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Zusammenfassung

In medicine one frequently deals with vague information. As a tool for reaso-
ning in this area, fuzzy logic suggests itself. In this paper we explore the applica-
bility of the basic ideas of fuzzy set theory in the context of medical assessment
questionnaires, which are commonly used, for instance, to support the diagnosis of
psychological disorders.

The items of a questionnaire are answered in a graded form; patients are asked
to choose an element on a linear scale. The derived diagnostic hypotheses are gra-
ded as well. This leads to the question whether there is a logical formalism that is
suitable to capture the score calculation of medical assessment questionnaires and
thereby provides a mathematical justification of the way in which the calculation
is typically done.

We elaborate two alternative approaches to this problem. First, we follow the
lines of mathematical fuzzy logic. For the proposed logic, which can deal with the
formation of mean values, we present a Hilbert-style deduction system. In addition,
we consider a variant of the prototype approach to vagueness. In this case we are
led to a framework for which to obtain a logical calculus turns out to be difficult,
yet our gain is a model that is conceptually comparably well-justifiable.

Keywords: Reasoning under vagueness, healthcare applications, assessment
questionnaires, approximate reasoning, fuzzy logic.
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1 Introduction

Fuzzy set theory and fuzzy logic have originally been developed with the intention
to overcome the particular difficulties that arise when an application requires the eva-
luation of vague information. Here, we call a property vague if it cannot be sharply
delimited from its opposite. By default, a property that is applicable to a certain class
of objects or processes is thought of as being dichotomous; it serves us to distinguish
those cases in which it holds from those in which it does not hold. However, conside-
ring a situation in more detail, we may notice that it might not under all circumstances
be possible to decide if a property applies or not. In fact, a characteristic feature of
vague properties is the presence of borderline cases.

When wondering about examples of vagueness, there is one field that offers an ap-
parently unlimited amount of notions that belong to this category. In fact, in medicine,
it might, conversely, be found difficult to find descriptions of a different kind. A pro-
perty describing the state of some patient is usually vague; we cannot use it positively
or negatively under all possible circumstances. More specifically, we think about signs
and symptoms of human diseases. Consider, e.g., the property of “having high fever”.
Below a temperature of, e.g., 38.5◦, nobody would speak about high fever; above, e.g.,
39.5◦ it is not questionable to speak about high fever; the remaining cases are border-
line.

A common approach to deal with borderline cases is to extend the two-element set of
truth values to a continuous-valued one; the two values “false” and “true” are replaced
by the real unit interval. The property of having high fever, e.g., may be conveniently
described by a fuzzy set mapping each possible temperature to such a generalised truth
value. This is the very idea of fuzzy set theory [28], which, as far as the pure use of
grades is concerned, is intuitively quite convincing.

We may ask to which extent the idea has been established as a tool for reasoning in
medicine. The situation is somewhat ambiguous. Fuzzy logic has been applied, under
this name, in the framework of several projects concerned with automated reasoning
about medical information. In fact, in this context, its use seems to be clearly implied,
given the fact that most of the processed information is vague. Already the system that
is often called the “grandfather” of medical expert systems, MYCIN, was based on a
continuous set of degrees [24]. System of this or a similar kind, however, are not often
found in routine use in healthcare. To establish the principles of fuzzy logic in medicine
– principles that are not unquestioned even in the community of fuzzy logicians – is
certainly hard. At least in some cases, the basic ideas do have been welcomed. For in-
stance, the programming language Arden Syntax, designed for a platform-independent
representation of medical kn owledge, has been extended to simplify the treatment of
fuzzy sets and is now called Fuzzy Arden Syntax [27]. Furthermore, MONI, a decision
support system based on a simple fuzzy logic, is at present in use at the General Hos-
pital of Vienna; its purpose is the automated detection of hospital-acquired infections
[4].

Given the limited presence of fuzzy logic in medical decision support, the aspect that
we address in the present paper provides a remarkable contrast. Grades are not just
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used within computer-based decision support systems; and clinicians do not necessarily
consider grades as somewhat academic. In another context gradedness of information
comes into play quite naturally.

The assessment of symptoms is an essential aspect of the diagnostic procedure for va-
rious disorders, in particular in psychiatry and psychology [26]. We recall that, as op-
posed to signs, which are objective phenomena detected by the clinician, symptoms
are subjective experiences reported by the patient, such as a complaint of pain or de-
pressed feeling. Thus, with symptoms, clinicians must rely on the patient’s self-report,
with no objective tests being available to confirm or rule out them [15]. This in turn
opens up the possibility that patients report their symptoms autonomously. The use of
questionnaires has contributed to a reduction of the working load in healthcare [14, 25].

As a key element that we find in this context, the occurring questions can be considered
as vague. In accordance with this observation, the answers are given in the form of
grades. Consider, for instance, the ICD-10 Symptom Rating (ISR) questionnaire [25],
which was created for the assessment of several psychological disorders. In order to
evaluate the depressive syndrome, an answer to the item “I feel down and depressed” is
required. To this end, the patient is asked to choose an element on a five-element linear
scale, ranging from “0 - does not apply” to “4 - applies extremely”. Apparently, we can
understand the question as vague and the patient makes a choice to which degree, from
his point of view, the indicated statement applies to his actual state.

The question on which the present work is based is now: how are the degrees further
processed? Commonly, the answers to all questions are aggregated to a single value;
questionnaires that are used in routine healthcare are commonly evaluated by the cal-
culation of rating scores. Thus the question is which aggregation method is used for
which reason. Ideally, questionnaires are designed and evaluated on the basis of well
justified principles. In fact, within medical computer science, the topic has found an
increasing interest during recent years. A large volume of works focuses on developing
theories for a statistical analysis of questionnaire data, such as classical test theory or
item response theory; see, e.g., [23, 19, 5].

These approaches might, on the one hand, provide useful insights into an optimal score
calculation in questionnaires, considering, e.g., the weight and mutual dependency of
items in a proper way. In practice, on the other hand, a procedure seems often to be
chosen on pragmatic grounds. Consider, for instance, the development of the afore-
mentioned ISR questionnaire. In this case, a panel of experts decided on the basis of
their medical expertise. They voted on the method of calculating the total score and
chose the mean value [25]. The experts also discussed the possibility of adding weights
to the items, but decided against it. Other examples of questionnaires that employ si-
milar aggregation methods include the Hamilton Depression Rating Scale and Zung
Self-Rated Depression Scale, the RAND SF-36-item, and many more. In our work, we
mainly restrict our attention to the mean value, yet having the intention to propose a
framework general enough to take account also for other methods of calculating scores.

