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Abstract

Partial Boolean algebras (PBA’s) were introduced by Kochenand Specker
as an algebraic model reflecting the mutual relationships among quantum-
physical yes-no tests. The fact that not all pairs of tests are compatible was
taken into special account.

In this paper, we review PBA’s from two sides. First, we generalize the
concept, taking into account also those yes-no tests which are based on un-
sharp measurements. Namely, we introduce partial MV-algebras, and we
define a corresponding logic.

Second, we turn to the representation theory of PBA’s. In analogy to the
case of orthomodular lattices, we give conditions for a PBA to be isomorphic
to the PBA of closed subspaces of a complex Hilbert space. Hereby, we
do not restrict to purely algebraic statements; we rather give preference to
conditions involving automorphisms of a PBA.

We conclude outlining a critical view on the logico-algebraic approach to
the foundational problem of quantum physics.

Keywords:Partial Boolean algebras, partial MV-algebras, quantum logic,
Hilbert space

1 Introduction

With this note, we intend to contribute to a research line around which it has be-
come calm during the last years. During many years, it was theaim of an ambitious
program to justify the basic model of quantum physics on baseof a few basic and
easily comprehensible principles. The Hilbert space, which otherwise seems to be
chosen ad hoc, was to be reconstructed in an algebraic or evenlogical framework.
Understandably, the research focused on the set of two-valued measurements as-
sociated with some quantum-physical arrangement. A Hilbert space model of the
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experiment being given, the yes-no tests are alternativelymodelled by the closed
subspaces, or more generally by the effects, that is, by the positive operators below
the identity.

The closed subspaces form an orthomodular lattice (OML), and this fact led to an
extensive research about this, admittedly fascinating, kind of algebra, about which,
by the way, numerous important problems are still open. However, as apparent
from the work of [6], the weak point about the OML-based approach is the fact
that to apply lattice-theoretical operations in the algebra means to combine possibly
incompatible experiments. Already in 1965, Kochen and Specker made an alter-
native proposal; they endowed the set of closed subspaces ofa Hilbert space with
the structure of a partial Boolean algebra. The idea is to allow lattice-theoretical
operations only in case that the two subspaces commute. Moreover, they defined a
logic in which exactly those propositions are derivable which are valid in all partial
Boolean algebras.

Compared to the approach based on OML’s, the price to pay is certainly high; to
deal with partial algebras is in general quite difficult. This might have been the rea-
son why the Kochen-Specker approach did by far not achieve the same amount of
attention as later the OML-based one. However, the arguments are convincing, and
the unpleasant aspects of the partiality of operations justreflect a basic principle in
quantum physics.

We review in this paper partial Boolean algebras, and we extend the theory slightly
into two directions. First, rather than studying the set of closed subspaces of a
Hilbert space, we may, according to the more general approach, consider the set of
effects. An effect is a self-adjoint operatorE of a Hilbert space such that0 ≤ E ≤
I, whereI is the identity operator;E models a generalized yes-no measurement.
The set of effects might be consider the “fuzzified” counterpart of the set of closed
subspaces.

The set of effects was given an algebraic structure according to an approach of [5],
who introduced effect algebras. In this case, it became unavoidable to work with
partial algebras; effect algebras are based on an addition which is not defined for
all pairs of elements. The standard effect algebra is the setof Hilbert space effects
endowed with a partial addition defined as the usual sum of operators whenever
the result is an effect again. Dalla Chiara and Giuntini introduced in [3] the propo-
sitional logic UPaQL, which is based on effect algebras; namely, with respect to
these algebras, the calculus was shown to be sound and complete.

Now, the critics due to Kochen and Specker’s work concerningthe set of Hilbert
space subspaces, apply for the generalized approach as well. Namely, two effects
may be connected - namely, their sum may be formed - even if these effects rep-
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resent incompatible experiments. Indeed, any two effects,if they commute or not,
may each be multiplied by12 to become summable.

We propose here to treat the set of effects in a way analogous to the way proposed
in [6]. We introduce operations in analogy to MV-algebras, but defined only in
the case that two effects commute. We are then led to the notion of a partial MV-
algebra. We may furthermore formulate a logic for these algebras and show a
completeness theorem.

The second part of our note on partial Boolean algebras concerns the old question
how to get the Hilbert space structure from natural postulates. The aim to iden-
tify the standard Hilbert space, that is, theℵ0-dimensional complex Hilbert space,
with an appropriate logic, has failed. However, the aim to characterize the standard
Hilbert space by pure algebraic means was achieved, aside from the excusable re-
striction that an infinitary condition must be allowed; the conditions are formulated
for OML’s. Certain of these conditions are quite cumbersome; however, there is an
alternative way, not formulated in an algebraic language, but to be considered at
least as natural as the lattice-theoretical conditions: the existence of certain auto-
morphisms. This was, in particular, pointed out in [9, 8].

We give a representation theorem along these lines for partial Boolean algebras.
To this end, we work with a condition which has been called transitivity in [1],
meaning to assume that our partial algebra is partially ordered. This is not a crit-
ical point, however, since it is not the partial order, but the lattice structure which
is sensitive to interpretational questions. In particular, we do not assume the exis-
tence of infima and suprema; this is rather a consequence of the conditions on the
existence of automorphisms.

We conclude with a general evaluation of the quantum logical, or quantum struc-
tural, approach to the foundations of quantum theory.

2 Partial Boolean algebras

Let H be a complex Hilbert space; letC(H) be the set of closed subspaces of
H. We can endowC(H) with an algebraic structure as follows. The relation3

is the compatibility relation onC(H); two subspacesA,B ∈ C(H) are called
compatible if there are mutually orthogonal elementsA0, B0, C ∈ C(H) such that
A = [A0 ∪C] andB = [B0 ∪C]; by [X], we denote the smallest closed subspace
containingX ⊆ H. Moreover, for two compatible subspacesA,B ∈ C(H), define
A ∩3 B = A ∩ B and leaveA ∩3 B undefined otherwise. Finally, putA⊥ =
{a ∈ H : a ⊥ v for all v ∈ A}. Then, the structure(C(H);3,∩3,

⊥, {0},H) is
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the prototypical example of the following notion, introduced in [6].

We note that here and in the sequel, our definitions might be slightly modified
compared to the original ones, but never in an essential way.

Definition 2.1 The structure(L;3,∧,¬, 0, 1) is called apartial Boolean algebra,
or PBAfor short, if the following conditions are fulfilled:

(PB1) 3 is a symmetric and reflexive binary relation. Elementsa andb such
thata3 b are calledcompatible.

