say it is
observably larger than average-sized. To model the situdtis sufficient to take, for
instance, the three categories “small”, “average-sizadd “large”. We furthermore
have a fine level of perception, which is the result of an tteeaprocess reflecting
the underlying intuition, which is “size” in our example. \dee then led to the struc-
tures commonly used in mathematics, like, e.g., the pesithals. If both levels are
dealt with, the elements of the coarse structure need togregented within the fine
structure. A common way to do so is use fuzzy sets.

In this paper, we follow this standard approach. Let a prigperbe modelled by a
fuzzy setu with the domainS. Let furthermore a degreec [0, 1] be given, and letd
be the set of: € S such thatu(x) = ¢t. We may then say that models the property
that« holds to the degree In other word, to each property and eacht € [0, 1]
we may associate the statement thatolds to the degree We will symbolise this
statement by, t); note thatf(a, t) is crisp.

Itis this kind of statements we shall deal with. Their cdilec forms a Boolean algebra



and possibilistic reasoning can be applied to them in agditiirward way.

The paper is organised as follows. In Section 2, we introdwecdramework, which is
a slight generalisation of Possibilistic Logic. But in fastly Possibilistic Logic itself
plays a role in the remainder of the paper. In Section 3, werekthe calculus so as to
include reasoning with graded vague properties, whose adlllbe refined in Section
4. A rule with the effect that the implausibility degree caharbitrarily “jump” under
slight changes of the degrees to which the involved progetipld is introduced in
Section 5. Finally, Section 6 contains, in addition to a sanmthe example of an
application of the formalism in a medical expert system.

2 Generalised possibilistic logic

In his Ph.D. Thesis [14], Lang presents an axiomatisatidhasisibilistic Logic. In the
present section, we will provide a logical calculus whickesy similar to Lang’s. We
will however make use of the fact that a simple generalisdtigossible.

As usual we distinguish the content level and the beliefllé®a the content level, we
refer to the factual content of our reasoning. This is a setto&tions about which we
assume that exactly one of it always holds. We distinguigtvéen these situations
classically: we choose a set of yes-no properties; eachtepnopolds in a given situ-

ation or not; and each considered situation is uniquelyrgeted by knowing which

properties hold and which do not hold in it. So in particulaproperty is identified

with a subset of a fixed set of situations.

We do not assume that a property can be checked to hold or raldoin any sit-
uation. This gives rise to a second level, called the befie¢ll Here the subjective
sphere of the “agent”, that is, the one who reasons aboutitlea get of situations,
comes into play. Namely, we allow statements about the nheglationship of prop-
erties which rely on possibly non-conclusive experiendetTs, we allow to take into
account knowledge about relationships between propeaties if this knowledge is
speculative. Iftvy, . . ., ag, 8 denote properties, a typical statement will look like

a17,_,7ak:li>/8; (3)

hered is an element of the real unit interval expressing the agegtiorance in a
quantitative way. Starting fromd = 1 expressing certainty, we may decreast®o
express a reduced confidence in the correctness of the atiplid3), which ford = 0
is true in any case.

Note that, at least in principle, the valden (3) can always be provided; in the worst
case, if the agent does not have a cliie; 0 is chosen.

Let’'s now proceed to specify our formal framework. Thereashing special on the
content level. As usual, situations are modelled by an uosired setS and each
property by a subset &f. We use the usual connectives, namely conjunction, disjunc
tion, and negation; and we will include the always false améhgs true property as



well. We note that the classical implication plays no roléheTinterpretation of the
connectives is standard. In short, the collection of prigers modelled by a Boolean
algebral3 of subsets of.

To see how we proceed on the belief level, consider two el&snenB € B and let
us identify them with the two properties which they modeleTegree of uncertainty
about the question if we can concluBdrom A should depend in some way on numer-
ical values associated to the elements of the Boolean seiiva@generated by and

B. In contrast to the probabilistic approach, where we havesasure o3 and take
the quotient of the values associated4e\ B and A, we follow here a much simpler
way, adopting the concepts of Possibilistic Logic. Namelg,will use only one ele-
ment of the subalgebra, nametyn —B, to which we associate a “degree of surprise”
d = o(A AN —B). The largerd is, the less plausible is a situation in whidhholds and

B does not hold. This will be our interpretation of the statattbat A implies B to
the degreel.

We may understand this degree of implausibility also “pesiy”, namely as a degree
of certainty, in the straightforward way. To say thatmplies B to the degreé@ means
thatA implies B; that is,1 expresses full certainty. Similarly, to say thaimplies B to
the degre® means not to say anything; this relationship holds betweemlztrary pair
of properties. The remaining values refer to a smaller gdadegree of certainty, and
specific values of certainty strictly in betwe@rand1 refer to subjectively quantified
amount of certainty.

So our basic model consists of the Boolean algébtagether with a mapping from

B to the real unit interval0, 1]. We callp here a rejection function; with regard to the
setting of [5],0 plays the role of a necessity measure (or alternatively aissipility
measure). IfA € B, o(A) expresses the degree to which the property modelled by
A would be found surprising if found to hold. We assuméo be order-reversing
ando(1) = 0. Furthermore we assume thdtdoes not model situations which are
considered as definitely impossible; so we require gid) = 1 holds exactly ifA =

0. Furthermore, a property may consist of alternatives,waynay haved = B v C.

In this case, we allow the assumption thiis not more surprising tha® or C and
also not less than both; thefid) = min {o(B), o(C)}. However, we also allow to
use an alternative combining function as long as it is fixea;aztual assumption about
oisthato(A) > o(B) ® o(C) for some fixed t-norn®.

Letus fix at-normo: [0,1] x [0,1] — [0, 1]. Furthermore, we will denote the opera-
tions minimum, maximum, and standard negatiori®yi] by », v, ~, respectively.

Definition 2.1. Let (B; A, V,—,0,1) be a Boolean algebra. #jection functioron B
w.r.t. ® is a mappinge : B — [0, 1] such that, for anyd, B € B, (i) o(1) = 0, (ii)
o(A) =1lifandonly if A =0, (iii) A < Bimpliesp(B) < p(A), and (iv) we have

0(AV B) > o(A) ® o(B).

A pair (B, o) of a Boolean algebr& and a rejection functiop on 5 will be called a
Boolean uncertainty algebra

Let us consider the case that= A; this choice for® will actually be predominant in



our paper. Then condition (iv) can be formulated as
o(AV B) = o(A)ro(B), (4)
where we have made use of the antitonicityoft further follows that
N: B—10,1], A o(—A)

is a necessity measure — see [5] —, and our logic will turn oute equivalent with
Possibilistic Logic.

We proceed with the model-theoretic definition of what wé Galneralised Possibilis-
tic Logic, denoted by®, where the 1" stands for “ignorance”. The choice of this
name is motivated by the fact thaf is essentially Possibilistic Logic antP is a
straightforward generalisation @f*. In this paperI” is still most important, and we
will write in the sequell instead off".

Our language will be finite; let's fix a numbeé¥ > 1 of variable symbols. Several

results in the sequel would remain the same if we allowed atedly infinite set of
variables; however, we do not see an important reason to.do so

Definition 2.2. Thepropositionsof I are built up fronvariablesys, . . ., pn and the
truth constantsL, T by means of the binary connectivesv and the unary connective
—. We will denote the set of propositions B

An implication of I is a triple consisting of a finite non-empty set of propositio
ay, ..., a, @ propositions, and an element of the real unit interval, denoted

d
Ay, ..., a = B.

Hereay, ..., oy are called theantecedentss is thesuccedentandd is thedegree of
certainty.
An evaluationfor I® is a mapping from P to a Boolean uncertainty algeb(B, o)
such thaw(a A 8) = v(a) Av(B), v(aV p) =v(a) Vo(p), v(-a) = —w(a) for
a,B € Panduv(Ll) =0, v(T) = 1. Animplicationay, ..., g 4 S is thensatisfied
by v if

o(w(ar A...ANap A=B)) > d.

A theoryis a set of implications. We say that a the@rysemantically entailan impli-

cationas, ..., ag 4 g if, for all evaluations, whenever all elements gf are satisfied
d . e

by v, then alsayy, ..., o = [ is satisfied by.

We axiomatise the logit® as follows. Here, rules are pairs of a possibly empty finite
set of implications and one further implication. The Grdeklenotes a finite set of
antecedents, and as usual, expressiondlike S denotel’ U {«, 8}, where it is not
assumed that these sets must not overlap ordhatd 5 must be distinct. The sét
can be empty; recall however that an implication has at le@santecedent; thus in an

expression likd® 4 o, T must be non-empty.



For the case thab = » the following calculus is the propositional part of Lang’s
calculus in [14], just presented in a modified way. The maiimjpzoncerns our use of
a rejection function. Indeed, instead of a necessity measte use the complemented
possibility measure.

Definition 2.3. The following are the rules af®, whereq, 3, v are propositiond, is
a finite set of propositions, andd € [0, 1]:

d d d d
1l =a o=« a=T a, o= L

d c d
r T
a:0>ﬂ ?awherec<d I'>a a=5
I'=«a I‘ngﬁ
d d 4 d
I'=« Ia,B=~ 'sa I'=g
F,ﬂ:d>o¢ F,a/\ﬂ:d>'y chdoz/\ﬂ
Ia=~ F,ﬁ:d>7 r<a Féﬁ
c@d d d
F,a\/ﬂ%'y I'=savpg I'=savp
a:d>ﬂ ﬂa$ﬂ a$ﬂﬂ
ﬁﬁ:d>ﬁa ﬁﬁéa Béﬁa

The notion of a proof of an implication 4 B from a theoryT is defined in the usual
way. We write7 - « 4 B if there exists one.

