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Abstract

Each t-norm can be identified with its Cayley tomonoid, which consists of pairwise

commuting order-preserving functions from the real unit interval to itself. Cayley

tomonoids provide an easily manageable, yet versatile tool for the construction

of t-norms. To give evidence to this claim, we review and reformulate several

construction methods that are known in the literature. We adopt, on the one hand,

a geometric point of view. Manipulations with t-norms have often been inspired by

their three-dimensional graphs; by means of Cayley tomonoids, the process gains

the character of putting together the pieces of a jigsaw puzzle. We consider, on the

other hand, construction methods in their algebraic context. We show that those

constructions that correspond to certain tomonoid extensions can be described on

the basis of Cayley tomonoids in a particularly transparent way.

1 Introduction

The significance of left-continuous triangular norms, or l.-c. t-norms for short, lies

in the fact that these operations are the natural choice to interpret the conjunction in

fuzzy logic [Haj1]. Indeed, fuzzy logic deals with graded properties, and the canonical

set of truth degrees is the real unit interval. Furthermore, a conjunction is commonly

supposed to be associative, commutative, neutral w.r.t. a true statement, and in both

arguments order-preserving. Accordingly, the conjunction in fuzzy logic is typically

interpreted by a t-norm. In addition, the implication connective is interpreted by the

residuum corresponding to the conjunction. To ensure the existence of a residuum, the

t-norm must be left-continuous.

The family of left-continuous t-norms is complex. A comprehensive survey of the

large diversity of different t-norms is the monograph [KMP]; overview articles are, e.g.,
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[Mes1] and [Fod2]. For the lack of a systematic approach, research on t-norms has over

many years not followed specific principles, but produced rather heterogeneous results.

Increasingly complicated t-norms were found, and various methods to construct new

t-norms from given ones were established. Results were often inspired by geometrical

considerations; in fact, a t-norm can be identified with its graph, which is an object in

three-dimensional space.

In this paper, it is our first purpose to advertise a representation of t-norms that is an

eligible alternative to the common way of illustrating this type of binary operation. As

a t-norm is associative and has the neutral element 1, it makes the real unit interval

into a monoid. In semigroup theory, it is a well-known fact that any monoid can be

represented by a monoid under composition of mappings; see, e.g., [ClPr]. This is

Cayley’s representation theorem, which was originally formulated for groups but can

be generalised to monoids without problems. The idea is simple. With each element we

associate the mapping that acts on the monoid by multiplication from the left (or from

the right); such a mapping is called a translation. Moreover, the monoidal operation is

the function composition and the monoidal identity is the identity mapping.

In the context of t-norms, the concept of a translation is actually not unknown; a trans-

lation is nothing else but a “vertical cut”, because it arises geometrically from cutting

the three-dimensional graph along a vertical plane. What just might be uncommon is

the idea to view vertical cuts as elements of a monoid.

For a t-norm, the monoid of translations is called its Cayley tomonoid. A Cayley

tomonoid consists of order-preserving mappings from the real unit interval to itself,

the largest of which is the identity and smallest of which is the constant 0 mapping. It

comes thus in a triangular shape. To get a first impression, we show in Figure 1 the

Cayley tomonoids of the standard continuous t-norms.

Figure 1: The Cayley tomonoids of the Łukasiewicz, product, and Gödel t-norm, respectively.

To depict a Cayley tomonoid we get by with two dimensions. In fact, it arises from the

three-dimensional graph of the t-norm by a vertical projection. In this respect, there is

another approach complementary to ours. Rather than looking at the graph “from the

side” and working with translations, Maes and De Baets have proposed to look at the

graph “from above” and to work with the so-called contour lines [MaBa]. The contour

lines arise from the residual implication of a t-norm, rather than the t-norm itself, by
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fixing one argument.

When reducing the dimension of representation to two, one might wonder how the

crucial property of t-norms, their associativity, is accounted for. In fact, understanding

associativity as a symmetry property requires to rise the dimension and to work in four-

dimensional space [Jen3]. In the present context, the property accounting for both the

associativity and the commutativity of the represented operation is the commutativity

of the translations: to apply a translation to the result of another one, or to proceed the

other way round, does not make a difference.

The second purpose of this paper involves a look back to the development of the theory

of t-norms. Our intention is to present a number of known construction methods for

t-norms in a simple and unified way. Namely, we employ Cayley tomonoids in order

to point out the essential features from a geometric viewpoint. But rather than working

in three-dimensional space, we work in a triangular plane; constructing t-norm is then,

intuitively, like assembling a jigsaw puzzle from triangular and rectangular pieces. We

treat in this way ordinal sums, the rotation [Jen1], the rotation-annihilation [Jen2], the

triple rotation [MaBa], and the H-transform [Mes2].

determined

according to

construction

type

monoids of mappings,

arising from t-norms

Figure 2: Idea underlying the constructions discussed in this paper. The basic constituents are

monoids under composition of mappings, that is, Cayley tomonoids of t-norms or their modifica-

tions (highlighted in grey). These sets of mappings are placed into the new Cayley tomonoid as

shown. Moreover, the mappings can be joined or separately extended; accordingly, the remaining

rectangular sections are determined.

In each case, we follow the same “recipe”; see Figure 2. We first place sets of map-

pings, triangular in shape, along the identity line. Inside the upper-most triangle, there

is a Cayley tomonoid, possibly restricted to a left-open interval. Inside each of the re-

maining triangles, there is either a Cayley tomonoid as well or its modification, like for

instance a reflected Cayley tomonoid. The new translations are in this way specified in

parts. We have to decide if the parts within different triangular sections belong to dif-

ferent translations of the new t-norm or if they are to be joined. Based on this decision,

there may be exactly one possibility to fill the rectangular sections and to complete the

creation of the new Cayley tomonoid; and if not, there still may be a canonical way to

do so.
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The third and last purpose of this paper is a repeated review of common t-norm con-

struction methods. This time, however, we take up the considerable progress of recent

times in the theory of residuated lattices [GJKO]. For a formulation of t-norm con-

structions in an algebraic style, see, e.g., [NEG2]. Here, our concern is to draw the

bridge from the afore-mentioned representation by Cayley tomonoids to the algebraic

context.

On the basis of the insights that we can gain by means of common algebraic tech-

niques, the structure of left-continuous t-norms should actually no longer be viewed as

mysterious. The t-norm monoids in question are residuated and can thus be viewed as

MTL-algebras. It is well-known that the quotients of MTL-algebras correspond to their

filters [BlTs, NEG1]. Tomonoids possess more congruences; nonetheless the collection

of those quotients that are induced by filters provides a suitable framework to explore

their structure. As we deal with a total order, this collection is naturally endowed with

a total order as well.

We are thus suggested to understand a t-norm monoid as the final element of a chain

of increasingly complex tomonoids. The sole knowledge about the chain of quotients

is certainly not yet very satisfactory. But facts from pure algebra can sometimes be

illuminated on the basis of a representation that makes their meaning intuitively acces-

sible. Needless to say which tool we consider as well suited to get an idea of how the

formation of more and more complex tomonoids proceeds. In fact, given the Cayley

tomonoid of any negative, commutative tomonoid, it is straightforward to detect all

its quotients induced by filters. But the crucial point is the converse direction. The

possibility to describe a tomonoid via its Cayley tomonoid turns out to be particularly

valuable when we want to determine those tomonoids whose quotient by a filter is a

given one. We speak about extensions then. In specific cases, it is possible to describe

extensions in a systematic way, and this is conveniently done by specifying the Cayley

tomonoid of the new tomonoid in a piecewise manner.

We have developed this approach in our previous paper [Vet3]. For the purpose of

the present paper, it is enough to recall the indicated framework and to compile the

essential facts. On this basis, we review several t-norm construction methods that are

accessible by algebraic methods and identify them as certain extensions.

The paper is structured as follows. We define in Section 2 Cayley tomonoids of t-

norms and we introduce into the “two-dimensional” style of t-norm representation. In

the intermediate Section 3, we introduce the reflection of Cayley tomonoids. We pro-

ceed in Section 4 by establishing basic ways of composing several, possibly modified,

Cayley tomonoids to construct new, more complex t-norms. In Section 5, we turn to

algebra: we review the algebraic background of our considerations and explain a main

challenge of t-norm theory – the extension of tomonoids. In Section 6, we see that sev-

eral construction methods are tomonoid extensions of a particularly simple type. We

summarise the main features of our approach once again in Section 7.
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2 Triangular norms and Cayley tomonoids

We are concerned in this paper with binary operations on the real unit interval specified

as follows.

Definition 2.1. Let [0, 1] be the real unit interval endowed with its natural order. An

operation ⊙ : [0, 1]2 → [0, 1] is called a triangular norm, or t-norm for short, if, for

any a, b, c ∈ [0, 1], (i) (a ⊙ b) ⊙ c = a ⊙ (b ⊙ c), (ii) a ⊙ b = b ⊙ a, (iii) a ⊙ 1 = a,

and (iv) a ≤ b implies a ⊙ c ≤ b ⊙ c. The structure ([0, 1];≤,⊙, 1) is then called the

t-norm monoid based on ⊙. If, in addition, limxրb a ⊙ x = a ⊙ b for each a ∈ [0, 1]
and b ∈ (0, 1], we call ⊙ left-continuous, abbreviated l.-c.

The defining properties of t-norms are chosen to fit to the idea of a conjunction in many-

valued logic. Only the requirement of left continuity might look somewhat arbitrary.

Its significance lies in the fact that it ensures the existence of a residual implication.

We will occasionally use the implication → associated with a l.-c. t-norm ⊙; we have

a→ b = max {c ∈ [0, 1] : c⊙ a ≤ b}, a, b ∈ [0, 1]. We will also sometimes need the

residual negation ¬, defined by ¬a = a→ 0, a ∈ [0, 1].

T-norm monoids belong to the following class of structures, whose definition collects

precisely the properties of t-norms.

