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Abstract

A defuzzification function assigns to each fuzzy set a crisp value
in a way that this value may intuitively be understood as the “centre”
of the fuzzy set.

In the present paper, this vague concept is put into a mathematically
rigorous form. To this end, we proceed analogously to the case of
sharply bordered subsets, for which the Steiner point is frequently
used. The function assigning to each convex subset its Steiner point
is characterised by three properties; here, we study functions whose
domains consist of fuzzy sets and which fulfil analogous properties.

Although uniqueness can no longer be achieved, we give a complete
characterisation of what we call Steiner points of fuzzy sets.

1 Introduction

Let Rn be then-dimensional real Euclidean space, wheren ≥ 2, and let
Kn be the set of all convex bodies ofRn. Intuitively, the transition from
Rn to Kn may be viewed as an intermediate step towards the fuzzification
of Rn. For, assume that rather than knowing about some precise location
as described by a point ofRn, you only know about bounds of this location
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in every direction; the area of space specified this way is an intersection of
halfspaces, and in fact a convex body.

Let us assume that a convex body represents some value together with infor-
mation about its impreciseness. The question naturally arises which value
could be meant, that is, if every setA ∈ Kn may be reasonably viewed as a
set around some central elements(A) ∈ A. The mappings 7→ s(A) could
then be considered as a “defuzzification” function.

Let us collect the minimal requirements which such a functions: Kn → Rn

should fulfil. Probably most importantly, the points(A) should not depend
on where and howA is positioned in space. Namely,s should be equivariant
with respect to Euclidean isometries, which means thats(τA) = τs(A) for
any isometryτ . Moreover,s should respect the structure whichKn carries,
both the linear and the topological one. Indeed,Kn is endowed with the
pointwise addition generalising the addition onRn; andKn is endowed with
the topology induced by the Hausdorff metric; cf. e.g. [Sch2]. Sos should
be compatible with the addition, ands should be continuous.

These three properties are fulfilled by the functions which associates with
each convex body its Steiner point; we give the definition at the beginning
of Section 2. It was an open question for many years if there is any other
such function, and it turned out that this is not the case; the Steiner point is
unambiguously defined by the mentioned three conditions [She, Sch1].

Let us next consider the more general situation that our base set not only
contains sharply limited subsets of a real Euclidean space, but also sets
with unsharp boundaries. The fuzzy analogue ofKn is En, the set of nor-
mal, support-bounded, upper semicontinuous, and fuzzy-convex fuzzy sets;
cf. [DiKl]. We wonder what kind of “defuzzification” function exists onEn

with values inRn, such that conditions analogous to those characteristic for
the Steiner point of convex bodies hold.

Steiner points on the spaceEn of fuzzy sets will again be assumed to be
equivariant with respect to Euclidean isometries, in a sense analogous to the
crisp case. Furthermore, they are supposed to respect the structure inherent
in En. Indeed, the linear structure ofKn generalises in a straightforward
way toEn; see e.g. [DiKl]. For the topology, however, we have to make a
choice; in this paper, we will take thed∞-metric onEn; cf. [Hei], or again
[DiKl]. The conditions for functionsS : En → Rn may then be formulated
in complete analogy to the crisp case.

2



We succeeded to determine all functions fulfilling the three assumed prop-
erties; this is the main result of this paper. As our formulation already sug-
gests, there is more than one; so uniqueness is lost. The representation of
these functions will moreover show that it is difficult to make a canonical
choice.

Remark 1.1 Although not much recognised by practitioners, the Steiner
point has unique advantageous properties as a point representing the posi-
tion of a body. There are many situations when a body grows uniformly in
all directions. This is for example the case of tumours, bacterial colonies,
crystals, and the like. Also errors of observation can cause the same ef-
fect; for instance defocusing, bias of a measuring method, and many image
processing techniques like mathematical morphology may result in a body
whose shape differs from the original one by a constant in each direction.

A natural idea is to describe the position of a body by its centre of gravity.
However, for non-symmetric shapes it is not stable under uniform growth
in all directions. In contrast to this, the Steiner point is preserved. This is
because such a growth corresponds to the sum (in fact, convolution) of the
original body with a ball centered at the origin of coordinates. Thus if we
want to describe the position of a body by a point which is invariant under
growth, the Steiner point is the unique solution.

One might object that the Steiner point is defined only for convex sets. How-
ever, its definition is applicable to non-convex bodies as well; in this case,
we get the Steiner point of the convex hull of the original set. So we do not
make use of the information about the non-convex part, but the original aim
of stability under growth remains fulfilled.

