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Abstract

We discuss totally ordered monoids (or tomonoids, for short) that are commuta-
tive, positive, and finitely generated. Tomonoids of this kind correspond to certain
preorders on free commutative monoids. In analogy to positive cones of totally
ordered groups, we introduce direction cones to describe the preorders in ques-
tion and we establish between both notions a Galois connection. In particular, we
show that any finitely generated positive commutative tomonoid is the quotient of a
tomonoid arising from a direction cone. We furthermore have a closer look at for-
mally integral tomonoids and at nilpotent tomonoids. In the latter case, we modify
our approach in order to obtain a description that is based on purely finitary means.

1 Introduction

An interest in totally ordered monoids, or tomonoids as we say in accordance with
[EKMMW], is present in diverse fields. For instance, in computational mathematics
and in particular in connection with Gröbner bases of polynomial ideals, compatible,
positive total orders on an Nn, called monomial or term orders, play an important
role; see, e.g., [CLS]. An early overview of the extensive research on totally ordered
semigroups can be found in [Gab]; a comprehensive treatment of more recent times is
[EKMMW].

Our own motivation to study tomonoids is related to a comparably young research area.
Namely, these structures are of central significance in fuzzy logic [Haj]. The primary
connective of propositional fuzzy logic is the conjunction, which is usually interpreted
by a t-norm [KMP]. A t-norm is a binary operation that makes the real unit interval,
endowed with its natural order, into a tomonoid. Tomonoids arising in this way have
the additional properties of being commutative and negative, where “negative” is the
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same as “positive” in the dual picture adopted here. Accordingly, we focus in this
paper on positive, commutative tomonoids, and we will furthermore generally assume
that the tomonoids are, as monoids, finitely generated.

We note in addition that the generalised semantics of fuzzy logics often involve MTL-
algebras or their subclasses. In particular, the fuzzy logic with the same name corre-
sponds to MTL-algebras. The variety of MTL-algebras is in turn generated by its finite
totally ordered members [CMM]. But finite MTL-chains are nothing but finite negative
commutative tomonoids endowed with an implication as an additional operation. The
implication operation is definable from the remaining structure, so that finite MTL-
chains can actually be considered as belonging to those structures that are studied in
the present paper.

We guess that there are many approaches to the problem of analysing and describing
finitely generated tomonoids. Here we make use of the well-established method of de-
scribing commutative monoids by means of congruences on free commutative monoids
[EiSc, Gri]. In our case, a compatible, positive total order needs to be taken into ac-
count additionally. To this end, we in fact do not directly consider the congruences in
question, but instead the preorders induced by the total order of tomonoids on their as-
sociated free monoids. This approach is quite practical because the preorders “encode”
both the congruence and the total order. We are in this way led to the question how
compatible, positive total preorders on an Nn can be characterised.

Compatible preorders on free monoids have been studied, e.g., in [KaTh]. Here, our
key idea is the following. Recall that the order of a partially ordered group is described
by its positive cone. In analogy to this idea, we introduce what we call a direction
cone, whose characteristic properties are quite similar to those of positive cones of
partially ordered groups. The correspondence between the preorders in question and
direction cones is many-to-one; that is, not all preorders on the Nn are represented by
a direction cone. However, there is a Galois connection between the two notions, and
each compatible, positive total preorder can be restricted to a preorder arising from
a direction cone. Consequently, the class of tomonoids described by direction cones
is rich enough such that each finitely generated, positive, commutative tomonoid is a
quotient of a member of this class.

The notion of a direction cone can be applied to some interesting subclasses. We con-
sider here the conditions of formal integrality as well as nilpotency. In the latter case,
we deal with finite structures, and it seems appropriate to describe them by finitary
means. However, directions cones are usually infinite. Direction f-cones, in contrast,
are finite; they are defined similarly to direction cones, but tailored to the case of nilpo-
tency. We establish a Galois connection also for this more special situation and we
show that any nilpotent finite, positive, commutative tomonoid is the quotient of a to-
monoid induced by a direction f-cone.

The paper is organised as follows. We introduce in Section 2 the basic notions around
tomonoids and establish their correspondence with preorders on Nn. In a first step
towards the description of such preorders, we consider in Section 3 a comparably well-
understood subclass of tomonoids, namely those that arise from the positive cone of
totally ordered Abelian groups. In an analogous manner, we then proceed in Section
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4 in the case of finitely generated tomonoids and we establish their correspondence
with direction cones. Formally integral tomonoids are dealt with in the Section 5. We
then finally turn to nilpotent tomonoids. For this class of tomonoids it makes sense to
modify the approach developed so far; we do so in Section 6. Some general remarks in
Section 7 conclude the paper.

2 Totally ordered monoids

We study the following structures in this paper.

Definition 2.1. An algebra (L; +, 0) is a monoid if (i) + is associative and (ii) a +
0 = 0 + a = a for any a ∈ L. A monoid (L; +, 0) is called commutative if + is
commutative.

A partial order 6 on a monoid L is called compatible if, for any a, b, c ∈ L, a 6 b
implies a+ c 6 b+ c and c+ a 6 c+ b. A structure (L;6,+, 0) such that (L; +, 0)
is a monoid and 6 is a compatible partial order on L is a partially ordered monoid,
or pomonoid for short. In case that the partial order is total, we refer to L as a totally
ordered monoid, or tomonoid for short. Finally, a pomonoid is commutative if so is its
monoidal reduct.

Pomonoids are often written multiplicatively; the monoidal operation is then denoted
by · or a similar symbol and the monoidal identity by 1. We prefer to write (L; +, 0)
over (L; ·, 1) because the emphasis of this article is on free commutative monoids,
which are usually written additively.

We are interested in commutative tomonoids subject to the following conditions.

Definition 2.2. Let (L;6,+, 0) be a commutative pomonoid. L is called positive if 0
is the bottom element.

Furthermore, L is called finitely generated if L, as a monoid, is generated by finitely
many elements.

Tomonoids considered in this paper are always positive, commutative, and finitely gen-
erated. We will abbreviate “positive commutative” by “p.c.”.

A tomonoid is trivial if it consists of the zero, the monoidal identity, alone. We will
tacitly assume throughout this paper that all tomonoids are non-trivial. Moreover, a
set of generators of a tomonoid L will be understood to be a non-empty, finite set of
non-zero elements that generate L as a monoid.

P.c. tomonoids possess, in addition to the partial order included in their signature, a
partial order that depends on the monoidal reduct alone.

Definition 2.3. Let (L; +, 0) be a commutative monoid. For a, b ∈ L, let

a6H b if a+ c = b for some c ∈ L;

then 6H is called Green’s preorder. If 6H is a partial order, we refer to 6H as the
natural order on L.
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Lemma 2.4. Let (L;6,+, 0) be a p.c. pomonoid. Then Green’s preorder 6H on
(L; +, 0) is a compatible partial order, whose least element is 0. In other words, also
(L;6H,+, 0) is a p.c. pomonoid. Moreover, 6 extends 6H.

We finally establish the notation as regards free commutative monoids, which will play
a central role. We identify the free commutative monoid over an n-element set, where
n > 1, with Nn. The addition is pointwise and the identity is 0̄ = (0, ..., 0), the n-
tuple consisting solely of 0’s. For i = 1, . . . , n, we denote the i-th unit vector of Nn

by ui, that is, we put ui = (0, ..., 0, 1, 0, ..., 0), “1” being at the i-th position. Then
U(Nn) = {u1, . . . , un} is a set of generators of Nn.

For (a1, ..., an), (b1, ..., bn) ∈ Nn, we put

(a1, ..., an) P (b1, ..., bn) if a1 6 b1, . . . , an 6 bn. (1)

Clearly, P is the natural order on (Nn; +, 0̄). Endowed with P, Nn becomes a p.c.
pomonoid.