(PB2) ∧ is a partial binary operations, and fora, b ∈ L, a∧ b is defined if and
only if a3 b. Moreover,¬ is a total unary operation.

(PB3) LetB be a finite subset ofL such thata3 b for anya, b ∈ B. Then any
term formed from elements ofB and the constants0, 1 by means of
the operations∧ and¬ is defined. LetB̄ be the set containing all these
elements; thena3 b for all a, b ∈ B̄, and(B̄;∧,¬, 0, 1), is a Boolean
algebra.

In the sequel, when we say that an equation containing partial operations holds, we
mean that the partial operations are defined and the equalityholds.

Note that we use only the infimum, and not the supremum, as an own operation of
a PBA. We will rather treat expressionsa ∨ b as defined by¬(¬a ∧ ¬b). Note that
then,a ∨ b is defined exactly ifa ∧ b is.

(PB3) could certainly be formulated more scarcely; since the defining equations of
Boolean algebras involve maximally three elements, (PB3) could be replaced by
the requirement that any three mutually compatible elements fulfil the equations
valid for Boolean algebras and that Boolean combinations preserve compatibil-
ity. We preferred the more detailed version, which more directly expresses the
intention: any finite subset of mutually compatible elements generates a Boolean
algebra.

For a PBAL, it is in general hardly possible to derive any global property. In
particular, for two arbitrary elementsa, b ∈ L, a ∧ b anda ∨ b are not defined
in general, soL need not be a lattice. Even worse,L need not even be partially
orderable in some natural way. Only in the second half of thispaper, we will use a
modification of the notion of a PBA according to [1], such thata partial order will
be guaranteed.

Clearly,(C(H);3,∩3,
⊥, {0},H) is a PBA.

4



We may now define a logic for PBA’s, to be calledLPB. We follow [6] as closely
as possible. We first define the language ofLPB.

Definition 2.2 An expression built up from a setϕ0, ϕ1, . . . of propositional vari-
ablesand theconstants0 and1 by means of the binary operation∧ and the unary
operation¬ is called aproper propositionof LPB. We denote the set of all proper
propositions byFp. Moreover, an expression of the formα3β, whereα, β ∈ Fp,
is called acompatibility propositionof LPB. We denote the set of compatibility
propositions byFc. We defineF = Fp ∪ Fc as the set ofpropositionsof LPB.

We will use the usual abbreviations in propositions ofLPB. Namely, ifα, β ∈ Fp,
α∨β stands for¬(¬α ∧ ¬β); α→β is¬α∨β; andα↔ β is (α→β)∧ (β→α).
Furthermore, forα1, . . . , αk, wherek ≥ 0, the expression3 (α1, . . . , αk) replaces
the setαi 3αj , 1 ≤ i ≤ j ≤ k, of compatibility propositions. In particular, if
k = 0, this is the empty sequence; ifk = 1, we drop the brackets and write3α1,
meaningα1 3α1; 3 (α1, α2) is α1 3α1, α1 3α2, α2 3α2; and so on.

We now define which formulas are valid in all PBA’s. Validity is in case of a partial
algebra not a straightforward notion; the definition goes asfollows.

Definition 2.3 Let (L;3,∧,¬, 0, 1) be a PBA. Then a partial mappingv : Fp →
L is called anevaluationfor LPB if, for any γ ∈ Fp, the following conditions are
fulfilled:

(1) If γ is atomic,v(γ) is defined. Moreover,v(0) = 0 andv(1) = 1.

(2) If γ is of the formα ∧ β, thenv(γ) is defined if and only ifv(α) is defined
andv(β) is defined andv(α)3 v(β) holds. In this case,v(γ) = v(α)∧v(β).

(3) If γ is of the form¬α, thenv(γ) is defined if and only ifv(α) is defined. In
this case,v(γ) = ¬v(α).

Let α ∈ Fp. An evaluationv being given,α is said to besatisfiedby v if v(α) is
defined and equals1. α is calledvalid in LPB if α is satisfied by any evaluationv
such thatv(α) is defined; in this case, we write|= α.

Moreover, letα, β ∈ Fp. An evaluationv for LPB being given,α3β is said to be
satisfied byv if v(α) andv(β) are defined andv(α)3 v(β) holds.

Note the role of propositions of the form3α: It is satisfied by an evaluationv iff
v(α) is defined. Clearly,3α is valid for anyα.
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We next define proofs of the logicLPB. By a Boolean tautology, we mean a proper
proposition provable in classical propositional logic; weassume a proof system to
derive the Boolean tautologies to be given.

Definition 2.4 For any proper propositionsα,α1, . . . , β, the following are the
rules ofLPB:

(R1)
α3β

β3α
, (R2)

α3β β ↔ γ

α3 γ
, (R3)

α3β

α3¬β
, (R4)

3 (α, β, γ)

α 3 β ∧ γ
,

(R5)
3 (α1, . . . , αk)

ϕ(α1, . . . , αk)
, wherek ≥ 0 andϕ is any Boolean tautology,

(R6)
α α→β

β
.

A finite sequence(ϕ1, . . . , ϕk) of propositions is called anα-admissible proofin
LPB if, for any i = 1, . . . , k, eitherϕi is of the form3β andβ is a subformula of
α, or ϕi is of the formβ3 γ andβ ∧ γ is a subformula ofα, or ϕi is derived by
means of one of the rules (R1)–(R6) from propositions amongϕ1, . . . , ϕi−1.

A proper propositionα is calledprovablein LPB if there is anα-admissible proof
whose last element isα; in this case, we write⊢ α.

The main result of [6] is the following. We will reproduce in arough way the proof
from [6], just detailed enough to make additional explanations in case of the more
general logic discussed below unnecessary.

Theorem 2.5 The logicLPB is sound and complete: Any proper propositionα is
provable if and only if it is valid.

Proof: Assume⊢ α, and letv : Fp → L be an evaluation such thatv(α) is
defined. We have to show thatv(α) = 1. By assumption,v is defined for all
subformulas ofα, and for any pair of subformulasβ andγ of α connected by∧,
we havev(β)3 v(γ). It follows that all compatibility propositions in a proof of α
are satisfied byv. Moreover, every rule obviously preserves satisfiability by v. The
claim follows.

