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Abstract. Let H be a complex Hilbert space and let P(H) be the associated

projective space (the set of rank-one projections). Suppose that dimH ≥ 3.

We prove the following Wigner-type theorem: if H is finite-dimensional, then
every orthogonality preserving transformation of P(H) is induced by a unitary

or anti-unitary operator. This statement will be obtained as a consequence of

the following result: every orthogonality preserving lineation of P(H) to itself
is induced by a linear or conjugate-linear isometry (H is not assumed to be

finite-dimensional). As an application, we describe (not necessarily injective)

transformations of Grassmannians preserving some types of principal angles.

1. Introduction

It follows from Gleason’s theorem [7] that pure states of a quantum mechanical
system are precisely the rank-one projections. Identifying every projection with its
image, we arrive at the projective space P(H) formed by 1-dimensional subspaces of
a complex Hilbert space H. Our concern is the discussion of symmetries of quantum
mechanical systems. The classical version of Wigner’s theorem [21] characterizes
them as follows: every bijective transformation of the set of pure states preserv-
ing the transition probability (the trace of the composition of two projections or,
equivalently, the angle between the corresponding rays) is induced by a unitary or
anti-unitary operator. Transformations of this kind are known as Wigner symme-
tries. More generally, an arbitrary transformation of P(H) preserving the angle
between any pair of 1-dimensional subspaces is induced by a linear or conjugate-
linear isometry (see, for example, [4, 13, 16]). There is no additional assumption,
but the condition on the preservation of the angles immediately implies that such a
transformation is injective. Some significant generalizations of the bijective version
of Wigner’s theorem are obtained in [6, 11].

On the other hand, Uhlhorn [20] provided a geometric approach to Wigner’s the-
orem based on the Fundamental Theorem of Projective Geometry: if the dimension
of H is not less than 3, then every bijective transformation of P(H) preserving the
orthogonality relation in both directions is a Wigner symmetry. The proof of this
statement can be sketched as follows. Every bijection preserving the orthogonality
relation in both directions is a collineation of the projective space (i.e. preserves the
family of lines in both directions); consequently, by the Fundamental Theorem of
Projective Geometry, it is induced by a semilinear automorphism of H; finally, ev-
ery semilinear automorphism of H sending orthogonal vectors to orthogonal vectors
is a scalar multiple of a unitary or anti-unitary operator.
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If H is infinite-dimensional, then there is an injective transformation of P(H)
that preserves the orthogonality relation in both directions and that is not induced
by a linear or conjugate-linear isometry [19]. Hence the bijectivity assumption can-
not be omitted in Uhlhorn’s version of Wigner’s theorem. In the present paper, we
prove the following Wigner-type theorem (Theorem 1): if the dimension of H is fi-
nite and not less than 3, then an arbitrary orthogonality preserving transformation
of P(H) (which sends orthogonal rays to orthogonal rays without the assumption
that the orthogonality relation is preserved in both directions) is a Wigner symme-
try.

Our basic observation is the following. If H is finite-dimensional, then every
orthogonality preserving transformation of P(H) is a lineation which means that it
sends every line to a subset of a line. In general, the behavior of lineations between
projective spaces is complicated; they are not injective and can send lines to parts of
lines only. Our version of Wigner’s theorem is a consequence of the following result
(Theorem 2): every orthogonality preserving lineation of P(H) to itself is induced
by a linear or conjugate-linear isometry; as above, we assume that the dimension
of H is not less than 3, but do not require that H is finite-dimensional. We note
that orthogonality preserving lineations between the projective spaces associated
to anisotropic Hermitian spaces are investigated in [17].

The proof of Theorem 2 will be given in two steps. Using Gleason’s theorem,
we establish that every orthogonality preserving lineation is non-degenerate; in
particular, the image of every line contains at lest three elements. This guarantees
that such a lineation is induced by a generalized semilinear map (a modification of
the Fundamental Theorem of Projective Geometry [3, 10, 18]). Our next step is to
show that orthogonality preserving generalized semilinear maps are precisely linear
and conjugate-linear isometries, which is equivalent to the fact that every place of
the complex field C (a homomorphism of a valuation ring of C to C) is the identity
or the complex conjugation.