Congruences and quotients

We compile a few definitions and facts concerning the formation of quotients of pomo-
noids.

Let L be a p.c. pomonoid. By a pomonoid congruence of L, we mean an equivalence
relation ∼ on L such that (i) ∼ is a congruence of L as a monoid and (ii) for any
a0, . . . , ak ∈ L,

a0 6 a1 ∼ a2 6 a3 ∼ . . . 6 ak−1 ∼ ak 6 a0 (2)

implies a0 ∼ . . . ∼ ak. In this case, we endow the quotient 〈L〉∼ with the smallest
partial order such that 〈a〉∼ 6 〈b〉∼ if a 6 b, with the induced addition +, and with
the constant 〈0〉∼. The result is a p.c. pomonoid again and called a pomonoid quotient
of L. If 〈L〉∼ is totally ordered, we speak about a tomonoid congruence, leading to a
tomonoid quotient. Moreover, if the 0-class consists of 0 alone, that is, if 〈0〉∼ = {0},
we call the congruence ∼ as well as the quotient 〈L〉∼ pure.

In case of a naturally ordered free commutative monoid, we can characterise the po-
monoid congruences as monoid congruences whose classes are convex.

Lemma 2.5. An equivalence relation∼ on Nn is a pomonoid congruence of (Nn; P,+,
0̄) if and only if (i) ∼ is a congruence of the monoid (Nn; +, 0̄) and (ii) all ∼-classes
are, w.r.t. P, convex. In this case, the partial order on 〈Nn〉∼ is its natural order 6H.

Proof. Let ∼ be a pomonoid congruence on Nn. Then aP bP c∼ a implies a∼ b∼ c;
hence the ∼-classes are convex.

Conversely, let ∼ be a congruence of the monoid (Nn; +, 0̄) such that all classes are
convex. For a0, . . . , ak ∈ Nn, (2) implies that a0 + c0 + c2 + . . . + ck ∼ a0, where,
for each i = 0, 2, . . . , k − 2, ai + ci = ai+1, and ak + ck = a0. We conclude that
a0, a0 + c0, . . . , a0 + c0 + . . .+ ck, and hence all the ai’s, are pairwise equivalent.
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Finally, 〈Nn〉∼ is endowed with the smallest partial order 6 such that 〈a〉∼ 6 〈a+ c〉∼
for any a, c ∈ Nn. It is not difficult to check that 6 coincides with the natural order
6H of (〈Nn〉∼; +, {0̄}).

The construction of an arbitrary finitely generated p.c. tomonoid can be described in
two steps as follows.

Proposition 2.6. Let∼ be a congruence of the monoid (Nn; +, 0̄) such that all classes
are, w.r.t. P, convex and 〈0̄〉∼ = {0̄}. Then ∼ is a pure pomonoid congruence of
(Nn; P,+, 0̄) and the quotient (〈Nn〉∼;6H,+, {0̄}) is a p.c. pomonoid, which is gen-
erated by 〈u1〉∼, . . . , 〈un〉∼.

Let furthermore 6 be a compatible total order on 〈Nn〉∼ extending its natural order
6H. Then (〈Nn〉∼;6,+, {0̄}) is a p.c. tomonoid.

Any finitely generated p.c. tomonoid is isomorphic to a tomonoid arising in this way.

Proof. The first part follows from Lemma 2.5. The second part is clear.

For the last part, let (L;6,+, 0) be a p.c. tomonoid. Then the monoid (L; +, 0) is
isomorphic to a quotient (〈Nn〉∼; +, 〈0̄〉∼) of Nn, generated by the non-zero elements
〈u1〉∼, . . . , 〈un〉∼. Identifying L and 〈Nn〉∼, 6 extends by Lemma 2.4 the natural
order 6H on 〈Nn〉∼.

From this last fact we conclude that the ∼-classes of Nn are, w.r.t. P, convex. In
particular, 〈0̄〉∼ is convex and does not contain ui for any i; hence 〈0̄〉∼ = {0̄}.

The representation of a p.c. tomonoid according to Proposition 2.6 is certainly not
unique. In fact, the indicated set of generators need not be minimal; the same element
can, for instance, appear here twice. For finitely generated p.c. tomonoids, there is
an easy way to choose a canonical representation, based on the unique minimal set of
generators; see, e.g., [EKMMW]. However, in this paper we will not do so; we keep
matters simpler when accepting the indeterminacy.

Monomial preorders

According to Proposition 2.6, the construction of tomonoids requires two steps: first,
a quotient of the monoid Nn with convex classes is formed; second, the natural order
is extended to a total order. It is straightforward, and turns out to be convenient, to
combine both steps in one: by considering preorders on Nn.

A preorder on a set A is a reflexive and transitive binary relation 4 on A. In this case,
we write a ≺ b if a 4 b but not b 4 a. A preorder 4 is called total if, for any pair
a, b ∈ A, either a4 b or b4 a. We associate with 4 its symmetrisation ≈, where a≈ b
if a 4 b and b 4 a. The equivalence class of some a w.r.t. ≈ is called a 4-class and
is denoted by 〈a〉4. The quotient w.r.t. ≈ is denoted by 〈A〉4, and its induced partial
order is denoted by 4 again.

A preorder 4 on a monoid (L; +, 0) is called compatible if a4 b implies a+ c4 b+ c;
and 4 is called strictly positive, or simply positive, if 0 ≺ a for all a 6= 0.
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Proposition 2.7. Let 4 be a compatible, positive total preorder on (Nn; +, 0̄). Then≈
is a monoid congruence such that the 4-classes are convex and 〈0̄〉4 = {0̄}. Moreover,
(〈Nn〉4;4,+, {0̄}) is a p.c. tomonoid, which is generated by 〈u1〉4, . . . , 〈un〉4.

Conversely, let (L;6,+, 0) be a p.c. tomonoid, and assume that the n > 1 elements
g1, . . . , gn ∈ L\{0} generate L. Let ι : Nn → L be the surjective monoid homomor-
phism determined by ι(ui) = gi, i = 1, . . . , n. For a, b ∈ Nn define

a4 b if ι(a) 6 ι(b). (3)

Then 4 is a compatible, positive total preorder of Nn, and ι induces an isomorphism
between (〈Nn〉4;4,+, {0̄}) and (L;6,+, 0).

Proof. Let 4 be a compatible, positive total preorder on Nn. Then, for a, b, c, d ∈ Nn,
a ≈ c and b ≈ d imply a + b ≈ c + d by the compatibility of 4; hence ≈ is a monoid
congruence. As 4 is also positive, 4 extends P, and it follows that the 4-classes are
convex. Again by the positivity, the 4-class of 0̄ consists of 0̄ alone.

As 4 is compatible, the partial order 4 induced on 〈Nn〉4 is compatible as well; that
is, (〈Nn〉4;4,+, 〈0̄〉4) is a commutative pomonoid. Since, for any a, b ∈ Nn, a 4 b

or b 4 a, 〈Nn〉4 is actually a tomonoid. Moreover, since 0̄ ≺ a for any a ∈ Nn\{0̄},
〈Nn〉4 is a p.c. tomonoid, which is generated by 〈u1〉4, . . . , 〈un〉4.

For the second part, assume that (L;6,+, 0) is a p.c. tomonoid and g1, . . . , gn ∈
L\{0} generate L as a monoid. Let furthermore ι : Nn → L be as indicated and let 4
be defined by (3). By construction, 4 is transitive and reflexive, that is, a preorder. 4 is
compatible because so is 6 and ι is a monoid homomorphism. Moreover, 4 is positive
because L is positive and hence ι(a) 6 0 holds only if a = 0̄. Finally, for a, b ∈ Nn,
we have a≈ b if and only if a4 b and b4 a if and only if ι(a) = ι(b); hence ι induces
an isomorphism as claimed.