Assume that6⊢ α. We have to construct a PBAL and an evaluationv : Fp → L

such thatv(α) is defined, but not equal to1. Call anyϕ ∈ Fp α-provable if there
is anα-admissible proof whose last element isϕ. Note that, by assumption,α
is notα-provable. LetΩ be the set of all proper propositionsϕ such that3ϕ is
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α-provable. ThenΩ contains all subformulas ofα. Furthermore, we easily check
that0, 1 ∈ Ω, and thatα ∈ Ω implies¬α ∈ Ω.

For ϕ,ψ ∈ Ω, let ϕ ∼ ψ if ϕ ↔ ψ is α-provable. Then∼ is an equivalence
relation onΩ. Indeed, from3ϕ, we deriveϕ ↔ ϕ by (R5). Furthermore,ϕ ∼ ψ

implies 3 (ϕ,ψ) by (R2). So fromϕ ∼ ψ, we may deriveψ ∼ ϕ by (R5) and
(R6). Similarly,ϕ ∼ ψ andψ ∼ ξ imply 3 (ϕ,ψ, ξ), whenceϕ ∼ ξ follows.

∼ is compatible with¬. Indeed, letϕ,ψ ∈ Ω; from 3 (ϕ,ψ) we derive3 (ϕ,¬ϕ,ψ,¬ψ),
and consequentlyϕ ∼ ψ implies¬ϕ ∼ ¬ψ. Similarly, ∼ is compatible with∧:
for ϕ,ψ, ξ ∈ Ω such thatϕ3ψ andψ ∼ ξ, we haveϕ3 ξ andϕ ∧ ψ ∼ ϕ ∧ ξ. To
see this, note that3 (ϕ,ψ, ξ) in this case, whenceϕ ∧ ψ ↔ ϕ ∧ ξ is derivable by
(R5) and (R6). Finally,∼ is compatible with3. Indeed, ifϕ3ψ andψ ∼ ξ, we
haveϕ3 ξ by (R2).

Let ([Q];3,∧,¬, [0], [1]) be the partial algebra induced by∼. Clearly, [Q] is a
partial Boolean algebra.v : Fp → [Q], ϕ 7→ [ϕ] is an evaluation such that
v(α) = [α] is defined, but not equal to[1]. We conclude6|= α. 2

What makes Kochen and Specker’s completeness proof somewhat unusual is the
fact that the PBA constructed to show that a non-provable propositionα is not
valid, depends onα. In fact, there seems to be no way to construct a reasonable
analog of the Lindenbaum-Tarski algebra, just like in the case of common total
logics, without any special compatibility assumptions.

3 Partial MV-algebras

Again, letH be a complex Hilbert space; in this section, we shall be concerned
with the set of effects ofH:

E(H) = {E ∈ Bsa(H) : 0 ≤ E ≤ I},

whereBsa(H) is the set of bounded self-adjoint operators ofH, 0 is the zero oper-
ator andI is the identity operator. According to the standard approach, E(H) is en-
dowed with a partial binary operation as follows: For two effectsE andF , E+F

is defined as the usual sum of operators if the result is an effect again, otherwise
E+F remains undefined. We then get the standard effect algebra(E(H);+, 0, I),
a partial algebra intensively discussed in the literature;see e.g. [4].

Here, we proceed differently. First of all, we wish to understand effects as fuzzy
sets. Namely, letE ∈ E(H); then there is a compact, second countable Haus-
dorff spaceX endowed with a Radon integral, and there is an isomorphismU :
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L2(X) → H such that, for ane ∈ L∞, we haveE = UMeU
−1, where

Me : L2(X) → L2(X), v 7→ v e,

that is,Me is the pointwise multiplication operator. (See e.g. [11].)Since the
spectrum ofE is in [0, 1], e is actually (up to a set of measure zero) a fuzzy set on
X: e maps fromX to [0, 1].

Clearly, for arbitrary two effects, a joint representationof this kind is impossible.
However, what we have in mind is to connect pairs of effects only in case they
are compatible, that is, if they commute. LetA be a set of effects such that any
two of them commute; then we have a representation as before.Namely, there is a
compact, second countable Hausdorff spaceX endowed with a Radon integral, an
isomorphismU : L2(X) → H, and for eachE ∈ A there is ane(E) ∈ L∞ such
thatE = UMe(E)U

−1.

This representation being given, we may introduce an algebraic structure on the set
of fuzzy sets{e(E) : E ∈ A}. To this end, assume thatA is a maximal set of
pairwise commuting effects. We choose a standard conjunction from fuzzy logic,
the Łukasiewicz t-norm, and the standard negation:

⊙ : [0, 1]2 → [0, 1], (s, t) 7→ (s+ t− 1) ∨ 0, (1)

¬ : [0, 1] → [0, 1], t 7→ 1 − t. (2)

These operations apply pointwise to fuzzy sets; we will use the same notation in
this case. So for a pairE,F ∈ A, we may consider their representationsMe(E)

andMe(F ) in L2(X), and we may associate to them the operatorMe(E)⊙e(F ); the
corresponding operator inH will be denoted byE⊙F . Similarly, we may associate
toMe(E) the operatorM¬e(E); the corresponding operator inH will be denoted by
¬E. Note thatE ⊙ F and¬E are effects again. Furthermore, the definition of⊙
and¬ on the setA does not depend on the representationU of H.

Similarly like in the case of the closed subspaces, we endowE(H) with a compat-
ibility relation; we define

E3F if E andF commute.

For anyE,F ∈ (E(H), we defineE ⊙ F as above ifE3F , and we letE ⊙ F

undefined otherwise. Similarly, for anyE ∈ (E(H), we define¬E as above. The
resulting partial algebra(E(H);3,⊙,¬, 0, I) shall be called the standard partial
MV-algebra.

We recall next the notion of an MV-algebra. A structure(L;∧,∨,⊙,¬, 0, 1) is an
MV-algebra if (L;∧,∨, 0, 1) is a bounded lattice,(L;∧,∨,⊙, 1) is anℓ-monoid,
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¬ is an involutive order-reversing unary operation, anda ∧ b = a⊙¬(a⊙ ¬b) for
anya, b ∈ L. For a detailed exposition on MV-algebras, see e.g. [2].

In MV-algebras, the lattice-theoretic operations∧ and∨ are both term-definable
from the remaining operations. This is clear in case of the infimum, and the supre-
mum is definable from∧ and¬. From now on, we will not consider∧ and∨ as
own operations; an MV-algebra will be a structure of the form(L;⊙,¬, 0, 1).

