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A fuzzy if-then rule base may be viewed as a partial function between universes of fuzzy
sets. For the construction of a fuzzy inference module, this partial function needs to be
extended to a total one.

Here, we propose a new method how to do so, making use of the method of smoothing
splines. To this end, we identify the fuzzy sets with elements of a finite-dimensional real
parameter space in an approximate way, using Perfilieva’s fuzzy transforms. We then
determine a function between two such parameter spaces by requiring that it reproduces
the rule base as precise as possible and that it minimizes a parameter depending on its
smoothness.
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1. Introduction

A fuzzy if-then rule base typically appears in the following context. A value ranging
over a subset Ω of the Rm is assumed to determine a second value ranging over a
subset Ψ of the Rn; we know, however, about this dependency only roughly. Namely,
all available information is contained in rules (A1,B1), . . . , (Ak,Bk), telling us that,
for i = 1, ..., k, the fuzzy set Ai over Ω is assigned the fuzzy set Bi over Ψ.

So a fuzzy if-then rule base may be viewed as a partial function from F(Ω), the
collection of fuzzy sets over Ω, to F(Ψ), the collection of fuzzy sets over Ψ. Now,
building a fuzzy inference module on the base of a rule base means extending this
partial function to a total one; in some reasonable manner, we have to associate
with an arbitrary A ∈ F(Ω) some B ∈ F(Ψ), the cases included that A is not
among the left entries of the rule base.

Most of the existing inference mechanisms are based on the Generalized Modus
Ponens, realized by the Compositional Rule of Inference.1 These mechanisms differ
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from each other in the way a fuzzy relation interpreting the fuzzy rule base is
constructed, and in the choice of the operations. Two basic examples how a fuzzy
relation may be calculated are

R =
k∨

i=1

(Ai t Bi) (DNF) and R =
k∧

i=1

(Ai →t Bi) (CNF),

where t is an arbitrary left-continuous t-norm and →t its residuation.2 If the mini-
mum t-norm appears in (DNF) we get the Mamdani-Assilian inference algorithm,3

which is among the algorithms most often implemented in controlling devices.
Another inference technique was proposed by Novak.4 In this case, the rule base

is considered to be a list of independent implicative rules based on the  Lukasiewicz
implication, and in each inference step, usually only one rule is fired. This method
is different from (CNF) above because there the rules are not aggregated by some
conjunction. Note that this method has been designed for special fuzzy sets with
linguistic content, and it is deeply related to the theory of evaluating linguistic
expressions.5

A further inference method, which is often used in applications because of its
approximation abilities, is due to Takagi-Sugeno.6 This method assigns a linear
function to each antecedent fuzzy set Ai; the result of the inference, however, is
already crisp. For this reason, it is actually not directly related to this paper.

On the other hand, there are methods which do come close to our ideas. Note
that all inference techniques mentioned so far provide best results when the rule
base is dense. If, on the other hand, the rule base is sparse, the KH (Kóczy-Hirota)
interpolation methods may be the proper choice, which is able to interpolate be-
tween the fuzzy input values.7,8,9 Other proposals pointing into a similar direction
include the one of Jenei.10

In this paper, we shall present still another method on which fuzzy inference
may be based. Our idea is to disregard for the moment practical considerations and
to ask instead for general principles which a function mapping between universes of
fuzzy sets and associated to a given rule base should fulfil. We wonder which way
we may measure the quality of such a function. What we will do is to define two
parameters; the first one will measure how much our function differs from the given
rule base, and the second one will be the smaller the smoother the function is. The
natural aim is to find the function minimizing these parameter. We will present the
conditions under which a unique such function exists; to this end, we will adapt the
formalism of smoothing splines to our needs.

Clearly, our approach is different from those mentioned before. The main point
is that we intend to demonstrate that it is possible to base a type of fuzzy inference
on a certain, reasonably chosen principle. What we do not claim is that our method
is superior to other ones. For a short discussion of advantages and disadvantages of
our approach, we rather refer to the concluding Section 4.