Real objects have often unsharp boundaries (or our method of observation
gives unsharp results) which can naturally be represented by fuzzy sets. To
extend the positioning technique to this case, it is desirable to generalise the
Steiner point to fuzzy sets.

2 The Steiner point of convex bodies

Let us fix somen ≥ 2. By Kn, we denote the set of convex bodies ofRn,
that is, the set of non-empty compact convex subsets ofRn. The setKn is
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endowed with a linear structure; the addition of two subsets and the multipli-
cation of a subset by a positive real are defined pointwise. We furthermore
endowKn with the Hausdorff metricdH .

We may identifyKn in a pleasant way with a positive cone of a Banach
space as follows. LetSn−1 denote the unit sphere inRn, and letC(Sn−1)
be the space of continuous functions fromSn−1 to R, endowed with the
supremum norm. Now, for anyA ∈ Kn, we define by

hA : Sn−1 → R, e 7→ max {(a, e): a ∈ A}

thesupport functionof A, see e.g. [Sch2]; here(·, ·) denotes the usual inner
product ofRn. Every support function is continuous, that is, inC(Sn−1).
Addition and multiplication by positive reals inKn correspond to the same
operations on the respective support functions. Moreover, the Hausdorff
metric onKn coincides with the metric ofC(Sn−1), i.e. the supremum met-
ric. We will denote the set of all support functions of convex bodies by
Sn.

The investigations of this paper are based on the following facts [She, Sch1].

Definition 2.1 TheSteiner pointof A ∈ Kn is defined by

s(A) = 1
V (Bn)

∫

Sn−1

hA(e) e dλ(e),

wheree ∈ Sn−1 varies over the unit vectors ofRn, λ is the Lebesgue mea-
sure onSn−1, andV (Bn) is the volume of the unit ballBn of Rn.

Notice thats(A) ∈ A.

In the sequel,Rn is always assumed to be endowed with the Euclidean met-
ric and the topology induced by it.

Furthermore, we will have to refer to several special types of Euclidean
isometries ofRn. By arotation, we will always mean a proper rotation, that
is, an isometry leaving the origin fixed and continuously connected to the
identity. By areflection, we will always mean a reflection leaving the origin
fixed, that is, an involutive isometry whose set of fix points is a hyperplane
containing the origin. Finally, by arigid motionwe will mean an isometry
composed of rotations and translations.
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The following theorem is for the casen = 2 due to Shephard [She] and for
the casen ≥ 3 due to Schneider [Sch1].

Theorem 2.2 Lets′ : Kn → Rn have the following properties:

(S1) For anyA,B ∈ Kn, s′(A+B) = s′(A) + s′(B).

(S2) For A ∈ Kn and any rigid motionτ , we haves′(τA) = τs′(A).

(S3) s′ is continuous.

Thens′ = s.

The remaining part of this section contains auxiliary results which will be
needed in the sequel. The first, crucial Lemma 2.3 is an extended version of
[Sch1, Lemma 2]. We will have to reproduce Schneider’s proof partly, but
for full details and for left out parts, we refer to [Sch1]. We will furthermore
use the idea of the proof of [Groe, Theorem 4.6.1].

In what follows, if τ is a rotation or a reflection andf ∈ C(Sn−1), we will
denote byτf the left translate off , that is,(τf)(e) = f(τ−1(e)).

A spherical harmonic of dimensionn and degreed = 0, 1, . . . is the restric-
tion to the unit sphereSn−1 of a polynomialRn → Rwhich is harmonic and
homogeneous of degreed. By H, we will denote the subspace ofC(Sn−1)
consisting of finite sums of spherical harmonics. The spaceH is dense in
C(Sn−1) [Sch1, Lemma 1]. For more information on spherical harmonics
in the present context, we recommend [Groe].

Lemma 2.3 Let t: H → Rn be a linear function such thatt ◦ τ = τ ◦ t for
all rotationsτ . Then there is a real numberκt and a rotationρt such that

t(f) = κt ρt

(∫

Sn−1

f(e) e dλ(e)

)
, (1)

Moreover,ρt = id if (i) n ≥ 3 or (ii) n = 2 and t commutes also with all
reflections.

