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Abstract

A defuzzification function assigns to each fuzzy set a crisp value
in a way that this value may intuitively be understood as the “centre”
of the fuzzy set.

In the present paper, this vague concept is put into a mathematically
rigorous form. To this end, we proceed analogously to the case of

sharply bordered subsets, for which the Steiner point is frequently

used. The function assigning to each convex subset its Steiner point
is characterised by three properties; here, we study functions whose
domains consist of fuzzy sets and which fulfil analogous properties.

Although uniqueness can no longer be achieved, we give a complete
characterisation of what we call Steiner points of fuzzy sets.

1 Introduction

Let R" be then-dimensional real Euclidean space, where> 2, and let

K" be the set of all convex bodies &". Intuitively, the transition from

R™ to K™ may be viewed as an intermediate step towards the fuzzification
of R™. For, assume that rather than knowing about some precise location
as described by a point &", you only know about bounds of this location



in every direction; the area of space specified this way is an intersection of
halfspaces, and in fact a convex body.

Let us assume that a convex body represents some value together with infor-
mation about its impreciseness. The question naturally arises which value
could be meant, that is, if every sétc X" may be reasonably viewed as a
set around some central elemeq#) € A. The mapping — s(A) could

then be considered as a “defuzzification” function.

Let us collect the minimal requirements which such a functioiC” — R"
should fulfil. Probably most importantly, the poisitA) should not depend
on where and how is positioned in space. Namebyshould be equivariant
with respect to Euclidean isometries, which means sfratl) = 7s(A) for
any isometryr. Moreover,s should respect the structure whikh carries,
both the linear and the topological one. Indeg&d, is endowed with the
pointwise addition generalising the addition&f; andX" is endowed with
the topology induced by the Hausdorff metric; cf. e.g. [Sch2].sSbould
be compatible with the addition, ardshould be continuous.

These three properties are fulfilled by the functiowhich associates with
each convex body its Steiner point; we give the definition at the beginning
of Section 2. It was an open question for many years if there is any other
such function, and it turned out that this is not the case; the Steiner point is
unambiguously defined by the mentioned three conditions [She, Sch1l].

Let us next consider the more general situation that our base set not only
contains sharply limited subsets of a real Euclidean space, but also sets
with unsharp boundaries. The fuzzy analogué&ltfis £”, the set of nor-

mal, support-bounded, upper semicontinuous, and fuzzy-convex fuzzy sets;
cf. [DiKl]. We wonder what kind of “defuzzification” function exists &t

with values inR", such that conditions analogous to those characteristic for
the Steiner point of convex bodies hold.

Steiner points on the spaé® of fuzzy sets will again be assumed to be
equivariant with respect to Euclidean isometries, in a sense analogous to the
crisp case. Furthermore, they are supposed to respect the structure inherent
in £, Indeed, the linear structure &" generalises in a straightforward

way to £"; see e.g. [DiKl]. For the topology, however, we have to make a
choice; in this paper, we will take thé -metric on&™; cf. [Hei], or again

[DiKI]. The conditions for functionsS: £" — R™ may then be formulated

in complete analogy to the crisp case.
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We succeeded to determine all functions fulfilling the three assumed prop-
erties; this is the main result of this paper. As our formulation already sug-
gests, there is more than one; so uniqueness is lost. The representation of
these functions will moreover show that it is difficult to make a canonical
choice.

Remark 1.1 Although not much recognised by practitioners, the Steiner
point has unique advantageous properties as a point representing the posi-
tion of a body. There are many situations when a body grows uniformly in
all directions. This is for example the case of tumours, bacterial colonies,
crystals, and the like. Also errors of observation can cause the same ef-
fect; for instance defocusing, bias of a measuring method, and many image
processing techniques like mathematical morphology may result in a body
whose shape differs from the original one by a constant in each direction.

A natural idea is to describe the position of a body by its centre of gravity.
However, for non-symmetric shapes it is not stable under uniform growth
in all directions. In contrast to this, the Steiner point is preserved. This is
because such a growth corresponds to the sum (in fact, convolution) of the
original body with a ball centered at the origin of coordinates. Thus if we
want to describe the position of a body by a point which is invariant under
growth, the Steiner point is the unique solution.