The conjugacy class of rank-k projections can be naturally identified with the
Grassmannian consisting of k-dimensional subspaces of H. Wigner’s theorem was
extended on such Grassmannias by Molnár [12, 14] (see [5, 8, 19] for closely con-
nected results). The transformation of Grassmannians induced by linear and conju-
gate-linear isometries are characterized as transformations preserving principal an-
gles between subspaces. By [15], it is sufficient to require that only some of principal
angles (related to adjacency and orthogonality) are preserved. Using Theorem 2,
we prove a non-injective version of this result (Theorem 3).

2. Results

Throughout the paper we assume that H is a complex Hilbert space of dimen-
sion not less than 3 (possibly H is infinite-dimensional) and denote by P(H) the
associated projective space, i.e. the set of all 1-dimensional subspaces of H. The
following statement describes orthogonality preserving transformations of P(H),
i.e. such that for any two orthogonal 1-dimensional subspaces of H the images are
orthogonal.

Theorem 1. If H is finite-dimensional, then any orthogonality preserving trans-
formation of P(H) is a Wigner symmetry, i.e. a bijection induced by a unitary or
anti-unitary operator on H.
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Recall that a line in the projective space P(V ) associated to a vector space V
consists of all 1-dimensional subspaces of a certain 2-dimensional subspace, i.e. it
is a set of type P(S), where S is a 2-dimensional subspace of V . A lineation is a
map between projective spaces which sends lines to subsets of lines.

Theorem 1 is an immediate consequence of Theorem 2, which will be presented
below, and the following lemma.

Lemma 1. If H is finite-dimensional, then every orthogonality preserving trans-
formation of P(H) is a lineation.

Proof. Suppose that dimH = n is finite. Let f be an orthogonality preserving
transformation of P(H) and let S be a 2-dimensional subspace of H. We choose
mutually orthogonal 1-dimensional subspaces P1, . . . , Pn−2 whose sum coincides
with S⊥. The 1-dimensional subspaces f(P1), . . . , f(Pn−2) are mutually orthogonal
and the orthogonal complement of their sum is a 2-dimensional subspace S′. Every
1-dimensional subspace P ⊂ S is orthogonal to each Pi and, consequently, f(P ) is
orthogonal to every f(Pi) which implies that f(P ) ⊂ S′. So, f(P(S)) is contained
in P(S′). �

Remark 1. If H is infinite-dimensional, then the above statement holds only in
the case when a transformation of P(H) sends maximal collections of mutually
orthogonal 1-dimensional subspaces to maximal collections of mutually orthogonal
1-dimensional subspaces.

Let V be a vector space over a field F and dimV ≥ 3. A map L : V → V is
semilinear if

L(x+ y) = L(x) + L(y)

for all x, y ∈ V and there is a non-zero homomorphism σ : F → F such that

L(ax) = σ(a)L(x)

for all a ∈ F and x ∈ V . Every semilinear injection L : V → V induces a lineation
of the projective space P(V ) to itself, which sends a 1-dimensional subspace P ⊂ V
to the 1-dimensional subspace containing L(P ). This lineation is not necessarily
injective (see, for example, [16, Section 2.1]). The following version of the Funda-
mental Theorem of Projective Geometry is well-known: every injective lineation of
P(V ) to itself whose image is not contained in a line is induced by a semilinear
injective transformation of V [2, 9] (see also [16]).

If an injective semilinear transformation of H is orthogonality preserving, then
it is a scalar multiple of a linear or conjugate-linear isometry (see, for example,
[16, Proposition 4.2]). In the case when H is finite-dimensional, such isometries are
precisely unitary and anti-unitary operators.

Theorem 2. Every orthogonality preserving lineation f : P(H)→ P(H) is induced
by a linear or conjugate-linear isometry of H to itself.

In Theorem 2, we do not assume that H is finite-dimensional. Theorem 1 is a
direct consequence of Theorem 2 and Lemma 1.

3. Proof of Theorem 2

A lineation is said to be non-degenerate if the following conditions are satisfied:

(L1) the image of the lineation is not contained in a line;
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(L2) the image of every line contains at least three points.