In analogy to the case of monomial orders on Nn [CLS], we call a compatible, positive
total preorder a monomial preorder.

By Proposition 2.7, any monomial preorder 4 on Nn gives rise to a p.c. tomonoid L,
generated by n elements. We refer to L then as the tomonoid represented by 4.

Proposition 2.7 also states that, up to isomorphism, any finitely generated p.c. tomonoid
L arises in this way from a monomial preorder. In other words, describing finitely
generated p.c. tomonoids can be done by describing monomial preorders. This is what
we will do in this paper.

We will need the following immediate lemma.

Lemma 2.8. Let the monomial preorder 4 on Nn represent the tomonoid L. Then
any pure tomonoid quotient of L is represented by a monomial preorder extending 4.
Conversely, any monomial preorder on Nn extending 4 represents a pure tomonoid
quotient of L.
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3 Tomonoids from totally ordered Abelian groups

As a preparation of what follows, we review in this section a structure that is well-
known in the present context. Our topic are positive, commutative totally ordered
monoids; a typical example is the positive cone of a totally ordered Abelian group.
The latter is, as a monoid, in general not finitely generated even if the group is. As we
are interested in finitely generated tomonoids, we will actually consider submonoids
of the positive cone of a totally ordered group, which we just assume to generate the
whole group. For basic facts on partially ordered groups, we may refer, e.g., to [Fuc].

Definition 3.1. Let (G;6,+, 0) be a totally ordered Abelian group and assume that G
is generated by the n > 1 elements g1, . . . , gn ∈ G+\{0}. Let L be the submonoid
of G generated by g1, . . . , gn and let L be endowed with the total order inherited from
G, with the group addition, and with the constant 0. Then we call (L;6,+, 0) a group
cone tomonoid.

It is clear that a group cone tomonoid is a finitely generated p.c. tomonoid. It is further-
more easily seen how group cone tomonoids are characterised. We call a p.c. tomonoid
L cancellative if, for all a, b, c ∈ L, a+ c = b+ c implies a = b. Note that in this case,
for all a, b, c ∈ L, a 6 b is equivalent to a+ c 6 b+ c.

Proposition 3.2. A finitely generated p.c. tomonoid (L;6,+, 0) is a group cone tomo-
noid if and only if L is cancellative.

Proof. The “only if” part follows from the construction of a group cone tomonoid.

To see the “if” part, let L be cancellative. Let G be the group consisting of the differ-
ences of elements of L; see, e.g., [Fuc, Chapter II.2]. Viewing L as a subset of G, we
introduce a total order on G as follows: for a, b, c, d ∈ L, we define a − b 6 c − d
if a + d 6 b + c in L. Then (G;6,+, 0) is a totally ordered Abelian group, and
(L;6,+, 0) is a subtomonoid of (G+;6,+, 0). The assertion follows.

We can characterise group cone tomonoids by means of monomial preorders as follows.
Call a preorder 4 on Nn cancellative if, for any a, b, c ∈ Nn, a 4 b is equivalent to
a+ c4 b+ c.

Proposition 3.3. Let the p.c. tomonoid L be represented by the monomial preorder 4
on Nn. Then L is a group cone tomonoid if and only if 4 is cancellative.

Proof. Let L be a group cone tomonoid. Then (〈Nn〉4;4,+, {0̄}) is cancellative by
Proposition 3.2. Thus, for a, b, c ∈ Nn, we have a4b iff 〈a〉44〈b〉4 iff 〈a〉4 +〈c〉44
〈b〉4 + 〈c〉4 iff 〈a+ c〉4 4 〈b+ c〉4 iff a+ c4 b+ c, that is, 4 is cancellative.

Conversely, let 4 be cancellative. Then (〈Nn〉4;4,+, {0̄}) is a cancellative p.c. to-
monoid and hence, by Proposition 3.2, a group cone tomonoid.

In what follows, (Zn; +, 0̄) will denote the free Abelian group generated by n > 1
elements. Furthermore, P will be the partial order on Zn defined according to (1): for
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a, b ∈ Zn, we put aP b if a+ c = b for some c ∈ Nn. Then (Zn; P,+, 0̄) is a partially
ordered group.

The order of a partially ordered Abelian group (G;6,+, 0) is uniquely determined by
its positive cone G+ = {g ∈ G : g > 0}. In fact, for any g, h ∈ G, g 6 h if and
only if h − g ∈ G+. We may alternatively understand the positive cone of a partially
ordered group as the set of all differences of elements g and h such that g 6 h; indeed,
G+ = {h− g : g, h ∈ G such that g 6 h}.
Cancellative monomial preorders, which represent group cone monoids, can be de-
scribed along similar lines.

Definition 3.4. Let 4 be a cancellative monomial preorder on Nn. Then the set

P4 = {b− a ∈ Zn : a, b ∈ Nn such that a4 b }

is called the positive cone of 4.

A positive cone determines the preorder from which it is defined just like in the case of
groups.

Lemma 3.5. Let P ⊆ Zn be the positive cone of the cancellative monomial preorder
4. Then we have:

(GO) For any a, b ∈ Nn, a4 b if and only if b− a ∈ P .

Proof. By definition, a4 b implies b− a ∈ P .

Conversely, let b− a ∈ P . Then there are c, d ∈ Nn such that c4 d and d− c = b− a.
It follows a+ d = b+ c4 b+ d and hence a4 b.

Thus we have, for a cancellative monomial preorder 4,

P4 = {z ∈ Zn : a4 b for some a, b ∈ Nn such that z = b− a}
= {z ∈ Zn : a4 b for all a, b ∈ Nn such that z = b− a};

(4)

in fact, the first equality holds by definition and the second one by Lemma 3.5.

The positive cones of partially ordered Abelian groups are exactly the cancellative
commutative monoids such that a + b = 0 implies a = b = 0. The positive cones of
cancellative monomial preorders are characterised as follows.

Theorem 3.6. A set P ⊆ Zn is the positive cone of a cancellative monomial preorder
on Nn if and only if the following conditions are fulfilled:

(GC1) Let z ∈ Nn. Then z ∈ P and, if z 6= 0̄, −z /∈ P .

(GC2) P is closed under addition.

(GC3) Let z ∈ Zn. Then z ∈ P or −z ∈ P .
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In this case, P = P4, where 4 is given by condition (GO) above.

Proof. Let 4 be a cancellative monomial preorder on Nn. Clearly, 0 ∈ P4 then.
Furthermore, any z ∈ Nn\{0̄} is in P4 because 0̄ 4 z holds by the positivity of 4.
Assume that also −z ∈ P4. Then there is a b ∈ Nn such that b + z 4 b and hence by
the cancellativity z 4 0, in contradiction to the positivity of 4. (GC1) is shown.

For a, b, c, d ∈ Nn, a 4 b and c 4 d implies a + c 4 b + c 4 b + d. We conclude that
if b − a, d − c ∈ P4, also (b − a) + (d − c) = (b + d) − (a + c) ∈ P4. This shows
(GC2).

For a, b ∈ Nn, at least one of a4 b or b4 a holds because 4 is total. (GC3) follows as
well.

Let now P ⊆ Zn fulfil (GC1)–(GC3). For a, b ∈ Nn, let a 4 b if b − a ∈ P . We
claim that 4 is a cancellative monomial preorder. As 0 ∈ P by (GC1), 4 is reflexive.
By (GC2), 4 is transitive. Hence 4 is a preorder. 4 is total by (GC3) and positive by
(GC1). Finally, by construction, a4 b is equivalent to a+ c4 b+ c; the compatibility
and cancellativity of 4 follows.