Proof. Recall first that iff is a spherical harmonic of degreed 6= 1, then∫
Sn−1 f(e) e dλ(e) = 0. So we have to show thatt(f) = 0 in this case and

that (1) holds iff is of degree1.
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A spherical harmonicf of degree0 is a constant; so in this case,t(f) =
t(τf) = τ(t(f)) for all rotations, whencet(f) = 0.

For each spherical harmonicf of degree1, there is ac ∈ Rn such that
f = fc, wherefc(e) = (c, e). So T : Rn → Rn, c 7→ t(fc) is a
linear function such that, for every rotationτ , T (τ(c)) = t(fτ(c)) =
t(τfc) = τ(t(fc)) = τ(T (c)), becausefτ(c)(e) = (τ(c), e) = (c, τ−1(e)) =
fc(τ

−1(e)) = (τfc)(e) for e ∈ Sn−1. If now n = 2, it follows T = κ′tρt for
someκ′t ∈ R and a rotationρt. If then t commutes with reflections, so does
T , whenceρt equalsid or−id. Moreover, ifn ≥ 3, we haveT = κ′t id for
someκ′t ∈ R. Using the fact thatc = n

∫
Sn−1(c, e) e dλ(e), equation (1)

follows for κt =
κ′t
n

.

Next, let f be a spherical harmonic of degreed ≥ 2. For the proof that
t(f) = 0 if n ≥ 3, we refer to [Sch1, Lemma 2]. Letn = 2. Denoting by
ω(e) the angle corresponding toe ∈ S1, we havef(e) = a cos dω(e) +
b sin dω(e), wherea, b ∈ R. Let τ be the rotation by2π

d
; thenτt(f) =

t(τf) = t(f), whencet(f) = 0. 2

We will now denote byKn
0 the set of convex bodies ofRn containing0.

Lemma 2.4 Let t : Kn
0 → Rn (i) preserve sums,(ii) commute with rota-

tions, and(iii) be continuous. Then for some constantκt ∈ R and a rotation
ρt ofRn

t(A) = κt ρt

(∫

Sn−1

hA(e) e dλ(e)

)
, (2)

wherehA is the support function ofA ∈ Kn
0 .

Moreover,ρt = id if (i) n ≥ 3 or (ii) n = 2 and t commutes also with all
reflections.

Proof. Note thatKn
0 is closed under sums and multiplication by positive

reals. Moreover,t preserves sums by assumption, consequently also the
multiplication by positive rationals, and so by continuity also the multipli-
cation by positive reals. LetSn

0 = {hA : A ∈ Kn
0} ⊆ Sn.

LetH0 = Sn
0 ∩ H. ThenH0 is dense inSn

0 . Indeed, given anA ∈ Kn
0 and

ε > 0, there is someB ∈ Kn such thathB ∈ H andd(A,B) < ε; andB can
be moved by a vector of length less thanε to a setC containing the origin;
thenhC ∈ H0 andd(B,C) < ε.
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Let tH : H0 → Rn, hA 7→ t(A). For h ∈ H0 and a positive constantc,
we havetH(h) = tH(h + c); indeed, for any rotationτ we haveτ tH(c) =
tH(τc) = tH(c), whencetH(c) = 0. Furthermore, iff ∈ H, there is a
c ≥ 0 such thatf + c ∈ H0; indeed, by [Sch2, Lemma 1.7.9], there is
c′ ≥ 0 such thatf + c′ is a support function, and consequently there is some
c ≥ c′ such thatf + c is the support function of a set containing the origin.
It follows that we may extendtH to the whole spaceH unambiguously by
settingtH(f) = tH(f + c), where for eachf ∈ H we choose ac ≥ 0
sufficiently large.

The extended functiontH : H → Rn is easily seen to be a vector space
homomorphism, which moreover commutes with rotations. By Lemma 2.3,
we concludetH(f) = κt ρt(

∫
Sn−1 f(e) e dλ(e)) for any f ∈ H, where

κt ∈ R andρt is a rotation. This proves (2) for allAwhose support functions
are inH. So the assertion follows by the continuity oft.

In case thatn = 2 andt commutes with reflections,tH also commutes with
reflections. So again by Lemma 2.3, we concludeρt = id, as well as in the
casen ≥ 3. 2

3 Steiner points of fuzzy sets

Our considerations will refer to the setEn of fuzzy sets over theRn as
defined by Diamond and Kloeden in [DiKl]. The spaceEn contains by
definition all maps̄u from Rn to the real unit interval[0, 1] such that (i)ū
attains the value1 at some pointx ∈ Rn, (ii) the support of̄u is bounded,
(iii) ū is upper semicontinuous, and (iv)ū is fuzzy-convex. For details on
these notions, we refer to [DiKl].