Definition 2.2. An algebra (L;⊙, 1) is a monoid if, for all a, b, c ∈ L, (i) (a⊙ b)⊙ c =
a ⊙ (b ⊙ c) and (ii) a ⊙ 1 = a. A total order ≤ on a monoid L is called translation-

invariant if, for all a, b, c ∈ L, a ≤ b implies a ⊙ c ≤ b ⊙ c and c ⊙ a ≤ c ⊙ b. A

structure (L;≤,⊙, 1) is a totally ordered monoid, or tomonoid for short, if (L;⊙, 1) is

a monoid and ≤ is a translation-invariant total order.

Moreover, a tomonoid L is commutative if a⊙ b = b ⊙ a for all a, b ∈ L. L is called

negative if a ≤ 1 for all a ∈ L. L is called quantic if (i) the suprema of all non-empty

subsets exist and (ii) for any elements a, bι, ι ∈ I , of L we have

a⊙
∨

ι bι =
∨

ι(a⊙ bι) and (
∨

ι bι)⊙ a =
∨

ι(bι ⊙ a).

It is easily checked that a binary operation ⊙ on [0, 1] is a t-norm if and only if ([0, 1];
≤,⊙, 1) is a negative, commutative tomonoid. Moreover, a t-norm is left-continuous

if and only if this tomonoid is quantic.

The abbreviation “tomonoid” is taken from [EKMMW]. Moreover, we have chosen the

notion “quantic” because of its close connection to the defining properties of quantales

[Ros].

We will adopt an indirect viewpoint on t-norms. Rather than working with t-norm

monoids directly, we will work with monoids of mappings.

By a real interval, we mean an interval of the form (a, b), (a, b], [a, b), or [a, b] for

some a, b ∈ R such that a < b. Let R be a real interval; then we always assume R to

be endowed with its natural order. Furthermore, the notion “left-continuous” applies to

mappings on real intervals in the common way. That is, λ : R → R is left-continuous

if, for each r ∈ R that is not the smallest element of R, we have limxրr λ(x) = λ(r).
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Definition 2.3. Let (R;≤) be a real interval, and let Φ be a set of order-preserving

mappings from R to R. We denote by ≤ the pointwise order on Φ, by ◦ the function

composition, and by idR the identity mapping on R. Assume that (i) ≤ is a total

order on Φ, (ii) Φ is closed under ◦, and (iii) idR ∈ Φ. Then we call (Φ;≤, ◦, idR) a

composition tomonoid on R.

It is straightforward to check that a composition tomonoid is in fact a tomonoid.

Let us introduce the following properties of a composition tomonoid (Φ;≤, ◦, idR) on

an interval R:

(C1) ◦ is commutative.

(C2) idR is the top element.

(C3) Every λ ∈ Φ is left-continuous.

(C4) Φ is closed under pointwise calculated suprema of non-empty subsets.

(C5) R has a top element 1, and for each a ∈ R there is a unique λ ∈ Φ such that

λ(1) = a.

The following proposition is an adapted version of Cayley’s representation theorem for

monoids [ClPr].

Proposition 2.4. Let ⊙ be a t-norm. For each a ∈ [0, 1], we define

λa : [0, 1] → [0, 1], x 7→ x⊙ a, (1)

and let Λ = {λa : a ∈ [0, 1]}. Then (Λ;≤, ◦, id[0,1]) is a composition tomonoid on

[0, 1] fulfilling the properties (C1), (C2), and (C5). Moreover,

π : [0, 1] → Λ, a 7→ λa (2)

is an isomorphism between ([0, 1];≤,⊙, 1) and (Λ;≤, ◦, id[0,1]).

If ⊙ is left-continuous, Λ fulfils also (C3) and (C4).

Proof. The proof does not involve difficulties; cf. [Vet1, Vet3].

Definition 2.5. Let ⊙ be a t-norm. For any a ∈ [0, 1], the mapping λa defined by (1)

is called the translation by a. Moreover, the composition tomonoid (Λ;≤, ◦, id[0,1]) as

specified in Proposition 2.4 is called the Cayley tomonoid of ⊙.

Note that, to keep notation simple, we do not include the reference to the t-norm ⊙ into

the symbols λa, Λ. The t-norm to which we refer will always be clear from the context.

By Proposition 2.4, each t-norm ⊙ can be identified with its Cayley tomonoid Λ. The

latter consists of order-preserving functions, which are left-continuous if ⊙ is left-

continuous, and which are continuous if ⊙ is continuous. Any two of them are com-

parable. That is, endowed with the pointwise order, Λ is totally ordered, in fact order
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isomorphic to the real unit interval. The bottom element ofΛ is the constant 0 mapping,

which we denote by 0̄[0,1]. The top element of Λ is id[0,1]. Λ is complete, but infima

and suprema are in general not calculated pointwise. However, if ⊙ is left-continuous,

the pointwise calculated supremum of an arbitrary set of mappings in Λ is again in Λ
and consequently its supremum. If ⊙ is even continuous, the same applies to infima.

Finally, the multiplication in [0, 1] by ⊙ corresponds to the function composition in Λ.

That is, for a, b, c ∈ [0, 1] such that c = a⊙ b, we have λc = λa ◦ λb.

The Cayley tomonoid is a set of functions from [0, 1] to [0, 1] that is unique for each

t-norm. It is natural to ask if this set is characterised by the properties indicated in

Proposition 2.4. This is indeed the case. There are even redundancies: (C5) implies

(C2); moreover, (C1), (C3), and (C5) imply (C4).

Proposition 2.6. Let Λ be a composition tomonoid on [0, 1] such that (C1) and (C5)

hold. Then there is a unique t-norm ⊙, defined by

a⊙ b = λ(b) where λ ∈ Λ is such that λ(1) = a,

such that (Λ;≤, ◦, id[0,1]) is the Cayley tomonoid of ⊙.

If L fulfils also (C3), ⊙ is left-continuous.

We summarise that each (left-continuous, continuous) t-norm can be identified with

a composition tomonoid on [0, 1] consisting of pairwise commuting (left-continuous,

continuous) mappings from [0, 1] to [0, 1] such that for any a ∈ [0, 1] exactly one

element of Λ maps 1 to a.

We provide a couple of examples. We have already mentioned the standard continuous

t-norms; let us make up for their definition. In the sequel, ∧ and ∨ will denote the

minimum and maximum operation, respectively, if applied to real numbers. For a, b ∈
[0, 1], let

a⊙1 b = (a+ b− 1) ∨ 0,

a⊙2 b = a · b,

a⊙3 b = a ∧ b;

this is the Łukasiewicz t-norm, the product t-norm, and the Gödel t-norm, respec-

tively. Their Cayley tomonoids are shown in Figure 1. The plots show in each case

the translations by 0, 1
5 , 2

5 , 3
5 , 4

5 , and 1. We note that the plots in this paper have only

schematic character.

As our first example of a non-continuous t-norm, let us visualise the drastic t-norm:

a⊙4 b =

{

a ∧ b if a = 1 or b = 1,

0 otherwise.

The Cayley tomonoid of the t-norm ⊙4 consists, apart from id[0,1], of functions map-

ping the whole interval [0, 1) to 0; cf. Figure 3. Apparently, ⊙4 is not left-continuous.
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Figure 3: The drastic t-norm ⊙4

An example of a non-continuous, but left-continuous t-norm is the nilpotent minimum

t-norm; cf. Figure 4 (left). This t-norm was defined in [Fod1], and a class of related

t-norms is studied in [CEGM]. Let

a⊙5 b =

{

a ∧ b if a+ b > 1,

0 otherwise.
(3)

Figure 4: Left: The nilpotent minimum t-norm ⊙5. Right: The possibly non-measurable t-norm

⊙6.

The t-norm ⊙5 is left-continuous. For the last example of our introductory section,

we modify ⊙5 and demonstrate that the Cayley tomonoid of a t-norm that is neither

left- nor right-continuous and possibly not even Borel measurable can still be a quite

intuitive representation. A non-measurable t-norm was first proposed in [Kle]; the

following example is taken from [KMP, Ex. 3.75].

8



Let C ⊆ (0, 1
2 ) and let

a⊙6 b =

{

0 if a+ b < 1, or a+ b = 1 and a ∧ b ∈ C

a ∧ b otherwise.

Then⊙6 is Borel measurable if and only if C is Borel measurable. Moreover, to specify

the Cayley tomonoid, we need to distinguish five different cases; cf. Figure 4 (right).

To determine a translation λa, we have to distinguish whether (i) a < 1
2 and a ∈ C, or

(ii) a < 1
2 and a /∈ C, or (iii) a = 1

2 , (iv) a > 1
2 and 1 − a ∈ C, or (v) a > 1

2 and

1− a /∈ C.

For what follows, we underline that our analysis aims at a characterisation of t-norms

up to isomorphism. Here, two t-norms ⊙ and ⊙′ are called isomorphic if the t-norm

monoids ([0, 1];≤,⊙, 1) and ([0, 1];≤,⊙′, 1) are isomorphic. This in turn means that

there is an order automorphism ι : [0, 1] → [0, 1] such that a⊙′ b = ι(ι−1(a)⊙ ι−1(b))
for a, b ∈ [0, 1].

3 Reflection of Cayley tomonoids

We have seen that each t-norm corresponds to its Cayley tomonoid, which is a compo-

sition tomonoid acting on the real unit interval [0, 1]. In its graphical representation, a

Cayley tomonoid has a triangular shape, containing the identity line as its top element

and the zero line as its bottom element.

As a preparation for what follows, we discuss in this subsection a specific way in which

we can modify the Cayley tomonoid of a t-norm: its reflection along the line x 7→ 1−x.

We will denote the standard negation on [0, 1] by ∼, that is, we define ∼ : [0, 1] →
[0, 1], x 7→ 1− x.

Definition 3.1. Let λ : [0, 1] → [0, 1] be order-preserving, left-continuous, and below

id[0,1]. Then we call

λ⋆ : [0, 1] → [0, 1], a 7→ min {x : λ(∼ x) ≤ ∼ a}

the reflection of λ. Moreover, for a set Λ of such functions, we call Λ⋆ = {λ⋆ : λ ∈ Λ}
the reflection of Λ.