AtheoryT is calledconsistentf 7+ T 4 impliesd = 0.

The proof of the completeness Theorem 2.7 1ér below is possible along routine
lines; we calculate the Lindenbaum algebra associated itea theory, and the max-

imal d such that the theory proves:d> L is taken as the value to whighmaps the
equivalence class @f. ForI, a proof is moreover contained in [14].

In spite of this, we will devote the remainder of this sectiompresent a fully detailed
proof which is even more involved than necessary. We do sausecin the subsequent
sections, we will present three logics which are succelssivere special thai®; we
shall proceed then in full analogy to the easy case discussed

For propositiongy and 3, we writea — 3 to abbreviate-a Vv .

Lemma 2.4. Leta, 8 be propositions of®. Thent « =Y gifandonly ifo — fisa
tautology of classical propositional logic.

Proof. Let I® provea =N B. Since the degree associated to the conclusion is in each
rule smaller or equal to each degree in the assertions, d prée (£ can be assumed
to involve the degree only. It follows o« — § is a classical tautology.

Conversely, assume that — g is a classical tautology. Then the sequent /5
is derivable in Gentzen’s calculus for classical proposil logic [8]. By obvious



modifications this proof can be transformed into a proohoﬁ» Bin I®, where all
degrees equdl. O

For some sef), let us denote the Boolean algebra of subsetQ d&fy PQ). For in-
stance P{0, 1} is the set of subsets ¢6, 1} and can be identified with the two-element
Boolean algebra.

Furthermore,P{0,1}" denotes the free Boolean algebra with generators. We
will identify the latter with the Boolean algebra of subsefs{0, 1}%, that is, with
P({0,1}%).

We will now consider the Lindenbaum algebra associateiPtavhere equivalence of
propositions will mean that one implies the other one to tiagreel. Accordingly, the
somewhat loose statements implies 5” and “« and are equivalent” mean that®

provesa =N B, or botha =N g andg < q, respectively. Analogous remarks apply to
all logics considered in subsequent sections as well.

Lemma 2.5. For propositionsa and 8 of 1€, we puta ~ 3 if I®© provesa =N B8

ands = . Then the quotientP) of P w.r.t. ~, endowed with the induced operations
A, V, - and the constantsL ), (T), is a Boolean algebra isomorphic o= P{0, 1}%.
The isomorphism is given by

w((p))) = {(r1,...,rn) € {0, 1}V ry =1}, i=1,....,N

Furthermore, leto: B — [0, 1] be0 on all non-zero elements; théi3, o) is a Boolean
uncertainty algebra.

Definev : P — {0,1}Y, a ~ w((a)). Thenv is an evaluation off® such that
5(e) = 0 ifand only if- o = L.

Proof. By Lemma 2.4(P) is the free Boolean algebra wifki generators.

Clearly, (B, o) is a Boolean uncertainty algebra ands an evaluation fof®. Fur-
thermore,I® provesa = L iff (o) = (1) iff w({a)) = w((L)). Given that
9(a) = w({a)) andw((L)) = 0, the last part follows. O

In the next lemma, two theories proving the same implicatiare called equivalent.

Lemma 2.6. Let 7 be a theory of ©. Then there is a theor§” which is equivalent to

T and consists of

XOigJ—; Xligl, ceey degla

Wherekxi/\xj$J_fori7éj,FT:lsxO\/...\/xm,andl:do>d12...2
dm,1>dm:0.

In case® = A we may requirely > d; > ... > d,,.

Proof. We claim that7 is equivalent to a finite theory. Indeed, any propositionegup
ing in 7 can be substituted by any equivalent one. Furthermore, by 2.5 there



are, up to equivalence, only finite many propositions. Hné#lthere are two impli-
cations in7 differing only in the degree of certainty, the implicatiortfivthe lower
degree of certainty can be dropped.

Next, using Lemma 2.4, it is not difficult to see that, ..., ay 4 Banda; A ... A
ap A S 4 1 areinI® mutually derivable. So we assume thatcontains only
implications of the latter form.

If there aren; 2 1 andas 2 L, wheree; < e and¥ ag Aas = L, we may replace
the first implication byn; A —ap 2 L.

Finally, the implications with the degréeor 1 can be replaced by a single implication,
combining the antecedents disjunctively.cf = A, the same can be done with any
implications whose degrees of certainty coincide. O

On the basis of these preliminaries we prove the completesfas’.

Theorem 2.7. Let T be a consistent theory af® andT" = § an implication of1®.
Then7 semantically entail§ = § if and only if 7 provesl’ = 4.

Proof. Itis easily checked that all rules are sound. The “if” pafides.

By Lemma 2.6, we can assume that= {xo iy 1, x1 4 Lo Xm dy L}, where
the y; are pairwise disjoint and jointly exhaustive, anek- d; > do > ... > dyp—1 >
dm = 0.

Letv: P — B be the evaluation according to Lemma 2.5. et 9(—x0), and let
B = [0, S] be endowed with the Boolean structure inducedsby.et

v:P—=B, a—ila)ns.
We furthermore define

0: B—0,1], Ars (D {di: 1<i<mandAAuv(x:) # 0},

where the result ig in case the set is empty. This is obviously a rejection funmcti
on B. Thenv is an evaluation of® in the Boolean uncertainty algeb{&, ). Since
o(v(x:)) = d; for all i, all elements off” are satisfied by.

Assume now thai” does not prov& = §. So7 does not prover = |, wherea is

the conjunction of” U {—d}. Letd = o(v(«)). We easily check thaf + « 4
follows d < e, so in particulai” = § is not satisfied by and7 does not semantically
entaill' = §. The proof of the “only if” part is complete. O

We note that the model constructed in this proof is finite; s@drem 2.7 could be
reformulated to involve finite Boolean uncertainty algeoaly.



3 Inclusion of graded properties: the finite case

We extend our framework to include properties which are natvery situation as-
sumed to hold or not to hold. We still work with a Boolean algebf subsets of some
setS, and properties which, as it has been the case by now, arelletbtig subsets of
S will be called crisp. The variable symbols however will frotaw on denote vague
properties and are interpreted by fuzzy sets @veit will still be possible to reason
about crisp properties because crispness is expressible framework.

It must be stressed that we will not allow statements of thnfp 4 1 wherep and

1 model vague properties. We will rather denote(bys) the property thap holds to
the degree, modelled by the subset 6fconsisting of those points which are mapped
to s. The values will be referred to as the degree of presencedf such situations.

We allow then statements of the forfw, s) 4 (1,t) and, as relationships between
crisp properties, we will interpret them just as before.

We will furthermore allow vague properties to be combinedngans of a conjunc-
tion A, a disjunctionv, and a negation-. These connectives are interpreted by the
minimum, maximum, and standard negation applied pointtdgbe respective fuzzy
sets. For example, for some evaluatian (¢ V ~1,t) is interpreted by{a € S :

v(e)(a) v ~o(y)(a) =t}.
Our t-norm will from now on always be the Godel t-norm, thgtwe put® = A. So

in all what follows we stay in the realm of the Possibilistiodic I. The more general
case remains to be explored.

Furthermore, for the moment we will restrict to a finite setlefrees of presence: let
fix a finite setV’ C [0, 1] containing0 and closed under. As a matter of fact, the
approach chosen in this section cannot be easily genatatigbe infinite case; it has
turned out that the use of an infinite set like the rationat imerval would lead to
technical difficulties. In the subsequent section, we witidify our approach and the
restriction will be dropped.

Definition 3.1. Let S be a nonempty set. A'-valuedfuzzy sebver S is a mapping
fromStoV.

For two fuzzy setsi,v: S — V, we letu A v andu Vv v be the pointwise minimum
and maximum of: andv, respectively; we let-u be the pointwise standard negation
of u; and we letD and1 be the constarlt and1 fuzzy set, respectively. Le¥ be a
collection ofV-valued fuzzy sets ovef containing), 1 and closed undex, \, ~; then
we call(M; A, V, ~,0,1) aKleene algebra of fuzzy sets

For anyu € M andt € V, we define
[uy = {a€S: u(a) =t}

The Boolean algebra of subsets®fenerated byu];, whereu € M andt € V, will
be called thBoolean algebra associated wift1, denoted bys3,,.

Finally, let o be a rejection function ol8,; w.r.t. A. Then(M, o) is called aKleene
uncertainty algebra

10



We will now define the Possibilistic Logic with Sharp Gradati denoted by G°.

Definition 3.2. Thegradable propositionsf 1G° are built up fromvariablesy;, . . .,
pn and the constanty 1 by means of the binary connectivesv and the unary con-
nective~. We denote the set of gradable propositions#hyThegraded propositions
of 1G° are of the form(¢, t) wherey is a gradable proposition arids V. Thecrisp
propositionsof 1G°, or propositionsfor short, are built up from graded propositions
and thetruth constantsL, T by means of the binary connectivesv and the unary
connective-. We denote the set of propositions By

An implication of 1G° is a triple consisting of a finite non-empty set of propositio
azy, ..., ag, a propositions, and an element € V, denotecdhy, ..., ax 4 8.