The aim of the proposed framework is to examine the problem of score computation
from a logical angle. The aim of questionnaire evaluation is deriving from a set of
degrees a new degree – the total score. Many-valued logics provide mathematical tools
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for dealing with properties that are endowed with truth degrees. Accordingly, our goal
is to propose a “logic of questionnaires”: given a patient’s answers to questionnaire
items, the formalism should support deriving a total score, possibly taking into account
further implicit assumptions.

We provide in this paper two alternative approaches to this problem. The first approach
is perhaps the more naive one. We proceed in a way that has become common in ma-
thematical fuzzy logic [13]. Accordingly, we process the occurring degrees regardless
of their origin and define ways of connecting them just as required by our application.
However, “mean-value operations” do not belong to those operations that are typically
included in a fuzzy logic. An exception is the so-called Compensatory Fuzzy Logic
discussed in [1]. Moreover, there are several fuzzy logics that are strong enough to al-
low the definition of mean values. For instance, B. Gerla’s Rational Łukasiewicz Logic
corresponds to divisible MV-algebras. For each n, the logic has a connective interpre-
ted by the division by n and hence for each n formulas, a formula exists that is assigned
the mean value of its constituents [11]. On a similar idea, Kukkurainen’s and Turunen’s
formalism presented in [17] is based. A further, particular strong fuzzy logic is ŁΠ 1

2
[7], a combination of Łukasiewicz and product logic, enriched by the constant 1

2 . Any
rational value in [0, 1] is expressible in it and consequently again, mean values can be
formed. Here, we propose a logic that is syntactically as scarce as possible, but rich
enough for our intended application. We present a sound and complete corresponding
Hilbert-style calculus.

Our approach might possess a considerable potential in regards to its formal deve-
lopment. As regards its interpretation and justification, however, it is subjected to the
criticism that we find in the ongoing discussion on the foundations of mathematical
fuzzy logic and its so-called design choices; see, e.g., [10]. For this reason, we pro-
pose in addition an alternative approach, aiming at a more appropriate account for the
vagueness in assessment questionnaires. The starting point is the well-known idea of
modelling the prototypes of a vague property by subsets of a metric space. A formalism
based on this approach is, e.g., [18]. We take, however, the set of counterexamples of a
vague property into account as well; we accordingly deal with a pair of two subsets in
a metric space. Also this idea has been exploited, in particular in Novák’s work on the
modelling of linguistic expressions [20]. The formalism that we propose here is tailo-
red to the emulation of the mean-value score calculation and unrelated to mathematical
fuzzy logic. We specify, however, only a semantic framework; how the reasoning in it
can be axiomatised remains an open question.

The rest of the paper is organized as follows. Section 2 presents a fuzzy logic dealing
with mean values. Section 3 is devoted to an alternative approach formalising vague
information based on prototypes and counterexamples. The final Section 4 provides a
summary and points out remaining challenges.
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2 A fuzzy logic with a mean-value operation

We shall present in this section a particular fuzzy logic. We note that “fuzzy logic” is
understood in the mathematical sense, that is, we speak about logics that are based on
an extended, linearly ordered set of truth values [13]. Mean values are not commonly
dealt with in fuzzy logic; we propose here a particular adaptation for the application
under consideration.

When designing our logic, however, we will not just care about including the possibi-
lity of calculating mean values. If we did so, we could, for instance, opt for Rational
Łukasiewicz Logic [11] or ŁΠ 1

2 [7]. We rather choose an approach with the aim of al-
leviating a general problem of fuzzy logic: the interpretation of the implication connec-
tive. Namely, implications will be endowed with explicit grades and these grades will
not be subjected to logical connectives.

2.1 Fuzzy logic and the role of the implication

The statements of our logic will be intended to refer to medical facts and to explain
the state of a patient. Consequently, all properties with which we deal are assumed to
be graded. Furthermore, we follow a main principle of mathematical fuzzy logic: the
degree of compound expressions is calculated from the degree of the components.

As common in fuzzy logic, the connectives are chosen pragmatically. We include the
possibly most significant connectives: the minimum, the maximum, and the standard
negation. In addition to the minimum, the “weak conjunction”, we include a “strong
conjunction”, interpreted by a t-norm.

Furthermore, it will be possible to make comparisons with regard to degrees in the
following way. For two formulas α and β, the expression α 1→ β is two-valued and has
the meaning that the truth degree of β is at least as large as the degree of α. That is, if α
is assigned s and β is assigned t, we require s ≤ t. This relationship can be weakened;
α

c→ β, where 0 ≤ c ≤ 1, says that the inquality holds up to a tolerance value of 1− c:
the truth degree of β is at least as large as the degree of α reduced by 1− c. That is, we
require s− (1− c) ≤ t in this case.

We note that we do not assign continuous truth degrees to expressions of the form
α

c→ β; we rather adopt the approach that the comparison of truth degrees leads to a
positive or to a negative result. Consequently, we also do not allow to nest implicative
relationships.

There are two reasons that motivate our decision. First, the approach is suitable for
our application; we get not less and not (much) more than what we need. Second, we
avoid difficulties concerning the interpretation of formal statements. Instead of working
with expressions of the form α

c→ β, we could alternatively include truth constants as
well as the connective→ to our language, interpreted by the residuum corresponding
to the strong conjunction. However, in this case expressions involving the implication
could be nested and statements with a doubtful meaning like (α → β) → β would
be possible. We are tempted to read “if α is stronger than β, then β holds”, but apart
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from the fact that this statement is itself inacceptable, it would not at all reflect the
meaning of the formula. We could rather say “whenever a property γ is strong enough
such that α and γ together are stronger than β, then γ is stronger than β”. We consider
such constructs as not only artificial but in fact unnecessary. We should certainly stress
that we refer here to a particular context; there are frameworks in which the residual
implication does play a clear role [9]. But such contexts are much different from ours.