These conditions take a particularly easy form when we switch from the
“vertical” to the “horizontal” viewpoint; and this is what we will do here.
Namely, given somēu ∈ En, let u be the function associating to eachα ∈
(0, 1] its α-level set, given by[ū]α = {x ∈ Rn : ū(x) ≥ α}, and to0 its
support[ū]0, which is the closure of{x ∈ Rn : ū(x) > 0}. Thenu is a
mapping from[0, 1] to non-empty compact convex subsets ofRn, that is,
to Kn. With respect to the topology ofKn defined above and the partial
order ofKn given by inclusion,u is decreasing, left-continuous on(0, 1]
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and continuous at0.

We denote byFn the set of all functions from[0, 1] to Kn which are (i)
decreasing and (ii) left-continuous on(0, 1] and continuous at0. The map-
ping ū 7→ u defines a one-to-one correspondence betweenEn andFn; see
[NeRa], or [DiKl, Prop. 6.1.6]. In this paper, we will deal withFn exclu-
sively: From now, by a fuzzy set we willalwaysmean an element ofFn

rather than ofEn.

Like Kn, the setFn bears a natural linear and metric structure. Namely, ad-
dition and multiplication by positive reals are defined pointwise; see [Ngu].
Moreover, we endowFn with the supremum metricd∞ [DiKl]: For u, v ∈
Fn, we letd∞(u, v) = sup0≤α≤1 dH(u(α), v(α)).

Although we will not make use of it, we include the following note. As we
know how to embed the setKn of convex bodies into a Banach space, it is
immediate how we may representFn as a positive cone of a Banach space
as well. As the smallest possible one, we may considerR([0, 1], C(Sn−1)),
the space of regulated and left-continuous functions from[0, 1] to C(Sn−1),
endowed with the supremum norm. Recall that a function is calledregu-
lated if at any pointα ∈ [0, 1] both the left and the right limit exist; see
e.g. [Hoe]. A fuzzy setu ∈ Fn may then be identified with the element
[0, 1] → C(Sn−1), α 7→ hu(α) of R([0, 1], C(Sn−1)).

We will now formulate conditions for a “defuzzification” function onFn in
analogy to the conditions appearing in Theorem 2.2. We will add one basic
further property explicitly: A Steiner point should never be located outside
the support of a fuzzy set.

In the sequel, for a fuzzy setu ∈ Fn and a rigid motionτ , we setτu :
[0, 1] → Kn, α 7→ τ(u(α)). That is, expressed for the corresponding
element̄u: Rn → [0, 1] of En, we haveτ ū = ū ◦ τ−1.

Definition 3.1 A function S : Fn → Rn is called aSteiner pointif it has
the following properties:

(SF0) For anyu ∈ Fn, S(u) ∈ u(0).

(SF1) For anyu, v ∈ Fn, S(u+ v) = S(u) + S(v).

(SF2) Foru ∈ Kn and any rigid motionτ , we haveS(τu) = τS(u).
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(SF3) S is continuous.

We will next see how we may generate typical examples of Steiner points.
Note first that, for a fixedα, the functionS : Fn → Rn which simply maps
each fuzzy set to the Steiner point of itsα-level set fulfils all conditions
(SF0)–(SF3) – and is thus a Steiner point. This already implies that we have
more than one possibility to define a Steiner point.

For the general case, we need some preparations. We shall callµ : [0, 1] →
[0, 1] ameasure functionif (i) µ is increasing, that is,µ(α) ≤ µ(β) if α < β
and (ii) µ(0) = 0 andµ(1) = 1. Furthermore, let us call a finite sequence
D = (α0, . . . , αk) a division of [0, 1] if 0 = α0 < α1 < . . . < αk = 1,
where|D| = k ≥ 1. LetD be the collection of all divisions of[0, 1], and
endowD with the inclusion as a partial order;D then becomes a directed
set.

We define the integral of a regulated functionf : [0, 1] → Rn over [0, 1]
w.r.t. a measure functionµ as follows:

∫

[0,1]

f(α) dµ(α) = lim
D∈D

|D|−1∑
i=0

f(ξi)(µ(αi+1)− µ(αi)),

whereD = (α0, . . . , α|D|) andξi ∈ (αi, αi+1) for 0 ≤ i < |D|. This limit
exists and is called theinterior integral. For further information, we refer to
[Hoe].