It remains to show that P is actually the positive cone P4 of 4. By Lemma 3.5, we
have that, for any a, b ∈ Nn, b−a ∈ P4 if and only if a4 b. But by construction, a4 b
if and only if b− a ∈ P . Hence P = P4.

Finally, if P ⊆ Zn is the positive cone of any cancellative monomial preorder 4, then
4 is by Lemma 3.5 uniquely determined by (GO). The last statement follows.

In the context of tomonoids, we may consider a positive cone, without explicit ref-
erence to some monomial preorder, as a subset of Zn fulfilling conditions (GC1)–
(GC3). Group cone tomonoids correspond to cancellative monomial preorders; Theo-
rem 3.6 then establishes a one-to-one correspondence between cancellative monomial
preorders and positive cones.

In what follows, we will generalise the notion of a positive cone to cover a wider class
of tomonoids. We will in this case not obtain a strict correlation such as in the context
of group cone tomonoids, but we will be led to a Galois correspondence.

4 Direction cones

In this section, we introduce a tool to describe monomial preorders. The condition of
cancellativity will no longer be assumed.

Let 4 be a monomial preorder on Nn and recall for a moment again the case that 4 is
cancellative. Then, for any pair a, b ∈ Nn, the question of whether or not a 4 b holds
depends only on the difference z = b − a: we have a 4 b if and only if c 4 d for any
other pair c, d ∈ Nn such that z = d− c. By (4), the positive cone P4 consists of these
differences; a4 b if and only if b− a ∈ P4.

In general, the question of whether or not a 4 b does not depend on their difference
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alone; e.g., it may be the case that a + c 4 b + c for some c ∈ Nn, but not a 4 b.
However, let z ∈ Zn. Then we can still say that at least one of following possibilities
applies: a4 b for all a, b ∈ Nn such that b− a = z, or b4 a for all a, b ∈ Nn such that
b− a = z. This is a consequence of the subsequent elementary lemma.

Lemma 4.1. Let z ∈ Zn. Then there is a unique pair a, b ∈ Nn such that z = b − a
and, for any c, d ∈ Nn such that z = d− c, we have c = a+ t and d = b+ t for some
t ∈ Nn.

Proof. Put a = −z ∨ 0̄ and b = z ∨ 0̄. Then z = b − a. Moreover, if c, d ∈ Nn such
that d − c = z, we have c Q 0̄ and c = d − z Q −z, thus c Q a; similarly, d Q b. As
b− a = d− c, the differences c− a and d− b coincide. The uniqueness of a, b follows
from the P-minimality.

With reference to Lemma 4.1, the pair a, b ∈ Nn associated to an element z ∈ Zn has
the property that z = b − a and any other pair in Nn whose difference is z as well
arises from a, b by translation by some tQ 0̄. Inspecting the above proof, we see that b
is simply the positive part of z ∈ Zn, and a is its (negated) negative part. We define:

z+ = z ∨ 0̄,

z− = −z ∨ 0̄;

then z+, z− ∈ Nn are such that

z = z+ − z−.

Let now 4 be a compatible preorder on Nn and let z ∈ Zn. If z− 4 z+, we conclude
from Lemma 4.1 and the compatibility of 4 that a 4 b actually holds for any pair
a, b ∈ Nn such that b − a = z. Thus, intuitively, we may view any z ∈ Zn such that
z− 4 z+ as being “positively directed”; for, in this case we have a 4 a + z for any
a ∈ Nn such that a+ z ∈ Nn. Our viewpoint is reflected in the following definition.

Definition 4.2. Let 4 be a monomial preorder on Nn. Then the set

C4 = {z ∈ Zn : z− 4 z+}

is called the direction cone of 4.

From Lemma 4.1 it is immediate that, for any monomial preorder 4,

C4 = {z ∈ Zn : a4 b for all a, b ∈ Nn such that z = b− a}. (5)

Comparing with (4), we see that the direction cone of a cancellative monomial preorder
is its positive cone. In the general case, we conclude from the positivity of 4 that
condition (GC1) for positive cones applies here as well, and from the totality of 4 also
condition (GC3) is immediate: for each z ∈ Zn, at least one of z or −z is in C4.

In contrast, a direction cone does not in general fulfil condition (GC2), that is, it is not
necessarily closed under addition. In order to see in which respect direction cones differ
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from positive cones, we introduce the following notion. We call a k-tuple (x1, . . . , xk),
k > 2, of elements of Zn addable if

(x1 + . . .+ xk)− + x1 + . . .+ xi Q 0̄ (6)

for all i = 0, . . . , k. Note that for addability the order matters.

The condition of addability is somewhat cumbersome, but essential for what follows.
We may express it alternatively as follows.

Lemma 4.3. A k-tuple (x1, . . . , xk) of elements of Zn, where k > 2, is addable if and
only if for every i = 1, . . . , k

xi + . . .+ xk P (x1 + . . .+ xk) ∨ 0̄.

Proof. Note first that condition (6) always holds if i = k; for, the left side equals
(x1 + . . .+ xk)+ in this case.

Putting z = x1 + . . . + xk, (x1, . . . , xk) is hence addable if and only if z− + x1 +
. . . + xi Q 0̄ for all i = 0, . . . , k − 1. This is in turn is equivalent to saying that
z−+x1 + . . .+xk Qxi+1 + . . .+xk for all i = 0, . . . , k−1. But z−+x1 + . . .+xk =
z− + z = z+ = z ∨ 0̄, and the assertion follows.

The next lemma contains the characteristic properties of direction cones.

Lemma 4.4. The direction cone of a monomial preorder on Nn is a set C ⊆ Zn

fulfilling the following conditions:

(C1) Let z ∈ Nn. Then z ∈ C and, if z 6= 0̄, −z /∈ C.

(C2) Let (x1, . . . , xk), k > 2, be an addable k-tuple of elements of C. Then x1+ . . .+
xk ∈ C.

(C3) Let z ∈ Zn. Then z ∈ C or −z ∈ C.

Proof. (C1) We have Nn ⊆ C because 4 is positive. Assume that −z ∈ C, where
z ∈ Nn. Then z = (−z)− 4 (−z)+ = 0̄ and the positivity of 4 implies z = 0̄.

Recall next that, by (5), a4 b for any a, b ∈ Nn such that b− a ∈ C.

To see (C2), let (x1, . . . , xk) be as indicated, and put z = x1 + . . . + xk. Then
z−, z− + x1, . . . , z

− + x1 + . . . + xk ∈ Nn. By assumption, x1, . . . , xk ∈ C; thus
z− 4 z− + x1 4 . . .4 z− + x1 + . . .+ xk = z− + z = z+.

(C3) holds because 4 is total.

A further property of direction cones is the following.

Lemma 4.5. Let 4 be a monomial preorder on Nn. Then z ∈ C4 and a Q 0̄ imply
z + a ∈ C4.

11



Proof. Let z ∈ C4 and aQ 0̄. Then (z+ a)− = (−z− a)∨ 0̄ P−z ∨ 0̄ = z−4 z+ =
z ∨ 0̄ P (z + a) ∨ 0̄ = (z + a)+, hence z + a ∈ C4.

A preorder gives rise to a direction cone; conversely, we can assign a preorder to a set
fulfilling (C1)–(C3).

Definition 4.6. Let C ⊆ Zn fulfil (C1)–(C3). Let 4C be the smallest preorder on Nn

such that

(O) a4C b for any a, b ∈ Nn such that b− a ∈ C.