Accordingly, we use a two-level approach. The graded implications are on the inner
level and they are crisp: they either hold or do not hold. On the outer level, graded
implications will be allowed to be combined by the classical logical connectives.

2.2 A fuzzy logic based on graded implications

As our first step, we introduce in this subsection a calculus that does not yet deal with
mean values; an extended calculus will be presented subsequently.

Our calculus will be called the Logic for Graded Implications, or LGI for short. Let
us specify the syntax for LGI. We start with a countable set ϕ0, . . . of variables and
the two constants ⊥, standing for clear falsity, and >, standing for full truth. A basic
expression is built up from variables and constants by means of the binary connectives
∧,∨,� and the unary connective ∼.

For the set of truth degrees, we make the common choice, using the real unit inter-
val [0, 1]. By a graded implication of LGI we mean a triple consisting of two basic
expressions α and β and a real number c ∈ [0, 1], denoted by

α
c→ β.

Finally, a formula is built up from graded implications by means of the binary connec-
tives ∧,∨ and the unary connective ¬. We call the latter the outer connectives; their
intended meaning is the classical “and”, “or”, and “not”, respectively. As usual, we
write Φ→ Ψ for ¬Φ ∨Ψ.

As common in fuzzy logic, we allow the usage of two different conjunctions, the
“weak” one ∧ and the “strong” one �. Whereas the former will be interpreted by the
minimum, the latter will be interpreted by a continuous t-norm. By a t-norm, we mean
a binary operation on the real unit interval that is associative, commutative, having 1
as a neutral element, and isotone in each argument; see, e.g., [16]. An example is the
Łukasiewicz t-norm:

c�Ł d = (c+ d− 1) ∨ 0, c, d ∈ [0, 1];

further examples are the product and the Gödel t-norm. For what follows, we fix a
continuous t-norm �.

Furthermore, we denote the t-conorm associated with � by ⊕, that is,

c⊕ d = 1− ((1− c)� (1− d)), c, d ∈ [0, 1].

The Łukasiewicz t-conorm is given by c⊕Ł d = (c+ d) ∧ 1.
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To increase readability, we will use for the interpretation of the connectives the same
symbol as for the connectives themselves. We write, for instance, � in both cases;
furthermore, we denote the minimum and maximum of numbers c, d ∈ [0, 1] by c ∧ d
and c ∨ d, respectively; and we put ∼ c = 1− c.
An evaluation is a mapping v from the set of basic expressions to the real unit interval
[0, 1] preserving the connectives, ∧,∨,�,∼, the latter being interpreted, respectively,
by the minimum, maximum, the t-norm �, and the standard negation. An evaluation v
is said to satisfy a graded implication α c→ β if

v(α) ≤ v(β) +∼ c;

and we extend the definition of satisfaction to all formulas by interpreting the outer
connectives according to classical propositional logic.

Note that we may equivalently say that an evaluation v satisfies a graded implication
α

c→ β if v(α) �Ł c ≤ v(β). From this point of view, the Łukasiewicz t-norm is
assigned a special role. In fact, it is exactly this t-norm that allows the interpretation of
c as a tolerance value, in the sense explained above (see Subsection 2.1). We will not
discuss here the question whether we could replace �Ł by a different t-norm.

A theory T is a set of formulas. We say that T semantically entails a formula Φ if,
whenever an evaluation v satisfies all elements of T , v also satisfies Φ. We write T |= Φ
in this case.

We now by proceed defining a proof system.

Definition 2.1. The calculus LGI consists of the following axioms and rules:

any formula arising from a tautology of classical propositional logic by a uniform re-
placement of the variables by graded implications;

for any formulas Φ and Ψ the rule

(MP)
Φ Φ→ Ψ

Ψ
;

for any basic expressions α, β, γ and c, d ∈ [0, 1] the axioms

(∧1) (α
d→ β) ∧ (α

d→ γ) → (α
d→

β ∧ γ)

(∧2) α ∧ β 1→ α

(∧3) α ∧ β 1→ β

(∨1) (α
d→ γ) ∧ (β

d→ γ) → (α ∨ β d→
γ)

(∨2) α
1→ α ∨ β

(∨3) β
1→ α ∨ β

(�1) (> c→ α) ∧ (> d→ β) → (> c�d→
α� β)

(�2) (α
c→ ⊥) ∧ (β

d→ ⊥)→ (α� β c⊕d→
⊥)

(�3) > 1→ >�>

(∼1) (α
d→ β)→ (∼β d→ ∼α)

(∼2) ∼∼α 1→ α

(∼3) α
1→ ∼∼α
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(>) α
1→ >

(⊥) ⊥ 1→ α

(0) α
0→ β

(c) α
c→ α

(inkons) ¬(> c→ ⊥), where c > 0

(trans1) (α
c→ β) ∧ (β

d→ γ) → (α
c�Łd→

γ)

(trans2) (α
c→ ⊥)∧ (> d→ β)→ (α

c⊕Łd→
β);

(lin1) (α
1→ β) ∨ (β

1→ α)

(lin2) (> d→ α) ∨ (α
∼ d→ ⊥).

We define the notion of a proof in LGI of a formula Φ from a theory T as usual; we
write T `LGI Φ if there is one.

Let us have an informal look at the rules. The rules (∧1)–(∧3) characterise the weak
conjunction ∧ in the usual way. Similar rules hold for the strong conjunction � only
in particular cases, see (�1)–(�3). Moreover, the rules (∨1)–(∨3) characterise the
disjunction, (∼1)–(∼3) characterise the involutive negation.

(>) and (⊥) define the truth constants as the bottom and the top element, respectively.
As regards the rule (0), recall that the value c attached to a graded implication is such
that 1− c is the allowed tolerance. If c = 0, the tolerance is 1 and the implication holds
independently of the involved truth degrees. The rules (c) and (trans1) express the re-
flexivity and transitivy of the implication relation. The rule (trans2) refers to transitivity
as well; it implies that if α is assigned r, β is assigned s, and d ∈ [0, 1] is such that
r ≤ d and d ≤ s, we can conclude r ≤ s.
Note next that > c→ ⊥ cannot hold unless c = 0, as established by (inkons). Finally,
there are two rules dealing with the linearity of the truth degrees. By (lin1), given the
truth degrees r and s of two formulas, either r ≤ s or s ≤ r. (lin2) expresses the fact,
given the truth degree r of any formula α and any d ∈ [0, 1], either d ≤ r or r ≤ d.