Lemma 2. Every orthogonality preserving lineation f : P(H) → P(H) is non-
degenerate.

Proof. The condition (L1) follows immediately from the fact that f is orthogonality
preserving. Since each line of P(H) contains a pair of orthogonal 1-dimensional
subspaces, the image of every line contains at least two orthogonal elements.

Suppose that P(S) is a line whose image consists of two elements. Let P and
Q be orthogonal 1-dimensional subspaces of S. The image of every 1-dimensional
subspace of S coincides with P ′ = f(P ) or Q′ = f(Q). We take any 1-dimensional
subspace T ⊂ H orthogonal to both P,Q and consider the restriction of f to P(M),
where M = P + Q + T . The 1-dimensional subspaces P ′, Q′ and T ′ = f(T ) are
mutually orthogonal.

Every 1-dimensional subspace of M is contained in a 2-dimensional subspace
T + N , where N is a 1-dimensional subspace of S. Since f is a lineation and
f(P(S)) = {P ′, Q′}, we have that

(1) f(P(M)) ⊂ P(P ′ + T ′) ∪ P(Q′ + T ′).

One of the following possibilities is realized:

(i) the image of every 1-dimensional subspace of P + T is P ′ or T ′ and the
image of every 1-dimensional subspace of Q+ T is Q′ or T ′;

(ii) for one of the lines P(P+T ) or P(Q+T ), say P(P+T ), the image contains
more than two elements.

Case (i). For every 1-dimensional subspace N ⊂M \S we take the 1-dimensional
subspaces NP ⊂ P + T and NQ ⊂ Q + T such that N is the intersection of the
2-dimensional subspaces P +NQ and Q+NP . By our assumption,

f(NP ) ∈ {P ′, T ′} and f(NQ) ∈ {Q′, T ′}.
Using the fact that f is a lineation and (1), we establish that

f(P(M)) = {P ′, Q′, T ′}.
This means that f induces a two-valued measure on P(M). Indeed, we assign 1 to
one of P ′, Q′, T ′ and 0 to the remaining two and observe that for any three mutually
orthogonal 1-dimensional subspaces of M only one of these subspaces corresponds
to 1. Gleason’s theorem provides a descriptions of all measures on the projective
spaces associated to complex Hilbert spaces, in particular, it shows that there is no
two-valued measure, i.e. the case (i) is not realized.

Case (ii). By assumption, there is a 1-dimensional subspace N0 ⊂ P + T such
that f(N0) 6= P ′, T ′. For every 1-dimensional subspace N ⊂ Q + T the lineation
f transfers the intersection of the lines P(N0 + N) and P(S) to P ′ or Q′. Since
f(N0) 6= P ′, T ′, this implies that f(N) is Q′ or T ′. So, the image of the line
P(Q+ T ) is {Q′, T ′}. We have established that

f(P(M)) ⊂ P(P ′ + T ′) ∪ {Q′}.
Now, we present the line P(P ′+T ′) as the disjoint union of two subsets X1 and X2

such that any two elements from each Xi, i ∈ {1, 2}, are non-orthogonal. Let g be
the transformation of P(P ′ +Q′ + T ′) defined as follows: it sends the elements of
X1 and X2 to P ′ and T ′ (respectively) and the remaining elements go to Q′. The
composition gf |P(M) is an orthogonality preserving transformation whose image is
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formed by P ′, Q′, T ′. So, the case (ii) is reduced to the case (i) and, consequently,
it also is impossible. �

Now, we describe the concepts of place and generalized semilinear map. For
a field F the additive and multiplicative operations can be extended to a partial
operation on F∪{∞} as follows: a+∞ =∞ for every a ∈ F and a·∞ =∞ for every
non-zero a ∈ F (note that ∞+∞ and 0 · ∞ are undefined). Similarly, for a vector
space V over F we extend the additive operation and the scalar multiplication in
the following way: x +∞ = ∞ for every vector x ∈ V and a · ∞ = ∞ · x = ∞
for every scalar a ∈ (F \ {0}) ∪ {∞} and every vector x ∈ (V \ {0}) ∪ {∞} (again,
∞+∞ and 0 · ∞ are undefined).