One might object that the Steiner point is defined only for convex sets. How-
ever, its definition is applicable to non-convex bodies as well; in this case,
we get the Steiner point of the convex hull of the original set. So we do not
make use of the information about the non-convex part, but the original aim
of stability under growth remains fulfilled.

Real objects have often unsharp boundaries (or our method of observation
gives unsharp results) which can naturally be represented by fuzzy sets. To
extend the positioning technique to this case, it is desirable to generalise the
Steiner point to fuzzy sets.

2 The Steiner point of convex bodies

Let us fix somen > 2. By K", we denote the set of convex bodiesRSf,
that is, the set of non-empty compact convex subsel'ofThe setC" is
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endowed with a linear structure; the addition of two subsets and the multipli-
cation of a subset by a positive real are defined pointwise. We furthermore
endow/C™ with the Hausdorff metridy.

We may identifyC" in a pleasant way with a positive cone of a Banach
space as follows. Le§"~! denote the unit sphere iR", and letC(S™ ')

be the space of continuous functions frgifi~! to R, endowed with the
supremum norm. Now, for ang € K", we define by

ha: S" ' =R, ers max {(a,e): a € A}

the support functiorof A, see e.g. [Sch2]; helfe, -) denotes the usual inner
product of R”. Every support function is continuous, that is,das™—1).
Addition and multiplication by positive reals iK™ correspond to the same
operations on the respective support functions. Moreover, the Hausdorff
metric onkC" coincides with the metric af(S™~!), i.e. the supremum met-

ric. We will denote the set of all support functions of convex bodies by
S".

The investigations of this paper are based on the following facts [She, Sch1].

Definition 2.1 The Steiner poinof A € K" is defined by

s(A) = @ /Sn—l ha(e) e d\(e),

wheree € S™~! varies over the unit vectors &", ) is the Lebesgue mea-
sure onS™~ !, andV/(B") is the volume of the unit balB™ of R™.

Notice thats(A) € A.

In the sequelR” is always assumed to be endowed with the Euclidean met-
ric and the topology induced by it.

Furthermore, we will have to refer to several special types of Euclidean
isometries ofR™. By arotation, we will always mean a proper rotation, that
is, an isometry leaving the origin fixed and continuously connected to the
identity. By areflection we will always mean a reflection leaving the origin
fixed, that is, an involutive isometry whose set of fix points is a hyperplane
containing the origin. Finally, by egid motionwe will mean an isometry
composed of rotations and translations.
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The following theorem is for the case= 2 due to Shephard [She] and for
the caser > 3 due to Schneider [Sch1l].

Theorem 2.2 Lets’: K™ — R™ have the following properties:
(S1) Forany A, B € K", s'(A+ B) = §'(A) + s'(B).

(S2) For A € K™ and any rigid motiorr, we haves'(tA) = 75'(A).
(S3) &' is continuous.

Thens' = s.

The remaining part of this section contains auxiliary results which will be
needed in the sequel. The first, crucial Lemma 2.3 is an extended version of
[Schl, Lemma 2]. We will have to reproduce Schneider’s proof partly, but
for full details and for left out parts, we refer to [Sch1]. We will furthermore
use the idea of the proof of [Groe, Theorem 4.6.1].

In what follows, if 7 is a rotation or a reflection anfl e C(S" 1), we will
denote byr f the left translate of', that is,(7f)(e) = f(77!(e)).

A spherical harmonic of dimensionand degreed = 0, 1, . . . is the restric-
tion to the unit spher8™~! of a polynomialR™” — R which is harmonic and
homogeneous of degrele By H, we will denote the subspace 65" 1)
consisting of finite sums of spherical harmonics. The sgdde dense in
C(S™ 1) [Schl, Lemma 1]. For more information on spherical harmonics
in the present context, we recommend [Groe].