An evaluationfor IGY is, for some Kleene uncertainty algel{tel, o), a pair of map-
pingsvy: F — M andv,: P — Mp such that the following holds:

() vi(pA) =vp(@) Avp(P), vi(pVY) = vr(@)Vus(¥), vi(~@) = ~vs(p)

for gradable propositions, i, andv;(0) =0, vs(1) = 1;

(i) for ¢ € Fandt € V we have

u((p,t) = [vp(@)le (5)

and furthermorey,(a A 8) = wvp(a) A vp(B), vp(a V B) = vp(a) V vp(B),
vp(a A B) = —wp () for propositionsy, 3, andv,(L) =0

The notions ofatisfaction of atheory, and ofsemantic entailmens defined forrg®
similarly as forI.

Note that the variables are now gradable propositions arfddnare interpreted by
fuzzy sets. If this is not intended for some variablewe may make use of the fact

that the implicationg, 0) = =(p,1) and (e, 1) N —(p,0) are satisfied only ifp

is interpreted by a characteristic function; they can bersd to ensure crispness.
Moreover, if a variablev is not going to be connected with further gradable varigbles
this is not even necessary; simgly, 1) can be used to model a crisp property.

We axiomatise the logitG as follows.

Definition 3.3. The rules offG° split into three groups:

Thebasic rulesare those of (see Def. 2.3) where propositions are understood as those
of 1GY.

Thedegree-of-presence rulese the following, where is a gradable proposition, and
$,80,...,t €V
(p,8) 4 —(p,t) wheres # t

=(p,80),-.., (v, sn) 2 1 wherev = {s0,---,8m}

11



Thefuzzy-set rulesre the following, wheré' is a finite set of propositionss, ¢ are
gradable propositions; is a propositiong, d € [0, 1], andr, s,t € V:

I‘,(go/\zﬁ,s/\t)éa I‘,ﬁ(<p/\1/1,t)$a
p 7 wherer, s >t
T, (o, 8), (¥, t) = « L, (p,7), (1, s) = «
d d
I=(pAY,t) = I =(pAY,t) =
(o Q/J,d) Y Wheres < ¢ (e Q/J,d) @ wheres < ¢
Ly (p,8) = a L (¢,s) = «a
F,(govw,svt)éa I‘,ﬁ(<p\/1/1,t)$a
I 7 wherer, s < t
T, (o, 8), (¥, t) = « L, (p,7), (1, s) = «
d d
I=(pVY,t) = I=(pV,t) =
(o Q/J,d) Y Wheres > ¢ (e Q/J,d) @ wheres > ¢
Ly(p,8) = a L (¢,s) = a
F,((p,c):d>a 1",(~<p,c):d>a
F,(N@,NC)$O¢ F,(@,Nc):d>a

The notion of groofof some implication from a theory as well as tensistencyf a
theory is defined like fol.

The soundness causes again no difficulties.

Theorem 3.4. Let 7 be a theory ofig® andI" = ¢ an implication ofIc°. ThenT
semantically entail§ = ¢ if 7 provesl’ = 4.

For the completeness proof, several preparatory lemmaseaessary. Our procedure
in case of the logia® will serve as a pattern.

In what follows, by a graded variable we will mean a gradedpsition (¢, t) such
that ¢ is a variable. In our first step we will show that compound giddroposi-
tions are eliminable from the calculus; graded propos#tiare replaceable by Boolean
combination of graded variables.

Lemma 3.5. Lety, v be gradable propositions afc’, and lett € V. Then(¢ A v, t)
is equivalent to

\/{(50,7")/\(1/),5): r=tands > ¢, orr>tands=t}; (6)
(p V1, t) is equivalent to
\/{((p,r)/\(w,s): r=tands <t, orr<tands=t}, (7

and(~ ¢, t) is equivalent to
(0, ~1). (8)

Furthermore,—(¢p, ) is equivalent to\/ (¢, s). Finally, any proposition ofic? is
equivalent to the disjunction of conjunctions of gradedafales.
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Proof. Every disjunctin (6), so (6) itself, impli€go A1, t). Furthermore, the negation
of (6) is equivalent to the disjunction &f . ., ((¢,7) A (1, 5)) andV/, (¢, r) and
V<. (1, 5), each of which implies:(¢ A 9, ).

Similarly, we proceed for (7). The claims concerninrgy, t) and—(p, t) are easy.

The last assertion follows, for a graded proposition, byitgbn over the complexity of
the involved gradable proposition. For a proposition, theeation follows by induction
over its complexity. O

We recall thatPV is the Boolean algebra of subsetsafwhereV is the set of degrees
of presence. Furthermore, we denotemly " the N-fold free product of the Boolean
algebrasPV; for the notion of free products of algebras see, e.g., [hhpder VI]. We
may, and we actually will, identify>V~ with P(V ), the Boolean algebra of subsets
of VNV,

Lemma 3.6. For propositionsa: and 3 of 1G°%, we puta ~ 3 if 1G° provesa =N B8

andB = a. Then the quotientP) of P w.r.t. ~, endowed with the induced operations
A, V, - and the constantél), (T), is a Boolean algebra isomorphic 8BV . The
isomorphism is given by

w({(ei, 1)) = {(r1,...,rn) €VNiri=t}, i=1,...,N, teV. (9)

Furthermore, let
N
ui: VY =V, (r1,...,TN) = 14,

and let)M be the Kleene algebra generateddby; . . ., uy. ThenBy, = PV, Define
o: Bj; — [0, 1] to be0 on all non-zero elements; théi/, o) is a Kleene uncertainty
algebra.

Definevs(¢;) = u; fori = 1,..., N, and extend; to F such thatA, v, ~ and0, 1
are preserved. Defing,(a) = w({«)) for @ € P. Then(vy, ) is an evaluation of

16° such that,(a) = 0 if and only if- o = L.

Proof. Note first that in all the degree-of-presence and fuzzytdesr we may w.l.o0.g.
assume that = 1. Let us modifyIG® as follows: We drop all fuzzy-set rules and add as
new axioms the six implications expressing the equivalgtéy A i, t), (¢ V ¥, t),
(~¢,t) with the expressions (6), (7), and (8), respectively, wher¢ are gradable
propositions and € [—(,1 + ¢]. By Lemma 3.5 all these implications are provable,
and from the added axioms we may easily derive any of the @dmpples. So the
change has no effect for the set of provable implications.

Note next that a proof of an implication of the form=> B in 1G° can be chosen such
that all occurring degrees of certainty are equal.thet IG2 be the calculus differing
from 16 in that only degree of certaintyare allowed. ILGY, the relations obviously
does not change.

By Lemma 2.41G{ can be viewed as an extension of classical propositionat:ltige
variables are identified with the graded propositions; &edeixtension consists of the

axioms ofIGY where each implication = B is understood as — 3. We keep this
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viewpoint implicitly in the background. We get as an imméelieonsequence thgP)
is a Boolean algebra.

Each graded proposition in which a compound gradual préipasbccurs, is by as-
sumption equivalent to an expression in graded variable$o 8etermine the Boolean
algebra(P), we need to consider onlyy;,t)) wherei € {1,..., N} andt € V.

Consider now the degree-of-presence rules. We can resieict to the case of graded
variables. Indeed, it is not difficult, based on an inductivgument, to derive these
axioms for compound gradable propositions from those fadgd variables.

So we are left with the degree-of-presence rules restrictgpladed variables. These
axioms splitintaV disjoint subsets, one for eachFurthermore, foranye {1, ..., N},
the Boolean subalgebk@®), of (P) generated by(p;,t)), t € V, is clearly isomor-
phic to PV under the assignment

wi: (P = PV, {(pi,t)) — {t}.
Consequently(P) itself is isomorphic to the free product &f copies of PV under
that assignment (9). The proof of the first half of the theorenomplete.

Clearly,(M, o) is a Kleene uncertainty algebra such thgf = PV V.

It is furthermore clear that, preserves the Boolean structuref and like in the

proof of Theorem 2.7 we see that(«) = 0 iff - « S 1. Moreoverps preserves the
Kleene structure aF by construction.

To establish thatz;, v,,) is an evaluation, it remains to check (5), that is, we have
to showw({(¢,t))) = [Ur(p)]; forall ¢ € F andt € V. If ¢ is a variable, this
equation holds by construction. For the general case, weeprbby induction over the
complexity of and use Lemma 3.5. O

Lemma 3.7. Let T be a finite theory ofiG°. Then there is a theory” which is
equivalent toJ and consists of

Xoigi, Xl%i, ey xm(gi,

Wherel—Xiij:1>Lforz‘;éj,}—T$X0\/...\/xm,and1:d0>d1>...>
dm_1 > dpy, =0.

Proof. As we assumed thaf is finite, we may proceed like in the proof of Lemma
2.6. O

Theorem 3.8. Let 7 be a consistent finite theory 06° andT" = § an implication of
16°. If 7 semantically entail§' = §, thenT provesl’ = 4.

Proof. Itis easily checked that all rules are sound. The “if” pafides.

We can assume th&t = {xo S 1, x1 Y L, ooy Xm o 1}, where they; are
pairwise disjoint and jointly exhaustive, and> d; > ... > d,,, = 0.
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Let (97, %) be the evaluation iiM, o) according to Lemma 3.6. L& = ,(—xo).

By consistency;] does not prove g = 1, henceS # (. Let M be the Kleene
algebra generated hy|s,i = 1,..., N. ThenB,; = PS.

Letvs: F — M, ¢+ T5(p)ls anduvy: P — Bg, a— 0(a)NS.
We define

0: By —[0,1], A—min{d;: 1 <i<mandAnuv(y;) # 0},

where the minimum of the empty setlisThis is obviously a rejection function.