A place of F is a map

σ : F → F ∪ {∞}
such that σ(1) = 1 and

σ(a+ b) = σ(a) + σ(b), σ(ab) = σ(a)σ(b)

provided the second sum and the second product are defined. Then R = σ−1(F ) is
a valuation ring of F , which means that for every non-zero a ∈ F we have a ∈ R
or a−1 ∈ R. Also, the ideal

IR = {a ∈ R : a = 0 or a−1 6∈ R}

is the kernel of σ.
Let V be a vector space over F and dimV ≥ 3. A map

L : V → V ∪ {∞}

is called a generalized semilinear map if it satisfies the following conditions:

• L(x+ y) = L(x) + L(y) provided the second sum is defined;
• there is a place σ of F such that L(ax) = σ(a)L(x) provided the second

product is defined;
• L(0) = 0.

In this case, M = L−1(V ) is a submodule of V over the valuation ring R = σ−1(F ).
Suppose that the following condition is satisfied:

(*) for every 1-dimensional subspace P ⊂ V there is x ∈ P ∩ M such that
L(x) 6= 0.

Then L induces a lineation of P(V ) to itself which sends every 1-dimensional sub-
space P ⊂ V to the 1-dimensional subspace containing L(P ∩ M). Every non-
degenerate lineation of P(V ) to itself is induced by a generalized semilinear map
satisfying (*), see [3, 10, 18].

Lemma 3. Let σ be a place of the complex field C and let R be the associated
valuation ring. Suppose that there is a generalized semilinear map L : H → H∪{∞}
over σ which satisfies (*) and induces an orthogonality preserving lineation. Then
the following assertions are fulfilled:

(1) IR is closed under complex conjugation;
(2) R is closed under complex conjugation;

(3) σ(a) = σ(a) for every a ∈ R.

Proof. Let M = L−1(H). Since L induces an orthogonality preserving lineation,
for any two orthogonal vectors from M \Ker(L) the images are orthogonal. We take
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any non-zero x ∈M \Ker(L) and any y ∈ H orthogonal to x satisfying ||y|| = ||x||.
Our first claim is that y ∈M \Ker(L) and ||L(x)|| = ||L(y)||.

If y ∈ Ker(L), then

L(x+ y) = L(x− y) = L(x) 6= 0;

on the other hand, the vectors x + y, x − y are orthogonal and we come to a
contradiction. Assume that y 6∈ M . Then, by (*), we have ay ∈ M \ Ker(L) for
a certain a ∈ C. In this case, a ∈ IR (otherwise, a−1 ∈ R and y = a−1ay ∈ M ,
contradicting the assumption). Therefore, ax, ay ∈M and

L(ay + ax) = L(ay − ax) = L(ay) 6= 0;

but the vectors ay + ax, ay − ax are orthogonal and we get a contradiction again.
So, y ∈M \Ker(L). Since L(x), L(y) and L(x) + L(y), L(x)− L(y) are pairs of

orthogonal vectors, we obtain that ||L(x)|| = ||L(y)||.
(1). Let a be a non-zero element of IR. Assume that a 6∈ R. Then a−1 = a−1

belongs to IR. The vectors ax − y and a−1x + y are orthogonal and belong to
M \Ker(L). Consequently,

L(ax− y) = −L(y) and L(a−1x+ y) = L(y)

are orthogonal which is impossible. Thus, a ∈ R. Furthermore, ax− y and x+ ay
are orthogonal vectors from M \Ker(L) which implies that

L(y − ax) = L(y) and L(x+ ay) = L(x) + σ(a)L(y)

are orthogonal. Since L(x), L(y) are orthogonal, the latter is possible only in the
case when σ(a) = 0, i.e. a ∈ IR.

(2). If a 6∈ R for a certain non-zero a ∈ C, then (a)−1 ∈ IR and by the statement
(1) we have a−1 ∈ IR, i.e. a 6∈ R.

(3). Let a ∈ R. Then ax − y, x + ay are orthogonal vectors in M \ Ker(L) and
the vectors

σ(a)L(x)− L(y) and L(x) + σ(a)L(y)

are also orthogonal. Since ||L(x)|| = ||L(y)||, we obtain that σ(a) = σ(a). �

Lemma 4. Every place of the real field R is the identity.