We proceed as follows. First of all, we will see how we may parametrize a fuzzy
set by a finite set of reals, using the concept of fuzzy transforms by I. Perfilieva
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(Section 2).11,12,13,14 Our task is then reduced to find a function between the two
parameter spaces, which are finite products of the real unit interval. We then give
a short introduction into the method of smoothing splines; a convenient abstract
formulation of this formalism is due to Atteia (Section 3).15 Applying this formalism,
we define a function between the parameter spaces which on the one hand is as
smooth as possible and which on the other hand reproduces the given if-then rule
base as well as possible. These two requirements may be weighted relatively to each
other arbitrarily. We conclude the paper with some general considerations (Section
4).

2. Fuzzy transforms

Let us assume that it is our task to design a fuzzy inference module which maps
fuzzy sets over a subset Ω of the Rm to fuzzy sets over a subset Ψ of the Rn. The
base sets Ω and Ψ will always be assumed to be compact convex subsets; and a
fuzzy set will be understood to be a lower semicontinuous functions from their base
set, i.e. Ω or Ψ, to the real unit interval [0, 1]. The collections of all fuzzy sets over
Ω and Ψ will be denoted by F(Ω) and F(Ψ), respectively.

According to the most general approach, a fuzzy inference module would be a
function from F(Ω) to F(Ψ). However, due to the size of F(Ω) and F(Ψ), this
is clearly a problematic assumption; at least we do not know about a reasonable
theoretical framework how to deal with function between such general universes
of fuzzy sets. On the other hand, from the practical point it seems inappropriate
anyhow to take into account such large collections of functions. So what we shall
do is to choose subsets of F(Ω) and F(Ψ) in a reasonable way, and to consider a
fuzzy inference module as a function between these subsets.

There are surely many ways how to proceed, and we describe one possibility in
this section. Namely, we will make use of a technique proposed by I. Perfielieva.11,14

By her technique of fuzzy transforms, we may represent each fuzzy set by a finite
number of reals; we replace the universes F(Ω) and F(Ψ) by the collection of all
the fuzzy transforms. Every fuzzy transform is a r-tuple of reals between 0 and 1,
and rather than dealing e.g. with F(Ω), we will deal with the parameter set [0, 1]r.
So what we will have to consider in the subsequent section are functions from [0, 1]r

to [0, 1]s, where r, s ∈ N, rather than from F(Ω) to F(Ψ).
Perfilieva’s technique may be described as follows. For a given cubic base set Ω,

we start with a system of r fuzzy sets called basic functions; for each fuzzy set u,
we define a linear combination of the basic functions which is as close as possible to
u; the r-tuple of coefficients in this linear combination is then the fuzzy transform.
The precision with which we may approximate an arbitrary fuzzy set in this way
certainly becomes the better the larger we choose r.

In detail, this works as follows. The basic functions will form a partition of the
unity, a notion to be defined first.

Definition 1. Let k ≥ 2, and let Ω be a closed convex subset of Rn. A partition of
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the unity over Ω is a k-tuple E = (E1, . . . ,Ek) of fuzzy sets over Ω such that the
following holds:

(E1) for every i, Ei is continuous;
(E2) for every i, Ei attains at some point the value 1;
(E3)

∑
i E

i(x) = 1 for all x ∈ Ω.

In this case, we call

F(E) = {
∑

i

AiEi: 0 ≤ A1, ..., Ak ≤ 1}

the fuzzy set universe generated by E .

We will see next that the fuzzy set universe F(E) generated by some k-element
partition of the unity E , is in a one-to-one correspondence with [0, 1]k.

Lemma 1. Let E = (E1, . . . ,Ek) be a partition of the unity over Ω ⊆ Rn. Then
F(E), the fuzzy set universe generated by E, consists of fuzzy sets. Moreover, each∑
iA

iEi ∈ F(E) is uniquely determined by the k-tuple (A1, . . . , Ak).

Proof. The first assertion is clear from the fact that the Ei add up to the identity.
Moreover, let

∑
iA

iEi =
∑
iB

iEi for A1, ..., Ak, B1, ..., Bk ∈ [0, 1]. For any index
i, there is an x ∈ Ω such that Ei(x) = 1, whence Ej(x) = 0 for j 6= i; it follows
Ai = Bi.