Proposition 3.2 Letµ : [0, 1] → [0, 1] be a measure function. Foru ∈ Fn,
let

Sµ(u) =

∫

[0,1]

s(u(α)) dµ(α), (3)

wheres is the Steiner point of crisp sets. ThenSµ is a Steiner point.

In the one-dimensional case, a function very similar toSµ as defined by
(3) has been proposed for defuzzification; Dubois and Prade introduced in
[DuPr] a defuzzification method calledaveraging level cuts(ALC). More-
over, in [Ous], it is observed that in contrast to the centre of gravity and
certain further defuzzification methods, this one is compatible with the lin-
ear operations. Another defuzzification function which is still similar to
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ours, is due to Filev and Yager; see [FiYa, Yag]. All the above papers refer
only to the one-dimensional case. In [RoSp], Roventa and Spircu treat also
multidimensional fuzzy sets and introduce a formula based on an integral
over level sets (so-calleddistribution averaging). The use of Steiner points
seems to be a novelty in our approach.

Here, we will show thatSµ as given by (3) is the most general example of
a Steiner point. In other words,Sµ, whereµ varies over the measure func-
tions, represent exactly those defuzzification methods which are not only
compatible with the linear operations, but also equivariant with respect to
Euclidean isometries, continuous, and such that the crisp values are within
the support of each fuzzy set.

To impose further properties on a Steiner point in addition to (SF0)–(SF3)
to obtain uniqueness is amazingly difficult; it is an open question if this is
possible in some reasonable, well motivated way.

4 Characterisation of Steiner points –
the case of step fuzzy sets

Before considering the problem how to characterise the Steiner points de-
fined in the last section, we will solve a simplified version. Namely, we will
assume that our fuzzy universe contains only fuzzy sets which are piecewise
constant. According to the usual (“vertical”) viewpoint, these are fuzzy sets
which map fromRn to certain finitely many values from[0, 1] only. We will
call them step fuzzy sets.

Definition 4.1 LetD = (α0, . . . , αk) be a division of[0, 1]. Then we call a
fuzzy setu ∈ Fn aD-step fuzzy setif it is constant on[α0, α1], (α1, α2], . . . ,
(αk−1, αk], respectively. We denote byFn

D the set of allD-step fuzzy sets.

Furthermore, by astep fuzzy setwe mean a fuzzy set which is aD-step
fuzzy set for some divisionD of [0, 1].

Lemma 4.2 LetD = (α0, . . . , αk) be a division of[0, 1]. LetS : Fn
D → Rn

be a function fulfilling the properties(SF0)–(SF3)of Definition3.1. Then
there are unique real numbersκ1, . . . , κk such thatκ1 + . . . + κk = 1 and
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for all u ∈ Fn
D

S(u) = κ1s(u(α1)) + . . .+ κks(u(αk)). (4)

Proof. For 1 ≤ i ≤ k andA ∈ Kn
0 , let ui,A be the fuzzy set which is

constantlyA on [0, αi] and constantly{0} on (αi, 1]. Then the mapping
Kn

0 → Rn, A 7→ S(ui,A) preserves sums, commutes with rotations, and is
continuous. So by Lemma 2.4,S(ui,A) = κ̄i ρi(

∫
Sn−1 hA(e) e dλ(e)) =

κ̄i ρi(s(A)) for someκ̄i ∈ R and some rotationρi.

In caseκ̄i = 0 we may assumeρi = id. Otherwise,ρi = id is implied
by (SF0). Indeed, consider the case thatA is the straight line between the
origin 0 and some point different from0. Thens(A) is the midpoint ofA,
that is, different from0; and by (SF0),S(ui,A) is onA. Consequentlyρi

must be the trivial rotation. It follows that, for anyA ∈ Kn
0 andi = 1, . . . k,

we haveS(ui,A) = κ̄i s(A).

Next let u be anyD-step fuzzy set; letu(αi) = Ai, i = 1, . . . , k. Then
u+u1,A2 + . . .+uk−1,Ak

= u1,A1 + . . .+uk,Ak
. ApplyingS to both sides, we

getS(u) = S(u1,A1)+S(u2,A2)−S(u1,A2)+ . . .+S(uk,Ak
)−S(uk−1,Ak

) =
κ̄1s(A1) + (κ̄2 − κ̄1)s(A2) + . . . + (κ̄k − κ̄k−1)s(Ak). So (4) is proved for
the case that0 ∈ u(0).