The standard examples of MV-algebras are sets of fuzzy sets.Let some non-empty
setX be given, andL consist of fuzzy sets onX, that is, functionsu : X → [0, 1].
Assume furthermore thatL is closed under the operations⊙ and¬ and thatL
contains the constant zero fuzzy set0̄ and the constant one fuzzy set1̄. It is easily
checked that(L;⊙,¬, 0̄, 1̄) is an MV-algebra. By applying the mentioned formulas
for the discarded operations∧ and∨, it may also be seen that the infimum is inL
simply the pointwise minimum, and the supremum is the pointwise maximum.

Just like Boolean algebras generalize to partial Boolean algebras, MV-algebras
generalize to partial MV-algebras.

Definition 3.1 The structure(L;3,⊙,¬, 0, 1) is called apartial MV-algebraif the
following conditions are fulfilled:

(PM1) 3 is a symmetric and reflexive binary relation. Elementsa andb such
thata3 b are calledcompatible.

(PM2) ⊙ is a partial binary operations, and fora, b ∈ L, a⊙ b is defined if and
only if a3 b. Moreover,¬ is a total unary operation.

(PM3) LetM be a finite subset ofL such thata3 b for anya, b ∈ M . Then
any term formed from elements ofM and the constants0, 1 by means
of the operations⊙ and¬ is defined. LetM̄ be the set containing all
these elements; thena3 b for all a, b ∈ M̄ , and(M̄ ;⊙,¬, 0, 1), is an
MV-algebra.

It is obvious from the definition that exactly in case that therelation3 is total, a
partial MV-algebra is an MV-algebra.

Again, we may note that (PM3) could be replaced by a requirement involving only
three mutually compatible elements.

It should be clear from the above discussion that(E(H);3,⊙,¬, 0, I) is a partial
MV-algebra.

As in the case of partial Boolean algebras, there is in general no reasonable way to
endow a partial MV-algebra with a partial order. Namely, we may tentatively put
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a � b if a andb are compatible and in the MV-algebra generated bya andb, we
havea ≤ b. However,� is not necessarily transitive. ConsiderE(H); for effects
E,F,G, we may haveE ≤ F andE3F , furthermoreF ≤ G andF 3G, so also
E ≤ G, but we cannot conclude thatE3G.

We now define a logic for partial MV-algebras in complete analogy to the logic
LPB; we will call it LPM . We avoid repetitions where possible.

Definition 3.2 The setFp of proper propositionsand the setFc of compatibility
propositionsof LPM are defined as in Definition 2.2, but using the binary connec-
tive ⊙ instead of∧. We letF = Fp ∪ Fc be the set ofpropositionsof LPM .

The abbreviations needed are the following. Forα, β ∈ Fp, α → β stands for
¬(α⊙ ¬β), andα ↔ β is (α→β) ⊙ (β→α). Forα1, . . . , αk, wherek ≥ 0, we
define3 (α1, . . . , αk) as above. Additional abbreviations areα∧β for α⊙(α→β)
andα ∨ β for (α→β)→β.

We now define validity w.r.t. partial MV-algebras.

Definition 3.3 Let (L;3,⊙,¬, 0, 1) be a partial MV-algebra. Then a partial map-
pingv : Fp → L is called anevaluationfor LPM if, for anyγ ∈ Fp, the following
conditions are fulfilled:

(1) If γ is atomic,v(γ) is defined. Moreover,v(0) = 0 andv(1) = 1.

(2) If γ is of the formα ⊙ β, thenv(γ) is defined if and only ifv(α) is defined
andv(β) is defined andv(α)3 v(β) holds. In this case,v(γ) = v(α)⊙v(β).

(3) If γ is of the form¬α, thenv(γ) is defined if and only ifv(α) is defined. In
this case,v(γ) = ¬v(α).

Satisfaction by some evaluation and validity for propositions is defined in analogy
to Definition 2.3 above.

We next define proofs in the logicLPM . We note first that the propositions which
are valid in all MV-algebras are exactly the tautologies of Łukasiewicz logic, or
Łukasiewicz tautologies for short. We assume that a proof system for this logic
has been defined. We refer to [2] for a Hilbert-style proof system, and to [10] for a
r-hypersequent-based analytic proof system.
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Definition 3.4 For any proper propositionsα,α1, . . . , β, the following are the ax-
ioms and rules ofLPM :

(R1)
α3β

β3α
, (R2)

α3β β ↔ γ

α3 γ
, (R3)

α3β

α3¬β
, (R4)

3 (α, β, γ)

α 3 β ⊙ γ
,

(R5)
3 (α1, . . . , αk)

ϕ(α1, . . . , αk)
, wherek ≥ 0 andϕ is a Łukasiewicz tautology,

(R6)
α α→β

β
.

A finite sequence(ϕ1, . . . , ϕk) of propositions is anα-admissible proofif, for any
i = 1, . . . , k, eitherϕi is of the form 3β andβ is a subformula ofα, or ϕi is of
the formβ3 γ andβ ⊙ γ is a subformula ofα, or ϕi is derived by means of one
of the rules (R1)–(R6) from propositions amongϕ1, . . . , ϕi−1.

A proper propositionα is calledprovablein LPM if there is anα-admissible proof
whose last element isα. We write⊢ α in this case.

Theorem 3.5 Letα be a proper proposition. Thenα is provable if and only ifα is
valid.

Proof: The proof works like in case of Theorem 2.5. 2

It remains to demonstrate that this logic is new; it is actually not straightforward
to see that the set of tautologies of a partial logic defined inthe way we did, dif-
fers from the set of tautologies of the corresponding total logic. Considering, for
instance, the law of distributivity of⊙ over∨,

α⊙ (β ∨ γ) ↔ (α⊙ β) ∨ (α⊙ γ),

does not help to clarify the picture; it is valid not only in all MV-algebras, but also
in all partial MV-algebras. The reason is the rather restrictive notion of validity;
evaluations deciding about the validity of a proposition are only those which have
the proposition in question in their domain. In the present case,α, β, andγ are
requested to be interpreted pairwise compatibly.