Theorem 2.2. Let T be a theory and Φ a formula of LGI. If T `LGI Φ, then T |= Φ.

Proof. It is not difficult to check that all rules are sound.

We next note that lowering the degree of a graded implication leads, as intended, to a
weaker statement.

Lemma 2.3. For any basic expressions α and β, we can prove in LGI (α
d→ β) →

(α
c→ β) if c ≤ d.

Proof. By rule (c), we have β 1+c−d→ β; so the assertion follows from (trans1).

Note that we can assign in our logic truth degrees explicitly. In fact, α ∼ c→ ⊥ is satisfied
by an evaluation v if and only if v(α) ≤ c; similarly, > c→ α is satisfied if and only if
c ≤ v(α).

For a basic expression α and c ∈ [0, 1], we shall denote by τ(α, c) the following set of
formulas:

τ(α, c) = {> t→ α |where t ∈ [0, 1] s.t. t < c}∪{α ∼ t→ ⊥ |where t ∈ [0, 1] s.t. t > c}
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We say that τ(α, c) is provable in LGI from a theory T if this is the case for any element
of τ(α, c).

Lemma 2.4. Let T be a theory, let α, β be basic expressions, and let c, d ∈ [0, 1]. If
τ(α, c) and τ(β, d) are provable from T in LGI, then so are τ(α ∧ β, c ∧ d), τ(α ∨
β, c ∨ d), τ(α� β, c� d), and τ(∼α,∼ c).

Proof. Assume that τ(α, c) and τ(β, d) are provable from T in LGI. We presume in the
sequel that c and d are distinct from 0 and 1; if c or d is 0 or 1, some of the arguments
are to be omitted.

To see that we can derive τ(α ∧ β, c ∧ d) from T in LGI, let t < c ∧ d. Then t < c and
t < d and hence > t→ α and > t→ β and by (∧1) > t→ α ∧ β. Let now t > c ∧ d. If
then t > c, we conclude from α

∼ t→ ⊥ by (∧2) that α ∧ β ∼ t→ ⊥. If t > d, we draw the
same conclusion from β

∼ t→ ⊥ by (∧3).

Similarly, we derive τ(α ∨ β, c ∨ d).

To see that τ(α� β, c� d) is derivable as well, let t < c� d. By the continuity of �,
there an r < c and s < d such that t = r � s. From > r→ α and > s→ β, we then
conclude > t→ α� β by (�1). Similarly, we derive α� β ∼ t→ ⊥ for t > c� d.

Finally, to see that τ(∼α,∼ c) is derivable, let t < ∼ c. Then ∼ t > c, hence α t→ ⊥
and, by (∼1), > t→ ∼α. Similarly, for t < ∼ c, we derive ∼α ∼ t→ ⊥.

Lemma 2.5. Let T be a theory, let α, β be basic expressions, and let c, d ∈ [0, 1].
Assume that τ(α, c) and τ(β, d) are provable from T in LGI. Then T `LGI α

r→ β if
r < 1− c+ d, and T `LGI ¬(α

r→ β) if r > 1− c+ d.

Proof. Let r < 1 − c + d. Assume first that c < 1 and d > 0. Let s > c and t < d

be such that r = 1 − s + t. From α
∼ s→ ⊥ and > t→ β, we infer α r→ β by (trans2)

because ∼ s ⊕Ł t = r. Assume second that c = 1. Then d > 0; we put s = 1 and
t = r < d and by (0) we may argue as before. Assume third that d = 0. Then c < 1;
we put s = 1− r > c and t = 0 and again by (0) we argue as in the first case.

Let r > 1 − c + d. Note that then c > 0 and d < 1. Thus there are s < c and t > d
such that r > 1 − s + t. From > s→ α, α r→ β, and β ∼ t→ ⊥, we infer > s�Łr�Ł∼ t→ ⊥
by (trans1). As s�Ł r �Ł ∼ t > 0, the second part follows by (inkons).

We now turn to the question of completeness of our calculus LGI with regard to its
intended semantics. The following statement might be seen as analogous to the type
of completeness that was first proposed by Pavelka in the context of fuzzy logic with
evaluated syntax [22]; see also [21, 13].

We need one further additional result on LGI. The fact expressed in the following lem-
ma is well-known but would, by default, require transfinite induction in the present
context. We provide a proof in order to demonstrate that we can do without.
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Lemma 2.6. Let T be a theory consisting of graded implications, and let Φ be a
formula such that Φ is not provable from T . Then there is a complete theory T̄ such
that T ⊆ T̄ and Φ is not provable from T̄ either.

Proof. Let (αi, βi, ci), i ∈ N, be an enumeration of all triples consisting of two basic
expressions and a rational element of [0, 1]. Let T0 = T ; for each i = 0, . . ., choose
Ti+1 to be either Ti ∪ {αi

ci→ βi} or Ti ∪ {¬(αi
ci→ βi)}, to the effect that Φ is not

provable from Ti+1; and let T ′ =
⋃
i Ti.

By Lemma 2.3, LGI proves (α
d→ β) → (α

c→ β) for any basic expressions α and β
and any c, d ∈ [0, 1] such that c ≤ d. Accordingly, we add to T ′ any graded implication
α

c→ β such that α d→ β is in T ′ for some d > c. Likewise, we add ¬(α
c→ β)

whenever¬(α
d→ β) is in T ′ for some d < c. Let T ′′ be the resulting theory. Obviously,

Φ is not provable from T ′′.
For any pair of basic expressions α, β, we then have that for at most one c ∈ [0, 1]

neither α c→ β nor ¬(α
c→ β) is in T ′′. Hence may again successively extend T ′′ to a

theory T ′′′ such that Φ is not provable from T ′′′ and, for any α, β and any c ∈ [0, 1],
either α c→ β or ¬(α

c→ β) is in T ′′′. Finally, closing T ′′′ under the formulas provable
from it, we get a theory as desired.

Theorem 2.7. Let T be a theory consisting of graded implications, and let ζ e→ η be
a graded implication of LGI. If T |= ζ

e→ η, then T `LGI ζ
t→ η for any t < e.