We note that Definition 3.1 is conceptually related to the notion of a pseudoinverse; cf.

[KMP, Sec. 3.1].

We list some properties of the reflection operation.

Lemma 3.2. Let κ, λ : [0, 1] → [0, 1] be order-preserving, left-continuous, and below

id[0,1]. Then we have:

(i) For any a, b ∈ [0, 1],

λ⋆(a) ≤ b if and only if λ(∼ b) ≤ ∼ a. (4)
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(ii) Also λ⋆ is order-preserving, left-continuous, and below id[0,1].

(iii) (λ⋆)⋆ = λ.

(iv) κ⋆ ◦ λ⋆ = (λ ◦ κ)⋆.

Furthermore, let λι : [0, 1] → [0, 1], ι ∈ I , be order-preserving, left-continuous, below

id[0,1], and pairwise comparable. Then we have:

(v) (
∨

ι λι)
⋆ =

∨

ι λ
⋆
ι , where the suprema are calculated pointwise.

Proof. (i) is obvious.

(ii) It is clear from the definition of λ that λ⋆ is order-preserving. From (4) we con-

clude that λ⋆ preserves arbitrary suprema; hence λ⋆ is left-continuous. (4) also implies

λ⋆(a) ≤ a for any a, that is, λ⋆ is below id[0,1].

(iii)-(v) follows again from (4).

To see that the reflection operation can indeed be interpreted as a reflection, let us iden-

tify left-continuous functions with their graphs in which “jumps” are filled by vertical

lines; cf. Figure 5.

Definition 3.3. Let λ : [0, 1] → [0, 1] be order-preserving, left-continuous, and below

id[0,1]. Then we call

G(λ) = {〈a, b〉 : λ(a) ≤ b, and b ≤ λ(a′) for each a′ > a}

the connected graph of λ.

Figure 5: The reflection operation.

Lemma 3.4. Let λ : [0, 1] → [0, 1] be order-preserving, left-continuous, and below

id[0,1]. Then, for each a, b ∈ [0, 1], 〈a, b〉 ∈ G(λ) if and only if 〈∼ b,∼ a〉 ∈ G(λ⋆).

Proof. Let 〈a, b〉 ∈ G(λ). Then λ(a) ≤ b, and x > a implies b ≤ λ(x). The former

condition implies λ⋆(∼ b) ≤ ∼ a by (4).

10



The latter condition means that λ(x) < b implies x ≤ a, that is, λ(∼ x) < b implies

∼ a ≤ x. Hence for all y < b, λ(∼ x) ≤ y implies ∼ a ≤ x, and we conclude

∼ a ≤ min {x : λ(∼ x) ≤ y} = λ⋆(∼ y) for all y < b. Thus ∼ a ≤ λ⋆(y) for all

y > ∼ b. The proof is complete that 〈∼ b,∼ a〉 ∈ G(λ⋆).

The converse direction follows from Lemma 3.2(iii).

Let Λ = {λt : t ∈ [0, 1]} be the Cayley tomonoid associated with a l.-c. t-norm. The

reflection of Λ consists then of the functions given by

λ⋆
t (a) = ∼ (t→∼ a) (5)

for each t, a ∈ [0, 1]. We next see that Λ⋆ = {λ⋆
t : t ∈ [0, 1]} is a composition

tomonoid, and even a Cayley tomonoid provided that the residual negation is involutive.

Theorem 3.5. Let Λ be the Cayley tomonoid of a l.-c. t-norm⊙. Then (Λ⋆;≤, ◦, id[0,1])
is a composition tomonoid fulfilling (C1)–(C4). If the residual negation ¬ of ⊙ is

involutive, Λ⋆ fulfils also (C5) and Λ⋆ is the Cayley tomonoid of a l.-c. t-norm as well.

Moreover,

Λ → Λ⋆, λ 7→ λ⋆

is an isomorphism between (Λ;≤, ◦, id[0,1]) and (Λ⋆;≤, ◦, id[0,1]).

Proof. By Lemma 3.2, Λ⋆ is a composition tomonoid fulfilling (C1)–(C4) and λ 7→ λ⋆

is an isomorphism.

For any a ∈ [0, 1], we have λ⋆
a(1) = min {x : λa(∼ x) = 0} = ∼max {x : λa(x) = 0}

= ∼¬a. Let ¬ be involutive. Then ∼◦¬ is an order automorphism, and it follows that

(C5) holds in this case as well.

Our last proposition is devoted to the case that the reflection operation is the identity.

Proposition 3.6. Let Λ be a composition tomonoid on [0, 1] such that (C2), (C3), and

(C5) hold and λ⋆ = λ for each λ ∈ Λ. Then (C1) holds as well, and consequently, Λ
is the Cayley tomonoid of a l.-c. t-norm.

Proof. The function composition is commutative by Lemma 3.2(iv).

4 Construction of t-norms out of Cayley tomonoids

In this section, we explore the possibilities of composing new Cayley tomonoids from

given ones. Figure 2 illustrates what we have in mind; the general scheme can be

described as follows. We partition the real unit interval into subintervals, and with

each subinterval, we associate a composition tomonoid acting on it. Then either (A)

independently for each subinterval, we extend the mappings on it to the whole unit

interval; or (B) each new translation arises from selecting one mapping per subinterval

and joining them. We will come along a number of construction methods that are

well-known in the literature.
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Composition tomonoids acting in series

Our first construction method follows option (A). After partitioning [0, 1] and associat-

ing a composition tomonoid to each subinterval, we extend each mapping to the whole

unit interval as follows: the values below the subinterval are mapped to themselves and

the value above it are mapped to the same element as its right border.

The result is illustrated in Figure 6; this is the best-known construction method, the

ordinal sum. For the ordinal sum of partially ordered semigroups; see [Fuc]. For the

present context, see, e.g., [KMP, Thm. 3.43].

Figure 6: The ordinal sum construction. The figure shows the ordinal sum of a product, a

Łukasiewicz, a Gödel, and again a product t-norm.

Here as well as in the sequel, we need to remap composition tomonoids from [0, 1] to

some other real interval [a, b], a < b. We introduce the following abbreviation. For

a, b ∈ [0, 1] such that a < b, let τ : [a, b] → [0, 1], x 7→ x−a
b−a

. For any function

λ : [0, 1] → [0, 1], we then put λ[a,b] = τ−1 ◦ λ ◦ τ . For any set Λ of functions from

[0, 1] to [0, 1], we write Λ[a,b] = {λ[a,b] : λ ∈ Λ}. We use an analogous notation also

for the case that the domains are left-open, right-closed intervals.

Theorem 4.1. Let [uι, vι), ι ∈ I , be pairwise disjoint subintervals of [0, 1], and for

each ι, let Λι be the Cayley tomonoid of a l.-c. t-norm. For t ∈ [0, 1] such that t ∈
[uι, vι) for some ι ∈ I , let

λt(x) =











x if x < uι,

λ[uι,vι](x) if x ∈ [uι, vι],

t if x > vι;

where λ ∈ Λι is such that t = λ[uι,vι](vι);

(6)

and for t ∈ [0, 1] such that t /∈ [uι, vι) for all ι ∈ I , let

λt(x) =

{

x if x ≤ t,

t if x > t.
(7)
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Then {λt : t ∈ [0, 1]} is the Cayley tomonoid of a l.-c. t-norm as well.

Proof. The properties (C1)–(C5) are immediate.

Composition tomonoids acting on [0, 1
2
] and (1

2
, 1] in parallel

All following constructions take option (B): we let the translations of the new Cayley

tomonoid act on subintervals in parallel. There will be only two subintervals, that is,

we partition [0, 1] into a pair of subintervals whose common boundary will be 1
2 .

We then must decide if 1
2 belongs to the lower or upper interval. We consider first the

case that our partition consists of the subsets [0, 12 ] and (12 , 1].

For two composition tomonoids (Φ;≤, ◦, idR) and (Ψ;≤, ◦, idS), a homomorphism

h : Φ → Ψ is a mapping such that, for any κ, λ ∈ Φ, κ ≤ λ implies h(κ) ≤ h(λ),
furthermore h(κ ◦ λ) = h(κ) ◦ h(λ), and h(idR) = idS . A homomorphism is called

sup-preserving if it preserves arbitrary non-empty suprema.

Proposition 4.2. Let Φ be a composition tomonoid on (12 , 1] such that (C1)–(C5) hold;

let Ψ be a composition tomonoid on [0, 12 ] such that (C1)–(C4) hold; and assume that

there is a sup-preserving homomorphism h : Φ → Ψ. For t ∈ (12 , 1], let

λt(x) =

{

h(ϕ)(x) if x ≤ 1
2 ,

ϕ(x) if x > 1
2 ,

where ϕ ∈ Φ is such that ϕ(1) = t; (8)

and for t ∈ [0, 1
2 ], let

λt(x) =

{

0 if x ≤ 1
2 ,

h(ϕ)(t) if x > 1
2 ,

where ϕ ∈ Φ is such that ϕ(1) = x. (9)

Then {λt : t ∈ [0, 1]} is the Cayley tomonoid of a l.-c. t-norm.

Proof. We have to prove that Λ = {λt : t ∈ [0, 1]} is a composition tomonoid fulfilling

(C1), (C3), and (C5).

We first show that Λ consists of order-preserving and left-continuous mappings. Let

t ∈ (12 , 1]. Let ϕt ∈ Φ such that ϕt(1) = t. By (8), λt|[0, 1
2
] = h(ϕt) and λt|( 1

2
,1] = ϕt;

thus λt is order-preserving and left-continuous. Let now t ∈ [0, 1
2 ]. By (9), λt(x) = 0

for x ≤ 1
2 , and λt(x) = h(ϕx)(t) for x > 1

2 . Let xι > 1
2 , ι ∈ I; then λt(

∨

ι xι) =
h(ϕ∨

ι
xι
)(t) = h(

∨

ι ϕxι
)(t) = (

∨

ι h(ϕxι
))(t) =

∨

ι h(ϕxι
)(t) =

∨

ι λt(xι). Here,

we have used the fact that Φ fulfils (C5), h preserves arbitrary suprema, and Ψ fulfils

(C4). We have proved that λt is order-preserving and left-continuous for all t.