Then(vy, vy) is an evaluation in the Kleene uncertainty algedvh o). Sincep(x;) =
d, for all ¢, all elements of/” are satisfied byv¢, vy).

If 7 does not prové& = §, we conclude like in the proof of Theorem 2.7 tiats §
is not satisfied by. This completes the proof of the “only if” part. O

We again note that the completeness theorem could obvitngsinodified so as to
involve finite Kleene uncertainty algebras only.

4 Inclusion of graded properties: the continuous case

A propertyy is called vague if not under all circumstances it can be foldapplies or

not. We have proposed to model this generalised type of aepiin the usual way: as

a fuzzy set over the set of all considered situations. A vagapertyy is furthermore
characterised by a continuous transition frgmio non<. Hence it would actually
make sense to allow to be assigned any degree of presence taken from the real unit
interval|0, 1], rather than using a finite subsetf1] as we did in the previous section.

The statement$yp, t), wheret varies over0, 1], let us then distinguish between an
infinity of pairwise exclusive situations. This fact in tuisinot well in line with the
idea that(i, t) reflects an agent's impression, given the fact that there imfinity

of situations observable as pairwise exclusive. Nevestigedur intention might be to
work with a continuity of situations.

We have chosen the following solution. Roughly speakingyweassume that situa-
tions which are close to each other, that is, situationsaztiarised by similar degrees
of presence of the involved properties, are not necessiisifinguishable. Let us won-
der what it actually means that an agent is asked to evajuatel answer8.3. In fact,
such an answer might mean not more than ¢ghstneither true nor false but fits some-
what better to the latter possibility. Thus the agent coalechosen equally well, say,
the value0.28 or 0.32. Accordingly we postulate that graded propositidpss) and
(p, t) are treated as mutually exclusive onlyiandt differ at least by a fixed minimal
value, denoted by.

The choice of] is to a certain extent arbitrary. Note however that in pesgtalso the
degrees themselves are to a certain extent arbitrary. Tradirction of the valu€
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takes exactly this point into account: it does in generalmake sense to distinguish
between arbitrary close degrees of presence.

We will modify the interpretation ofy, t), t € [0, 1], as follows. Lety be interpreted
by a fuzzy set. over a setS. Then(y, t) will no longer be interpreted bju); but by
the setfu]¢ which is, roughly speaking, consists of thase S such thatu(z) differs
fromt less thart.

We note this idea is unrelated to any of the formalisms bagsddterval-valued fuzzy
sets. In fact, gradable propositions will still be modeltgdordinary fuzzy sets. What
we intend to account for is rather the idea that statemewtddimg truth degrees should
have a more “tolerant” interpretation; close truth degeresallowed to overlap in their
interpretation.

Our solution forces us to overcome several technical diffes! To replacégu], by the
larger set{u]f makes perfect sensetifis an intermediate truth degree, in particular if
¢ <t <1—¢. Forsharp truth degrees, the situation is different; weukhstill be
able to express that a property is clearly false or cleanly.tin our formalism, the sets
[«]o and[u]; will no longer appear; however, it will be possible to expgréee property
to be clearly false or clearly true in an approximate way. Vi simply extend the
set of available degrees of presence frioni] to (—(, 1 + ¢). The negative degrees
and the degree larger tharare so-to-say virtual ones. A degree (—(, 0) represents
falsity, like 0, but in contrast td the tolerance aroun@lis ¢ + ¢, a value which can be
arbitrarily small. Similarly, we use the degrees of presesigovel.

Remark 4.1. Our formalism could be simplified in an easy way: we couldrprit
(p,t) by the set of alk. € S which are mapped to or a larger value. This interpre-
tation is indeed common in fuzzy logics. It would includetaimarginal points, the
concept of intervals used in this section and the concepbiitg from the previous
section. Even better, the fuzzy-set rules would simplifyiariact look more elegant.
However, we do not adopt this approach here. We would seesifask of elegance to
declare statements like “property holds to a degree of at lea8t4” as basic.

In the area of application which we have in mind, an agentienaince of this form, or
a technical specification in this form, would come as a swqriStatements providing
a lower bound for the degree of presence of some property tilargasonably occur
as the result of some inference step; but not typically aassaimption.

As a further consequence of our decision to work with the Béfswhich involve an
“extended” set of degrees aroufjdve will no longer use the set-theoretical operations
to interpret Boolean connectives. Our motivation is thagk degrees of presence
should no longer play a role. It should not matter if the maagjpointst —  ort + ¢

are included or not, and by use of Boolean connectives itldhoever be possible to
arrive at sets of the forru);.

Hence we need to endow our fuzzy set model with more struthane before. As a
prototype consider the following simple fuzzy setmodelling “having fever”.
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A fuzzy set modelling the property to have fever

1
0.8 u
/
0.6 /
/
0.4 /
/
/
Va

/
/
/
degree

of

resence
P 0.2

0 - T T T T T T T T T T 1

36.5 37 37.5 38 385 39 395 40 40.5 41 415 42
body temperature ifiC'

We abstract from this example the following facts. The batesd the set of degrees
of presence are endowed with a topology in a natural way, ant these topologies
the fuzzy set is continuous. Furthermore, each intermediate truth deigrassigned
to a single point only; each spt];, whered < ¢ < 1, has an empty interior. In contrast,
each se{s € [36.5,42]: t — ¢ < u(s) < t+ (} is the interior of a closed set.

Remark 4.2. We compile for what follows the basics about the used togoadgo-
tions. For more information see, e.g., [9].

Let S be a topological space. Fdr C S, we denote by4d° the open interior o4, and
by A~ the closure ofd. A setA C S is called regular open if it is the open interior of
a closed set. So exactly all sets of the fadm® are regular open; we have

A™° = {z € S: Ais dense in some open neighbourhood pf

We denote byR(S) the set of all regular open subsets $f Under set-theoretical
inclusion,R(.S) is a distributived, 1-lattice. ForA, B € R(S), the infimum isA N B;
the supremum isA v B = (AU B)™°; and(), S are the bottom and top element,
respectively. Furthermore,

L R(S) = R(S), A (S\A)°

is a complementation function; in particulat,-- = A= = 4, An At = (), and
AU AtisdenseinS. So(R(S);N,V,*,0,S)is a Boolean algebra.

For later use we remark the following. For open sét$3 C S we have
(AUB)™® = A°VvB™°, (10)
(ANB)™° = A—°NnB~°, (12)
where the supremum refers to the pdRés).

Note first that for anyC, D C S we have(C U D)+ = C+ n D+ andC++ = C—°.
We conclude

(AUB)° =(AUB)** = (At n Bt = (At nBHh)t =
(At uBt ) =4 UB ™) " =4 VB

This is (10); for (11) see [9, Lemma 4 of Chapter 10]. Finallyl) implies that for
closedsetsi, B C S
(AUB)® = (A°UB°)"". (12)
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Definition 4.3. Let S be a topological space. A fuzzy set S — [0,1] is called
regularif the following conditions hold:

(R1) w is continuous w.r.t. the standard topology@f1];
(R2) foranyt € (0,1), [u]: has an empty interior.
A Kleene algebra/ of regular fuzzy sets ove¥ is calledregular.

The notion of a regular Kleene algebra would not make seneeitonditions (R1)
and (R2) were not preserved under the Kleene algebra opesati

Lemma 4.4. Let M be a Kleene algebra of fuzzy sets over some topological space
Assume thad/ is generated by regular fuzzy sets. Théns a regular Kleene algebra.

Proof. Evidently, the constant fuzzy sets are regular.id.et € M be regular. Clearly,
u A v, uV v, and~wu are continuous.

Let0 < ¢t < 1; we have to show thdt. A v]; has an empty interior. Let € S be
such thatu A v)(a) = ¢, and letU be an open neighbourhood @f W.1.0.g. assume
t = u(a) < v(a). If thereis ab € U such thatu(b) < t, we have(u A v)(b) =
u(b) Av(b) < t. Otherwise there is&e U such that.(b) > ¢t and consequently there
is an operV C U such that(b) > t for all b € V. Choose some € V such that
v(c) # t; then(u A v)(b) # t. It follows that[u A v]; does not contain an open set.

Similarly we argue in case df. V v];. Finally [~u]; = [u]~: Clearly has an empty
interior as well. O

We fix now a rational valué < ¢ < % ¢ is supposed to quantify the distinguishability
between different degrees to which a vague property hdldss) and (¢, t) will be
modelled as disjoint only ifs — ¢| > 2¢. We will switch from[u]; to [u]¢; here[u]$
does not simply denote the set of all points mapping to thervat [t — ¢, ¢ + (] or

(t — ¢, t + ¢); we will rather use a definition which ensures thaf is regular open.
Accordingly, rather than using the Boolean algebra geadray the set$u];, we will
work with the Boolean algebra of regular open sets genetatdtie sets of the form
[ul;.

For a generalised degree of presencee will denote byt’ the degree of presence
which is actually meant by, disregarding the amount of tolerance: fat (—¢, 14 (),
we putt’ = (tv0)al. Forl C (—¢, 1+ ¢), we will write I’ = {t/: t € T}.