Proof. Assume to the contrary that, in LGI, there is a t < e such that there is no proof
of ζ t→ η from T . We shall show that there is an evaluation satisfying all elements of
T but not ζ e→ η.

By Lemma 2.6, we can extend T to a theory T̄ such that also T̄ does not prove ζ t→ η
in LGI and, for each formula Φ, either Φ or ¬Φ is in T̄ .

Then, for each basic expression α, there is by (lin2) and Lemma 2.3 a v(α) ∈ [0, 1]
such that τ(α, v(α)) is provable from T̄ . By Lemma 2.4, v is an evaluation. Moreover,
by Lemma 2.5, T̄ proves a graded implication α c→ β if c < 1 − v(α) + v(β), and
does not prove it if c > 1 − v(α) + v(β). Consequently, if α c→ β is contained in T̄ ,
we have c ≤ 1− v(α) + v(β), that is, v(α) ≤ v(β) +∼ c, and α c→ β is satisfied by v.
Moreover, since T̄ does not prove ζ t→ η, we have that 1− v(ζ) + v(η) ≤ t < e. This
in turn means that v does not satisfy ζ e→ η.

Having restricted to a Pavelka-style completeness, we note that, in principle, the pos-
sibility exists to extend the calculus such that strong completeness, in the usual sense,
can be established. Namely, we may add the following infinitary rule to LGI:

(> c→ α)→ Φ for all c > d (α
∼ d→ ⊥)→ Φ

Φ
,
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where Φ is a formula, α is a basic expression, and d ∈ [0, 1]. Such an alternative way,
however, seems to be less appealing. A rule with a set of assumptions that is not even
countable might be considered as not suitable for the present context.

2.3 Adding mean-values

We now modify the logic LGI so as to have the possibility to refer to mean values. The
obtained logic will be called LGIM.

A generalised graded implication is a triple consisting of a multiset α1, . . . , αn of basic
expressions, a further basic expression β, and a real c ∈ [0, 1]; we write

α1, . . . , αn
c→ β. (1)

A formula of LGIM is defined similarly as a formula of LGI, but this time built up from
generalised graded implications.

For real numbers r1, . . . , rn, n ≥ 1, let us write

∅(r1, . . . , rn) =
r1 + . . .+ rn

n
.

We define the generalised graded implication (1) to be satisfied by some evaluation v
if

∅(v(α1), . . . , v(αn)) ≤ v(β) +∼ c. (2)

The satisfaction of formulas and the semantic entailment relation are defined for LGIM
similarly as for LGI, but such that (2) is taken into account. We denote the entailment
relation again by |=.

Definition 2.8. The calculus LGIM consists of all axioms and rules belonging to LGI
as well as the following axioms, for all basic expressions α, α1, . . . , αn, β1, . . . , βn, γ
and any c, c1, . . . , cn, d ∈ [0, 1]:

(trans∅1) (α1
c1→ β1) ∧ . . . ∧ (αn

cn→ βn) ∧ (β1, . . . , βn
d→ γ)→ (α1, . . . , αn

∅(c1,...,cn)�Łd→ γ)

(trans∅2) (α1, . . . , αn
c→ β) ∧ (β

d→ γ)→ (α1, . . . , αn
c�Łd→ γ)

(trans∅3) (α1
c1→ ⊥) ∧ . . . ∧ (αn

cn→ ⊥) ∧ (> d→ β)→ (α1, . . . , αn
∅(c1,...,cn)⊕Łd→ β)

(>∅) (>, . . . ,> c→ α)→ (> c→ α).

We write T `LGIM Φ if there is a proof of Φ from T in LGIM.

Theorem 2.9. Let T be a theory and Φ a formula of LGIM. If T `LGIM Φ, then T |= Φ.

Proof. It is not difficult to check that the additional rules are sound. Hence the assertion
follows from Theorem 2.2.

To adapt our completeness theorem, we need to extend Lemma 2.5 to include genera-
lised graded implications.
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Lemma 2.10. Let T be a theory, letα1 . . . , αn, β be basic expressions, and let c1, . . . , cn, d ∈
[0, 1]. Assume that τ(α1, c1), . . . , τ(αn, cn) and τ(β, d) are provable from T . Then
T `LGIM α1, . . . , αn

r→ β if r < 1−∅(c1, . . . , cn)+d, and T `LGIM ¬(α1, . . . , αn
r→

β) if r > 1−∅(c1, . . . , cn) + d.

Proof. We proceed in analogy to the proof of Lemma 2.5, using this time the rules
(trans∅1)–(trans∅3) and (>∅).

We are now in the position to show a Pavelka-style completeness theorem for LGIM.

Theorem 2.11. Let T be a theory consisting of generalised graded implications, and
let ζ1, . . . , ζn

e→ η be a generalised graded implication of LGIM. If T |= ζ1, . . . , ζn
e→

η, then T `LGIM ζ1, . . . , ζn
t→ η for any t < e.

Proof. Given Lemma 2.10, we can argue in analogy to the proof of Theorem 2.7.

2.4 Application of LGIM to questionnaires

We now show how the intended reasoning in the context of questionnaire score calcu-
lation can be reproduced in the logic LGIM.

We choose the variables of LGIM such that each one refers to a clinical entity, such as
a symptom or a disorder. For formulas of the form > c→ α or α ∼ c→ ⊥, where α is a
variable and c ∈ [0, 1], the intended meaning is that α applies to a patient to the degree
at least or at most c, respectively.

Let us assume that we are given a questionnaire containing n ≥ 1 items. We consider
each item as a symptom; let ϕ1, . . . , ϕn be the corresponding variables. Let us further-
more assume that the questionnaire assesses one disorder; let δ be the variable referring
to it.