Lemma 2.3 Lett: 'H — R"™ be a linear function such thato 7 = 7 o ¢ for
all rotations 7. Then there is a real numbey and a rotationp, such that

) =nn( [ seen). W

Moreover,p, = idif (i) n > 3 or (ii)) n = 2 and¢t commutes also with all
reflections.

Sn—1

Proof. Recall first that iff is a spherical harmonic of degrée# 1, then
Jgn-1 f(e) € dX(e) = 0. So we have to show thatf) = 0 in this case and
that (1) holds iff is of degreel.



A spherical harmonig of degree0 is a constant; so in this casé,f) =
t(rf) = 7(t(f)) for all rotations, whence(f) = 0.

For each spherical harmonijt of degreel, there is ac € R" such that
f = f., wheref.(e) = (c,e). SoT : R* — R", ¢ — t(f.) is a
linear function such that, for every rotation 7(7(c)) = t(frc) =
t(rfe) = 7(t(fe)) = 7(T(c)), because(e) = (7(c),e) = (c,77'(e)) =
fe(t7e)) = (7f.)(e) fore € S™ 1. If now n = 2, it follows T’ = &} p, for
somex; € R and a rotatiorp,. If thent commutes with reflections, so does
T, whencep; equalsid or —id. Moreover, ifn > 3, we havel’ = «; id for
somex; € R. Using the fact that = n [, (c,e) e dA(e), equation (1)
follows for x; = %

Next, let f be a spherical harmonic of degrde> 2. For the proof that
t(f) = 0if n > 3, we refer to [Schl, Lemma 2]. Let = 2. Denoting by
w(e) the angle corresponding toe S*, we havef(e) = a cos dw(e) +
b sin dw(e), wherea,b € R. Let be the rotation by?T; thenrt(f) =
t(rf) =t(f), whencet(f) = 0. 0

We will now denote byCy the set of convex bodies &" containing0.

Lemma 2.4 Lett: Kj — R” (i) preserve sumgji) commute with rota-
tions, and(iii) be continuous. Then for some constane R and a rotation
Pt Of Rn

) = hateredro), @
Sn—l
whereh 4 is the support function oft € K.

Moreover,p, = idif (i) n > 3 or (ii) n = 2 and¢t commutes also with all
reflections.

Proof. Note thatXj is closed under sums and multiplication by positive
reals. Moreover; preserves sums by assumption, consequently also the
multiplication by positive rationals, and so by continuity also the multipli-
cation by positive reals. L&) = {ha: A € K} C S™.

Let Hy = S§ N'H. ThenH, is dense inS]. Indeed, given aml € £ and
e > 0, thereis somé € K" such that.z € H andd(A, B) < ¢; andB can
be moved by a vector of length less thato a set”' containing the origin;
thenho € Hy andd(B,C) < e.



Letty: Ho — R, hy — t(A). Forh € H, and a positive constarat

we havety (h) = tx(h + ¢); indeed, for any rotatiom we haver ty(c) =
tn(1Tc) = ty(c), whencety(c) = 0. Furthermore, iff € H, there is a

¢ > 0 such thatf + ¢ € Hy; indeed, by [Sch2, Lemma 1.7.9], there is
¢ > 0 such thatf + ¢ is a support function, and consequently there is some
¢ > ¢ such thatf + cis the support function of a set containing the origin.
It follows that we may extendy to the whole spac&{ unambiguously by
settingty(f) = tx(f + ¢), where for eachf € H we choose a > 0
sufficiently large.

The extended functiony, : 'H — R" is easily seen to be a vector space
homomorphism, which moreover commutes with rotations. By Lemma 2.3,
we concludety(f) = k; pt(fsn_lf(e) e d\(e)) for any f € H, where

k; € Randp, is arotation. This proves (2) for all whose support functions
are inH. So the assertion follows by the continuityof

In case that = 2 andt commutes with reflectiong;, also commutes with
reflections. So again by Lemma 2.3, we conclude- id, as well as in the
casen > 3. O

3 Steiner points of fuzzy sets

Our considerations will refer to the sét of fuzzy sets over th&R"™ as
defined by Diamond and Kloeden in [DiKl]. The spa€é contains by
definition all maps: from R™ to the real unit intervalo, 1] such that (i)u
attains the valué at some point: € R", (ii) the support ofu is bounded,
(iif) w is upper semicontinuous, and (iw)is fuzzy-convex. For details on
these notions, we refer to [DIKI].