Finally, for I C [0,1], we putfu]; = {a € S: u(a) € I}.
Definition 4.5. Let M be a regular Kleene algebra of fuzzy sets over a topological
spaceS. Foru € M andt € (—(,1 4+ ¢), we define

[U]f = [U][tfc.,tJrC]’o-

Furthermore, the Boolean subalgebraRyfS) generated byu]$, whereuw € M and
t € (=¢, 1+ ¢), will be called theBoolean algebra associated witlY, denoted by
Rt
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Finally, let o be a rejection function o »; w.r.t. A. Then(M, o) is called aregular
Kleene uncertainty algebra

The following lemma provides an explicit description of tinéerpretation which we
are going to apply.

Lemma 4.6. Let (M, o) be a regular Kleene uncertainty algebra. Lete M. For
(<t<1-—(_wehave

[w]f = [uj—cieq”
oru(a) € {t — ¢,t + ¢} andu maps a neighbourhood afto [t — ¢, ¢ + (]};

for —¢ <t < ¢, we have

[U]g = [U][O,t+<]o
={a€S: ula)€[0,t+()
oru(a) = t + ¢ andu maps a neighbourhood afto [0, ¢ + (]};

and similarly forl — ( <t <1+ ¢(.

So given a regular fuzzy set we see tha[tu]f contains basically all poinis € S such
thatu(a) € (t — ¢, ¢ + (), but if, for instancey has at the point € S the strict local
minimum¢ — ¢ thena is joined to[u]¢ as well.

In the above example, take= 0.1. Then we have, sa)yu](‘j3 =u"1((0.2,0.4)) =
(37.6,37.7), [u)S, = u=1([0,0.2)) = (36.5,37.6). As the associated property to be
clearly false we can take, e.guq]‘io'ogg =u~1([0,0.001)) = [36.5, 37.5005).

We define the Possibilistic Logic with Soft Gradation, dextbby1G¢, as follows.
Definition 4.7. Thepropositionsthe set of which will still be denoted by, as well as

theimplicationsof IG¢ coincide with those ofG?, respectively (see Def. 3.2) except
that we use the real intervéd-¢, 1 + ¢) as the set of degrees of presence.

An evaluatiorw of 1G¢ is defined like forTG® exceptthat forp € F andt € (—¢, 1+¢)
we define

w((p.t) = [up(p)t
and that, maps toR ;.

A theoryof 1G¢ andsemantic entailmerfor 1G¢ is defined mutatis mutandis like for
I.

To axiomatise the logitG¢ we have to modify all rules except the basic ones.

Definition 4.8. The rules offG¢ split into three groups:

Thebasic rulesare those of (see Def. 2.3) where propositions are understood as those
of 1G¢.
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Thedegree-of-presence rulase the following, where is a gradable proposition and

8,81, t € (=C, 14 Q):
() = (i, ) wherels — t] > 2¢
(p,8) 4 (p,t) wheres <t <¢orl—¢<t<s
(p,7) 4 (p,8) V (p,t) wheres <r <t <s+2(
(¢,7), (¢, ) 4 (ip,t) wherer <t < s

d
ﬁ(tp,sl),...,ﬁ(gp,sk) = 1 wheres; < ¢; s2—81,...,85 — Sp—1 < 2¢; s > 1—¢

The fuzzy-set rulesre the following, wherep, ¢ are gradable propositions, is a
proposition[ is a finite set of propositions, d € [0,1], ands, ¢ € (—¢,1 + ¢):

J d

T A AL) = ' - A t) =

, (p AP, snt) - o (PNt = a wherer, s > t + 2¢
£

d
F, ((107 8)7 (w7ﬁ) a F, ((107 T)7 (w7 S) : a
d d
I, - t I'= t
’ (w/\w’)éawheres-i-%gt d (w/\?/}’d):sawheres—i—%gt
T, (p,s) = T, (¢,s) = «

le}
wherer +2¢,s +2¢ <t

F,«ovw,svt):dm T, =(p Vi, t) 2
d
@

d

T, (¢, s), (¥, o T, (o,7), (¥, s) = «
d d
I',=(pV,t) = I',=(pVi,t)=

(s w’d) awhere52t+2g (e l/J’d) Oéwhereszt-i-QC

L (p,8) = a L, (¢, 8) = a
F,((p,c):d>a F,(Ngo,c):d>a
F,(th,~c)$a F,(go,~c):d>a

The notion of gproof as well as theonsistencyf a theory is defined like for (see
Def. 2.3).

We split up the soundness and completeness prodidoin a series of lemmas.

To establish the soundness of the rules, we have to examarsrticture of our model
in some more detail. In the next Iemma we see how the Boolearatipns act, for
some fixed fuzzy set, on the set$u]$ wheret € (—¢, 1 + ).

We will assume that the real unit interyl 1] is endowed with the subspace topology
inherited from the reals endowed with the standard topold@y[0, 1]), the regular
subsets of0, 1] contains then the intervals of the foriov a) or (a,b) or (b, 1], where

0 < a < b < 1, as well as the unions of such intervals if no two of them have a
common endpoint. BRR'([0, 1]), we will denote the Boolean subalgebraf[0, 1])
consisting only of the finite unions of intervals of the foffha) or (a,b) or (b,1],
where0 < a < b < 1.
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Lemma 4.9. Let (M, o) be a regular Kleene uncertainty algebra. ket M, and let
‘R. be the Boolean subalgebra generateqda]ﬁ, te(—=¢14+¢)inRyy.

The mapping
s RY([0,1]) = Ry T [u];-°

is an epimorphism of Boolean algebras.

Proof. For0 < s; < t1 < s2 < t3 < 1, we have by the regularity af

o {[u][sl,tg]o if t1 = 82,

[u][sl,tl]U[SQ,tQ]o if t1 < so

[u][shh]o \ [u][sz,tQ] - [u](shtl)V(Sz,tz)o;

we conclude that, preserves/. Similarly, we check that, preserves-.
Ly, IS surjective by construction. O

For the next lemma we introduce some technical notation.tFor(—¢, 1 + ¢), we
define the finite subsat>; of (—(,1 + () to contain all values,t + 2(,t + 4¢, . ..
which are strictly smaller thah+ ¢. Similarly, we definé/<; to contain those values
t,t —2¢, ... which are strictly larger thar (. Finally, we letlV_; contain those values
t —2(,t —4¢,... as well ast 4+ 2¢, t + 4¢, ... which are contained if—¢, 1 + ().
Finally, for an element. of a regular Kleene algebra, we p[md]ét = [ulp—c,14+¢°
and[u]%, = [u)—¢,i+¢)°

Lemma 4.10. Let (M, o) be a regular Kleene uncertainty algebra. Letv € M and
lett € (—¢,14¢). Then

[unolt = ([wle N ISV ([W]S, N 0]

= \{[ulnw)$: r=tands € Vo, orre Vs, ands =t}
v oly = (e N lE,) v ([, 0 o))

= \/{[u]f_ N[w]$: r=tands € V;, orr € Ve, ands = t},

[~ulf = [ull.
Proof. Using (10)—(12) we calculate

wAVje—¢ )’

[l ie—¢ ¢ O [W]ie—c,1) U ([Wp—c,1 N [0lje—c,e4¢1)°

[ulit—c.evcr U 0l ie—c,eacr) 0 [ulfe—c.y N [0]i—¢.1)°

ulip—c el U 0l e—c o)) O [ e, O [0
| °

u a1’

[

Iie
U[vht—c t+<ro) Rl ([ R ol () [P

o—O0O

~
o
~
+
fal

[U][ —citrel” U Pl—c ey ) N [ule—c,° N [U][tfq,l]o)_o
[ulie—c,e4cr” N[Vl —c,°) U ([ulie—c,® N [v] [tfc,t+<]’o))7o
[w]z N V]S, V ([U]Czt []7);
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furthermore, we clearly hav@]gzt = V.ev.,[u]§ and [v]Czt = Ve, [0S, and the

assertion follows by distributivity. Similarly we proceéat [u V v]f. The expression
for [~u]$ is obvious. O

Theorem 4.11. Let T be a theory ofic¢ andT" = § an implication ofIGS. ThenT
semantically entail§ = ¢ if 7 provesl’ = .

Proof. The basic rules are sound by Theorem 2.7.

The soundness of the degree-of-presence and fuzzy-sefollavs from Lemmas 4.9
and 4.10. O

We will now work towards the completeness part. We will piedtén analogy to the
case of the logiaG® whenever possible.

We first see how graded propositions decompose to Boolearesipns in graded
variables, in the same way as described in Lemma 4.10.

Lemma 4.12. Let, 1) be gradable propositions afc¢, and lett € (—¢,1+¢). Then
(p A, t) is equivalent to

\/{(((p,r) A(,s)): r=tands € V>, orr e Vs, ands = t}; (13)
(p V1, t) is equivalent to
\/{(((p,r) A(,s)): r=tands € V<, orr e V<, ands = t}, (14)

and(~ ¢, t) is equivalent tqp, ~t).
Furthermore,~(¢p, t) is equivalent to

V (@9). (15)

seV_y

Finally, any proposition offG¢ is equivalent to the disjunction of conjunctions of
graded variables.

Proof. (13) implies(¢ A v, t). Furthermore, the negation of this proposition is equiv-
alent to a finite disjunction of propositiofig, r) A (¢, s) where either, s > t + 2¢ or
r <t—2¢ors <t—2¢, each of which implies:(p A ¥, t).

Similarly, we proceed to show thép\/ ), t) is equivalent to (14). The assertion about
(~p,t)is easy.

Itis easily seen that(yp, t) is equivalent to (15).