Definition 2. Let k ≥ 2, and let E be a k-element partition of the unity. Then we
call

P(E) = [0, 1]k

the parameter space belonging to E . For any

A = A1E1 + . . .+AkEk ∈ P(E),

we let

Ā = (A1, . . . , Ak) ∈ P(E).

Now, systems of basic functions are partitions of the unity subject to certain
special conditions.

Definition 3. Let Ω = [a, b] be a closed real interval, let k ≥ 2, and let E =
(E1, . . . ,Ek) be a partition of the unity over Ω. Let h = b−a

k and c0 = a, c1 =
a+h, . . . , ck = b. Then E is called a system of basic functions over Ω if the following
holds for i = 1, . . . , k:

(E4) Ei(ci) = 1 and the support of Ei is within [ci − h, ci + h] ∩ Ω;
(E5) Ei is on [ci − h, ci] ∩ Ω strictly increasing and on [ci, ci + h] ∩ Ω strictly

decreasing;
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(E6) Ei(ci − h′) = Ei(ci + h′) if 0 ≤ h′ ≤ h and ci − h′, ci + h′ ∈ Ω;
(E7) Ei+1(x) = Ei(x− h) if 1 ≤ i < k and x− h, x ∈ Ω.

Furthermore, let n ≥ 1, let Ωj = [aj , bj ] for every j = 1, . . . , n be a closed real
interval, and let Ω = Ω1× . . .×Ωn; we call such a set a cube. For every j = 1, . . . , n,
let kj ≥ 2, and let (E1

j , . . . ,E
kj
j ) be a system of basic functions. Let

Ei1,...,in(x) = Ei1
1 (x) · . . . ·Ein

n (x), x ∈ Ω,

where 1 ≤ i1 ≤ k1, . . . , 1 ≤ in ≤ kn; the k1 · . . . · kn-tuple of all these functions (e.g.
in the lexicographical order) is again called a system of basic functions over Ω.

Let E a system of basic functions over Ω; with an arbitrary fuzzy A set over
Ω, we may then associate an element of the fuzzy set universe generated by E as
follows.

Definition 4. Let n ≥ 1, let Ω ⊆ Rn be a cube, and let E = (E1, . . . ,Ek) be a
system of basic functions over Ω. Let A be a fuzzy set over Ω. Then we call the
k-tuple of real numbers

FE [A] = (A1, . . . , Ak)

the F-transform of A w.r.t. E , where for i = 1, . . . , k

Ai =

∫
Ω

A(x)Ei(x)dx∫
Ω

Ei(x)dx
. (1)

Moreover, call

IFE [A](x) =
k∑

i=1

AiEi(x)

the inverse F-transform associated to A w.r.t. E .

Now, an arbitrary fuzzy set A is approximated by its fuzzy transform FE [A];
this is seen from the following theorem. The point is simply that a continuous fuzzy
set A differs from its inverse F-transform IFE [A] w.r.t. the supremum norm by
an arbitrary small positive real if the cardinality of E is sufficiently large. Recall
furthermore that an arbitrary fuzzy set can in turn be approximated arbitrarily
close by a continuous fuzzy set for instance w.r.t. the L2-norm.

For further details, we refer to the cited papers.11,14

Theorem 1. Let Ω ⊆ Rn be a cube, and let A be a continuous fuzzy set over Ω.
Then for any ε > 0 there exists a system of basic functions E such that

|A(x)− IFE [A](x)| ≤ ε for all x ∈ Ω.

Proof. This was proven earlier.16,12,14

As a consequence, rather than working with the large universe F(Ω) of fuzzy
sets of some cube Ω, we may restrict to the fuzzy set universe generated by some
fixed system of basic functions over Ω.
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3. Smoothing splines for fuzzy if-then rule bases

After the preparations of Section 2, let us recall our original aim. Assume that we
are given a fuzzy if-then rule base (A1,B1), . . . , (Al,Bl), where A1, ...,Al are fuzzy
sets over Ω ⊆ Rm and B1, ...,Bl are fuzzy sets over Ψ ⊆ Rn; and assume that we
have to determine a function from the fuzzy sets over Ω to the fuzzy sets over Ψ in
accordance with this rule base.