These conditions take a particularly easy form when we switch from the
“vertical” to the “horizontal” viewpoint; and this is what we will do here.
Namely, given soma < £", letu be the function associating to eache

(0, 1] its a-level set, given byu|* = {x € R™: ua(z) > «}, and to0 its
support[u]®, which is the closure ofz € R": u(z) > 0}. Thenu is a
mapping from[0, 1] to non-empty compact convex subsetsRdf, that is,

to K. With respect to the topology d€™ defined above and the partial
order of K" given by inclusion,u is decreasing, left-continuous df, 1]



and continuous di.

We denote byF" the set of all functions fron0, 1] to ™ which are (i)
decreasing and (ii) left-continuous ¢f, 1] and continuous &t. The map-
ping © — u defines a one-to-one correspondence betvi#eand 7"; see
[NeRa], or [DiKl, Prop. 6.1.6]. In this paper, we will deal with™ exclu-
sively: From now, by a fuzzy set we willlwaysmean an element of™

rather than of™.

Like K, the setF™ bears a natural linear and metric structure. Namely, ad-
dition and multiplication by positive reals are defined pointwise; see [Ngul].
Moreover, we endowF" with the supremum metrié., [DiKI]: For u,v €

F, we letdy (u, v) = supgc,<; du(u(a),v(a)).

Although we will not make use of it, we include the following note. As we
know how to embed the s&i™ of convex bodies into a Banach space, it is
immediate how we may represeft as a positive cone of a Banach space
as well. As the smallest possible one, we may consiigo, 1], C(S" 1)),

the space of regulated and left-continuous functions fi@m| to C(S" 1),
endowed with the supremum norm. Recall that a function is ca#gd-
lated if at any pointa: € [0, 1] both the left and the right limit exist; see
e.g. [Hoe]. A fuzzy sets € F" may then be identified with the element
0,1] = C(S™1), @ hy@ of R([0,1],C(S™71)).

We will now formulate conditions for a “defuzzification” function ¢fi* in
analogy to the conditions appearing in Theorem 2.2. We will add one basic
further property explicitly: A Steiner point should never be located outside
the support of a fuzzy set.

In the sequel, for a fuzzy set € F™ and a rigid motionr, we setru :
0,1] — K", «a — 7(u(«)). That is, expressed for the corresponding
elementi: R™ — [0, 1] of £", we haveru = wo 771

Definition 3.1 A function S: F" — R" is called aSteiner pointf it has
the following properties:

(SFO) Forany € F, S(u) € u(0).
(SF1) Forany,v € F", S(u+v) = S(u)+ S(v).

(SF2) Foru € K™ and any rigid motiorr, we haveS(rtu) = 7.5(u).



(SF3) S'is continuous.

We will next see how we may generate typical examples of Steiner points.
Note first that, for a fixedy, the functionS: F* — R"™ which simply maps
each fuzzy set to the Steiner point of islevel set fulfils all conditions
(SFO0)-(SF3) — and is thus a Steiner point. This already implies that we have
more than one possibility to define a Steiner point.

For the general case, we need some preparations. We shalt call1] —

[0, 1] ameasure functioif (i) w is increasing, thatig(a) < u(8) if a < g
and (ii) 4(0) = 0 andp(1) = 1. Furthermore, let us call a finite sequence
D = (ag,...,q) adivisionof [0,1]if 0 = ap < ay < ... < ag = 1,
where|D| = k£ > 1. Let D be the collection of all divisions df), 1], and
endowD with the inclusion as a partial ordeR} then becomes a directed
set.

We define the integral of a regulated functign [0,1] — R" over [0, 1]
w.r.t. a measure function as follows:

|D|-1

f(a) du(er) = lim, Z F&) (lair) — plaw)),

[0,1]

whereD = (a,...,op)) and&; € (a;, a;41) for 0 < i < |D|. This limit
exists and is called thiaterior integral. For further information, we refer to
[Hoe].