The example given in [6] for the case of PBA’s does not work here; the proposition

((α↔ β) ↔ (γ ↔ δ)) ↔ ((α ↔ δ) ↔ (β ↔ γ))

is not a tautology of Łukasiewicz logic. However, another example referring to
what is called a “partial algebra” in [6, Section 4], does help after the necessary
modifications. Consider the following graph:
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b b

b b b

b

b b

b b b

b b

V1 V2

V4

V3
V5

V6

V7 V8

V9

V11
V10

V2 V1

(Note thatV1 andV2 are depicted twice.) LetF be the set of functions whose
domain consists of three distinct pointsVi, Vj , Vk, i, j, k ∈ {1, ..., 11}, such thatVi,
Vj , andVk are pairwise connected, and whose range is the real unit interval [0, 1].
Let¬ be the Łukasiewicz negation, and let⊙ be the Łukasiewicz conjunction. For
f ∈ F , let ¬f ∈ F have the same domain likef , and put(¬f)(A) = ¬(f(A))
for A ∈ domf . For f, g ∈ F , let f 3 g if dom f = domg; in this case, we let
f ⊙ g have the same domain likef andg, and put(f ⊙ g)(A) = f(A) ⊙ g(A) for
A ∈ domf .

Define now the equivalence relation≈ on F as follows. Letf, g ∈ F have the
domains{A,B,C} and{A′, B′, C ′}, respectively. Letf ≈ g if either f = g, or
the domains off andg have exactly one point, sayA = A′, in common,f(A) =
g(A′), andf(B) = f(C) = g(B′) = g(C ′), or the domains off andg are disjoint
andf(A) = f(B) = f(C) = g(A′) = g(B′) = g(C ′). Let F̄ = {f̄ : f ∈ F}
be the set of equivalence classesf̄ of the functionsf ∈ F . Furthermore, let3, ⊙,
and¬ be the operations on̄F induced by the equally named relation and operations
onF . Finally, let 0̄ and1̄ the equivalence class of some constant0 and constant1
function, respectively.

Note that finitely many elements̄f1, . . . , f̄k of F̄ fulfil pairwise the3-relation
exactly if there aref ′1 ≈ f1, . . . , f

′
k ≈ fk with coinciding domains. It is then

straightforward to check that(F̄ ;3,⊙,¬, 0̄, 1̄) is a partial MV-algebra.

Let us next consider the proposition

(α⊙ β) ⊙ (γ ⊙ δ) ↔ (α⊙ δ) ⊙ (β ⊙ γ). (3)

Clearly, (3) is valid in all MV-algebras, that is, a tautology of Łukasiewicz logic.
However, (3) is not valid in all partial MV-algebras, that is, it is not a tautology
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of LPM . Consider an evaluationv with rangeF̄ , wherev(α) = ā, v(β) = b̄,
v(γ) = c̄, v(δ) = d̄, and wherea, b, c, d ∈ F are defined as follows (we identify
the functions with their graphs):

a = {(V1, 0.7), (V3, 1), (V4, 1)} ≈ {(V1, 0.7), (V10 , 1), (V11, 1)},

b = {(V1, 1), (V3, 0.7), (V4 , 1)} ≈ {(V2, 1), (V3, 0.7), (V5, 1)},

c = {(V2, 0.7), (V3, 1), (V5, 1)} ≈ {(V2, 0.7), (V9, 1), (V11, 1)},

d = {(V2, 1), (V9, 1), (V11, 0.7)} ≈ {(V1, 1), (V10, 1), (V11, 0.7)}.

Then(ā⊙b̄)⊙(c̄⊙d̄) contains{(V4, 0.7), (V7 , 0.4), (V9, 0.7)}, hence also{(V6, 0.7), (V7, 0.4), (V8, 0.7)}.
On the other hand,(ā⊙d̄)⊙(b̄⊙c̄) contains{(V6, 0.7), (V8, 0.4), (V10 , 0.7)}, hence
also{(V6, 0.7), (V7, 0.7), (V8, 0.4)}.

4 Representation of partial Boolean algebras

We now turn to the representation problem for partial Boolean algebras. We are go-
ing to characterize the standard PBA, namely, the partial algebra(C(H);3,∩3,

⊥, {0},H),
whereH is the complex Hilbert space of countably infinite dimension, C(H) is the
set of closed subspaces ofH, 3 is the compatibility relation between subspaces,
∩3 denotes the intersection restricted to pairs of compatiblesubspaces, and⊥ is
the complementation function.

We begin recalling the lattice-theoretical characterization of the system of closed
subspaces of a Hilbert space. As in the previous sections, wewill treat ∨, the
supremum, always as a defined operation, defined by the respective infimum and
complementation operations.

Definition 4.1 Let K be a division ring endowed with the antiautomorphism⋆ :
K → K; let H be a linear space overK; and let(·, ·) : H ×H → K a semilinear
form such that, fora, b ∈ E, (a, b)⋆ = (b, a), and(a, a) = 0 impliesa = 0. Then
(H, (·, ·)) is called ahermitean space.

In a hermitean spaceH, letC(H) be the system of subspacesA such thatA⊥⊥ =
A, where, for a subspaceB, B⊥ = {x ∈ H : (x, y) = 0 for all y ∈ H}. (H, (·, ·))
is called anorthomodular spaceif H = A+A⊥ for all A ∈ C(H).

Orthomodular spaces are lattice-theoretically characterized in the following way.
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Definition 4.2 An ortholattice(L;∧,¬,0, 1) is called aHilbert lattice if (i) L is
orthomodular, i.e. for anya, b such thata ≤ b there is a uniquec ⊥ a such that
a∨c = b; (ii) L is an AC-lattice, i.e.L is atomistic and fulfils the covering property;
(iii) L is irreducible; (iv)L is complete.

Theorem 4.3 For any Hilbert lattice(L;∧,¬, 0, 1) of length≥ 4, there is a uniquely
determined orthomodular spaceH such that(L;∧,¬, 0, 1) is isomorphic to(C(H);∩,⊥, {0},H).

By the celebrated theorem of [12], an orthomodular space containing an infinite
sequence of pairwise orthogonal vectors of the same non-zero length, is a Hilbert
space overR, C, or H. We use this result in the form presented in [8].

We need the following auxiliary notion. For some automorphism ϕ of a Hilbert
lattice, we call an elementa ∈ L fixed byϕ if ϕ(x) = x for all x ≤ a. Now, for
some Hilbert lattice(L;∧,⊥, 0, 1), we consider the following conditions:

(HL1) There is a sequencee1, e2, . . . of pairwise orthogonal atoms.

(HL2) For any two orthogonal atomse andf , there is an automorphismϕ of
L such thatϕ(e) = f andϕ(x) = x for all x ⊥ e, f .

(HL3) For anyn ≥ 2 and for any automorphismϕ of L such that there is an
element of length≥ 2 fixed byϕ, there is an automorphismψ such that
(α) ψn = ϕ and (β) for any atome, ψ(e) = e wheneverϕ(e) = e.