Since Ω and Ψ were assumed to be bounded, we may actually assume that they
are cubes. Let us moreover fix a system of basic functions EA over Ω, and a system
of basic functions EB over Ψ. By choosing the cardinality of EA and EB as large as
necessary, it is the content of Theorem 1 that it is no serious restriction to assume
that A1, ...,Al are in the fuzzy set universe generated by EA and that B1, ...,Bl

are in the fuzzy set universe generated by EB (cf. Definition 1). So we may identify
Ai with Āi ∈ [0, 1]r and similarly Bi with B̄i ∈ [0, 1]s, i = 1, . . . , l (Lemma 1 and
Definition 2).

As a result, our task is reduced to finding an appropriate function between the
respective parameter spaces PA = P(EA) = [0, 1]r to PB = P(EB) = [0, 1]s. Namely,
we have to find a function f : PA → PB subject to the following conditions:

• f should be monotonous, that is, f should preserve the usual partial order
of fuzzy sets. So if Ā, Ā′ ∈ PA, then Ā ≤ Ā′ should imply f(Ā) ≤ f(Ā′).
Here, ≤ denotes the componentwise ordering of [0, 1]r and [0, 1]s, respec-
tively.
• The function f should be “as smooth as possible”. We interprete this con-

dition in the usual way: For some q, we assume that the q-th (generalized)
derivative Dqf exists and is L2-integrable; and the L2-norm of Dqf is to
be minimized.
• For i = 1, ..., l, f(Āi) should be as close as possible to B̄i. This means that

the distances between f(Āi) and B̄i are to be minimized as well.

The two latter requirements may be arbitrarily weighted relatively to each other;
the controlling constant is ρ, appearing below. We note that the last requirement
may in principle be strengthened; we could require f(Āi) = B̄i for all i. This would
require a slightly more involved procedure.17

Our framework is the following. First of all, F , formally defined below, denotes
the Hilbert space containing those functions which map one parameter space to
the other one and which are of the appropriate differentiability class. Now, in our
case, these functions need to have the monotonicity property; consequently, we will
restrict to a certain positive cone in F , denoted by K. Second, the differential
operator δ will map F into another Hilbert space D, such that for f ∈ F the norm
of δ(f) in D will measure the degree of smoothness of f . Third, there will be another
linear function ω from F to a Hilbert space V which maps f ∈ F to the values of
f at those points whose images are known from the rule base.

In what follows, we will distinguish the scalar products and the 0’s of the three
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Hilbert spaces by indices referring to the respective space.
The following theorem provides a variant of the well-known smoothing spline

formalism; for a more detailed version of its proof, see Chapter III of Atteia’s
monograph.15

Theorem 2. Let F , D, and V be Hilbert spaces; let K ⊆ F be convex and closed;
let δ : F → D and ω : F → V be linear operators such that δ has a closed image
and ω is surjective; let v0 ∈ V ; and let ρ > 0. Assume furthermore that ω(Ker δ)
is closed in V and that Ker δ ∩ Ker ω = {0F }. Then there is unique f ∈ K which
minimizes

||δ(f)||D + ρ||ω(f)− v0||V , where f ∈ K. (2)

Proof. Let D′ = δ(F ); then D′ is a closed subspace of D. Let H = D′ × V the
Hilbert space with the scalar product

((d1, v1), (d2, v2))H = (d1, d2)D + ρ(v1, v2)V ,

for d1, d2 ∈ D′ and v1, v2 ∈ V , and let

`: F → H, f 7→ (δ(f), ω(f)).

Then by III, Lemma 2.1 in Atteia’s monograph,15 ` is a isomorphism between
F and the closed subspace `(F ). Consequently, the restriction `|K of ` to K is
a homeomorphism between K and `(K) preserving convex combinations in both
directions. In particular, `(K) is a closed convex subset of H. Let (d, v) ∈ `(K) be
the unique projection of (0, v0) onto `(K). Then f = `−1((d, v)) minimizes (2).