Proposition 3.2 Letu: [0,1] — [0, 1] be a measure function. Far € F",
let

S,(u) = /[ stuto) du(e), 3)

wheres is the Steiner point of crisp sets. ThEpis a Steiner point.

In the one-dimensional case, a function very similaiStoas defined by

(3) has been proposed for defuzzification; Dubois and Prade introduced in
[DuPr] a defuzzification method calleeraging level cut§ALC). More-

over, in [Ous], it is observed that in contrast to the centre of gravity and
certain further defuzzification methods, this one is compatible with the lin-
ear operations. Another defuzzification function which is still similar to

9



ours, is due to Filev and Yager; see [FiYa, Yag]. All the above papers refer
only to the one-dimensional case. In [RoSp], Roventa and Spircu treat also
multidimensional fuzzy sets and introduce a formula based on an integral
over level sets (so-calladistribution averagingy The use of Steiner points
seems to be a novelty in our approach.

Here, we will show thats,, as given by (3) is the most general example of

a Steiner point. In other words,,, wherey, varies over the measure func-
tions, represent exactly those defuzzification methods which are not only
compatible with the linear operations, but also equivariant with respect to
Euclidean isometries, continuous, and such that the crisp values are within
the support of each fuzzy set.

To impose further properties on a Steiner point in addition to (SF0)—(SF3)
to obtain uniqueness is amazingly difficult; it is an open question if this is
possible in some reasonable, well motivated way.

4 Characterisation of Steiner points —
the case of step fuzzy sets

Before considering the problem how to characterise the Steiner points de-
fined in the last section, we will solve a simplified version. Namely, we will
assume that our fuzzy universe contains only fuzzy sets which are piecewise
constant. According to the usual (“vertical”) viewpoint, these are fuzzy sets
which map fromR™ to certain finitely many values frof, 1] only. We will

call them step fuzzy sets.

Definition 4.1 Let D = (), . .., ax) be a division ofl0, 1]. Then we call a
fuzzy setu € F™ a D-step fuzzy setit is constant orjay, o], (o, asl, . . .,
(au_1, ], respectively. We denote 3%}, the set of allD-step fuzzy sets.

Furthermore, by a@tep fuzzy setve mean a fuzzy set which is A-step
fuzzy set for some divisio® of [0, 1].

Lemma 4.2 LetD = (ao, ..., o) be adivision of0, 1]. LetS: F}, — R”
be a function fulfilling the propertie€ESFO)—(SF3)of Definition3.1 Then
there are unique real numbers, ..., s, such that<; + ... + k., = 1 and
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forall uw € Fp

S(u) = rys(u(aq)) + ... + krs(u(ag)). 4)

Proof. Forl < i < kandA € Kf, letu,; 4 be the fuzzy set which is
constantlyA on [0, «;] and constantly{0} on («;, 1]. Then the mapping
Ky — R, A~ S(u; 4) preserves sums, commutes with rotations, and is
continuous. So by Lemma 2.8,(u; 4) = Ri pi( [gu—1 ha(e) e dX(e)) =

ki pi(s(A)) for somer; € R and some rotatiop,;.

In caser; = 0 we may assume, = id. Otherwise,p; = id is implied
by (SF0). Indeed, consider the case tHas the straight line between the
origin 0 and some point different from. Thens(A) is the midpoint of4,
that is, different from0; and by (SF0),5(u; 4) is on A. Consequently;
must be the trivial rotation. It follows that, for any € Xy andi = 1,.. . k,
we haveS(u; 4) = k; s(A).

Next letu be anyD-step fuzzy set; let(o;) = A;, @ = 1,...,k. Then
u+tus gyt . F U1 4, = Us A, +-..Fuga,. APPlying S to both sides, we
getS(u) = S(Ulel) +S(u2,A2) —S(ULAQ) +.. .—I—S(uk,Ak) — S(Uk—l,Ak) =
R18(A1) + (Re — R1)s(As) + ... + (Rr — Fr—1)s(Ax). So (4) is proved for
the case thal € u(0).