Lemma 4.4 LetH be an infinite-dimensional complex Hilbert space. Then(C(H);∩,⊥, {0},H),
the ortholattice of closed subspaces, is a Hilbert lattice with the properties(HL1),
(HL2), and(HL3).

Proof: It is well-known thatC(H) is a Hilbert lattice, and it is evident that condi-
tions (HL1) and (HL2) are fulfilled.

To see that (HL3) holds, letϕ be an automorphism ofC(H) such thatϕ(B) = B

for allB ≤ A, whereA ∈ C(H) is at least two-dimensional. By Wigner’s theorem,
ϕ is induced by a semiunitary operatorUϕ. Sinceϕ is the identity on a subspace
of dimension≥ 2, we may chooseUϕ unitary [8, Lemma 1].

We may furthermore assume thatH = L2(X) for some compact Hausdorff space
X endowed with a Radon integral, and that, for someu ∈ L∞(X) with values
in [0, 2π), U(v) = eiu(·)v(·), v ∈ H. Then, for any non-zerov ∈ H, v and
U(v) span the same one-dimensional subspace iff there is aλ ∈ [0, 2π) such that
v = e−iλU(v) iff, for someλ ∈ [0, 2π), v(x) = ei(u(x)−λ)v(x) for almost allx
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iff, for someλ ∈ [0, 2π), eitherv(x) = 0 or u(x) = λ for almost allx. So given

n ≥ 2, we may putV (v) = ei
u(·)
n v(·), v ∈ H; thenV n = U , and[U(v)] = [v]

implies [V (v)] = [v]. 2

Theorem 4.5 Let (L;∧,¬, 0, 1) be a Hilbert lattice with the properties(HL1),
(HL2), and(HL3). ThenL is isomorphic to the ortholattice of closed subspaces of
an infinite-dimensional complex Hilbert space.

Proof: (sketched; for further details, see [8]). Let(H, (·, ·)) be the orthomodular
space such that(C(H);∩,⊥, {0},H) is isomorphic to(L;∧,¬, 0, 1). By (HL1),
there is an infinite sequence(vi)i<ω of pairwise orthogonal vectors. By (HL2),
there is an automorphismϕ of C(H) mapping[v1] to [v2] and mapping the ele-
ments below[vi, vj ]

⊥ to itself. Thenϕ is induced by a semiunitary operatorUϕ

of H, which, according to the same argumentation as above, can infact be chosen
unitary. In particular,v1 andUϕ(v1) ∈ [v2] are of the same length, and repeat-
ing the argument, we conclude thatH possesses an orthonormal basis. By Solèr’s
theorem,H is a Hilbert space overR, C, or H.

Let nowA ∈ C(H) such thatA andA⊥ are both at least two-dimensional. LetG be
the set of those automorphismsϕ of C(H) such thatϕ(B) = B for all B ∈ C(H)
contained inA orA⊥. LetCK be the centre ofK andEK = {k ∈ CK : kk⋆ = 1}.
Then eachg ∈ G is induced by a unitary operator of the formUk for somek ∈ EK ,
whereUk(u + v) = ku + v if u ∈ A andv ∈ A⊥. By (HL3), for eachϕ ∈ G,
there isψ ∈ G such thatψ2 = ϕ. If now K = R orK = H, thenEK = {−1, 1},
so (HL3) cannot be fulfilled. Consequently,K = C, in which caseEK = SO(2).
2

We note that the condition (HL3) for Hilbert lattices, whichrefers to automor-
phismsϕ such that an element of dimension≥ 2 is fixed byϕ, might be replace-
able by the requirement that, the appropriate topology on the set of automorphisms
being given,ϕ belongs to the identity component. However, here we will notto
work with topological notions.

We are now going to reformulate the above representation theorem for partial
Boolean algebras. As the first step, the notion of a PBA will beslightly modi-
fied; the following notion of a tPBA is due to [1]. However, we use axioms which
differ from [1] and which moreover do not extend those in Definition 2.1; we rather
prefer to provide an independent picture, which is as appropriate as possible in the
present context.

Definition 4.6 The structure(L;≤,3, 0, 1) is called atransitive partial Boolean
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algebra, or tPBAfor short, if the following conditions hold:

(tPB1) (P ;3,≤, 0, 1) is a bounded poset.

(tPB2) 3 is a symmetric and reflexive binary relation. Elementsa andb such
thata3 b are calledcompatible.

(tPB3) (α) Let a, b ∈ P such thata ≤ b. Thena3 b, and for exactly one
elementd compatible witha we havea ∧ d = 0 anda ∨ d = b.
d is then compatible with all those elements which are compatible
with a andb.

(β) Any setA of pairwise compatible elements possesses an infimum∧
A and a supremum

∨
A.

∧
A and

∨
A are compatible with all

those elements which are compatible with everya ∈ A.

(γ) For any pairwise compatible elementsa, b, c ∈ P , we havea ∧
(b ∨ c) = (a ∧ b) ∨ (a ∧ c).

LetH be the complex Hilbert space of countably infinite dimension; then(C(H);3,⊆
, {0},H) is a tPBA, called thestandard tPBA.

As should be expected, tPBA’s may be understood as special PBA’s, as shown in
the next two lemmas.

Lemma 4.7 Let (L;≤,3, 0, 1) be a tPBA. For anya, b ∈ L, in accordance with
(tPB3)(β), puta∧′ b = a∧ b if a3 b, and leave∧′ undefined otherwise. Moreover,
for any a ∈ L, in accordance with(tPB3)(α), let ¬a be the unique complement
of a compatible witha. Then(L;3,∧′,¬, 0, 1) is a PBA fulfilling the following
conditions:

(PB4) If, for somea, b, c ∈ L, a = a ∧′ b andb = b ∧′ c, thena = a ∧′ c.

(PB5) LetB be a maximal subset ofL consisting of pairwise compatible el-
ements. Then0, 1 ∈ B, and (B;∧′,¬, 0, 1) is a complete Boolean
algebra.

Moreover, letA ⊆ B, and letB′ be a further maximal set of pairwise
compatible elements such thatA ⊆ B′. Then the infimum ofA in B
and the infimum ofA in B′ coincide.