It is easily checked that λs(x) ≤ λt(x) for any s, t, x ∈ [0, 1] such that s ≤ t. More-

over, λ1 = id[0,1]. Thus Λ is totally ordered and id[0,1] is the top element.

For t ∈ (12 , 1], we have λt(1) = ϕt(1) = t; for t ∈ [0, 12 ], we have λt(1) = h(ϕ1)(t) =
h(id( 1

2
,1])(t) = id[0, 1

2
](t) = t as well. We conclude that Λ fulfils condition (C5).
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We next prove thatΛ is closed under ◦ and that ◦ is commutative. It will then follow that

Λ is a composition tomonoid fulfilling (C1), (C3), and (C5), hence a Cayley tomonoid.

Let s, t ∈ [0, 1]. If s, t ≤ 1
2 , we have λs ◦ λt = λt ◦ λs = 0̄[0,1] = λ0.

Let s, t > 1
2 . Let u = ϕs(t). Then ϕu(1) = u = (ϕs ◦ ϕt)(1), hence ϕu = ϕs ◦ ϕt

because Φ fulfils (C5). For x ∈ (12 , 1], we have (λs ◦ λt)(x) = (ϕs ◦ ϕt)(x) =
ϕu(x) = λu(x); and for x ∈ [0, 12 ], we have (λs ◦ λt)(x) = (h(ϕs) ◦ h(ϕt))(x) =
h(ϕs ◦ ϕt)(x) = h(ϕu)(x) = λu(x). Thus λs ◦ λt = λu ∈ Λ, and we similarly argue

to see that λt ◦ λs = λu as well.

Finally, let s ≤ 1
2 and t > 1

2 . For x ∈ (12 , 1], we have (λs ◦ λt)(x) = λs(ϕt(x)) =
λϕt(x)(s) = (λt ◦ λx)(s) = λt(λs(x)) = (λt ◦ λs)(x). Moreover, let u = λt(s); then

λu(x) = λx(u) = (λx ◦λt)(s) = λt(λx(s)) = (λt ◦λs)(x). Thus λs ◦λt = λt ◦λs =
λu ∈ Λ.

In order to apply Proposition 4.2 to the construction of t-norms, we are required to

provide a composition tomonoid on (12 , 1] fulfilling (C1)–(C5). Recall that a t-norm ⊙
is said to be without zero divisors if a⊙ b = 0 implies a = 0 or b = 0. In this case, all

translations distinct from 0̄[0,1] map (0, 1] to itself. We write in this case

Λ\0 = {λ|(0,1] : λ ∈ Λ\{0̄[0,1]}}.

We moreover need a second function algebra and a homomorphism from Λ\0 to it.

Two possibilities are immediate: we use Λ again; or we use Λ⋆, the reflected Cayley

tomonoid. The next two theorems make use of these possibilities.

Theorem 4.3. Let Λ be the Cayley tomonoid of a left-continuous t-norm without zero

divisors. Let Φ = Λ
( 1

2
,1]

\0 ; let Ψ = Λ[0, 1
2
]; and let h : Φ → Ψ such that, for each

λ ∈ Λ\{0̄[0,1]}, λ|(0,1]
( 1

2
,1]

is mapped to λ[0, 1
2
]. Then there is a l.-c. t-norm whose

translations are given by (8) and (9).

Proof. Φ, Ψ, and h : Φ → Ψ fulfil the conditions of Proposition 4.2.

In the sequel, we will shorten the definitions of example t-norms using its commuta-

tivity. That is, whenever definitions are formally incomplete, they are completable by

commutativity.

The following example of Theorem 4.3 is based on the product t-norm. The t-norm is

shown in Figure 7 (left):

a⊙7 b =











2ab − a− b+ 1 if a, b > 1

2
,

a(2b − 1) if a ≤ 1

2
, and b > 1

2
,

0 if a, b ≤ 1

2
.

⊙7 differs from a t-norm proposed by Hájek [Haj2] in that it is composed from only

two rather than countably infinitely many constituents; cf. Section 6 below.

The topic of the second theorem is S. Jenei’s rotation of a t-norm without zero divisors

[Jen1].
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Figure 7: Two sets of functions (highlighted in grey) act on separate intervals in parallel. Left:

⊙7, a modified t-norm of Hájek. Right: The rotated product t-norm ⊙8.

For a unary or binary operation � on the real unit interval, we will write �
♯ for �

scaled to the interval [ 12 , 1]. For instance, given ⊙ : [0, 1]2 → [0, 1], we define a⊙♯ b =
τ(τ−1(a)⊙ τ−1(b)) for a, b ∈ [ 12 , 1], where τ : [ 12 , 1] → [0, 1], x 7→ 2x− 1.

Theorem 4.4. Let Λ be the Cayley tomonoid of a left-continuous t-norm without zero

divisors. Let Φ = Λ
( 1

2
,1]

\0 ; let Ψ = Λ⋆[0, 12 ]; and let h : Φ → Ψ be such that, for each

λ ∈ Λ\{0̄[0,1]}, λ|(0,1]
( 1

2
,1]

is mapped to λ⋆[0, 12 ]. Then there is a l.-c. t-norm ⊙r whose

translations are given by (8) and (9).

⊙r is moreover given according to the following formula:

a⊙r b =











a⊙♯ b if a, b > 1
2 ,

∼ (b→♯ ∼ a) if a ≤ 1
2 and b > 1

2 ,

0 if a, b ≤ 1
2 .

(10)

Proof. By assumption, Φ fulfils (C1)-(C5). By Theorem 3.5, Ψ is a composition tomo-

noid fulfilling (C1)–(C4) and h is a sup-preserving homomorphism. Thus Proposition

4.2 applies.

(10) is clear from (5).

Applying Theorem 4.4 to the product t-norm, we get the Cayley tomonoid depicted in

Figure 7 (right):

a⊙8 b =











2ab − a − b+ 1 if a, b > 1

2
,

a+b−1

2b−1
if a ≤ 1

2
, b > 1

2
, and a+ b > 1,

0 if a+ b ≤ 1.
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Composition tomonoids acting on [0, 1
2
) and [1

2
, 1] in parallel

We next consider the possibility to include the marginal point 1
2 of our two intervals

into the upper one; our partition will thus consist of [0, 12 ) and [ 12 , 1]. It is immediate

that we cannot proceed like in Proposition 4.2. The left-continuity implies that the

translations are uniquely determined at the point 1
2 by the lower component and thus

might collide with their definition on the upper interval.

Under certain circumstances, a construction is still possible. The problem is to ensure

left-continuity at the common boundary point 1
2 . If the upper component is the Cayley

tomonoid of a t-norm with zero divisors, it contains functions from [ 12 , 1] to [ 12 , 1]
mapping some x > 1

2 to 1
2 . Let us check under which circumstances it is possible to

define the translations of a new Cayley tomonoid in a way that the single element 1
2 is

not necessarily mapped to 1
2 , but possibly to smaller values.

Certain restrictions are immediate. Let κ, λ : [0, 1] → [0, 1] be two functions which are

order-preserving, left-continuous, below id[0,1], and such that κ < λ. Assume further

that there is a 1
2 < c < 1 such that κ(x) = 1

2 for x ∈ (12 , c] and κ(x) > 1
2 for x ∈ (c, 1].

Similarly, assume that there is a 1
2 < c′ < 1 such that λ(x) = 1

2 for x ∈ (12 , c
′] and

λ(x) > 1
2 for x ∈ (c′, 1]. Then we observe:

(i) Assume that c′ < c and λ(12 ) <
1
2 . Then κ and λ do not commute.

(ii) Assume κ(12 ) < λ(12 ). Then κ and λ again do not commute.

Hence if κ and λ are elements of the Cayley tomonoid associated with a t-norm, we

have κ(12 ) = λ(12 ), and either this value equals 1
2 or c = c′. The following proposition

concerns the latter possibility.

Proposition 4.5. Let Φ be a composition tomonoid on [ 12 , 1] such that conditions (C1)–

(C5) hold; let Ψ be a composition tomonoid on [0, 1
2 ] such that (C1)–(C4) hold; and

assume that there is a sup-preserving homomorphism h : Φ → Ψ. Assume furthermore

that there are 0 ≤ d < 1
2 < c < 1 such that the following holds: for each ϕ ∈ Φ, either

ϕ(x) > 1
2 for all x ∈ (12 , 1] and h(ϕ)(12 ) = 1

2 , or {x ∈ [ 12 , 1] : ϕ(x) = 1
2} = [ 12 , c]

and h(ϕ)(12 ) = d, or ϕ(x) = 1
2 for all x ∈ [ 12 , 1] and h(ϕ)(12 ) = 0. Then there is a

l.-c. t-norm whose translations are given by (8) and (9).

Proof. Note first that if, for any ϕ ∈ Φ, either ϕ(x) > 1
2 for all x ∈ (12 , 1] or ϕ is

constant 1
2 , the proposition holds by Proposition 4.2. Assume now that there is at least

one ϕ ∈ Φ such that ϕ(x) = 1
2 for x ≤ c and ϕ(x) > 1

2 for x > c.

Let λt, ∈ [0, 1], be given according to (8) and (9). Like in the proof of Proposition

4.2, we conclude that every λt is order-preserving and left-continuous, λt(1) = t, and

Λ = {λt : t ∈ [0, 1]} is totally ordered and has the top element λ1 = id[0,1].