By induction over its complexity we conclude that each gthpposition is the dis-
junction of conjunctions of graded variables. It followstlihe same is the case for
each proposition. O
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For a Boolean algebr& of open regular sets of a topological spagave again denote
by RY the N-fold free product ofR. We can, and will, identifyR ¥ with a subalgebra
of R(SY), the algebra of regular open sets in the product sgdteR Y is generated
by the sets of the forml; x ... x Ay, whereA,..., Ay € R. We will call the sets
of the latter form cubic.

In the following lemma, we define fdre (—(,1 + ¢) the open set o, 1]
Ue(t) = [(t = VO, (¢ + O)nlL]°

Lemma 4.13. For propositionse and 3 of IG¢, we puta ~ 3 if IG¢ provesa =N B8
ands = . Thenthe quotientP) of P w.r.t. ~, endowed with the induced operations

A, V,— and the constantsl), (T), is a Boolean algebra isomorphic ®' ([0, 1])N.
The isomorphisnw is given by

w({(¢i; ) ={(r1,.vn) € [0, 1V 15 € U(t)},

i=1,...,N, te(=¢1+0). (16)

Furthermore, let
Ut [0, 1]N — [0, 1], (7‘1, ...,TN) = T,

and let)M be the Kleene algebra generateddy, . .., uy. ThenR ; = R([0, Y.
Definep : R;; — [0,1] to be0 on all non-zero elements; thé@/, o) is a regular
Kleene uncertainty algebra.

Definevs(p;) = u; fori = 1,..., N, and extends to F such thatA, v, ~ and0, 1
are preserved. Defing,(a) = w({(«)) for a« € P. Then(v;,7,) is an evaluation of

1GS such thatp, () = 0 if and only if- o = L.

Proof. Again, for the degree-of-presence and fuzzy-set rules weassumel = 1.
We modify IGS: We drop the fuzzy-set rules and add six axiom schemes esipges
the equivalences dfp A v, t), (o V ¥, t), (~ @, t) with the expressions (13), (14), and
(15), respectively. By Lemma 4.12 we see that this changabadfect.

Let IGS be the restriction ofG¢ to degrees of certainty. In the same way as in the
proof of Lemma 3.6, we may viellG¢ as an extension of classical propositional logic.

We have to determine the Boolean algeta. It is tedious but not difficult to check
that the degree-of-presence rules can be restricted t@tigeaf graded variables. Con-
sequently, we again havé disjoint groups of axioms involving for eaéte {1, ..., N}
the graded variableg;, t), t € (—¢, 1 + ().

Fix ani € {1,..., N}. We have to show that the subalgelffg); of (P) generated by
{(pi, 1)), t € (—C, 1+ ¢), is isomorphic taR' ([0, 1]) under the assignment

wi: (P)i = RY([0,1]), ((0i,0)) = Uc(t).
It will then follow that (P) is isomorphic to the free product &f copies ofR' ([0, 1]),
the isomorphism being determined by (16).
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It is easily checked that all inequalities holding(iR); due to the degree-of-presence
rules betweeri(p;, t)) are preserved by;. Sow; indeed extends to a Boolean homo-
morphism from the wholéP); to Rf(]0, 1]). By construction; is surjective.

It remains to show thaw; is injective. Let{s;: j € J} and{t;: k € K} be two
finite subsets of—(, 1 + ¢). We have to prove thdf); Uc(s;) € V, Uc(tx) implies
thatIG¢ proves\; (¢i, s;) 2V, (i ).

Case 1.J is empty. Then/, U¢(tx) = (—¢, 1+ ¢) and consequentlyt; } contains
elements< ¢ and> 1 + ¢ and neighbouring values differ at maxt. It follows that

T V(i tr) is provable and the assertion follows.

Case 2.J = {j} is one-element. Then eithey < ¢, < ¢ for somek; orl1 — ¢ <

tr < s; for somek; otherwise either one valug coincides withs;; or there are two
valuest;, with distance< 2¢ and such thas; is in between. The assertion follows in
each case.

Case 3All > 2valuesin{s;} are< { or > 1 — ¢. This case reduces to Case 2.
Case 4.Two of the values in{s; } differ at least2(, that is, the intersectiofl); U (s;)
is empty. Then\ (s, s;) = 1is provable and the assertion follows.

Case 5.At least one value i{s,} isin ((,1 — ¢) and all> 2 values have a mutual
distance oK 2(. If there are more than two, we can delete all but the outetroruess.
Lets;, s; be the two values and I8t < s;. Then either there is& < ¢, < s;/, or
there arg, < s; < s;» <ty such that, — ¢, < 2¢. The assertion follows in both
cases.

The proof of the first half of the theorem is complete. For theosid we proceed like
in the proof of Lemma 3.6. O

We next note that Lemma 3.7 holds by the same proof alspdar

Theorem 4.14.LetT be a consistent finite theory 06¢ andI’ = § an implication of
IGS. If 7 semantically entail§ = &, thenT provesl’ = 4.

Proof. Assume to the contrary thgt does not provd® = §. We can assume that
T = {xo =Y 1, x1 4 1, ool Xm o L}, where they; are pairwise disjoint and
jointly exhaustive, and > dy > ... > d,, = 0.

Let (v, 7p) be the evaluation i), o) according to Lemma 4.13. L&t = ©,(—xo);
thenS # 0 by consistency. Lef/ be the Kleene algebra generatedys, i =
1,...,N. ThenM is a regular Kleene algebra. Furtherm@®g;, = {ANS: A €

Rt
Letvy: F—= M, ¢~ ’Df((p)|5 andvy: P — Rs, a+— T)b(a) ns.
We define
0: Ry — 10,1, A min{d;: 0 <i<mandAnNuv,(x;) # 0},

where the minimum of the empty setis This is obviously a rejection function on
R
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Then (v, vy) is an evaluation in the regular Kleene uncertainty algéfidap). As
0(Us(x:)) = d; for all 4, all elements off” are satisfied byv, vp).

If 7 does not prové& = §, we conclude like in the proof of Theorem 2.7 tiats §
is not satisfied by. This completes the proof of the “only if” part. O

5 Smoothing the degree of certainty over gradation

Having started with the (slightly generalised) Possitidikogic as our general frame-
work, we have included the possibility to express gradesloéinformation and we
have subsequently modified the interpretation of gradegegstes. Doing this, we
have not touched the underlying concept of uncertainty;dibgree of certainty has
remained unrelated to the degrees of presence.

Indeed, inIG¢ situations are specified by the propositiéps, t1), . .., (¢n, ty), that

is, by the N-tuple (¢1,...,tn). To each suchV-tuple, there is associated the de-
gree of implausibility of the corresponding situation, reyni = o(v(p1,t1) A ... A
v(pn, tn)) for some interpretation. We observe that the valukdepends offt, . . .,
tn) completely arbitrarily.

This arbitrariness might not be ideal for practical apglaas. Similar situations are
presumably described by clogé-tuples and so the implausibility should depend at
least continuously on th&’ parameters. The problem is specific for the current ap-
proach; we refer to [2] for a broad overview of approachess@al wiith different kinds

of degrees in common frameworks.

In the present chapter, we add a simple rule to our logic vighsble effect of continu-
ity. Disregarding inessential details, we propose thefilhg approach. Situations are
specified byN-tuples(¢y, . .., ty); assume that the associated degree of implausibility
is d. We add a rule to ensure that a situation characterisg@hy. ., sx), wheres;
differs fromt; less than\, is assigned a degree of implausibility of at le@st 7. In
other words, we introduce Lipschitz continuity foiif seen in dependence on the de-
grees of presence. So for instance,put 2, and assume that we know with certaidty

that we can conclude that if propertyfully applies so doeg), that is,(¢, 1) 4 (¥, 1).

In the calculus introduced below we may conclude {za0.9) = (¢, 1) provided

thatd > 0.2.

Our new rule offers a simple way to prevento “jump” when changing continuously
from one situation to another, in that changes are boundddpendence of the “dis-
tance” between situations. This procedure is certainlgmtic. But it solves in a very
direct and transparent way the problem which we have andf@stecan be controlled
by a deliberate choice of.

Let us fix a real parameter> 1 throughout this section.

To realise our aim, we will not endow the underlying topotiadispace with a metric.
We will rather fix a subsel/ of M and restrict the way in which, for instancg]u];),
u € U, can vary depending oh The background is the following problem. Assume
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that [u]; is excluded, in which case([u);) = 1 and consequentlyu;]; = @. Thus, if
we define continuity by means of a metric of the underlyingcepave could not infer
anything aboup([u;]s) for s close tot.

Definition 5.1. Let (M, p) be a regular Kleene uncertainty algebra, andle€ M.

Letwv; ..., v, be (not necessarily different) elementsiofand letsy, t1, ..., sk, tx €
[0,1] such thats; — s;|, [t; — t;] < 2¢ whenevew; = v,. If under these conditions it
is always the case that; — ¢1],...,|sk — tx]| < Aimplies

lo([vi]8, NN [wklS,) — o([vi]g, NN ogls )| < 7A 17)

we say thab is 7-smoothw.r.t. U.

The arguments of in (17) have a rather specific form; a more general form isiptEss
as well.

For the proof that follows, note that any;, B; € Ry, i € I, whereM is a Kleene
uncertainty algebra, we have

lo(Ai) — o(B;)| < A for eachi implies |o(lJ, 4s) — o(U; Bi)| < A. (18)

Lemma 5.2. Let (M, o) be a regular Kleene uncertainty algebra such thais 7-
smooth w.rtU C M. Letwv;...,vx € M be expressible from elementsiéfin a
way that eachy, € U occurs always positively or always negatively. Furtherendet
s1,t1,..., 8k, tr € [0,1] such thats; — s;|, [t; — t;| < 2¢ whenever both im; andv;
someu € U occurs. Thensy — 1], ..., |sk — tx| < A implies(17).