For the general case, let us denote bybc : [0, 1] → Kn the fuzzy set which
is constantlyBc – the ball with diameterc centered at0. Note thatS(bc) =
0 because of the rotation invariance ofS. So given an arbitraryD-step
fuzzy setu, choosec ≥ 0 large enough such that0 ∈ u(0) + bc; then
S(u) = S(u+ bc). Because the right-hand side of (4) does not change when
replacingu by u+ bc, (4) follows.

Finally, letc ∈ Rn and denote by the singleton{c} also the fuzzy set being
constantly{c}. By translation invariance, we haveS(u) + S({c}) = S(u+
{c}) = S(u) + c for anyu ∈ Fn, soS({c}) = c. It follows thatκ1 + . . .+
κk = 1; this completes the proof. 2

The preceeding Lemma 4.2 shows why we postulated that Steiner points
should fulfil condition (SF0). We note that it still holds if we drop (SF0),
but restrict to a dimension at least3.

Next we will show a further consequence of (SF0): it causes all the coeffi-
cients in (4) to be non-negative.
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We will use the following fact. The Steiner point of a polytopeA with
verticesp1, . . . , pl is given as follows:

s(D) =
l∑

i=1

ψ(pi, A) pi, (5)

whereψ(pi, A) is, for i = 1, ..., l, the external angle ofA at pi; this is the
proportion of the area of the unit sphere which is taken by the normal vectors
of the supporting planes ofA atpi. See e.g. [Grue].

Lemma 4.3 LetD = (α0, . . . , αk) be a division of[0, 1]. LetS : Fn
D → Rn

be a function fulfilling the properties(SF0)–(SF3)of Definition 3.1. Let
κ1, . . . , κk be the unique real numbers fulfilling(4). Thenκ1, . . . , κk ≥ 0.

Proof. Without loss of generality, we may restrict to the casen = 2. Fur-
thermore, assume thatk = 3 and thatκ1, κ3 ≥ 0, butκ2 < 0; the general
case is not more difficult.

´
´

´
´

´
´

´
´

´
´

´́ Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

A

r

s1

s2

a

q

LetA be an equilateral triangle with base sidea; let r be the middle point of
a; and letq be the vertex ofA opposite toa. Now lets1 be the Steiner point
of A, and lets2 be located half-way betweenr andq. As a consequence
of (5), the proportionη of the distancess1r ands2r can be made arbitrarily
small; to this end, we keep the height ofA fixed and makea as large as
necessary.

Now, defineu : [0, 1] → K2 as follows. On[0, α1], put u to A, so that
s(A) = s1. On (α1, α2], put u to someB such thats1 ∈ B ⊆ A and
s(B) = s2. On (α2, α3], put u to the singleton{s1}. If η is sufficiently
small,s(u) is outsideA. 2
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5 Characterisation of Steiner points –
the general case

We shall now state our main result: the representation of Steiner points.

Theorem 5.1 LetS : Fn → Rn be a Steiner point. Then there is a measure
functionµ: [0, 1] → [0, 1] such that for allu ∈ Fn

S(u) =

∫

[0,1]

s(u(α)) dµ(α). (6)

Proof. For everyα > 0, let µ(α) be the coefficient corresponding to the
interval [0, α] according to Lemma 4.2. By (4), equation (6) holds for all
step fuzzy sets.

Furthermore, letu ∈ Fn be arbitrary. Thenu is by definition left-continuous
and regular. Becauses is continuous, the mappings◦u: [0, 1] → Rn, α 7→
s(u(α)) is left-continuous and regular; so the integral (6) exists.

Moreover, it follows thatu is the uniform limit of step fuzzy sets; see e.g.
[Hoe]. So by the continuity ofS as well as the integral, (6) holds foru. 2

We may summarise that any Steiner point of fuzzy sets may be seen as a
weighted average of the Steiner points of the level sets of each fuzzy set.

We conclude our paper with one additional remark. It concerns the one-
dimensional case, which was not treated in this paper. In the casen = 1,
the only convex bodies are closed intervals. Their centres of gravity coin-
cide with the Steiner points. Then the collectionF1 consists of all fuzzy
intervals, i.e., fuzzy sets whose levels sets are closed intervals. We again
have some freedom in the choice of a Steiner point onF1. Moreover, the
argument of Lemma 4.3 does not work and the coefficientsκi may be also
negative.
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