Proof. Let σ : R→ R∪ {∞} be a place and let R be the associated valuation ring.
First of all, we establish that σ is order preserving, i.e. if a, b ∈ R, then a ≤ b

implies that σ(a) ≤ σ(b). It is sufficient to show that for a ∈ R we have that
σ(a) ≥ 0 if a ≥ 0. This statement is trivial for a ∈ IR. Let a ∈ R \ IR. Then

a−1 ∈ R\IR. We assert that
√
a ∈ R. Indeed, if

√
a 6∈ R, then (

√
a)
−1

=
√
a−1 ∈ IR

which implies that a−1 =
(√

a−1
)2

∈ IR, a contradiction. Since
√
a ∈ R, we have

σ(a) = σ (
√
a)

2 ≥ 0.
The equality σ(1) = 1 implies that σ(n) = n for every n ∈ N. Let a ∈ R. If

a ≥ 1, then σ(a) ≥ 1, in particular, σ(a) 6= 0. If 0 < a < 1, then there is n ∈ N
such that an ≥ 1 and σ(a)n = σ(an) 6= 0 which means that σ(a) 6= 0. Therefore,
σ(a) 6= 0 for the case when a > 0. If a < 0, then a2 > 0 and σ(a)2 = σ(a2) 6= 0
which implies that σ(a) 6= 0.

So, σ(a) 6= 0 for all non-zero a ∈ R and IR = 0, i.e. R coincides with R. It is
well-known that every non-zero endomorphism of R is the identity. �
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Lemma 5. Let σ be a place of the complex field C and let R be the associated
valuation ring. If σ(a) = σ(a) for all a ∈ R, then R coincides with C and σ is the
identity or the complex conjugation.

Proof. The intersection R ∩ R is a valuation ring of R and σ(R ∩ R) ⊂ R. By
Lemma 4, the ring R∩R coincides with R and the restriction of σ to R is identity.
Note that i ∈ R (otherwise, −i = i−1 ∈ IR and 0 = σ(−i) = σ(−1)σ(i) = ∞, a
contradiction). The equality σ(i)2 = σ(i2) = σ(−1) = −1 implies that σ(i) = i or
σ(i) = −i. �

Now, we are ready to prove Theorem 2. Let f : P(H) → P(H) be an orthog-
onality preserving lineation. By Lemma 2, f is non-degenerate and, consequently,
it is induced by a generalized semilinear map L : H → H. Lemmas 3 and 5 guar-
antee that the associated place is the identity or the complex conjugation. Since
for every 1-dimensional subspace P ⊂ H there is a vector x ∈ P ∩ L−1(H) such
that L(x) 6= 0, the map L is a linear or conjugate-linear injection. Also, it sends
orthogonal vectors to orthogonal vectors. Thus, L is a scalar multiple of a linear or
conjugate-linear isometry and Theorem 2 is proved.

Remark 2. It follows from Lemma 4 that every non-degenerate lineation between
real projective spaces is induces by a linear injection. Since Gleason’s theorem holds
for the real case as well, orthogonality preserving lineations of real projective spaces
are non-degenerate. Therefore, every orthogonality preserving transformation of a
finite-dimensional real projective space is induced by a linear bijection. This linear
map sends orthogonal vectors to orthogonal vectors and, consequently, it is a scalar
multiple of an orthogonal transformation. So, all orthogonality preserving trans-
formations of finite-dimensional real projective spaces are induced by orthogonal
transformations.

4. Application of Theorem 2

Recall that two closed subspaces of H are compatible if there is an orthogonal
basis of H such that these subspaces are spanned by subsets of this basis. This
holds if and only if the corresponding projections commute.

Denote by Gk(H) the Grassmannian formed by k-dimensional subspaces of H.
Note that G1(H) = P(H) is the projective space associated toH. If the dimension of
H is not less than 2k, then the orthogonality relation is defined on the Grassmannian
Gk(H). Two k-dimensional subspaces of H are called adjacent if their intersection
is (k − 1)-dimensional, and these subspaces are said to be ortho-adjacent if they
are adjacent and compatible. For k = 1 the adjacency relation is trivial (any two
distinct 1-dimensional subspaces are adjacent).