For the general case, let us denotebpy|0, 1] — K" the fuzzy set which

is constantlyB. — the ball with diametet centered ab. Note thatS(b.) =

0 because of the rotation invariance 8f So given an arbitrary)-step
fuzzy setu, choosec > 0 large enough such thaét € «(0) + b.; then
S(u) = S(u+b.). Because the right-hand side of (4) does not change when
replacingu by u + b., (4) follows.

Finally, letc € R™ and denote by the singletdr} also the fuzzy set being
constantly{c}. By translation invariance, we ha&u) + S({c}) = S(u +
{c}) = S(u) + cforanyu € F", soS({c}) = c. It follows thatx; + ...+
ki = 1; this completes the proof. O

The preceeding Lemma 4.2 shows why we postulated that Steiner points
should fulfil condition (SF0). We note that it still holds if we drop (SFO0),
but restrict to a dimension at least

Next we will show a further consequence of (SFO0): it causes all the coeffi-
cients in (4) to be non-negative.
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We will use the following fact. The Steiner point of a polytogewith

verticespy, ..., p; is given as follows:
l
s(D) = (pi, A) pi, (5)
i=1

where(p;, A) is, fori = 1, ..., 1, the external angle ofl at p;; this is the
proportion of the area of the unit sphere which is taken by the normal vectors
of the supporting planes of atp;. See e.g. [Grue].

Lemma 4.3 LetD = (ao, ..., o) be adivision of0, 1]. LetS: F}, — R™
be a function fulfilling the propertie€SF0)—(SF3)of Definition 3.1 Let
k1,..., ki be the unique real numbers fulfilling). Thenk, ..., k; > 0.

Proof. Without loss of generality, we may restrict to the case 2. Fur-
thermore, assume that= 3 and thatx, k3 > 0, butx, < 0; the general

case is not more difficult.
q

So—+

S1+

Let A be an equilateral triangle with base siddet  be the middle point of

a; and letg be the vertex ofd opposite taz. Now lets; be the Steiner point
of A, and lets, be located half-way betweenandg. As a consequence
of (5), the proportiom of the distances;r ands,r can be made arbitrarily
small; to this end, we keep the height 4ffixed and make: as large as

necessary.

Now, defineu: [0,1] — K? as follows. On|0,a;], putu to A, so that
s(A) = s1. On(ay,as], putu to someB such thats; € B C A and
s(B) = s2. On(ag,as], putu to the singleton{s;}. If n is sufficiently
small,s(u) is outsideA. O
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5 Characterisation of Steiner points —
the general case

We shall now state our main result: the representation of Steiner points.

Theorem 5.1 LetS: F" — R" be a Steiner point. Then there is a measure
functiony: [0, 1] — [0, 1] such that for allu € F™

S(u) = /[ sluto) du(e). 6)

Proof. For everya > 0, let u(«) be the coefficient corresponding to the
interval [0, «| according to Lemma 4.2. By (4), equation (6) holds for all
step fuzzy sets.

Furthermore, let. € F" be arbitrary. Them is by definition left-continuous
and regular. Becausds continuous, the mappingu: [0,1] — R", a—
s(u(«)) is left-continuous and regular; so the integral (6) exists.

Moreover, it follows that: is the uniform limit of step fuzzy sets; see e.g.
[Hoe]. So by the continuity of as well as the integral, (6) holds far O

We may summarise that any Steiner point of fuzzy sets may be seen as a
weighted average of the Steiner points of the level sets of each fuzzy set.

We conclude our paper with one additional remark. It concerns the one-
dimensional case, which was not treated in this paper. In thercasd,

the only convex bodies are closed intervals. Their centres of gravity coin-
cide with the Steiner points. Then the collectigi consists of all fuzzy
intervals, i.e., fuzzy sets whose levels sets are closed intervals. We again
have some freedom in the choice of a Steiner poinfdn Moreover, the
argument of Lemma 4.3 does not work and the coefficientaay be also
negative.
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