Then we call 4C the monomial preorder induced by C.

More explicitly, given C ⊆ Zn and a, b ∈ Nn, we have a4C b if and only if there are
k > 1 elements z1, . . . , zk ∈ C such that a, a+z1, a+z1+z2, . . . , a+z1+. . .+zkQ0̄
and a + z1 + . . . + zk = b. Note that if b − a is the sum of elements of C, it is not
automatic that a4 b.

Lemma 4.7. Let C ⊆ Zn fulfil (C1)–(C3). Then 4C , the monomial preorder induced
by C, is in fact a monomial preorder.

Proof. By construction, 4C is a preorder, and by (C3), 4C is total. It is furthermore
clear that 4C is compatible with the addition.

Assume next that, for some a ∈ Nn, a 4C 0̄ holds according to the prescription (O).
Then a = 0̄ by (C1). It follows that 0̄ ≺C a for all a ∈ Nn\{0̄}, that is, 4C is positive.
This completes the proof that 4C is a monomial preorder.

We now show that the properties (C1)–(C3) of Lemma 4.4 exactly characterise mono-
mial preorders.

Theorem 4.8. A set C ⊆ Zn is the direction cone of a monomial preorder if and only
if C fulfils (C1)–(C3). In this case, C is the direction cone of 4C .

Proof. A direction cone fulfils (C1)–(C3) by Lemma 4.4.

Conversely, let C fulfil (C1)–(C3). Let 4C be the induced preorder. By Lemma 4.7,
4C is a monomial preorder.

It remains to show that C4C
, the direction cone of 4C , coincides with C, that is, for

z ∈ Zn, z− 4C z+ if and only if z ∈ C. The “if” part holds by construction. For the
“only if” part, assume that z− 4C z+ = z− + z. Then z = x1 + . . . + xk for some
x1, . . . , xk ∈ C such that z− + x1 + . . . xi Q 0̄ for i = 0, . . . , k. Then (x1, . . . , xk) is
addable, hence z ∈ C by (C2).

In the sequel, when speaking about direction cones without reference to a monomial
preorder, we mean a subset of Zn that fulfils the conditions (C1)–(C3).

A direction cone induces a preorder. As seen next, any preorder contains a preorder
arising in this way.
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Theorem 4.9. Let 4 be a monomial preorder. Then 4 extends 4C4
, the monomial

preorder induced by the direction cone of 4.

Moreover, the direction cone of 4C4
is C4 again.

Proof. Let a, b ∈ Nn and assume that a4C4
b holds according to the prescription (O).

Then b− a ∈ C4, that is, z−4 z+, where z = b− a. In view of Lemma 4.1, it follows
a4 b. We conclude that 4C4

⊆ 4.

The second part holds by Theorem 4.8.

A Galois connection between monomial preorders and direction cones

For a given n > 1, let P be the set of all monomial preorders on Nn and let C be the
set of all direction cones in Zn. Note that the two mappings

P → C, 4 7→ C4,

C → P, C 7→ 4C

are, w.r.t. set-theoretic inclusion, order-preserving. The mappings are not one-to-one;
in fact, the former is surjective but not injective, and the latter is injective but not
surjective. But Theorems 4.8 and 4.9 indicate the result of applying the mappings
successively: any 4 ∈ P is an extension of 4C4

; and any C ∈ C is equal to C4C
. We

conclude that there is a Galois connection between P and C. Namely, for any 4 ∈ P
and C ∈ C,

4C ⊆ 4 if and only if C ⊆ C4.

We apply the shown facts to tomonoids.

Definition 4.10. Let C ⊆ Zn be a direction cone. Then we call the tomonoid repre-
sented by 4C a cone tomonoid.

Theorem 4.11. Each finitely generated p.c. tomonoid L is the quotient of a cone to-
monoid.

Proof. This holds by Theorem 4.9 and Lemma 2.8.

Example

Let us present an example illustrating the results of this section. Let L be the 9-element
p.c. tomonoid specified as follows. Let L be generated by its two elements a and b and
assume that

0 < a < b < 2a < a+ b < 2b < 3a <

2a+ b = a+ 2b = 4a < 2a+ 2b = 3a+ b = 5a = 3b
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and that the last indicated element is the top element. In accordance with Proposition
2.7, let ι : N2 → L be the surjective monoid homomorphism such that ι((1, 0)) = a
and ι((0, 1)) = b, and endow N2 with the preorder 4 according to (3). Then we have

(0, 0) ≺ (1, 0) ≺ (0, 1) ≺ (2, 0) ≺ (1, 1) ≺ (0, 2) ≺
(3, 0) ≺ (2, 1)≈ (1, 2)≈ (4, 0) ≺ (m,n),

where (m,n) is any of the remaining elements of N2. A graphical representation of
(L;6,+, 0) can be found in Figure 1.

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(4,1) (5,1)(0,1)

(0,2)

(0,3)

Figure 1: The example tomonoid L. The simple arrows indicate the immediate-
successor relation w.r.t. 4; the double arrows indicate 4-equivalence.

The direction cone is, by Definition 4.2,

C4 = {(p, q) ∈ Z2 : (−p ∨ 0,−q ∨ 0) 4 (p ∨ 0, q ∨ 0)}.

Thus, for m,n ∈ N, we have (m,n) ∈ C4; (−m,n) ∈ C4 if (m, 0) 4 (0, n); and
(m,−n) ∈ C4 if (0, n) 4 (m, 0). We get

C4 = {(p, q) ∈ Z2 : p, q > 0} ∪
{(−2, 2), (−1, 1), (−1, 2), (2,−1), (3,−2), (3,−1), (4,−2), (4,−1)} ∪
{(p, q) ∈ Z2 : p 6 0 and q > 3} ∪
{(p, q) ∈ Z2 : p > 5 and q 6 0},

depicted in Figure 2.

Finally, we calculate 4C4
, the preorder representing a cone tomonoid whose quotient

is L. The preorder 4C4
can most easily be read off directly from Figure 1. Namely,

we collect the order relations that hold between elements of the form (m, 0) and (0, n),
where m,n > 1; then we translate and concatenate them. The result is depicted in
Figure 3. From 4C4

, we get L by requiring the elements (2, 1), (1, 2), and (4, 0) of
N2 to be equivalent.
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Figure 2: The direction cone C4 of the monomial preorder 4 representing L.
Each element of C4 is depicted as a vector based at (0, 0).

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(4,1) (5,1)(0,1)

(0,2)

(0,3)

Figure 3: The cone tomonoid represented by 4C4
, whose quotient is L.

5 Formally integral tomonoids

In this section, we shortly reconsider group cone tomonoids and we then see what in
the present context the condition of formal integrality means.

Proposition 5.1. A group cone tomonoid is a cone tomonoid.

Proof. The direction cone of a monomial preorder 4 representing a group cone tomo-
noid is its positive cone P4, and P4 induces 4.

Proposition 5.2. LetC ⊆ Zn be a direction cone. Then the cone tomonoid represented
by 4C is a group cone tomonoid if and only if C is closed under addition if and only if
4C is cancellative.
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Proof. By Proposition 3.3, 4C represents a group cone tomonoid if and only if 4C is
cancellative.

Assume that C is closed under addition. Then, for a, b ∈ Nn, a 4C b is equivalent to
b− a ∈ C, and it follows that 4C is cancellative.

Furthermore, assume that 4C is cancellative. To see that C is closed under addition,
let x, y ∈ C. Then x− 4C x

+ = x+ x− and y− 4C y + y− and hence x− + y− 4C

x−+y−+x+y. From (x+y)−Px−+y− and the cancellativity of 4C , we conclude
(x+ y)− 4C (x+ y)− + x+ y, hence x+ y ∈ C.