The orthogonality, adjacency and ortho-adjacency relations can be described
in terms of principal angles [1, Section VII.1]. It is clear that two k-dimensional
subspaces of H are orthogonal if and only if all principal angles between them are
π
2 . These subspace are adjacent if and only if precisely one of the principal angles
is non-zero; furthermore, these subspaces are ortho-adjacent only in the case when
this angle is π

2 . Transformations of Grassmannians preserving the principal angles
are described in [12, 14]. Using Theorem 2 we prove the following.

Theorem 3. Suppose that dimH > 2k > 2. Let f be an orthogonality preserving
transformation of Gk(H). Then the following two conditions are equivalent:
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(A) f is ortho-adjacency preserving, i.e. for any ortho-adjacent k-dimensional
subspaces X,Y ⊂ H the images f(X), f(Y ) are ortho-adjacent;

(B) for any adjacent k-dimensional subspaces X,Y ⊂ H the images f(X), f(Y )
are adjacent or f(X) = f(Y ).

If one of these conditions holds, then f is induced by a linear or conjugate-linear
isometry of H to itself.

The proof of Theorem 3 is based on some properties of the Grassmann graph
Γk(H) whose vertices are k-dimensional subspaces of H and two vertices are con-
nected by an edge if they are adjacent subspaces.

A clique of a graph is a subset in the vertex set, where any two distinct vertices
are adjacent. In the Grassmann graph Γk(H) there are the following two types of
maximal cliques:

• the star S(X), where X ∈ Gk−1(H), consists of all k-dimensional subspaces
containing X;

• the top Gk(Y ), where Y ∈ Gk+1(H), consists of all k-dimensional subspaces
of Y .

See [16, Proposition 2.14].
A subset of Gk(H) formed by mutually compatible subspaces is said to be com-

patible.

Lemma 6 (Lemma 4.30 in [16]). Every maximal compatible subset of a top con-
tains precisely k + 1 elements. Every maximal compatible subset of a star contains
precisely n − k + 1 elements if dimH = n is finite, and this set is infinite if H is
infinite-dimensional.

A distance d(v, w) between to vertices v and w in a connected graph is defined
as the smallest number m such that there is a path consisting of m edges and
connecting v with w; every path connecting v with w and consisting of d(v, w)
edges is called geodesic. The Grassmann graph Γk(H) is connected and the distance
between k-dimensional subspaces X,Y ⊂ H in this graph is equal to

k − dim(X ∩ Y ) = dim(X + Y )− k;

in particular, the distance between orthogonal k-dimensional subspaces is k.

Lemma 7 (Lemma 4.31 in [16]). Every geodesic in Γk(H) connecting orthogo-
nal subspaces consists of mutually compatible subspaces. Any two compatible k-
dimensional subspaces X,Y ⊂ H are contained in a certain geodesic of Γk(H)
connecting X with a subspace orthogonal to X.

We start to prove Theorem 3. Let f be an orthogonality preserving transforma-
tion of Gk(H).

Lemma 8. The conditions (A) and (B) from Theorem 3 are equivalent.

Proof. (A) =⇒ (B). Let X and Y be adjacent k-dimensional subspaces of H. Then

dim(X + Y ) = k + 1 and dim(X + Y )⊥ ≥ 2

(since dimH > 2k > 2). We take orthogonal 1-dimensional subspaces P,Q ⊂
(X + Y )⊥ and consider the k-dimensional subspaces

X ′ = (X ∩ Y ) + P and Y ′ = (X ∩ Y ) +Q.
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The subspaces X,X ′, Y ′ are mutually ortho-adjacent and the same holds for the
subspaces Y,X ′, Y ′. Let X be a maximal compatible subset of the star S(X ∩ Y )
containing X,X ′, Y ′. Since f is ortho-adjacency preserving, f(X ) is a compatible
subset in a star or a top. The assumption dimH > 2k together with Lemma
6 implies that f(X ) cannot be contained in a top, i.e. it is a subset of a star.
Therefore, f(X) contains the (k − 1)-dimensional subspace f(X ′) ∩ f(Y ′). The
same arguments show that f(X ′) ∩ f(Y ′) also is contained in f(Y ). This means
that f(X), f(Y ) are adjacent or f(X) = f(Y ).