Note next that we have, for any t > c, λt(d) = d, λt(
1
2 ) = 1

2 , λt(x) > 1
2 for

x ∈ (12 , c], and λt(x) > c for x ∈ (c, 1]. Moreover, for 1
2 < t ≤ c we have λt(

1
2 ) = d;

λt(x) = 1
2 for x ∈ (12 , c]; and λt(x) > 1

2 for x ∈ (c, 1]. Finally, λ 1

2

(x) = 0 for

x ∈ [0, 12 ], λ 1

2

(x) = d for x ∈ (12 , c], and λ 1

2

(x) = 1
2 for x ∈ (c, 1].
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Given these facts, we show that Λ is closed under ◦ and ◦ is commutative. Let s, t > 1
2 .

If then s > c or t > c, we show similarly to the proof of Proposition 4.2 that λs ◦ λt =
λt ◦λs = λϕs(t) ∈ Λ. Furthermore, if then s, t ≤ c, we have λs ◦λt = λt ◦λs = λ 1

2

∈
Λ.

Let s ≤ 1
2 and t > 1

2 , or s, t ≤ 1
2 . Then we proceed like in the proof of Proposition 4.2

to see that λs ◦ λt = λt ◦ λs ∈ Λ.

We can apply Proposition 4.5 to t-norms in two ways. The following theorem covers

the remaining case of S. Jenei’s rotation construction [Jen1]. To this end, we choose for

the upper component Φ the Cayley tomonoid of a t-norm and for the lower component

Ψ its reflection. We put a peculiar restriction on the used t-norm; let Λ be its Cayley

tomonoid. Then, for any non-zero λ ∈ Λ, either λ(x) > 0 for each x > 0, or λ(x) = 0
iff x ∈ [0, c], where c > 0 is a fixed value. The residual negation has then the range

{0, c, 1}.

Figure 8: Composition of Cayley tomonoids on [0, 1

2
] and [ 1

2
, 1] according to Proposition 4.5.

Left: the t-norm ⊙9. Right: the t-norm ⊙10.

Theorem 4.6. Let Λ be the Cayley tomonoid of a l.-c. t-norm such that the range of

its residual negation ¬ is exactly three-element. Let Φ = Λ[ 1
2
,1] and Ψ = Λ⋆[0, 12 ]. Let

h : Φ → Ψ by such that, for each λ ∈ Λ, λ[ 1
2
,1] is mapped to λ⋆[0, 12 ]. Then there is a

l.-c. t-norm whose translations are given by (8) and (9).

Proof. Proposition 4.5 is applicable.

An example of Theorem 4.6 is the following t-norm, which is shown in Figure 8 (left):
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a⊙9 b =



























































4ab − 3a− 3b+ 3 if a, b > 3

4
,

4ab − 3a− 2b+ 2 if 1

2
< a ≤ 3

4
and b > 3

4
,

a+2b−2

4b−3
∨ 1

4
if 1

4
< a ≤ 1

2
and b > 3

4
,

a+b−1

4b−3
∨ 0 if a ≤ 1

4
and b > 3

4
,

1

2
if 1

2
< a, b ≤ 3

4
,

a+b−1

4b−2
∨ 0 if 1

4
< a ≤ 1

2
and 1

2
< b ≤ 3

4
,

0 if a ≤ 1

4
and 1

2
< b ≤ 3

4
,

0 if a, b ≤ 1

2
.

Second, Proposition 4.5 includes another application to t-norms; consider the case d =
0. The lower component can in this case not be derived from the upper component in

a straightforward way. We provide an example only; the following t-norm is shown in

Figure 8 (right):

a ⊙10 b =































4ab − 3a− 3b+ 3 if a, b > 3

4
,

1

4
(4a − 2)

1

4b−3 + 1

2
if 1

2
< a ≤ 3

4
and b > 3

4
,

a+2b−2

4b−3
∨ 0 if a ≤ 1

2
and b > 3

4
,

1

2
if 1

2
< a, b ≤ 3

4
,

0 if a ≤
1

2
and b ≤ 3

4
.

Composition tomonoids merged

The two preceding constructions were based on the following idea: we partitioned [0, 1]
into two subintervals, we chose a composition tomonoid on the lower subinterval and

a further one on the upper subinterval, and we joined the mappings pairwise. It turned

out the that latter composition tomonoid could not be chosen arbitrarily; it consisted

either of mappings on (12 , 1], or it consisted of mappings on [ 12 , 1] subjected to the

requirement that the set of points mapping to 1
2 was of a quite specific form.

Next, we consider again composition tomonoids on [0, 12 ] and on [ 12 , 1], but our as-

sumptions will be quite different. Namely, we consider Cayley tomonoids such that for

each c ∈ [0, 1] there is a unique t ∈ [0, 1] such that {x ∈ [0, 1] : λt(x) = 0} = [0, c].
In other words, the residual negation of the t-norm will be involutive, and we will in

fact assume that the residual negation equals the standard negation, that is ¬a = ∼ a
for all a ∈ [0, 1]. It is immediate from (5) that then the reflection λ⋆ of any translation

λ is λ itself. In particular, the reflection of the Cayley tomonoid Λ of a l.-c. t-norm is

again Λ.

A natural idea is then to compose four copies of the Cayley tomonoid in the way indi-

cated in Figure 9 (left). The result is a construction called triple rotation by K. Maes

and B. De Baets [MaBa]. Namely, the upper triangle contains the Cayley tomonoid

as usual. The lower triangle contains its reflection, that is, the Cayley tomonoid once

again. The translations by values above 1
2 are determined on [0, 1

2 ] by the latter; but

they are determined by the former only for those x ∈ (12 , 1] that are mapped to values

strictly greater than 1
2 . For the remaining values, an idea comes into play suggested

by the name “triple” rotation: there is a third copy of the Cayley tomonoid, this time
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rotated by 180◦. Finally, the translations by values below 1
2 represent the Cayley to-

monoid another time.

Cayley

tomonoid

Cayley

tomonoid

Cayley

tomonoid,

rotated by 180°

Cayley

tomonoid

Figure 9: The triple rotation. Left: the idea. Right: ⊙11, the application to the nilpotent

minimum.

If the result of this construction process is to be a left-continuous t-norm again, some

technical problems need to be overcome. In particular, a translation rotated by 180◦

will be right- rather than left-continuous. The solution to this problem according to

[MaBa] is to use right limits. The companion of a l.-c. t-norm ⊙ is defined as follows:

a ⊙̃ b = lim
xցb

a⊙ x, a, b ∈ [0, 1).

For a l.-c. t-norm ⊙ such that ¬ is the standard negation, we can now define:

a⊙t b =



















∼ (b→♯ ∼ a) if a ≤ 1
2 and b > 1

2

a⊙♯ b if a, b > 1
2 and a⊙♯ b > 1

2

∼ (¬♯a ⊙̃
♯
¬♯b) if a, b > 1

2 and a⊙♯ b = 1
2

0 if a, b ≤ 1
2 .

(11)

The question then still remains: when is ⊙t actually a left-continuous t-norm? In the

following theorem we will provide sufficient conditions. For necessary and sufficient

conditions, we refer to [MaBa].

Theorem 4.7. Let Λ be the Cayley tomonoid of a t-norm ⊙ such that ¬ is the standard

negation. Then ⊙t is a l.-c. t-norm if the following conditions are fulfilled for all

a, b, c ∈ [0, 1):

(TR1) a ⊙̃ b = b ⊙̃ a;

(TR2) ¬c→ (a ⊙̃ b) = ¬b→ (a ⊙̃ c) if ¬a ≤ b, c;
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(TR3) ¬c→ (a ⊙̃ b) = (¬c→ a) ⊙̃ b if c < ¬a ≤ b.

Proof. It is easily checked that 1 is neutral w.r.t. ⊙t and that the mapping x 7→ x⊙ta is

for every a order-preserving. Furthermore, by (TR1), ⊙̃ is commutative, and it follows

that ⊙t is commutative. Moreover, ⊙̃ is, by construction, right-continuous in its right

argument, and it follows that ⊙t is left-continuous.

It remains to check the associativity of ⊙t. Let a, b, c ∈ [0, 1] such that b < c. We will

prove (a⊙t b)⊙t c = (a⊙t c)⊙t b.

Case 1: a ≤ 1
2 . Here, we can proceed like in case of Theorem 4.4.

Case 2: a > 1
2 and b, c ≤ 1

2 . Then (a⊙t b)⊙t c = (a⊙t c)⊙t b = 0.

Case 3: a, c > 1
2 , b ≤ 1

2 , and a⊙♯ c = 1
2 . Then a⊙t c ≤

1
2 , hence (a⊙t c)⊙t b = 0.

Furthermore, a ⊙t b = ∼ (a→♯ ∼ b), hence (a ⊙t b) ⊙t c = ∼ (c→♯ (a→♯ ∼ b)) =
∼ ((a⊙♯ c)→♯ ∼ b)) = 0 because a⊙♯ c = 1

2 ≤ ∼ b.

Case 4: a, c > 1
2 , b ≤ 1

2 , and a⊙♯ c > 1
2 . Then (a⊙t b)⊙t c = ∼ (c→♯ (a→♯ ∼ b)) =

∼ ((a⊙♯ c)→♯ ∼ b)) = (a⊙t c)⊙t b.

Case 5: a, b, c > 1
2 and a ⊙♯ c = 1

2 . Because b < c, we then have a ⊙♯ b =
1
2 as well, and we get (a ⊙t b) ⊙t c = ∼ (c→♯ ((a→♯ 1

2 ) ⊙̃
♯
(b→♯ 1

2 ))). More-

over, a ⊙t c = ∼ ((a→♯ 1
2 ) ⊙̃

♯
(c→♯ 1

2 )) ≤ 1
2 , hence we have (a ⊙t c) ⊙t b =

∼ (b→♯ ((a→♯ 1
2 ) ⊙̃

♯
(c→♯ 1

2 ))). Thus it is our aim to prove that

c→ (¬a ⊙̃ ¬b) = b→ (¬a ⊙̃ ¬c)

holds for any a, b, c > 0 such that a⊙ b = a⊙ c = 0. But this follows from (TR2).