We now turn to the topic of formal integrality. For a detailed discussion of this property,
we refer to [EKMMW]; see also [Hor].

Definition 5.3. Let (L;6,+, 0) be a p.c. tomonoid. If there is a total order 6 on Nn

such that (Nn;6,+, 0) is a p.c. tomonoid and L is isomorphic to a tomonoid quotient
of Nn, then L is called formally integral.

We note that formal integrality is usually defined in a more general context, namely,
without the assumption of positivity. It is not difficult to check that our definition is
consistent with the definition given, e.g., in [EKMMW].

If we want to avoid the explicit reference to some Nn, we may characterise formal
integrality also as follows.

Proposition 5.4. Let (L;6,+, 0) be a finitely generated p.c. tomonoid. Then L is
formally integral if and only if L is the quotient of a group cone tomonoid.

Proof. Let (Nn;6,+, 0̄) be a p.c. tomonoid. Then Nn is a group cone tomonoid be-
cause 6 is cancellative. The “only if” part follows.

Conversely, let L be a group cone tomonoid. Then L is cancellative and hence by
[EKMMW, Cor. 4.5] formally integral. The “if” part follows as well.

We will call a monomial preorder that is actually a partial order a monomial order, in
accordance with the common meaning of this notion [CLS]. Furthermore, we will call
a subset P ⊆ Zn a Zn cone if P fulfils (GC1), (GC2), and the following strengthening
of (GC3): for each z ∈ Zn, exactly one of z and −z is in P .

Theorem 5.5. Let L be a finitely generated p.c. tomonoid. Then the following condi-
tions are pairwise equivalent:

(i) L is formally integral.

(ii) L is represented by a monomial preorder that contains a monomial order.

(iii) L is represented by a monomial preorder 4 such that C4 contains a Zn cone.

Proof. Assume (i); let L be a quotient of the p.c. tomonoid (Nn;6,+, 0̄). W.l.o.g., we
can assume that the quotient is pure. Moreover, 6 is a monomial order. By Lemma
2.8, there is a monomial preorder 4 ⊇ 6 on Nn that represents L. (ii) follows.
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Assume (ii); let 4 be a monomial preorder on Nn representing L, and let 6 ⊆ 4
be a monomial order. Then (Nn;6,+, 0̄) is a p.c. tomonoid, whose direction cone is
C6 = {z ∈ Zn : z− 6 z+} ⊆ C4. Since (Nn;6,+, 0̄) is a group cone tomonoid, C6

fulfils (GC1)–(GC3). Moreover, for any z ∈ Zn\{0̄}, z ∈ C6 contradicts −z ∈ C6.
Hence C6 is a Zn cone. (iii) follows.

Assume (iii); let 4 be a monomial preorder on Nn representing L, and let C ⊆ C4 be
a Zn cone. Then the monomial preorder induced by C is in fact a monomial order 6,
and (Nn;6,+, 0̄) is a p.c. tomonoid. Furthermore, 6 ⊆ 4, hence by Lemma 2.8, L is
a tomonoid quotient of Nn, and (i) is proved.

Let us shortly summarise what we have established so far. Cone tomonoids are those
p.c. tomonoids that are represented by direction cones. Group cone tomonoids are
the cancellative cone tomonoids and they are represented by positive cones, which are
those direction cones that are closed under addition. Furthermore, the quotients of cone
tomonoids comprise all p.c. tomonoids. The quotients of group cone tomonoids are the
formally integral p.c. tomonoids.

Example

Theorem 5.5 provides an easily verifiable sufficient criterion that a tomonoid is not
formally integral. Assume that some direction cone C contains the elements x and y,
but neither −x nor −y nor x+ y. If C represented a formally integral p.c. tomonoid, it
would contain a Zn cone; but this is impossible as the latter would contain x and y and
thus also x+ y.

As an example, consider the well-known 9-element non-formally integral tomonoid
presented in [EKMMW]. Let L be generated by the three elements a, b, and c such that

0 < a < b < c < 2a < a+ b = 2b < 3a = a+ c < b+ c = 2c < 4a

and all non-indicated sums are equal to the top element, which is 4a.

(0,0,0) (1,0,0) (2,0,0) (3,0,0)

(0,0,1) (1,0,1)

(0,0,2)

(0,1,0)

(0,1,1)

(1,1,0) (2,1,0)

(0,2,0)

Figure 4: The 9-element example tomonoid from [EKMMW].
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To represent L by a preorder in N3, we assign (1, 0, 0) to a, (0, 1, 0) to b, and (0, 0, 1)
to c. Then the direction cone C of the representing preorder contains

x = (1,−2, 1) because 2b < a+ c,
y = (−3, 1, 1) because 3a < b+ c,
z = (2, 1,−2) because 2c < 2a+ b,

and C does not contain any of −x,−y,−z because the inequalities are strict. Thus C
contains x and y but neither −x nor −y nor −z = x + y. An illustration of L can be
found in Figure 4.

Note furthermore that the absence of x + y in C implies that neither (x, y) nor (y, x)
are addable. In fact, starting from (x + y)− = (2, 1, 0) and adding x and then y, or
y and then x, we arrive at (x + y)+ = (0, 0, 2) and in both cases we pass through an
element outside N3.

6 Nilpotent finite tomonoids

By Theorem 4.11, any finitely generated p.c. tomonoid is the quotient of a cone tomo-
noid. Cone tomonoids are in turn completely described by their direction cones, which
are subsets of Zn characterised by Theorem 4.8.

Finite p.c. tomonoids are, in particular, included in our discussion. However, the direc-
tion cone associated with a finite p.c. tomonoid is in general not finite. We shall see in
the present section that this drawback can be overcome quite easily if the tomonoid in
question is nilpotent.

Definition 6.1. A p.c. tomonoid (L;6,+, 0) is called nilpotent if L possesses a great-
est element τ and there is a k > 1 such that any sum of at least k elements distinct from
0 equals τ.

We note that nilpotency is a notion applicable to monoids in general; see, e.g., [Gri]. A
monoid (L; +, 0) is called nilpotent if, for some k > 1, the sums of at least k non-zero
elements are all equal. We further note that, in our context, nilpotency is closely related
to the Archimedean property. In contrast to nilpotency, Archimedeanicity is an order-
theoretic notion; see, e.g., [Fuc]. A p.c. tomonoid (L;6,+, 0) is called Archimedean
if, for any a, b ∈ L\{0}, a 6 b implies that b 6 k a for some k > 1. Here, we shall
discuss finitely generated nilpotent p.c. tomonoids. Such tomonoids are finite, and a
finite p.c. tomonoid is obviously nilpotent if and only if it is Archimedean.

Nilpotent finite commutative monoids have been studied by several authors and several
ways of their description have been proposed. Our own procedure is inspired by P.A.
Grillet’s method, which is explained in [Gri, Chapter IX].

The starting point is the following. Congruences on Nn inducing a nilpotent monoid
have exactly one infinite class, namely the class of the top element, whereas all other
classes are finite. To describe a nilpotent tomonoid, it is therefore sufficient to consider
the finite congruence classes only, and this is what we will do here.
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A monomial preorder representing a nilpotent tomonoid will be called nilpotent as
well. Our topic are, accordingly, the nilpotent monomial preorders.

In what follows, a P-ideal will be a non-empty subset A of Nn such that a ∈ A and
b P a imply b ∈ A. Furthermore, A ⊆ Nn is said to be closed under translations by
some z ∈ Zn if a ∈ A and a+ z ∈ Nn always imply a+ z ∈ A.