(B) =⇒ (A). Let X and Y be k-dimensional subspaces of H. The condition (2)
guarantees that f transfers every geodesic of Γk(H) connecting X and Y to a path
of Γk(H) connecting f(X) and f(Y ); in particular, the distance between f(X) and
f(Y ) in Γk(H) is not greater than the distance between X and Y .

Suppose that X,Y are orthogonal. Then f(X), f(Y ) are orthogonal and both
these distances are equal to k. In this case, f transfers every geodesic of Γk(H)
connecting X and Y to a geodesic connecting f(X) and f(Y ). Lemma 7 implies
(A). �

From this moment, we assume that one of the conditions (A) or (B) holds. Then
the other also is satisfied.

The condition (B) guarantees that f sends maximal cliques of Γk(H) (stars
and tops) to cliques. Using the condition (A) and Lemma 6, we show that for
every star S ⊂ Gk(H) there is a star S ′ ⊂ Gk(H) such that f(S) ⊂ S ′. Since
the intersection of two distinct stars contains at most one element and every star
of Γk(H) contains ortho-adjacent elements whose images are distinct, such a star
S ′ ⊂ Gk(H) is unique. Therefore, for every (k − 1)-dimensional subspace X ⊂ H
there is a unique (k − 1)-dimensional subspace X ′ ⊂ H such that f(S(X)) is
contained in S(X ′). In other words, f induces a transformation fk−1 of Gk−1(H)
satisfying

f(S(X)) ⊂ S(fk−1(X))

for every X ∈ Gk−1(H). The latter inclusion implies that

fk−1(Gk−1(Y )) ⊂ Gk−1(f(Y ))

for every Y ∈ Gk(H).

Lemma 9. The following assertions are fulfilled:

(1) fk−1 is orthogonality preserving;
(2) for any adjacent X,Y ∈ Gk−1(H) the images fk−1(X), fk−1(Y ) are adjacent

or coincident;
(3) fk−1 is ortho-adjacency preserving.

Proof. (1). Suppose that X,Y are orthogonal (k − 1)-dimensional subspaces of H.
There are orthogonal k-dimensional subspaces X ′, Y ′ ⊂ H such that X ⊂ X ′ and
Y ⊂ Y ′. Then

fk−1(X) ⊂ f(X ′) and fk−1(Y ) ⊂ f(Y ′).

The subspaces f(X ′), f(Y ′) are orthogonal and the same holds for fk−1(X), fk−1(Y ).
(2). If X,Y are adjacent (k− 1)-dimensional subspaces of H, then S(X)∩S(Y )

consists of one element. Since

f(S(X) ∩ S(Y )) ⊂ S(fk−1(X)) ∩ S(fk−1(Y )),
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the intersection of S(fk−1(X)) and S(fk−1(Y )) is non-empty. The latter is possible
only in the case when fk−1(X), fk−1(Y ) are adjacent or fk−1(X) = fk−1(Y ).

The assertion (3) follows immediately from (1) and (2). �

Recursively, we constructs a sequence of transformations fk−i of Gk−i(H) with
i = 0, 1, . . . , k − 1 such that fk = f and

fk−i+1(S(X)) ⊂ S(fk−i(X))

for every X ∈ Gk−i(H) and

fk−i(Gk−i(Y )) ⊂ Gk−i(fk−i+1(Y ))

for every Y ∈ Gk−i+1(H) if i ≥ 1. In particular, f1 is a lineation of P(H) to itself.
The direct analogue of Lemma 9 holds for every fk−i with i < k − 1 and f1 is
orthogonality preserving. By Theorem 2, f1 is induced by a linear and conjugate-
linear isometry L : H → H. Since for every X ∈ Gk(H) we have

f1(G1(X)) ⊂ G1(f(X)),

f also is induced by L. This completes the proof of Theorem 3.
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