Proof. The argument relies on a decomposition of the occurringsdsmnmeans of
Lemma 4.10. Namely, we can wrife;]S, N ... N [v]¢, as the disjunction of con-

junctions of expressions of the forf]$ or [u]is or [u]is, whereu € U ands €
{s1,~$1,..., sk, ~sk}. Consider one among these conjunctions, and letU occur

in it. Then the conjunction of those conjuncts in whiclappears equals]$ or [u]iS

or [u]iS or [u]$ N [u]g,, where|s — s'| < 2{. As we can express the terms of the
form [u] , or [u]%, as a disjunction of expressions of the fofm, we conclude that
[v1]§, Nn...n [U,Jgk is the disjunction of terms of the form as specified in Defamiti
51.

Let us next decompoe‘tel]f1 Nn...N [vk]fk in exact analogy. The disjuncts are thenin
a one-to-one correspondence, and corresponding valdesluifless than.

From (18) we conclude the assertion. O

Smoothness of a rejection function can be particularlylgasipressed in terms of
the natural parametrisation of the Boolean alge®ja associated to a regular Kleene
algebra(M, o). Namely, we may associate with each cgbg s1) x ... X (rn, sy) C

[0, 1]~ the (not necessarily non-zero) eleménte S: 71 < ui(z) < 51, ..., v <
’U,N(:L') < SN} of R -
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Lemma5.3. Let(M, p) be a regular Kleene uncertainty algebra, andlet= {u, .. .,

un} C M generateM as a Kleene algebra. Fobf, x ... x Iy € RY([0, 1])N, where
I, ..., Ix € RY([0,1]), put

(I X ... xIN) = i Nty In,

wheree,,,, i = 1, ..., N is given according to Lemm&9. Then: extends to an epimor-
phism between Boolean algebras frath([0, 1])N to Ras.

Proof. For eachi, ¢,, is an homomorphism frorR'([0, 1]) to Ry, by Lemma 4.9.
These homomorphisms are combined to the homomorphisom the N-fold free
product ofR'([0, 1]) to R as indicated [11, Chapter VI].

BecauseV/ is generated b}/ and because of Lemma 4.10s surjective. O

Before expressing smoothness with respect to a parantetns# S, we have to fix
some notation. We will use the supremum meteig(d -) on [0, 1]V:

Ooo (21, oy 2N), (Y15 o yN)) = mlax|xi — il
(mla ---,-TN), (yh "'7yN) € [Oa 1]N

Occasionally, we will use the-neighbourhoods w.r.t. this metric; fpre [0, 1] and

e >0, we putlU.(p) = {q € [0,1]": d(p,q) < €}. Moreover, the diameter of some
P e RY(Jo, 1])N will be meant to be the valueip{d..(p1,p2): p1,p2 € P}.

We furthermore extendd(-, -) to pairs of subsets in the usual way, both asymmetrical
and symmetrical. Soi-, -) is the Hausdorff quasimetric aR([0, 1])N:

(P,Q) = sup inf du(p,q),  P,QeR'([0,1));
pGPqGQ

and dy(-, -) is the Hausdorff metric o' ([0, 1])N:

W(P,Q) = u(P,Q)vau(@Q,P),  P,QeR([0,1)",

We are ready to state several alternative formulations afothmess of the rejection
function.
Definition 5.4. Let (M, o) be a regular Kleene uncertainty algebra, andUet=

{u1,...,uny} € M generateM. Let.: Rf([o,l])N — R be defined according
to Lemma 5.3; then we will call thenatural parametrisatiorof R, w.r.t. U.

Furthermoreyp is said to beénducedby a functionr: D — [0, 1], whereD is a dense
subset of0, 1)%, if

o(P) = inf r(p), PemR(0,1)".

pePND

Finally, a functionr : [0,1]¥ — [0,1] is calledr-Lipschitz continuoudf, for any
p,q € [0,1]V, we havelr(p) — r(q)| < 7A whenever d,(p, q) < A.
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Lemma 5.5. Let (M, p) be a regular Kleene uncertainty algebra, and légenerate
M. Let.: R([0,1])Y — Ry be the natural parametrisation 62, w.rt. U. Then
the following statements are equivalent:

() pisT-smooth w.r.tl.

(8) For any non-empt, Q € R' ([0, 1), |o(:P) — o(1Q)| < 7A if Gu(P,Q) <
A.

(7) eisinduced by ar-Lipschitz continuous function: [0, 1]V — [0, 1].

Proof. Assume &). To show (), let P,Q € R([0, 1])N such that d(P, Q) < A.
Assume first thatP? and @ are cubic and have a diameter 2¢. ThenP = I; x

.x Iy andQ = J; x ... x Jy forintervalsly, ..., JJy € R'([0,1]) such that
du(l1, J1),...,du(In, Jn) < A. Clearly, there arey, s2,t1,t2 € (=, 1+ ¢) such
thatl; = UC(Sl) N U<(82> andJ; = Uc(h) n Uc(t2> and|51 — t1|, |82 — t2| < N\
and the same holds for the remaining indiees. ., N. Because, fot € (—(,1 + (),
t(Uc(t) x [0,1] x ... x [0,1]) = [u1]¢ and similarly for the indiceg, ..., N, the
assertion follows.

Let now P,Q € R'([0, 1])N be arbitrary such thatidP, Q) < A. Then there are
P, ., Py, Qq,...,Qy with diameter< 2¢ such thatP? = | J, P, and@ = |J, Q; and
furthermore d(P;, Q;) < X for all i. We conclude by (18) thaf3] holds.

Itis clear that () implies ().
Assume (3); we proceed to showy. Forp € [0, 1]V, let

r(p) = sup {o(tP): P e RY([0, 1])N andp € P}

We claim that- is 7-smooth. Indeed, let, ¢ € [0, 1]Y such thatd,(p,q) < \. Let\

be such that g (p,¢) < X < X and lete > 0. Choose cubic neighbourhootis of

p andU, of ¢ with diameter< 2¢ such thatr(p) — o(tUp)|, |7(q) — 0(Uy)| < € and
du(Up, Uy) < X. Then|r(p) — r(q)| < |o(Up) — 0(tUy)| + 26 < 7N + 2¢, and the
claim follows.

We next claim that fo® € R ([0, 1])N we havep(.P) = inf {r(p): p € P}. Indeed,
o(tP) < r(p) foranyp € P. LetP D P, D P, D ... such thap(cP;) = o(.P) for
all + and such that the diameter Bf converges t@. Lete > 0; leti be large enough
such that the diameter @, is belowe; theno(1Q) < o(¢P;) + 7¢ = o(tP) + e for
any@ C P;, and it followsr(p) < o(.P) + 7¢ for anyp € P;. The claim follows, and
() is shown.

Assume §), and letp be induced by the-smoothr : [0,1]Y — [0,1]. Let P,Q €

RI([0,1)" such that (P, Q) = X' < A. W.l.0.g. we assume(.P) > 0(:Q). Then
lo(tP) — 0(1Q)| = inf,epr(p) — infeeqr(q). Lete > 0, and choose @ € Q
such that(q) — 0(tQ) < e; and choose € P such thatd.(p,q) < X' +¢e. Then
lo(¢P) — 0(Q)] < r(p) —r(g) +e < 7(XN +¢) +e. (B) follows. O
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Lemma 5.6. Let (M, p) be a regular Kleene uncertainty algebra, and &tC M
generateM. Let.: RY([0, 1])N — R be the natural parametrisation &, w.r.t. U.
Let Ry, ..., R,, be a partition ofR' (|0, 1])N; thenD = R; U...U R,, is dense in
[0,1]V. Let furthermorer, ..., 7, € [0,1] such that-; = 0 for at least one index.
Let

r1 ifp € Ry,

r: D—[0,1], p—
rm P € Ry,

and letp be the rejection function induced by Furthermore, let

2 [0,1]N = [0,1], p > sup (r(q) — 7deo (p, 0))VO,
qeD

and leto’ be the rejection function induced by. Theny' is the smallest-smooth
rejection function such that’ > o.