We want to express in LGIM that the truth degree of δ is the average of the degrees of
ϕ1, . . . , ϕn. This is quite straightforward. The formula

ϕ1, . . . , ϕn
1→ δ (3)

is satisfied by some evaluation v if and only if ∅(v(ϕ1), . . . , v(ϕn)) ≤ v(δ). Further-
more,

∼ϕ1, . . . ,∼ϕn
1→ ∼ δ (4)

is satisfied by v if and only if 1
n ((1−v(ϕ1))+. . .+(1−v(ϕn))) ≤ 1−v(δ) if and only

if 1 − ∅(v(ϕ1), . . . , v(ϕn)) ≤ 1 − v(δ) if and only if ∅(v(ϕ1), . . . , v(ϕn)) ≥ v(δ).
Consequently, letting the theory T consist of (3), (4), as well as

ϕ1
∼ c1→ ⊥, . . . , ϕn

∼ cn→ ⊥, > c1→ ϕ1, . . . , > cn→ ϕn,

we can derive from T the graded implications

δ
∼ d→ ⊥, > d→ δ,

12



where d is the mean value of c1, . . . , cn.

In fact, from > c1→ ϕ1, . . . , > cn→ ϕn and (3), we get >, . . . ,> ∅(c1,...,cn)→ δ by

(trans∅1) and > ∅(c1,...,cn)→ δ by (>∅), that is, > d→ δ. Similarly, we get > ∼ c1→
∼ϕ1, . . . , > ∼ cn→ ∼ϕn from (∼1) and proceed similarly as before to derive

> ∅(∼ c1,...,∼ cn)→ ∼ δ and thus δ
∅(∼ c1,...,∼ cn)→ ⊥, that is, δ ∼ d→ ⊥.

3 A logic of prototypes and counterexamples

We have shown that the fuzzy logic LGIM presented in the previous section is suita-
ble to emulate the calculations that are performed for the evaluation of certain medical
assessment questionnaires. Consequently, LGIM could be regarded as an appropriate
answer to our concern of defining a logical framework for this particular medical con-
text. The approach has, however, certain weaknesses. First of all, we should admit the
arbitrariness of several design choices; this is a problem that we encounter in mathema-
tical fuzzy logic inevitably. Second, while extending this framework to other scoring
methods than the mean-value is possible in principle, it implies significant modifica-
tions. Finally – and this is a subjective issue – the framework of mathematical fuzzy
logic may not be found very intuitive and thus not very appealing for practitioners de-
signing medical assessment questionnaires. In particular, we are not likely to explain
the meaning of the statements and derivations made in LGIM to somebody without an
appropriate background in many-valued logic.

In reply to these arguments, we investigate in this section the question if the same result
– the emulation of calculation of assessment scores – can be obtained in a framework
that addresses the characteristic features of the application in a more appropriate way.
We have in particular the aspect of vagueness in mind. The alternative approach that
we introduce in the sequel is based on the idea of modelling the prototypes of a vague
property by a subset of a metric space [6]. Certain ideas originating from approximate
reasoning [12, 8] play a role as well.

3.1 Modelling vague properties in metric spaces

A vague property, like “tall” for a human being, refers to a size, but does not correspond
to a partition of the set of all sizes. In fact, the notion “tall” refers to a lower level of
granularity than the elements of the real interval [0, 250] when used to indicate sizes in
centimeters. In particular, the property of being “tall” cannot be identified with a subset
of [0, 250] because there is no smallest size to be considered as tall.

It might be less difficult, however, to choose a subset of [0, 250] that is not supposed to
consist of all sizes to be considered “tall” but only those unquestionably to be conside-
red “tall”; we speak about the prototypical cases then. In addition, we can endow the
set [0, 250] of all sizes with a similarity relation such that increasing distance from the
set of prototypes reflects the decreasing tendency to call somebody with that size tall.
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This idea of modelling vague notions can be regarded as fundamental in fuzzy set
theory. In the seminal paper [6], three different views on fuzzy sets are specified and
one of these views coincides with our present approach. A series of formalisms based
on the idea were developed; we may mention, e.g., [18]. It can certainly be argued that
the choice of prototypes involves arbitrariness as well. When combining two levels
of granularities, arbitrariness can in fact never be avoided. However, we avoid that a
choice about the truth degree must be made for every element of the base set.

The similarity-based approach to fuzzy sets has, however, a disadvantage. The degree
assigned to a particular element of the base set depends on its distance from the set
of prototypes; consequently, all fuzzy sets are “equally steep”. This is counterintuitive.
Indeed, it makes a difference if the set of prototypes is large and models some very
general property, or the set is small and models a more specific property. The neighbor-
hood of the set of prototypes that contains the elements mapped to non-zero degrees
should in the latter case be narrower than in the former.

There is a straightforward way to overcome this difficulty. A vague property is not only
characterised by its prototypes, but also by its counterexamples. By a counterexample,
we mean a case in which the property under consideration clearly does not hold. In this
case, we model properties by pairs of sets, the first of which contains the prototypes,
the second one the counterexamples. We are led to a model based on disjoint subsets;
see, e.g., [3] for a detailed discussion.

This idea is still well in line with fuzzy set theory. It belongs, e.g., to the essenti-
al constituents in V. Novák’s theory of trichotomous evaluative linguistic expressions
[20, 21]. Recall that a fuzzy set modelling a vague property maps the prototypical ele-
ments to 1 and the counterexamples to 0. Given the prototypes and counterexamples,
the borderline cases can moreover be handled by means of a metric structure. In the lin-
guistic context, an S-shaped fuzzy set has been established as most appropriate. Often,
however, the remaining grades are determined on the basis of a simple linear interpo-
lation: then each element is mapped to the distance from the counterexamples divided
by the sum of the distances from the prototypes and counterexamples.

The idea of identifying properties with the sets of their prototypes and counterexamp-
les might be found appealing; there is, however, no straightforward way to design on
its basis a method of reasoning about vague properties. One point seems to be clear:
fuzzy logic understood as t-norm-based many-valued logic is not suitable. Below we
demonstrate how reasoning in the questionnaire context can be represented along the
indicated lines.

3.2 A simple prototype-counterexample logic

For the sake of the considered application, it is natural to identify the universe of dis-
course with the totality of possible outcomes of a questionnaire-based interview and
thus with the set of all truth value assignments of a certain finite set of variables. We
specify in the sequel a formalism on this basis, which we shall denote by Q.

Q is specified syntactically as follows. We fix n ≥ 1 and we let the symbols ϕ1, . . . , ϕn
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be our basic variables. Furthermore, we choose a countably infinite set α1, α2, . . .
of dependent variables. All variables are assumed to model vague properties and are
hence subject to an assignment with graded truth degrees. This will be done in the
following explicit way. Again, we denote by [0, 1] the real unit interval. A graded
variable is an expression of the form (α, c), where α is a variable and c ∈ [0, 1].