Case 6: a, b, c > 1
2 , a ⊙♯ b = 1

2 , and a ⊙♯ c > 1
2 . Then we have (a ⊙t b) ⊙t c =

∼ (c→♯ ((a→♯ 1
2 ) ⊙̃

♯
(b→♯ 1

2 ))), (a⊙tc)⊙tb = ∼ (((a⊙♯ c)→♯ 1
2 ) ⊙̃

♯
(b→♯ 1

2 )).
Thus it is our aim to prove that

c→ (¬a ⊙̃ ¬b) = (c→¬a) ⊙̃ ¬b

holds for any a, b, c > 0 such that a ⊙ b = 0, and a ⊙ c > 0. But this follows from

(TR3).

As an example, consider the nilpotent minimum t-norm ⊙5, see (3). ⊙5 fulfils the con-

ditions (TR1)–(TR3), and the application of Theorem 4.7 results in the t-norm defined

as follows; see Figure 9 (right):

a⊙11 b =



























0 if a + b ≤ 1,

a if a + b > 1, a+ 1

2
≤ b, and b > 3

4

or a+ b > 3

2
, a ≤ b, and b > 3

4
,

a− 1

2
if 1 < a+ b ≤ 3

2
, b < a, and 1

2
< b ≤ 3

4

or a+ b > 1, a ≤ b+ 1

2
, and 1

4
< b ≤ 1

2
.
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5 Quotients and extensions of totally ordered monoids

So far, we have exploited the fact that t-norms correspond to their Cayley tomonoids,

and we have shown possibilities how to modify and to compose these sets of mappings

to derive new t-norms. The constructions were based on geometrical considerations,

and in case of any problems a solution was found in an ad-hoc manner.

In the rest of this paper, we have a more systematic look a t-norms. We chose already

at the beginning a suitable algebraic framework; we work with quantic, negative, com-

mutative tomonoids. We note that we could equally well work with MTL-algebras;

however, the additional implication would be more an obstacle than a help. Moreover,

t-norm monoids are quantales; however, the framework of quantales is too narrow for

our purposes.

We begin by reviewing quotients of tomonoids. Our structures possess a total order

relation, which needs to taken into special account. We note that, to get the same result,

we could replace the total order by lattice operations and employ the usual algebraic

notion of a congruence.

Definition 5.1. Let (L;≤,⊙, 1) be a negative, commutative tomonoid. An equivalence

relation ∼ on L is called a tomonoid congruence if (i) ∼ is a congruence of L as a

monoid and (ii) the ∼-classes are convex.

Given a tomonoid congruence ∼ on L, we denote the quotient of L by ∼ with 〈L〉∼.

We endow 〈L〉∼ with the total order according to

〈a〉∼ ≤ 〈b〉∼ if a ∼ b or a′ < b′ for any a′ ∼ a and b′ ∼ b,

where a, b ∈ L; with the induced operation ⊙ according to

〈a〉∼ ⊙ 〈b〉∼ = 〈a⊙ b〉∼,

where a, b ∈ L; and with the constant

1 = 〈1〉∼.

The structure (〈L〉∼;≤,⊙,1) is the tomonoid quotient of L by ∼.

Let ∼ be a tomonoid congruence on a tomonoid L. If L is complete the ∼-classes are

intervals, that is, of the form (a, b), [a, b), or (a, b] for some a, b ∈ L such that a < b,
or [a, b] for some a, b ∈ L such that a ≤ b. It is moreover immediate that 〈L〉∼ is again

a tomonoid. In addition, if L is commutative, so is 〈L〉∼; if L is negative, so is 〈L〉∼;

and if L is complete, so is 〈L〉∼.

A common way to construct quotients of partially ordered algebras makes use of fil-

ters. Here, we are interested exclusively in quotients of tomonoids arising in this way.

We note, however, that there may exist more. For instance, the Rees quotient, which

identifies all elements below a given element, is a type of congruence not included in

the present discussion. We also note that in the case of residuated lattices we obtain in

an analogous way all congruences [BlTs].
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Definition 5.2. Let (L;≤,⊙, 1) be a negative, commutative tomonoid. Then a filter

of L is a submonoid F of L such that a ∈ F and b ≥ a imply b ∈ F . Let then, for

a, b ∈ L,

a ∼F b if a = b,

or a < b and there is a c ∈ F such that b⊙ c ≤ a,

or b < a and there is a c ∈ F such that a⊙ c ≤ b.

Then we call ∼F the congruence induced by F .

Given a negative, commutative tomonoid, there are always the following filters: {1},

the trivial filter, and L, the improper filter.

By a subtomonoid of a tomonoid, we mean a submonoid together with the restricted

total order. Each filter F of a negative, commutative tomonoid L, endowed with the

total order restricted to F , the monoidal operation, and the monoidal identity, is a

subtomonoid. F is negative and commutative as well, and if L is, in addition, quantic,

so is F .

Congruences of negative, commutative tomonoids induced by filters are in fact tomo-

noid congruences. In the present context, it is worth noting that such congruences

preserve also the property of being quantic.

Lemma 5.3. Let (L;≤,⊙, 1) be a quantic, negative, commutative tomonoid, and let

(F ;≤,⊙, 1) be a filter of L. Then the congruence induced by F is a tomonoid congru-

ence, and 〈L〉∼ is a quantic, negative, commutative tomonoid again.

Proof. It is easily checked that 〈L〉∼ is a tomonoid, which is moreover commutative

and negative. For the proof that 〈L〉∼ is also quantic, see [Vet3, Lemma 3.8].

To simplify notation, we will refer to the congruence of a tomonoid induced by a filter

F also by the symbol F . That is, we call the ∼F -classes simply F -classes and we

denote them by 〈·〉F . Similarly, the quotient of L by ∼F will be called the quotient of

L by F and we denote it by 〈L〉F . Furthermore, we call L an extension of 〈L〉F by F ,

where F is the extending tomonoid.

We will from now on use the notion of a Cayley tomonoid in a more general way.

Namely, we define the Cayley tomonoid of any quantic, negative, commutative tomo-

noid just in the same way as for t-norm monoids. We then observe that the correspon-

dence of t-norm monoids with their Cayley tomonoids generalises to arbitrary quantic,

negative, commutative tomonoids.

As our next step, we shall see that any quotient of a t-norm monoid by a filter can be

detected from its Cayley tomonoid. What we detect is in fact the Cayley tomonoid of

the quotient.

Definition 5.4. Let Λ be the Cayley tomonoid of a l.-c. t-norm ⊙. Let F be a filter of

the t-norm monoid ([0, 1];≤,⊙, 1). We call

γF : [0, 1] → [0, 1], x 7→
∧

f∈F

λf (x),
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the cut associated with F .

The cut γF serves to detect the F -classes in the following way.

Lemma 5.5. Let ⊙ be a l.-c. t-norm, and let F be a filter. Then γF is constant on each

F -class. Indeed, we have

γF (x) = inf 〈x〉F , x ∈ [0, 1].

Conversely, let R be a maximal interval on which γF is constant. If R is left-open,

R is an F -class. If R possesses a minimal element u, either R is an F -class or {u}
and R\{u} are F -classes, depending on whether or not there is an r ∈ R\{u} and an

f ∈ F such that λf (r) = u.

Proof. γF (x) is the infimum of x ⊙ f , f ∈ F , that is, inf 〈x〉F . In particular, γF is

constant on 〈x〉F .

For the second part, let R be as indicated, and let u = inf R. Then each two elements

of R\{u} are F -equivalent. Moreover, by the first part, any x /∈ R is not F -equivalent

to any element of R. Hence R is one F -class, or R\{u} and {u} are two F -classes.

The first possibility applies if and only if there is an f ∈ F and r ∈ R\{u} such that

f ⊙ r = u.

We now explain how the quotient of a tomonoid can be derived from its Cayley tomo-

noid. Let F be a filter of a t-norm monoid. Figures 10–12 provide examples.

Figure 10: A t-norm monoid and its quotient by a filter. The left plot shows the Cayley tomonoid

of the rotation-annihilation of two Łukasiewicz t-norms [Jen2]; the filter [ 2
3
, 1] is highlighted in

grey. The middle plot shows, in an “exploded view”, the congruence classes. The right plots

show the quotient by the filter.

First case: The filter F possesses the minimal element d; cf. Figure 10. Then d is an

idempotent, that is, d ⊙ d = d, and F = [d, 1]. The cut associated with F is then
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γF = λd ∈ Λ. Being the translation by an idempotent, λd has a step-wise shape: for

any x ∈ [0, 1], c = λd(x) < x implies that λd is constant c on [c, x], cf. [Vet1].

The translations λf , f ∈ F , are all those that are above λd. Moreover, the congruence

classes are the maximal intervals [u, v] such that λd is constant on [u, v].

The t-norm monoid depicted in Figure 10 (left) possesses the filter F = [ 23 , 1]. The

translations by the elements of F are, accordingly, all those above the stepped mapping

λ 2

3

. Moreover, the F -classes are [0, 1
3 ] and [ 23 , 1] as well as the singletons {a}, 1

3 <

a < 2
3 .

Figure 11: A (modified) t-norm of Hájek and the filter ( 3
4
, 1].

Figure 12: The rotation of the product t-norm [Jen1] and the filter ( 1
2
, 1].

Second case: The filter F does not possess a minimal element; cf. Figures 11 and 12.

Then γF has the property that, for any x ∈ [0, 1], λd(x) = c < x implies that λd
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is constant c on (c, x]. Thus γF has a step-wise shape also in this case, although the

intervals on which γF is constant might be left-open as well as right-open.

γF , although not in general an element of Λ, is comparable with any element of Λ, and

the translations λf , f ∈ F , are all those that are above γF . Moreover, the F -classes

can be determined from γF according to Lemma 5.5.

The t-norm monoid in Figure 11 (left) has the filter F = (34 , 1]. Its associated cut

γF proceeds along the lower border of the area highlighted in grey. γF is constant

on [0, 14 ], (
1
4 ,

1
2 ], (

1
2 ,

3
4 ], and (34 , 1]. The latter three intervals are left-open, hence F -

classes. In case of the first one, we notice that for no r ∈ (0, 1
4 ] there is an f > 3

4 such

that λf (r) = 0. Consequently, {0} and (0, 1
4 ] are two F -classes.