Moreover, letP € R([0,1])". Then there are cubeB,, . .., P, € R([0,1])" such
thatP = Py V...V P, and foreach = 1,...,nthereis a cubi@); contained ink;
for somej € {1, ...,m} such that either

o'(tP;) = 0(1Qi) — Tdn(P;, Qi) = o (1P) (19)

or
o' (LPi) > 0(1Q;) — TAW(Pi, Q) > o' (LP), (20)
where the first case applies for at least ane

Proof. We first show that’ is 7-smooth. Letp,q € [0, 1] such that d,(p,q) < .
Lete > 0, and choose, € D such that'(q) < r(sq) — 7dso(g,s¢) + €. Then
7' (p) > 1(8q) =T (P, 8¢) > 7(8q) —Too (, @) — 7o (g, 5¢) > 7' (q) — T (p, @) —€.
Sor/(q) — r'(p) < TA, and by symmetry we conclude (p) — ' (q)| < TA.
Clearlyr’|p > r, henceo’ > p. Let nowg” > ¢ anotherr-smooth rejection function.
Let ¢” be induced by”’. Letp € D, and leti be such thap € R;. Thenr”(p) >
o"(tR;) > o(tR;) = r; = r(p); hencer” > r. For anyq € D, it follows r”(p) >
r"(q) — 7doo (p, q) > 7(¢) — 70 (p, ¢); hence ever” > 1/,

It remains to show the last assertion. W.l.0.g. we may asshat?,, ..., R,, andP
are all cubic. We have

o'(tP) = inf sup (r(q) — 70w (p, q))

P
PErqeD 1)
= inf max (r; — Tqu({p}, Ri))-
peEP i
Let us consider a point= (z1,...,zn) € P~. There are two cases:

(A) max; (r; — Tqu({p}, Ri) = o' (4P)
(B) max; (r; — rau({p}, Ri)) > o'(.P).
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If (A) applies, we will associate witlp a cubic neighbourhoodl,, and a partition of

U, N P such that, for each elemetitof this partition,o(:U') can be calculated accord-
ing to (19). Note that by the continuity of the mapping> max; (r; — Taqu({p}, R;)
there is at least ong € P~ fulfilling (A). If (B) applies, we will associate witlp a
cubic neighbourhood, such that (20) holds fav,, N P. (U,),c p- Will be a cover of

P~ by open sets; aB~ is compact, we may choose a finite subcover, and we will be
done.

Casg(A): LetJ = {j € {1,....,m}: ¢/(¢tP) =rj—1ou({p}, R;)}. Forl <i < N, let

+,; € {+, —} such thatE(il, ...,iN) = {(21 +qt1,...,28 EN fN) H ST N g

0} intersectsP non-emptily. Then there must bejac J and ans > 0 such that
Uc(p)NE(%1,....,2n) CPand gi({(z1 £1 ¢, ..., 28 £ 1)}, R;) < du({p}, R;) for

0 < t < ¢; indeed, otherwise the infimum (21) would not be attaineel at

It follows that o4({¢}, R;) < au({p}, R;) forall ¢ € U:(p) N E(+1,...,£n), and
we conclude g(U:(p) N E(£1, ..., £n), Rj) = du({p}, R;). We select a cubi@ C
R; such that q(U.(p) N E(£1, ..., £~), Rj) = du(Us(p) N E(£1,...,£n), Q). SO
we haveo'(«(Us(p) N E(E1, ..., £n)) = o'(tP) = rj — tau({p}, Rj) = 0(:Q) —
704 (U:(p) N E(%£1, ..., £n), Q). Decreasing if necessary, we put, = U.(p).
Case(B): Let j be such that; — rqu({p}, R;) > ¢'(«P). LetU, be a cubic neigh-
bourhood ofy such that, for some, we haver; — 7qu({¢}, R;) > r > ¢'(.P) for all
q € U, and consequently; — 7qu({U, N P}, R;) > r. We select a cubi€) C R;
such that g({U, N P}, R;) = du({U, N P}, Q). Then, by the smoothness of we
concludey’ («(U,NP)) > o' (1Q)—1du({UpNP}, Q) > 0(1Q)—1du({Up,NP}, Q) =
r; — 7qu({Up, N P}, R;) > 1 > o'(LP). O

We now modifyIG¢ accordingly. The resulting logic will be called the SmootisBi-
bilistic Logic with Soft Gradation, denoted ly:S.

Definition 5.7. The propositions the set of which will still be denoted bR, as well
as themplicationsof IGS coincide with those ofG¢, respectively (see Def. 4.7).

An evaluation(vy,v,) of IGS in some regular Kleene uncertainty algelyid, o) is
defined like forIG¢ except that is required to be-smooth w.r.tv s (¢1), . .., v (on)-

The notions oBatisfaction of atheory, and ofsemantic entailmerfor 1G¢ is defined
mutatis mutandis like fof (see Def. 2.3).

For an axiomatisation afGS we have to add a rule reflecting the restriction to smooth
rejection functions.

Definition 5.8. The rules ofIG¢ are those ofiG¢ (see Def. 4.8) and in addition the
following smoothing rule Here, vy, .. ., 1 are gradable propositions such that each
variable occurs in them at all places positively or at alcpnegatively; furthermore,
S1y-«-s8kst1, ..., tk € (—=C, 14 () such thats; — t1],. .., |sr — tx] < A and if some
variable occurs both igp;, andv;, thens;, — s;,,t;, — ti, < 2¢; and finally,« is a
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graded proposition which has no variable in common with. . ., ¢;; andd € [0, 1]:

(1,t0), - (r, te) 2 o
(1,815 gy s) T2

The notion of a proof as well as consistency is defined like ér.

Theorem 5.9. Let 7 be a consistent theory at$ andT' = § an implication ofIG¢.
ThenT semantically entail§ = ¢ if and only if 7 provesl’ = 6.

Proof. The soundness of the rules B¢ follows from Theorem 4.14; the soundness
of the smoothing rule follows from Lemma 5.2.

To show completeness, assume thatoes not prov& = . Disregarding the smooth-
ness rule, we proceed like in the proof of Theorem 4.14 to tcocisthe evaluation
(v, v) in the regular Kleene uncertainty algelftd, o) such that all elements gf

are satisfied byv s, vp). Let furthermore’ be the smallest-smooth rejection function
such that’ > p; thenT is satisfied by(vy, v) also in(M, ¢’). Moreover, let be any
proposition and! = o'(vs(a)). By Lemma 5.6 and the presence of the smoothness

rule,7 provesa 4.
Let o be the conjunction of U {—d}. Assume thal' = § is satisfied in M, ¢'). This

means that’ = o/(v,()) > e. It follows that7 provesa = L, so that7 proves
I' = 4, in contradiction to the assumption. O

6 Conclusion

We have extended Dubois and Prade’s Possibilistic Logicsgo allow the treatment
of vague notions. Our guideline was to integrate, but notitg aspects of uncertainty
and of vagueness in a uniform framework. Statements of ttme fleat a property holds
to a specific degree were integrated into the plausibilagdal calculus. The degree of
presence of a property has by default no influence on the dexjriégs plausibility; a
smoothness rule, whose effect can be controlled by a reahpeter, can however be
added to ensure the continuity of the degree of uncertaiitty iegard to changes of
the degrees of presence of the involved properties.

As regards the foundational problem of fuzzy logic, the rdthas, as we guess, the
advantage that fuzzy sets are treated as parametrised sespgproperties, which in
turn are treated classically. The question how to model @gaperties by fuzzy sets
is however assumed to be solved and the Kleene algebrawseuds to be accepted
as definitional. We may just underline that the choice of goraepriate fuzzy set for
a given property works in practise very well and the decisibaut the shape of fuzzy
sets can in fact be put on firm grounds as, for instance, th& &) demonstrates.
Even the adequacy of the Kleene algebra structure is swggpbst results of [13].
But we should certainly remain cautious — in general we gheay that the operations
between fuzzy sets chosen here are widely used but in maest pasely pragmatically.
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In the remainder of the paper we will explain how our formalisan be of practical
use. Namely, it is possible to mimic the inference mechara$ra medical expert
system in our logidGS. We have in mind the expert system CADIAG-2 [1, 15], which
has been developed at the Medical University of Vienna. dt/joles clinical decision
support in several areas of internal medicine.

Assume that the following facts about a patient are knownthatthe following rule
is contained in the knowledge base of CADIAG-2; we use thatint of [3]:

(01, 8), (o2, t), (01 ANoa—94, d);

here,o; ando, denote symptomsj denotes a disease, andi,d € [0,1]. These
statements code the following information: the symptemholds to the degree;
the symptonv, holds to the degreg and if the conjunction of these two symptoms
evaluate tal, that is, if they both fully apply, we may conclude thiais certain to the
degreel. The following rules of the logic underlying CADIAG-2 — henee show the
appropriate instances — are applied to draw a conclusioase thats, ¢,d > 0 (see
3)):
3D (01, 8) (o2, t) (01 Noa, srt) (o1 Aoa — 6, d)

(o1 A og, snt) (8, dx (snt)) ’

wherex is a t-norm. We may for instance assume thit the Lukasiewicz t-norm:

*: [0, 1] X [0, 1] — [0, 1], (tl,ﬁg) — (ﬁl + to — 1)vO0.
Thus, in other words, CADIAG-2 concludes fra@y, s) and(o2, t) thatd is certain
to the degred + sat — 1, provided that this value is strictly positive.

We switch now to the present framework. We chogse 0.3 andr = 4. The rule
shown above translates to the followingTi6)-3:

(01 A o2, 1) 2 (8,1);
from this implication we derive inG$-3
(01,1), (02, 1) 2 (5,1),

and using the smoothing rule furthermore

(d+4(sg)—4)VO

(01,8), (02,1) (6,1).

Thus in this framework, the conclusion is thats present with the certainty degree
d+4(s Nt) —4 = d— 4(1 — sat), provided that this value is positive. Comparing
this with the valuel + sat — 1 = d — (1 — sat), we see that the conclusion is more
cautious inIG}-3 than in CADIAG-2.

We conclude, first of all, that the shown inference of CADI&Galthough in a modi-
fied form, is possible inG}-3as well. The expert system can in fact be basedar’.

However, we have not yet examined the question of performare the example,
the certainty value provided byG-? is smaller, so that the result is weaker than in
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the original version. There are two further types of ruleshie knowledge base of
CADIAG-2; in case of these rules the results will in genemstyonger. Concerning the
overall performance of CADIAG-2 on the one hand and of a systevdified according
to the ideas presented in this article on the other hand dites not imply anything
though. Practical tests with patient data are to follow.
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