Proof: (PB1) holds by (tPB2). (PB2) as well as (PB4) hold by construction.
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LetA be a non-empty set of pairwise compatible elements. (tPB3)(α) implies that
we may join0 and1 to A, and still all elements are pairwise compatible. Again
by (tPB3)(α), when joining, for anya ∈ A, the element¬a to A, the resulting
set still consists of pairwise compatible elements. Similarly, by (tPB3)(β), the
infimum and supremum of an arbitrary subset ofA exists and can be joined to
A with the same effect. Denote bȳA the closure ofA ∪ {0, 1} under¬ as well
as arbitrary infima and suprema. Then(Ā;≤) is a complete lattice,0, 1 ∈ Ā,
and every elementa possesses¬a as the unique complement in̄A. Finally, by
(tPB3)(γ), Ā is distributive, hence a Boolean algebra. (PB3) and the firstpart of
(PB5) follow. Furthermore, infima in̄A are infima w.r.t.≤; so also the second part
of (PBA5) follows. 2

Lemma 4.8 Let(L;3,∧′,¬,0, 1) be a PBA fulfilling conditions(PB4)and(PB5).
For a, b ∈ L, let a ≤ b if a = a ∧′ b. Then(L;≤,3, 0, 1) is a tPBA.

Proof: By (PB4),≤ is transitive, and (tPB1) follows. Note next that, by construc-
tion, a ≤ b implies a3 b. Moreover, fora, b ∈ L such thata3 b, a ∧′ b is the
infimum w.r.t.≤; indeed,a ∧′ b ≤ a, b, and if x ≤ a, b, thenx, a, b, a ∧′ b are
pairwise compatible, and it followsx ≤ a∧′ b. So ifa3 b, thena∧′ b = a∧ b and,
similarly, a ∨′ b = a ∨ b.

(tPB2) holds by (PB1). To prove (tPB3)(α), let a ≤ b. Thena3 b; so a andb
generate a Boolean subalgebra, and we conclude that, putting d = ¬a ∧ b, d is
compatible witha, furthermorea ∨′ d = b, whencea ∨ d = b, anda ∧′ d = 0,
whencea ∧ d = 0. d is the unique element with these three properties; indeed,
if d′ 3 a, a ∨ d′ = b anda ∧ d′ = 0, thena, b, d′ are pairwise compatible, so
a ∨′ d′ = b anda ∧′ d′ = 0 and consequentlyd′ = ¬a ∧′ b = d. Finally, x3 a, b

impliesx3 d by (PB3). The proof of (tPB3)(α) is complete.

Let nowA be a set of pairwise compatible elements, and letc3 a for all a ∈ A.
LetB be a maximal set of pairwise compatible elements which containsA ∪ {c}.
By (PB5), (B;∧′,¬,0, 1) is a complete Boolean algebra; letb be the infimum of
A in B. Certainly,c3 b. We claim thatb =

∧
A, where the infimum refers to the

partial order≤ of L. Clearly,b ≤ a for all a ∈ A. Let x ∈ L such thatx ≤ a for
all a ∈ A. ExtendA ∪ {x} to a maximal setB′ of pairwise compatible elements.
Thenx ≤ b′, whereb′ is the infimum ofA taken inB′. But by (PB5),b′ = b and
hencex ≤ b. So the part of (tPB3)(β) concerning infima is proved, and by the
self-duality of Boolean algebras, the other half follows aswell.

(tPB3)(γ) holds by (PB3). 2

We next restrict tPBA’s with respect to cardinality. We wishthat any Boolean sub-
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algebra does not contain more than countably many independent elements; and it
shall possibly contain, on the other hand, any finite number of independent ele-
ments.

A further requirement is that there is no element different from0 and1 which may
be joined to any given Boolean subalgebra.

Definition 4.9 Let (L;≤,3, 0, 1) be a tPBA. We callL of countably infinite size
if:

(i) L, as a poset, is atomistic.

(ii) Any set of atoms every pair of which has infimum zero, is countable.

(iii) There is a countably infinite set of atoms every pair of which has infimum
zero.

Furthermore, we callL irreducible if for anya, there is ab incompatible witha.

The crucial condition on tPBA’s comes next: We postulate theexistence of suffi-
ciently many automorphisms. We define an element to be fixed byan automor-
phism in analogy to the case of Hilbert lattices.

Definition 4.10 Let (L;≤,3, 0, 1) be a tPBA. Puta ⊥ b if a3 b anda∧ b = 0 We
call L flexible if:

(i) For anya ∈ L and any atome ∈ L not belowa, there is an automorphismϕ
such that(α) ϕ(e) ⊥ a and(β) ϕ(x) = xwheneverx ⊥ a, e or x ⊥ a, ϕ(e).

(ii) For anyn ≥ 2 and any automorphismϕ such that some element of length
≥ 2 is fixed byϕ, there is an automorphismψ such that(α) ψn = ϕ and(β)
ψ(e) = e wheneverϕ(e) = e for any atome.

We next check that the standard tPBA has the properties just defined.

Lemma 4.11 Let H be a complex Hilbert space of countably infinite dimension.
Then(C(H);⊆,3, {0},H) is a tPBA which is of countably infinite size, flexible,
and irreducible.

Proof: We have already noticed thatC(H) is a tPBA. Clearly,C(H) is of count-
ably infinite size and irreducible. Moreover, letU be a unitary operator ofH, and
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letϕU be the map induced byU onC(H). Then evidently,ϕU is an automorphism
of the tPBAC(H). This fact given, part (i) of the definition of flexibility is easily
checked, and part (ii) follows from Lemma 4.4. 2

Lemma 4.12 Let(L;≤,3, 0, 1) be a flexible tPBA of countably infinite size. Then,
L is lattice-ordered. Furthermore, fora ∈ L, let ¬a be the unique element such
that ¬a3 a, a ∧ ¬a = 0, and a ∨ ¬a = 1. Then,(L;∧,¬,0, 1) is a complete
orthomodular AC-lattice.

Moreover, ifL is irreducible as a tPBA, then so isL as an ortholattice.

Proof: Note first that the definition of¬ is possible due to (tPB3)(α). As is fur-
thermore easily seen,¬ is a complementation function. Note also thata ⊥ b iff
a ≤ ¬b.

We show next that for somea ∈ L and an atome ∈ L, the supremuma ∨ e exists
in L. By flexibility, there is an automorphismϕ such thatϕ(e) ⊥ a andϕ(x) = x

if x ⊥ a and eitherx ⊥ e or x ⊥ ϕ(e). Thena ∨ ϕ(e) exists, and we claim
that this is the supremum ofa ande. Clearly,a ≤ a ∨ ϕ(e). Furthermore, from
¬(a ∨ ϕ(e)) ⊥ a, ϕ(e), we conclude thate ≤ ϕ−1(a ∨ ϕ(e)) = a ∨ ϕ(e). Let
a, e ≤ c. Then¬c ⊥ a, e, soϕ(e) ≤ ϕ(c) = c anda ∨ ϕ(e) ≤ c.