A formula of Q is built up from graded variables by means of the binary connecti-
ves ∧,∨ and the unary connective ¬. Their meaning is the classical “and”, “or”, and
“not”, respectively. Note that we do not compose the variables themselves by logical
connectives but only variables endowed with a degree.

The semantics of Q is based on the following considerations. As common in degree-
based propositional logic, the variables together with an assignment of truth values are
intended to describe one out of a set of possible situations; technically, we speak of
possible worlds. Here, we will assume that each possible world is specifiable by the
truth degrees of the basic variables alone. That is, we assume that there is a one-to-one
correspondence between the assignments of the basic variables with truth values and
the set of worlds. The truth degree of each dependent variable is in turn assumed to
depend on the truth degree of the basic variables.

Accordingly, we proceed as follows. We define W = [0, 1]n to be the set of worlds.
We measure the distance between two worlds by the sum of the differences of the n
components. That is, we endow W with the metric d : W ×W → R+ defined by

d((c1, . . . , cn), (d1, . . . , dn)) = |c1 − d1|+ . . .+ |cn − dn|, (5)

where c1, . . . , cn, d1, . . . , dn ∈ [0, 1]. We additionally define the distance of a w ∈ W
from some A ⊆W by d(w,A) = inf {d(w, a) : a ∈ A}.
W is our fixed domain of interpretation. An evaluation maps each variable α to a pair
(α+, α−) of disjoint non-empty closed subsets of W . For each basic variable ϕi, we
require that

ϕ+
i = {(a1, . . . , an) : ai = 1},

ϕ−i = {(a1, . . . , an) : ai = 0}.

The intended meaning is that α+ contains the prototypes and α− contains the counter-
examples of α.

We can then associate with α a fuzzy set according to the approach outlined above. To
this end, we consider the distance of a world w from the set of prototypes as well as
from the set of counterexamples. Namely, at w ∈W , we say that α holds to the degree

1− d(w,α+)

d(w,α+) + d(w,α−)
=

d(w,α−)

d(w,α+) + d(w,α−)
.

Note that α holds to the degree 1 if and only if w ∈ α+, and α holds to the degree 0 if
and only if w ∈ α−. Furthermore, the basic variable ϕi holds at a world (a1, . . . , an)
to the degree ai.

15



Given an evaluation, we assign to each formula Φ a subset [Φ] of W as follows. For
each graded variable (α, c), we define

[(α, c)] = {w ∈W : d(w,α−)
d(w,α+)+d(w,α−) = c}, (6)

and for a compound formula Φ, we define [Φ] such that the connectives ∧,∨,¬ are
interpreted by the set-theoretic operations ∩,∪, {, respectively. The evaluation is said
to satisfy Φ if [Φ] = W .

In other words, [(α, c)] consists of those worlds at which α holds to the degree c. In
particular, for each basic variable ϕi and t ∈ [0, 1] we have

[(ϕi, t)] = {(a1, . . . , an) ∈W : ai = t}.

Moreover, a compound formula is satisfied if the corresponding set-theoretical rela-
tionship holds. For instance, [(ϕ1, 1) ∧ (ϕ2, 0) → (α, 1)] is satisfied iff [(ϕ1, 1)] ∩
[(ϕ2, 0)] ⊆ [(α, 1)] iff, at every world at which ϕ1 holds to the degree 1 and ϕ2 holds
to the degree 0, α holds to the degree 1.

Finally, a theory of Q is a set of formulas. A theory T is said to be correct if there is an
evaluation satisfying all elements of T . We say that a correct theory entails a formula
Φ if every evaluation satisfying all elements of T also satisfies Φ.

The role of theories of Q may be characterised as follows. Their scope is to specify
the dependent variables relative to the independent ones, that is, to determine the truth
degree of each dependent variable given the truth degrees of the independent ones. The
framework is given by the set W and the metric (5) defined on it. By means of a theory
of Q, we are supposed to specify the sets of prototypes and counterexamples, from
which the remaining truth degrees are determined by the interpolative prescription (6).

We note that we are in this way led to a viewpoint that differs from the common pro-
cedure, e.g., in mathematical fuzzy logic, where truth degrees are seen relative to each
other at each single world. In contrast, our approach determines truth values at a given
world by reference to truth values at other worlds. Accordingly, we do not allow to
exclude worlds, or to consider specific worlds without the remaining ones; we always
consider W as a whole. Hence we are interested in those evaluations that assign each
element of a theory the whole set W . To ensure that such evaluations exist, theories are
required to be correct.

We may conclude that our approach assigns to theories a role that is narrower than in
other logics. Often, the general facts, like in our context the interpretation of dependent
variables, and the special facts, like the propositions holding at a specific world, are
not formally distinguished and can both be included in a theory. In Q, theories are
reserved for general facts, referring to the whole fixed set W . To reason about specific
situations, for instance about the case that a variable holds to a certain degree, we use
compound formulas. The example provided in the next subsection will demonstrate
that this procedure is actually practicable.
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3.3 Application of Q to questionnaires

We now demonstrate the reasoning in the context of questionnaires in the proposed
framework.

As before, the variables of Q are intended to refer to clinical entities. For a variable α
and c ∈ [0, 1], the expression (α, c) means that α applies to a patient to the degree c. If
α is not vague, c always equals 0 or 1.

Assume that we are given a questionnaire containing n ≥ 1 items and each item can
be answered with one out of k + 1 degrees, k ≥ 1. We choose the basic variables
ϕ1, . . . , ϕn in correspondence with the items of the questionnaire. The dependent va-
riables describe properties depending on what the basic variables refer to; we assume
that this is case for the syndromes, diseases, or disorders under consideration. Here, we
assume again that a single disorder δ is tested.

We furthermore assume that answers can appear in all combinations. Consequently, it
makes sense to define the set of worlds as we do above, by W = [0, 1]n. The set of all
possible answers certainly corresponds to a finite subset ofW , namely, {0, 1k , . . . , 1}

n.

In this framework, let us specify the disorder δ under consideration. The items of a
questionnaire are chosen such that δ is fully confirmed if all of them are answered
clearly affirmatively. Accordingly, we let the set of prototypes of δ be the singleton

δ+ = {(1, . . . , 1)}.