Finally, given a monomial preorder 4 representing a finite tomonoid, we will, for sim-
plicity, denote the top congruence class by 〈τ〉4.

Definition 6.2. Let 4 be a nilpotent monomial preorder on Nn. Then we call

S4 = {a ∈ Nn : a ≺ a+ u for some u ∈ U(Nn)}

the support of 4.

In what follows, we denote the set-theoretic complement in Nn by the symbol {.

Lemma 6.3. Let 4 be a nilpotent monomial preorder on Nn. Then we have:

(i) Each finite 4-class is a subset of S4 consisting of pairwise P-incomparable
elements.

(ii) The union of the finite 4-classes is S4, and S4 is a finite P-ideal in Nn.

(iii) The top congruence class 〈τ〉4 is the only infinite class and equals {S4. More-
over, there are pairwise P-incomparable elements a1, . . . , ak ∈ Nn such that

〈τ〉4 =

k⋃
i=1

(ai + Nn).

Proof. Let a /∈ S4. Then a ≈ a + u for any u ∈ U(Nn) and consequently a ≈ a +
u ≈ a + 2u ≈ . . .. By the nilpotency, there is a k > 1 such that the sum of at least k
non-zero elements of the tomonoid represented by 4 is the top element. It follows that
a is contained in the top equivalence class 〈τ〉4.

Conversely, let a ∈ 〈τ〉4. Then 〈a〉4 = 〈a〉4 + 〈u〉4 = 〈a+ u〉4, that is, a ≈ a + u
for any u ∈ U(Nn). It follows that a /∈ S4.

We have shown that {S4 = 〈τ〉4. As a ∈ 〈τ〉4 and a P b implies b ∈ 〈τ〉4, it also
follows that S4 is a P-ideal. Moreover, as the sums of at least k elements of U(Nn) is
in 〈τ〉4, S4 is finite. In particular, S4 is the union of the finite 4-classes.

We have shown (ii) and the first parts of (i) and (iii). If a≈ a+ b for some a, b ∈ Nn,
we have a≈ a+ b≈ a+ 2b≈ . . . and hence a ∈ 〈τ〉4. The second part of (i) follows
as well.

Finally, 〈τ〉4 = {S4 contains finitely many P-minimal elements; the second part of
(iii) follows as well.

We summarise that a nilpotent monomial preorder has finitely many finite equivalence
classes, whose union is its support. Furthermore, it has exactly one infinite equivalence
class, which is the complement of its support.
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We note the last part of Lemma 6.3 can also be seen from a well-known result of
Eilenberg and Schützenberger on congruences on free commutative monoids [EiSc].
Namely, each ∼-class of a congruence ∼ on Nn is uniformly semilinear, that is, of the
form

k⋃
i=1

(ai +B?), (7)

where a1, . . . , ak ∈ Nn and B? is the submonoid generated by a a finite subset B of
Nn.

We next characterise the subsets of Nn that occur as the supports of nilpotent monomial
preorders.

Theorem 6.4. A set S ⊆ Nn is the support of a nilpotent monomial preorder if and
only if S is a finite P-ideal fulfilling the following condition:

(S) Let z ∈ Zn. Then S is closed under translations by z or S is closed under transla-
tions by −z.

Proof. Let S4 be the support of the nilpotent monomial preorder 4. By Lemma 6.3(ii),
S4 is a finite P-ideal. Moreover, let z ∈ Zn\{0̄}, and let S4 be not closed under
translations by z. Then there is an a ∈ S4 such that a + z ∈ {S4, and it follows
a ≺ a + z, and we conclude that z ∈ C4 and −z /∈ C4. If S4 is not closed under
translations by −z either, we conclude the opposite statement. (S) follows.

For the converse direction, assume that S is a finite P-ideal fulfilling (S). Let 4 be the
smallest preorder such that the following holds: (1) For a, b ∈ S, let a 4 b if {S is
closed under translation by b− a; (2) for a ∈ Nn and b ∈ {S, let a4 b.

For any z ∈ Zn, S is closed under translations by z if and only if {S is closed under
translations by −z. Hence (S) implies that 4 is a total preorder.

To see that 4 is compatible with the addition, let a, b, c ∈ Nn. Assume first that a4 b
holds according to (1), that is, a, b ∈ S and {S is closed under translation by b− a. If
then a+ c /∈ S, also b+ c /∈ S, because b+ c = a+ c+ (b− a); hence a+ c4 b+ c
by (2). If b + c /∈ S, again a + c 4 b + c by (2). If finally a + c, b + c ∈ S, we have
a + c 4 b + c by (1) because (b + c) − (a + c) = b − a. Assume second that a 4 b
holds according to (2), that is, b /∈ S. Then b + c /∈ S because S is a P-ideal; hence
a+ c4 b+ c by (2). We conclude that 4 is a compatible preorder.

Finally, S is not closed under translations by any a ∈ Nn\{0̄}, hence {S is not closed
under translations by −a for any a ∈ Nn\{0̄}. Moreover, 0̄ /∈ {S. We conclude that
a4 0̄ implies a = 0̄, and it follows that 4 is a positive preorder. The proof is complete
that 4 is a monomial preorder.

Finally, by construction, {S is a 4-class, and S is finite. We conclude that 4 represents
a nilpotent tomonoid, that is, 4 is nilpotent.

We now adapt the definition of a direction cone to the present context. Let us call

D(S) = {z ∈ Zn : z−, z+ ∈ S}
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the difference set of a P-ideal S ⊆ Nn.

Definition 6.5. Let 4 be a nilpotent monomial preorder on Nn. Then we call the pair
(S4, F4), where S4 ⊆ Nn is the support of 4 and

F4 = {z ∈ D(S4) : z− 4 z+},

the direction f-cone of 4.

Here, the “f” stands for “finite”.

Lemma 6.6. Let (S, F ) = (S4, F4) be the direction f-cone of a nilpotent monomial
preorder 4 on Nn. Then F is a subset of D(S) fulfilling the following conditions:

(Cf1) Let z ∈ D(S) ∩ Nn. Then z ∈ F and, if z 6= 0̄, −z /∈ F .

(Cf2) Let (x1, . . . , xk), k > 2, be an addable k-tuple of elements of F whose sum is
in D(S). Then x1 + . . .+ xk ∈ F .

(Cf3) Let z ∈ D(S). Then z ∈ F or −z ∈ F .

(Cf4) Let z ∈ F . Then S is closed under translations by −z.

Proof. (Cf1)–(Cf3) are proved similarly to the analogous statements of Lemma 4.4.
(Cf4) follows from the fact that S = {〈τ〉4.

Direction cones give rise to monomial preorders; analogously, we now define preorders
associated to direction f-cones.

Definition 6.7. Let S ⊆ Nn be a finite P-ideal fulfilling (S), and let F ⊆ D(S) fulfil
(Cf1)–(Cf4). Let 4S,F be the smallest preorder on Nn such that

(Of1) a4S,F b for any a, b ∈ S such that b− a ∈ F , and

(Of2) a4S,F b whenever b /∈ S.

Then we call 4S,F the monomial preorder induced by (S, F ).

Lemma 6.8. Let S ⊆ Nn be a finite P-ideal fulfilling (S), and let F ⊆ D(S) fulfil
(Cf1)–(Cf4). Then 4S,F is a nilpotent monomial preorder.

Proof. By construction, 4S,F is a preorder. By (Cf3), 4S,F is total. We proceed
analogously to the proof of Theorem 6.4 to see that 4S,F is compatible with the addi-
tion. Finally, it follows from (Cf1) that 4S,F is positive. That is, 4S,F is a monomial
preorder.

Finally, {S is cofinite and consists by (Of2) of pairwise 4S,F -equivalent elements.
Hence 4S,F is nilpotent.