To see thatL is a complete lattice, it is, by the atomicity ofL, sufficient to prove
that an arbitrary seteι, ι ∈ I, of atoms possesses a supremum. LetJ ⊆ I such
that

∨
ι∈J eι exists. For anyκ ∈ I \J , then by the preceding paragraph, also∨

ι∈J∪{κ} eι exists. Furthermore, any chain inL consists of pairwise compati-
ble elements and thus possesses a supremum. By Zorn’s Lemma,the supremum∨

ι∈I eι exists.

So(L;∧,¬, 0, 1) is shown to be a complete ortholattice. By (tPB3)(α), it is clear
that (L;∧,¬, 0, 1) is actually an orthomodular lattice. Furthermore, from thesec-
ond paragraph, it is easily seen thatL fulfils the covering property. SoL is an
AC-lattice.

Finally, letL, as an ortholattice, be reducible. Then there is ana ∈ L such that
0 < a < 1 and for anyb ∈ L, we haveb = (b ∧ a) ∨ (b ∧ ¬a). Fromb ∧ a ≤ a,
b ∧ ¬a ≤ ¬a, b ∧ a ≤ ¬(b ∧ ¬a), we have thata, b ∧ a, b ∧ ¬a are pairwise
compatible; in particular,a is compatible withb. SoL is not irreducible as a tPBA.
The proof is complete. 2

Lemma 4.13 Let (L;≤,3, 0, 1) be a flexible tPBA of countably infinite size, and
let ϕ be an automorphism ofL. Thenϕ is also an automorphism ofL as an
ortholattice.
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Proof: ϕ preserves the partial order as well as⊥. 2

Theorem 4.14 Let (L;≤,3, 0, 1) be a tPBA which is of countably infinite size,
flexible, and irreducible. ThenL is isomorphic to the standard tPBA.

Proof: We may define¬ as in Lemma 4.12; then,∧ being the infimum operation,
(L;∧,¬, 0, 1) is a Hilbert lattice.

We have to verify the conditions (HL1)–(HL3) for Hilbert lattices. (HL1) holds
becauseL is countably infinite size. In view of Lemma 4.13, we may identify
automorphisms ofL with automorphisms ofL viewed as an ortholattice. Lete, f
be orthogonal atoms; by irreducibility, there is a third atom g distinct frome, f

such thatg ≤ e ∨ f . By flexibility, there are automorphismsϕ1, ϕ2 such that
ϕ1(g) = f , ϕ2(g) = e, andϕ1(x) = ϕ2(x) = x if x ⊥ e∨ f . So takingϕ1 ◦ϕ

−1
2 ,

we see that (HL2) holds. (HL3) clearly follows from flexibility as well.

By Theorem 4.5,(L;∧,¬, 0, 1) is isomorphic to(C(H);∩,⊥, {0},H) for some
ℵ0-dimensional complex Hilbert spaceH. We claim that the compatibility relation
is in both cases the same. Indeed, in the tPBAL, if a3 b, thena andb generate a
Boolean subalgebra, so evidentlya = a0 ∨ c andb = b0 ∨ c for mutally orthogonal
elementsa0, b0, c. Conversely, ifa andb possess this representation, thena0, b0, c

are pairwise compatible, so alsoa3 b. The proof of the theorem is complete.2

5 Conclusion

We have studied two different aspects of the theory of partial Boolean algebras
(PBA’s). In the first part, we re-considered a logic based on PBA’s, introduced in
[6] and calledLPB in this paper. The calculusLPB reflects the possible logical
considerations with respect to testable yes-no statementsabout a quantum-physical
system, and the strict rule is followed that logical interrelations are applicable only
for compatible statements. To include unsharp statements as well, we have defined
the logicLPM ; LPM may be regarded as a fuzzy version ofLPB and is based on
partial MV-algebras. The second aspect which we studied concerned the represen-
tation of PBA’s. Namely, we characterized the standard PBA,the partial algebra of
closed subspaces of anℵ0-dimensional complex Hilbert space.

Both parts of this note follow the logico-algebraic approach to the foundation of
quantum physics. The idea of this approach is to justify the basic model used in
quantum physics – the complex Hilbert space. However, we would like to underline
that, whereas the work as presented in this paper might be considered interesting
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from a mathematical point of view, we guess that its value forthe foundational
debate on quantum physics is limited.

Let us explain our viewpoint, first with regard to logics. We are convinced that the
means provided by some appropriate logical calculus are notsufficient to cope with
the fundamental interpretational difficulties connected to quantum physics. The
most important limitation is reflected in the choice of the present paper’s subject:
logical interrelations can hold among propositions which can be considered the
same time, but it does not make sense to treat incompatible propositions by logical
methods. All we can do in the framework of logics is to exhibitjust this pure
fact: not all propositions may be considered the same time. However, the crucial
requirement in physics is to model the change from one observational framework
to another one, that is, the change from one set of jointly testable propositions to
another such set. In this respect, logics are most likely notof help.

Second, there are related problems with respect to the research on quantum struc-
tures. This line is possibly more fruitful, simply because there are more possibil-
ities available to specify a structure. However, a problem analogous to the one
already mentioned, exists in this case as well: the restriction to a language of al-
gebra. We followed this line here as well, although we included conditions which
else seem to be avoided: those concerning automorphisms.

To make a real progress in quantum structures with respect tothe original aims of
the field, we rather think that it is the characterization of the automorphisms which
is of fundamental importance. What we propose for the futureis to work towards
a justification of this viewpoint. Quite a lot of work has beendone to understand
those entities of Hilbert space which model yes-no tests; quite a few work was done
for the question how to characterize its automorphism group. To characterize the
unitary group - again by algebraic means - seems to be extremely difficult, and this
is probably also the case for any kind of linear group; cf. e.g. [7]. At least to the
author, only very few results are known, and those which are known are probably
not (yet) well usable for the aim of better understanding thequantum-mechanical
formalism.
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[12] Solèr, M. P., 1995. Characterization of Hilbert spaces by orthomodular
spaces,Commun. Algebra23, 219–243.

Thomas Vetterleinstudied mathematics in Heidelberg and wrote his PhD thesis un-
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