Figure 12 (left) shows a t-norm monoid with the filter F = (12 , 1]. γF is constant on

[0, 12 ) and [ 12 , 1]. The former interval is one F -class because in this case there is for any

r ∈ (0, 1
2 ) some f > 1

2 such that λf (r) = 0. The latter interval, in contrast, consists of

the F -classes { 1
2} and (12 , 1].

Conclusion: Having determined a filter, we may draw a grid over the Cayley tomonoid

along the boundaries of the F -classes; see the middle plots in Figures 10–12. Associ-

ating with the translations bundlewise the traversed rectangles and triangles, we obtain

a new, coarser set of mappings: the Cayley tomonoid of the quotient by F ; see the right

plots in Figures 10–12.

Thus, geometrically speaking, a quotient of a t-norm monoid gives rise to a partitioning

of the Cayley tomonoid into triangular and rectangular sections. The following lemma

describes the Cayley tomonoid with respect to this partitioning; for each triangle and

each rectangle, we consider those parts of the translations that traverse this area.

We will use the following notation. Let ⊙ be a l.-c. t-norm and let P be the quotient of

L by the filter F . Λ denotes, as before, the Cayley tomonoid of ⊙. Furthermore, any

R ∈ P will be considered as a subinterval of [0, 1], namely as a class of the congruence

on [0, 1] that induces P .

For any f ∈ F , λf maps R to itself. We write λR
f : R → R for λf with its domain and

range being restricted to R, and we put ΛR = {λR
f : f ∈ F}. These are the “triangles”.

Moreover, let R,S, T ∈ P be such that R ⊙ T = S < R. Then for any t ∈ T , λt

maps R to S. We write λR,S
t : R → S for λt with its domain restricted to R and its

range restricted to S, and we put ΛR,S = {λR,S
t : t ∈ T }. These are the “rectangles”.

Finally, we denote a function that maps all values of a set A to the single value b by

cA,b.

Lemma 5.6. Let ⊙ be a l.-c. t-norm, let F be a filter of ([0, 1];≤,⊙, 1), and let P be

the quotient of [0, 1] by F .

(i) The top element of P is F . Let u = inf F ; then F is one of (u, 1] or [u, 1].

Moreover, (F ;≤,⊙, 1) is a subtomonoid of ([0, 1];≤,⊙, 1), and (ΛF ;≤, ◦, idF )
is its Cayley tomonoid. That is, ΛF is a composition tomonoid on F fulfilling

(C1)–(C5). For each f ∈ F , λF
f is left-continuous, order-preserving, and such
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composition

tomonoids

translations

translation

translations

by

by

by

Figure 13: Schematic drawing of a quotient P of a t-norm monoid. The top element of P is the

filter F . Moreover, the element T of P is shown and the translation by T is indicated. Similarly,

the elements f, g, t, t′ ∈ L are depicted and the translations by them.

that limxցu λf (x) = u and λF
f (1) = f .

Finally,

π : F → ΛF , f 7→ λF
f

is an isomorphism between (F ;≤,⊙, 1) and (ΛF ;≤, ◦, idF ).

(ii) Let R ∈ P be distinct from F . Let u = inf R and v = supR. If u = v, then

R = {u} and λR
f (u) = u for any f ∈ F . Assume now u < v. Then R is one of

(u, v), [u, v), (u, v], or [u, v].

Moreover, (ΛR;≤, ◦, idR) is a composition tomonoid on R fulfilling (C1)–(C4).

For each f ∈ F , λR
f is left-continuous, order-preserving, and such that limxցu

λf (x) = u; moreover, if v /∈ R, λf (v) = v.

Finally,

̺ : F → ΛR, f 7→ λR
f

is a surjective sup-preserving homomorphism from (F ;≤,⊙, 1) to (ΛR;≤, ◦,
idR).

(iii) Let R and S be distinct elements of P such that R⊙T = S, where T = R→S.

Let u = inf R, v = supR, u′ = inf S, v′ = supS. If u = v, then R = {u},

u′ ∈ S, and λR,S
t (u) = u′ for any t ∈ T . If u′ = v′, then S = {u′} and

λR,S
t = cR,u′

for any t ∈ T . Assume now u < v and u′ < v′.

26



Then ΛR,S = {λR,S
t : t ∈ T } is totally ordered w.r.t. the pointwise order, and

closed under pointwise calculated suprema of upper-bounded non-empty sub-

sets. For each t ∈ T , λR,S
t is left-continuous, order-preserving, and such that

limxցu λt(x) = u′. For any t ∈ T and f ∈ F ,

λS
f ◦ λR,S

t = λR,S
t ◦ λR

f ∈ ΛR,S. (12)

Finally,

τ : T → ΛR,S , t 7→ λR,S
t

is a sup-preserving mapping from T to ΛR,S such that τ(λT
f (t)) = λS

f ◦ τ(t) =

τ(t) ◦ λR
f for any f ∈ F and t ∈ T .

(iv) Let R and S be distinct elements of P and assume that there is a T < R → S
such that R⊙ T = S. Then u′ = inf S ∈ S and, for all t ∈ T , λR,S

t = cR,u′

.

Proof. See [Vet3, Lemmas 4.6, 4.7].

Lemma 5.6 describes how a Cayley tomonoid is composed of its parts; Figure 13 pro-

vides an illustration. Let ([0, 1];≤,⊙, 1) be a t-norm monoid and F its filter F . The

upper-most triangle contains (ΛF ;≤, ◦, idF ), which is simply the Cayley tomonoid of

the subtomonoid (F ;≤,⊙, 1). By adding a bottom element if necessary, F becomes

isomorphic to a t-norm monoid. Thus, ΛF is, or arises from, the Cayley tomonoid of a

l.-c. t-norm.

Furthermore, let R be any other F -class and assume that R is not a singleton. The

triangle associated with R contains (ΛR;≤, ◦, idR), which is a further composition

tomonoid. ΛR fulfils the properties (C1)–(C4), but in contrast to ΛF , (C5) need not

hold. Moreover, ΛR is not necessarily isomorphic to F , but a homomorphic image:

there is a surjective homomorphism from F to ΛR.

The remaining parts of the Cayley tomonoid of ⊙ are the rectangular sections. Let R
and S be distinct F -classes such that R = S ⊙ (R → S) and assume that R and S
are not singletons. Then the rectangle associated with R and S contains ΛR,S , a set

of mappings that depends on ΛR and ΛS according to (12). As shown in [Vet3], in

the specific case that F is an archimedean tomonoid, the commutativity condition (12)

alone is sufficient to determine ΛR,S to a great extent.

6 Construction of t-norms as extensions

Lemma 5.6 proposes a way of decomposing a given Cayley tomonoid. On the basis of

the picture provided by Lemma 5.6, we next intend to define ways of composing new

Cayley tomonoids out of suitable constituents. In other words, we intend to explore

how a given tomonoid can be extended. We address in this way the core problem of the

theory of negative, commutative tomonoids, which is certainly demanding. But there

are cases that do not cause any difficulties and we will consider a few of them in this

section.
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For compact specifications, we introduce the following mode of expression. Let a

tomonoid L be an extension of a tomonoid P by a further tomonoid F . An element R
of the quotient P is then identified with a subinterval of L. If R is a singleton, we say

that R is left unexpanded. Otherwise, we will assign to R the composition tomonoid

ΛR, together with a surjective homomorphism from ΛF to ΛR.

Let us first extend a t-norm monoid, and let us do so in the easiest possible way. The

top element is always expanded, and we assume that all remaining elements are left

unexpanded. We are led to the construction of a two-component ordinal sum; see

Theorem 4.1.

Theorem 6.1. Let ⊙, ⊙̂ be two t-norms. Then there is, up to isomorphism, a unique

extension L of the t-norm monoid ([0, 1];≤,⊙, 1) such that 1 is assigned the Cayley

tomonoid of ([0, 1];≤, ⊙̂, 1); and each c ∈ [0, 1) is left unexpanded.

Moreover, L is isomorphic to the t-norm monoid constructed from ⊙ and ⊙̂ according

to Theorem 4.1 (“ordinal sum of ⊙ and ⊙̂, with the natural order of {0, 1}”).

Proof. It is evident that L coincides with the result of Theorem 4.1 applied to the

Cayley tomonoids associated with ⊙ and ⊙̂.

Note that in this case all rectangles are degenerated, that is, one element in height.

Consequently, all translations must be constant outside the “triangular parts”.

Repeated application of Theorem 6.1 leads to finite ordinal sums of t-norm monoids.

We continue with the rotation construction according to Theorem 4.4. This construc-

tion was described from an algebraic perspective, e.g., in [NEG2]. It is straightfor-

ward to see that this construction corresponds to a particular extension. In this as well

as in some cases below, we extend a finite MV-algebra. For n ≥ 2, the n-element

Łukasiewicz chain is Łn = {0, 1
n−1 , . . . , 1}, endowed with the natural order and the

monoidal operation given by a⊙ b = (a+ b − 1) ∨ 0.

Furthermore, let λ : (0, 1] → (0, 1] be order-preserving, left-continuous, and below

id(0,1]; then we define its reflection λ⋆ : [0, 1) → [0, 1) analogously to Definition 3.1.

Note that Lemma 3.2 applies in this case as well.

Theorem 6.2. Let ⊙ be a t-norm without zero divisors. Then there is, up to isomor-

phism, a unique extension L of Ł3 such that 1 is assigned the Cayley tomonoid Λ of

((0, 1];≤,⊙, 1); 1
2 is left unexpanded; and 0 is assigned the reflection Λ⋆ of the Cayley

tomonoid of ((0, 1];≤,⊙, 1), together with Λ → Λ⋆, ϕ 7→ ϕ⋆.

L is then isomorphic to the t-norm monoid constructed according to Theorem 4.4 (“ro-

tation of ⊙”).