The reason for this particular choice of the set of prototypes is the intended correspon-
dence to the context of medical questionnaires, in which the total value of 1 is only
possible in case the answers to all items are 1.

Similarly, the disorder is fully excluded only if all questions are answered negatively.
In particular, this conclusion is not supposed to be drawn if only some of the answers
are negative. Accordingly, we let the set of counterexamples of δ again consist of only
one element:

δ− = {(0, . . . , 0)}.
A world w = (c1, . . . , cn) corresponds to a particular patient answer. We now see that
δ is at w assigned the expected degree, namely,

d(w, δ−)

d(w, δ+) + d(w, δ−)

=
d((c1, . . . , cn), (0, 0, 0, 0))

d((c1, . . . , cn), (1, 1, 1, 1)) + d((c1, . . . , cn), (0, 0, 0, 0))

=
c1 + . . .+ cn

(1− c1) + . . .+ (1− cn) + c1 + . . .+ cn

= 1
n (c1 + . . .+ cn).

(7)

that is, the arithmetic mean of the grades assigned to the items.

To see that Q in fact emulates the calculation of scores from given degrees, let n = 4
and denote by ϕ1, ϕ2, ϕ3, ϕ4 the four items characterising the syndrome δ “depressi-
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on”. We need a theory specifying δ for all possible answers to these four items. The
syndrome δ is specified by its sets of prototypes and counterexamples; accordingly, let
T contain the following two formulas:

(δ, 1) ↔ (ϕ1, 1) ∧ (ϕ2, 1) ∧ (ϕ3, 1) ∧ (ϕ4, 1),

(δ, 0) ↔ (ϕ1, 0) ∧ (ϕ2, 0) ∧ (ϕ3, 0) ∧ (ϕ4, 0),

where ↔ has the usual meaning. Assume that these two formulas are satisfied by an
evaluation. This means

[(δ, 1)] = [(ϕ1, 1)] ∩ [(ϕ2, 1)] ∩ [(ϕ3, 1)] ∩ [(ϕ4, 1)],

[(δ, 0)] = [(ϕ1, 0)] ∩ [(ϕ2, 0)] ∩ [(ϕ3, 0)] ∩ [(ϕ4, 0)];

that is, δ+ = {(1, 1, 1, 1)} and δ− = {(0, 0, 0, 0)}. Furthermore, [(δ, c)] is uniquely
determined for each c ∈ [0, 1] by (7).

Let now c1, c2, c3, c4 be the answers provided by a patient. We are interested in de-
riving the consequences of this special fact within Q. To this end, we explore which
implications of the form

(ϕ1, c1) ∧ (ϕ2, c2) ∧ (ϕ3, c3) ∧ (ϕ4, c4)→ Φ

T entails. We have

[(ϕ1, c1) ∧ (ϕ2, c2) ∧ (ϕ3, c3) ∧ (ϕ4, c4)]

= [(ϕ1, c1)] ∩ [(ϕ2, c2)] ∩ [(ϕ3, c3)] ∩ [(ϕ4, c4)] = {(c1, c2, c3, c4)}

and by (7)
(c1, c2, c3, c4) ∈ [(δ, c1+c2+c3+c44 )].

Hence

[(ϕ1, c1) ∧ (ϕ2, c2) ∧ (ϕ3, c3) ∧ (ϕ4, c4)] ⊆ [(δ, c1+c2+c3+c44 )],

and we conclude that T entails

(ϕ1, c1) ∧ (ϕ2, c2) ∧ (ϕ3, c3) ∧ (ϕ4, c4) → (δ, c1+c2+c3+c44 ).

Hence, as desired, the particular questionnaire outcome c1, c2, c3, c4 implies that δ
holds to the degree c1+c2+c3+c4

4 .

Remark 3.1. The model presented above may be illustrated as follows. A patient’s
answers χ to a questionnaire may be visualised by a point in a multi-dimensional space,
where each dimension corresponds to one item of the questionnaire. Furthermore, the
counterexamples and prototypes of the disorder in question are represented by points
in this space as well. Finally, the obtained score is the relative distance of χ from the
counterexamples and prototypes; cf. (6). Assuming only three items, the situation is
expressed in Figure 1.
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Abbildung 1: Illustration of the distance of χ, representing a patient’s answers, from
the counterexamples and prototypes of a disorder.

4 Conclusion

Representing apparently straightforward medical reasoning within a logical framework
is generally a tricky task. Principle limits have been observed in case of fuzzy-logic
based medical decision support systems; see, for instance, [2]. In this paper we address
a specific further problem in the medical domain: providing a formal framework for the
score calculation in assessment questionnaires. We have included two very different
approaches following the same aim. Roughly speaking, we may summarise our efforts
as follows: putting up an elegant formal system leads to difficulties in interpretation;
restricting to well-justified principles leads to narrow constraints on the formal side.

At the end, in the medical context, the more valuable approach is the one that is more
useful in practice. Thus, an evaluation of the proposed approaches is the most straight-
forward direction for further research.

On the more theoretical side, the first approach is basically a fuzzy logic that is, in
line with our application, able to deal with mean values. Apart from that, our logic is
characterised by the fact that the implication is present but not as a connective in the
usual sense. The implication is, so-to-say, crispified by the attachment of an explicit
truth degree.

The idea underlying the second part of the present paper was to represent vague pro-
perties by pairs of sets in a metric space; in this way, prototypes and counterexamples
are modelled separately and the truth degrees are determined by the underlying metric.
This approach provides an intuitively appealing model of vague notions in general and
of notions occurring in the context of medical questionnaires in particular. It might be
interesting to note that the independency of the questionnaire items that we have assu-
med for our model – cf. Remark 3.1 – is also a central basic assumption made in the
majority of statistical models developed for analyzing questionnaires, such as classical
test theory and item responce theory ([23, 19, 5]). Exploring further connections to
these models seems a fruitful direction for further research.

As regards the second approach, the most important issue for further research is an
axiomatisation. To define a nice proof system for a logic of this kind remains a serious,
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although possibly quite rewarding, challenge. A possible way to go might be to subject
the pairs of subsets modelling vague properties to additional constraints.
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