We can now characterise the direction f-cones of nilpotent monomial preorders.
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Theorem 6.9. (S, F ) ⊆ Nn × Zn is the direction f-cone of a nilpotent monomial
preorder if and only if S is a finite P-ideal of Nn fulfilling (S) and F is a subset of
D(S) fulfilling (Cf1)–(Cf4). In this case, (S, F ) is the direction f-cone of 4S,F .

Proof. The “only if” part follows from Theorem 6.4 and Lemma 6.6.

To see the “if” part, let (S, F ) be such that the indicated conditions hold. By Lemma
6.8, 4S,F is then a nilpotent monomial order. We have to show that (S, F ) is its
direction f-cone.

By (Of2), a ≈S,F b for all a, b ∈ {S. Moreover, for a ∈ S and b ∈ {S, we have
a4S,F b; and by (Cf4), {S is closed under translation by each z ∈ F , so that a ≺S,F b.
Hence {S is a 4S,F -class and S is the union of the finite 4S,F -classes. By Lemma
6.3(ii), S is the support of 4S,F .

To see that F is the direction f-cone of 4S,F , we have to show that, for z ∈ D(S),
z− 4S,F z+ if and only if z ∈ F . By construction, z ∈ F implies z− 4S,F z+.
Conversely, assume z− 4S,F z

+. Then we argue like in the proof of Theorem 4.8 that
z ∈ F .

Analogously to the case of general monomial preorders, we next see that each nilpotent
monomial preorder contains a preorder induced by a direction f-cone.

Theorem 6.10. Let 4 be a nilpotent monomial preorder. Then 4 extends 4S4,F4
, the

monomial preorder induced by the direction f-cone of 4.

Moreover, the direction cone of 4S4,F4
is (S4, F4) again.

Proof. It is clear that a 4S4,F4
b implies a 4 b for any a, b ∈ Nn; thus 4S4,F4

⊆ 4
as claimed.

The second part holds by Theorem 6.9.

A Galois connection for the nilpotent case

Analogously to the general case, let us now formulate the correspondence between
nilpotent monomial preorders and direction f-cones.

For a given n > 1, let N be the set of all nilpotent monomial preorders on Nn and let
F be the set of all direction f-cones in Zn. We order N by set-theoretical inclusion.
For F , we make the following definition: for (S, F ), (S′, F ′) ∈ F , let

(S, F ) 6 (S′, F ′) if S ⊇ S′,
for any z ∈ F , S′ is closed under translations by −z,
and F ∩ D(S′) ⊆ F ′.

We readily check that 6 is indeed a partial order on F and that the mappings

N → F , 4 7→ (S4, F4),

F → N , (S, F ) 7→ 4S,F
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are order-preserving.

Theorems 6.9 and 6.10 indicate the result of a successive application of the two map-
pings: any 4 ∈ N extends 4S4,F4

; and any (S, F ) ∈ F equals (S4S,F
, F4S,F

). It
follows that there is a Galois connection between N and F . Namely, for any 4 ∈ N
and (S, F ) ∈ F ,

4S,F ⊆ 4 if and only if (S, F ) 6 (S4, F4).

We finally apply our results to nilpotent tomonoids.

Definition 6.11. (S, F ) ⊆ Nn × Zn such that S is a finite P-ideal fulfilling (S) and
F ⊆ D(S) fulfils (Cf1)–(Cf4). Then we call the tomonoid represented by 4S,F an
f-cone tomonoid.

Theorem 6.12. Each finite nilpotent p.c. tomonoid L is the quotient of an f-cone to-
monoid.

Proof. This holds by Theorem 6.10 and Lemma 2.8.

Example

To illustrate Theorem 6.12, let us review the tomonoid that we considered as an exam-
ple in Section 4. Let L be the 9-element tomonoid displayed in Figure 1. Note that L is
nilpotent. Let 4 be its representing monomial preorder; the direction f-cone (S4, F4)
is depicted in Figure 5.

Figure 5: The tomonoid shown in Figure 1 reviewed. The support is highlighted
in dark grey; its difference set consists of the support and the area highlighted
in light grey. The elements of the direction f-cone are shown as vectors based at
(0, 0).

Obviously, this representation of L is more “economical” than the one discussed above.
Again, we get L from 4S4,F4

by making (2, 1), (1, 2), and (4, 0) equivalent.
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7 Conclusion

Each finitely generated commutative monoid L is a quotient of Nn. Let L be endowed
with a total order 6 making it into a positive tomonoid. Pulling back 6 to Nn, we get a
preorder 4 on Nn, and this preorder alone determines both the congruence and the total
order. In fact, the compatible, positive total preorders, called monomial preorders in
this paper, correspond to finitely generated positive commutative tomonoids. In order
to describe the latter, we can describe the former. This observation was the starting
point of the present paper.

In order to describe a monomial preorder on Nn, we have defined its direction cone as
the collection of all z ∈ Zn such that a 4 b whenever b − a = z. Direction cones are
characterised by three properties reminding of the case of positive cones of partially
ordered groups. By means of a direction cone alone, we cannot describe all tomonoids
in question; but there is a Galois connection between the set of all monomial preorders
on Nn and the set of all direction cones in Zn. A corollary of this fact is that each
finitely generated positive commutative tomonoid is a quotient of a tomonoid arising
from a direction cone.

We have considered in this context formally integral tomonoids. Furthermore, we have
adapted our approach to the case of nilpotent tomonoids. The drawback that needs to
be overcome in this latter case is the fact that a direction cone is in general infinite
even if the tomonoid is finite. For this reason we have introduced a finitary variant
of direction cones and derived results in analogy to the more general case considered
before.

An advance of our work is possible in many respects. Here, we have considered the
finite case only under the assumption of nilpotency. General finite positive commu-
tative tomonoids are the result of finitely many Archimedean extensions of nilpotent
tomonoids and to achieve further insight this stepwise process should be considered.

Furthermore, we have considered one specific way of reducing an infinite direction
cone to a finite object. It might be worth to take into account other possibilities. For
instance, one could examine if finite subsets of Zn generate, in some sense, direction
cones. Another problem is to characterise direction cones that are minimal within the
set of all direction cones.

Finally, it would be desirable to relate the present approach to other approaches that
aim at a classification of tomonoids. In particular, congruences and extensions of to-
monoids, which have been considered from different perspectives, e.g., in [Vet] and in
[PeVe], might be studied in the present context.

Acknowledgement. I am indebted to the anonymous reviewer whose valuable com-
ments and suggestions helped very much to improve the paper.

24



References

[CMM] A. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic
characterizations of truth stressers for MTL and its extensions, Fuzzy Sets
Syst. 161 (2010), 369 - 389.

[CLS] D. Cox, J. Little, D. O’Shea, “Ideals, varieties, and algorithms. An intro-
duction to computational algebraic geometry and commutative algebra”,
3rd ed, Springer, New York 2007.

[EiSc] S. Eilenberg, M. P. Schützenberger, Rational sets in commutative
monoids, J. Algebra 13 (1969), 173 - 191.

[EKMMW] K. Evans, M. Konikoff, J. J. Madden, R. Mathis, G. Whipple, Totally
ordered commutative monoids, Semigroup Forum 62 (2001), 249 - 278.

[Fuc] L. Fuchs, “Partially ordered algebraic systems”, Pergamon Press, Oxford
1963.

[Gab] E. Ya. Gabovich, Fully ordered semigroups and their applications, Russ.
Math. Surv. 31 (1976), 147 - 216.

[Gri] P. A. Grillet, “Commutative semigroups”, Kluwer Acad. Publ., Dordrecht
2001.
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