We now apply Theorem 2 to functions mapping between the two parameter

spaces PA and PB . Moreover, let q ≥ 1 be some integer, and let
◦
PA be the interior

of PA; then we denote by W q,2(
◦
PA,Rs) the Sobolev space of functions from

◦
PA to

Rs, endowed with the norm || · ||q,2.18 Note that since
◦
PA fulfils the strong local

Lipschitz condition, then this space consists of continuous functions continuously
extendible to P(EA) if q ≥ r+3

2 .18

Elements a1, . . . , al ∈ Rr are called q-unisolvent if every polynomial of degree
≤ q − 1 vanishing at a1, . . . , al is 0.

Theorem 3. Let EA be an r-element system of basic functions over a cube Ω ⊆ Rm,
and let EB be an s-element system of basic functions over a cube Ψ ⊆ Rn. Let
(A1,B1), . . . , (Al,Bl) ∈ F(EA)×F(EB).

Let PA = P(EA) = [0, 1]r and PB = P(EB) = [0, 1]s.
Let q ≥ r+3

2 and

F = W q,2(
◦
PA,Rs)

= {f ∈ L2(
◦
PA,Rs): Dtf ∈ L2(

◦
PA, S((Rr)t,Rs) for all t ≤ q},

K = {f ∈ F : f is monotonous and f(
◦
PA) ⊆ PB},
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where S((Rr)t,Rs) is the space of symmetric t-linear forms from Rr to Rs. Further-
more, let

D = L2(
◦
PA, S((Rr)q,Rs)),

δ: F → D, f 7→ Dqf ;

V = (Rs)l,
ω: F → V, f 7→ (f̂(Ā1), . . . , f̂(Āl)),

where f̂ is the continuous extension of f to PA.
Assume that Ā1, . . . , Āl is q-unisolvent, and let v0 = (B̄1, . . . , B̄l). Then, for

any ρ > 0, there is a unique f ∈ K minimizing (2).

Proof. We claim that δ has a closed image. Indeed, f 7→ ||δ(f)||D is a seminorm
on F , which induces a norm on F/Pq, where Pq is the subspace of polynomials of
degree ≤ q − 1. The assertion follows from the fact that F/Pq is a Hilbert space.

Moreover, ω is obviously surjective. Ker δ = Pq; hence Ker δ ∩ Ker ω = {0F }.
It furthermore follows that ω(Ker δ) is closed. K is obviously convex and closed.
So we may apply Theorem 2.

This result may be put into simple words as follows. Given two parameter
spaces PA and PB , describing up to some prescribed precision the inputs and out-
puts, respectively, of a fuzzy inference module, and given a fuzzy if-then rule base
with entries in the corresponding fuzzy set universes, there is a unique function
f̂ : PA → PB minimizing the weighted sum of the smoothness degree and the error
in reproducing the rule base – under the condition that the rule base has sufficiently
many entries.

4. Discussion

We described in this paper a method how to realize a fuzzy inference module based
on an arbitrary fuzzy if-then rule base.

As the main feature of this method, we should exhibit the fact that it provides
the completion of a rule base according to a clear, general principle. In particular,
it is applicable nearly unrestrictedly; there is no serious restriction of the shape of
the fuzzy sets involved, nor is there any restriction in the dimensions.

On the other side, generality certainly has its drawback, and in comparison to all
methods mentioned in the introduction, certain disadvantages have to be admitted.
To implement our method is as difficult as to implement the method of smoothing
splines in general: it is surely technically demanding. Moreover, there is a serious
point restricting the applicability of our method: there must be sufficiently many
rules – approximately as many as one half of the number of basic functions used to
represent the input fuzzy sets.

We conclude the paper by having a look to the closely related work of the first
author.17 The approach of this work is very similar, but in the cited paper, the fuzzy
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sets are parametrized differently: finitely many level sets are chosen and the support
functions of these level sets are approximated by their values at finitely many points
of the unit sphere. The advantage is that these parameters are compatible with
the arithmetic operations of fuzzy sets, that is, with the addition and with the
multiplication with positive reals. As a consequence, when the values in a rule base
become sharper and sharper, the resulting function will in some sense approach the
function which you would get in the crisp case. On the other side, it is a disadvantage
in the other paper17 that the parameter set, which has the simple form [0, 1]r here,
is not described so easily. Finally, only fuzzy-convex fuzzy sets (in the sense of
Diamond and Kloeden19) are taken into acc! ount.
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