Proof. The translations by elements of the extending filter are given according to

Lemma 5.6(ii) and thus in accordance with (8). Furthermore, the single “rectangu-

lar section” is uniquely determined by (12) in Lemma 5.6(iii). We conclude that L is

constructed just like in Theorem 4.4.
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Theorem 6.2 describes an extension where only the top element 1 and the bottom el-

ement 0 are expanded. Let us once again consider an extension of this type, but this

time starting from a t-norm monoid.

Theorem 6.3. Let ⊙ and ⊙̂ be l.-c. t-norms. Then there is, up to isomorphism, a

unique extension L of the t-norm monoid ([0, 1];≤,⊙, 1) such that 1 is assigned the

Cayley tomonoid Λ of ([0, 1];≤, ⊙̂, 1); c is left unexpanded for each c ∈ (0, 1); and 0
is assigned the reflection Λ⋆ of Λ, together with Λ → Λ⋆, ϕ 7→ ϕ⋆.

Proof. The translations by elements of the extending filter are given according to

Lemma 5.6(ii). The remaining translations are uniquely determined.

Example 6.4. In Theorem 6.3, let ⊙ be the Łukasiewicz t-norm. Then L is isomorphic

to the so-called rotation-annihilation of ⊙̂ [Jen2]; cf. Figure 10.

Composition tomonoids acting in parallel, once more

We finally turn to a construction method that was to our knowledge not motivated ge-

ometrically. Nonetheless, there is a close connection to Section 4. In fact, we have

another case of composition tomonoids acting on subintervals in parallel, and this time

the number of subintervals is arbitrary. The problem of how to fill the “rectangular”

parts becomes then non-trivial. However, assuming that all composition tomonoids co-

incide and that furthermore the set of subintervals has itself the structure of a negative,

commutative tomonoid, which is moreover weakly cancellative, there is a straightfor-

ward possibility. We define it in the present setting.

Namely, we consider a particularly obvious way of extending a tomonoidL by a further

tomonoid F : by the lexicographical product L×lex F . This is possible if L is cancella-

tive, or at least weakly cancellative. The idea leads to A. Zemánková’s H-transforms

[Mes2]; a further paper on the topic is [JeMo].

Definition 6.5. Let (L;≤,⊙, 1) be a tomonoid. L is called cancellative if, for any

a, b, c ∈ L, a⊙ b = a⊙ c implies b = c.

Moreover, L is called weakly cancellative if either L does not possess a smallest ele-

ment and is cancellative, or L possesses the smallest element 0 and, for any a, b, c ∈ L,

a⊙ b = a⊙ c > 0 implies b = c.

In [Mes2], only cancellative tomonoids were considered; the generalisation to the

weakly cancellative case is, however, straightforward. We note that the notion of weak

cancellativity was actually introduced for MTL-algebras [MNH].

Theorem 6.6. Let (W ;≤,⊙, 1) and (V ;≤,⊙, 1) be quantic, negative, commutative

tomonoids, and assume that W is weakly cancellative and any subset of W has a

maximal element. Let W ⋆ arise from W by dropping its zero element if present. Let

L = (W ⋆ ×V )∪ {0}, where 0 is a new element. Endow L with the total order ≤ such

that 0 is the bottom element and such that for (v, a), (w, b) ∈ L

(v, a) ≤ (w, b) if v < w, or v = w and a ≤ b.
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Endow L with the binary operation ⊙ such that 0 is an absorbing element and such

that for (w, a), (v, b) ∈ L

(w, a)⊙ (v, b) =

{

0 if w ⊙ v is the zero element of W,

(w ⊙ v, a⊙ b) otherwise.

Then (L;≤,⊙, (1, 1)) is a quantic, negative, commutative tomonoid.

Proof. For non-zero elements (u, a), (v, b), (w, c) of L, we have (u, a) ⊙ (v, b) ⊙
(w, c) = (u ⊙ v ⊙ w, a ⊙ b ⊙ c) if u ⊙ v ⊙ w is not the zero element of W and

otherwise 0. It follows that ⊙ is on L associative. Clearly, (1, 1) is neutral w.r.t. ⊙, and

⊙ is commutative.

Assume next (u, a) < (v, b) and (u, a) ⊙ (w, c) > 0. Then either u < v, in which

case u ⊙ w < v ⊙ w and thus (u, a) ⊙ (w, c) = (u ⊙ w, a ⊙ c) < (v ⊙ w, b ⊙ c) =
(v, b)⊙ (w, c) because of the cancellativity in W . Or u = v and a < b, in which case

(u, a)⊙ (w, c) = (u⊙w, a⊙ c) = (v ⊙w, a⊙ c) ≤ (v⊙w, b⊙ c) = (v, b)⊙ (w, c).
We conclude that ⊙ is order-preserving.

Obviously, L is a negative, commutative tomonoid, and L is complete. Let (w, a),
(vι, bι) ∈ L\{0}, ι ∈ I , such that v ⊙ wι is not the zero element of W for at least one

ι. By (iii), there is a κ ∈ I such that vκ ≥ vι for all ι. Let Iκ = {ι ∈ I : vι = vκ}.

By (i), we get
∨

ι∈I(vι, bι) =
∨

ι∈Iκ
(vκ, bι) = (vκ,

∨

ι∈Iκ
bι) and, by (ii), (w, a) ⊙

∨

ι∈I(vι, bι) = (w ⊙ vκ, w ⊙
∨

ι∈Iκ
bι) = (w ⊙ vκ,

∨

ι∈Iκ
w ⊙ bι). Furthermore, by

weak cancellativity in W , w⊙ vκ is the maximal element among w⊙ vι, ι ∈ I . Hence
∨

ι∈I(w ⊙ vκ, w ⊙ bι) = (w ⊙ vκ,
∨

ι∈Iκ
w ⊙ bι) as well. The proof is complete that

L is quantic.

As an example, let V = (0, 1], endowed with the usual product of reals, and let W =
Ł5, the five-element Łukasiewicz chain. Then we get a quantic, negative, commutative

tomonoid; up to isomorphism, we get the t-norm monoid displayed in Figure 11.

This t-norm is similar to the one defined by Hájek in [Haj2]. We obtain the original one

by replacing Ł5 by (Z−;≤,+, 0). We note that there are further extensions of Ł5 by

((0, 1];≤, ·, 1); in fact, the sets ΛR,S , where R and S are distinct congruence classes,

may be chosen strictly smaller.

The construction can be generalised involving more than two, or even countably many,

tomonoids.

Theorem 6.7. For each i < ω, let (Wi;≤,⊙, 1) be a negative, commutative tomonoid

such that Wi is cancellative and each subset of Wi has a maximal element. Put L =
∏

i Wi ∪ {0}, where 0 is a new element. Endow L with the total order ≤ such that

0 is the smallest element and such that otherwise the lexicographical order applies.

Endow L with the binary operation ⊙ such that 0 is an absorbing element and such

that otherwise the componentwise multiplication applies. Then (L;≤,⊙, (1, 1)) is a

quantic, negative, commutative tomonoid.

30



Proof. It is obvious that L is a commutative monoid. We prove similarly to the proof

of Theorem 6.6 that ⊙ is translation-invariant.

Also the proof that L is quantic follows the lines of the proof of Theorem 6.6. We

only show how suprema are determined. Let (vιi)i ∈ L, ι ∈ I . Let κ1 ∈ I be such

that vκ11 is maximal in {vι1 : ι ∈ I}. Let κ2 ∈ I be such that vκ22 is maximal in

{vι2 : ι ∈ I and vι1 = vκ11}. Continuing in this way, we generate the element (vκii)i
of L, which is the supremum of (vιi)i ∈ L, ι ∈ I .

As an example, let Wi = Z
− for each i, endowed with the usual addition of integers.

Then
∏

iWi ∪ {0} is order-isomorphic to the real unit interval; thus we get a t-norm.

This t-norm was defined in [Mes1] and further studied in [Smu]. Endowing Wi = Z
−

with an arbitrary tomonoid structure leads to what is called an iteration of the general

H-translation in [Mes2].

7 Conclusion

This paper is devoted to a new approach to the investigation of t-norms. We may well

call it geometric although it makes no use of the usual tool to visualise a t-norm –

its three-dimensional graph. To reduce the picture to two dimensions, we could, for

instance, view the graph “from above” and consider the horizontal cuts, or contour

lines; on this idea Maes and De Baets’s work is based [MaBa]. What we propose here

is to view the graph “from the side”: we study the set of vertical cuts. This is simply

the set of functions from [0, 1] to [0, 1] arising from ⊙ by keeping one of its arguments

fixed.

The advantage of this approach is not only the reduction to two dimensions. Without

further ado we get close to well established methods in algebra. First of all, “ver-

tical cuts” are translations as known in the theory of semigroups, and the set of all

translations together with the function composition is known as Cayley’s representa-

tion. Second, the most basic way of investigating an ordered monoid is to consider its

quotients, and the quotients of tomonoids are obvious from its Cayley tomonoid.

We have reformulated several construction methods for t-norms first in the framework

of Cayley tomonoids and then, provided this was possible, in an algebraic framework.

In the latter case, we have pointed out that an n-component ordinal sum correspond to

n−1 extensions of a t-norm monoid such that the top element is expanded; the rotation

of a t-norm without zero divisors is an extension of the three-element Łukasiewicz

chain; the rotation-annihilation is an extension of a t-norm monoid such that the top

and the bottom elements are expanded; and the H-transform of t-norms is an extension

of weakly cancellative tomonoids.

We have applied a modest piece of the general theory of quantic, negative, commutative

tomonoids. This field in turn still offers a large potential for further research. The

theory of t-norms has long been developed under the point of view of real functions.

At present it seems more promising to proceed in a contrasting manner, namely, to

choose an algebraic framework and to consider the finite structures. Our forthcoming
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paper [Vet2], for instance, is on finite negative, commutative tomonoids; further efforts

towards a systematisation of these totally ordered algebras could be rewarding.
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[Haj1] P. Hájek, “Metamathematics of Fuzzy Logic”, Kluwer Acad. Publ., Dor-

drecht 1998.
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