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Abstract

Let dν be the metric associated with a strictly positive submea-

sure ν on some boolean algebra P. If dν is bounded from above
by 1, Eν = 1 − dν is a (fuzzy) similarity relation on P at least
w.r.t. the  Lukasiewicz t-norm, but possibly also w.r.t. numerous
further t-norms.

In this paper, we show that under certain assumptions on P
and ν, we may associate with ν in a natural way a continuous
t-norm w.r.t. which Eν is a similarity relation and which, in a
certain sense, is the weakest such t-norm. Up to isomorphism,
every continuous t-norm arises in this way.

Keywords: continuous triangular norms, boolean algebras en-
dowed with a metric

1 Introduction

Triangular norms - or t-norms for short - might have a complicated
structure, which in the general case is actually not yet understood.
In the case of continuity, we know that there is still an abundance of
possibilities; such a t-norm is the ordinal sum of countably many copies
of the three standard t-norms, where we have a practically free choice
of how to put the components into a linear order. We wonder if there
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might be any practical reason to deal with such constructs. Besides,
we actually wonder about the easy cases as well; we do not yet find the
question satisfactorily answered in the literature in which prototypical
situation one of the three standard t-norms is the natural choice.

This paper is motivated by the question if a specific continuous t-norm,
possibly resulting from a complicated construction, may be of practical
use. It is our intention to contribute to a positive answer by pointing
out a correspondence between continuous t-norms on the one hand and
certain metric boolean algebras on the other hand.

Inspired by U. Höhle’s paper [Hoe], we shall argue as follows. Let an
boolean algebra P be given which is endowed with a metric d. Let
us think of P as representing a system of sharp propositions arising in
some context, and assume that d tells to what extent two propositions
differ from each other. Now, if d is bounded from above by 1, the
transition from d to the function E = 1− d allows an interpretation in
a way common in fuzzy logics: E(a, b) tells how similar two elements
a, b ∈ P are, 1 meaning coincidence of a and b, and 0 meaning that
a and b have nothing in common. Furthermore, given a t-norm ⊙, E

may happen to be a similarity relation on P with respect to ⊙. In
particular, E is always a similarity relation w.r.t. the  Lukasiewicz t-
norm; and moreover, if e.g. ν is an ultrametric, E is also a similarity
relation w.r.t. the minimum t-norm [Hoe, Section 3.2].

So the following question arises. Given a metric d on a space P, is there
a reason to associate with d a canonical t-norm w.r.t. which E = 1− d

is a similarity relation? In particular, is there a weakest such t-norm?
This is the problem studied in this paper.

Our results may be summarized as follows. Our base space will be a
boolean algebra of a particularly easy form: the algebra P of subsets of
an at most countable set. To examine the general case remains as a task
for future work. Furthermore, it seems natural to assume that a metric
on P is the metric dν associated with some submeasure ν; see e.g. [Fre2].
We will do so, and in addition, we will impose several conditions on
this submeasure. The crucial property is what we call homogeneity;
accordingly, ν(a) ≤ ν(b ∨ c) implies the existence of elements b̄ and
c̄ such that a ≤ b̄ ∨ c̄, where ν(b̄) = ν(b) and ν(c̄) = ν(c). We then
proceed to describe the exact structure of the submeasures we deal
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with. Interestingly, this analysis shows strong analogies to the analysis
of continuous t-norms.

We continue showing that the metric dν associated with such a sub-
measure ν determines a specific continuous t-norm up to isomorphism.
Namely, with respect to the values the fuzzy relation Eν = 1 − dν can
take, it is the weakest (pointwise maximal) one among those t-norms
w.r.t. which Eν is a similarity relation. Our construction will show
that, up to isomorphism, every continuous t-norms is determined by an
appropriately chosen metric dν .

2 Metrics on boolean algebras

We deal in this section with boolean algebras endowed with a metric.
Intuitively, the elements of this algebra should be thought of as rep-
resenting certain sharp propositions which arise simultanously in some
context; the metric then tells us to what degree two such propositions
differ. Similarity relations associated with metrics will be discussed
only in the subsequent Section 3.

As usual in this context, we will assume that the metric is induced by
some submeasure on the boolean algebra. Accordingly, the metrical
distance between a pair of elements is the value which the submeasure
assigns to the symmetric difference of this pair. Moreover, we will
postulate that the submeasure fulfils several conditions, among which
the so-called homogeneity is most remarkable. This condition is unusual
in that it refers to elements which are possibly algebraically unrelated.

For a general discussion of submeasures on boolean algebras and met-
rics associated to them, we refer to [Fre1, Section 5.5]. We should
stress, however, that our concerns are different from those in [Fre1] and
other papers. In particular, typical properties of submeasures like ex-
haustiveness, continuity and the like are in general not shared by the
submeasures discussed here.

Definition 2.1 Let (P;≤,¬,0, 1) a σ-complete boolean algebra, and
let [0, 1] be the real unit interval.

(i) ν : P → R
+ is called a submeasure if (α) ν(0) = 0, (β) a ≤ b
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implies ν(a) ≤ ν(b), and (γ) ν(a ∨ b) ≤ ν(a) + ν(b).

A submeasure ν is strictly positive if ν(a) = 0 only in case a = 0;
and ν is normalized if ν(1) = 1. We shall call ν normal if ν is
strictly positive and normalized.

ν is called continuous from below if b0 ≤ b1 ≤ . . . and a =
∨

i bi

imply ν(a) =
∨

i ν(bi).

Furthermore, ν is called homogeneous if for any a, b0, b1, . . . such
that ν(a) ≤ ν(

∨

i bi), there are b̄0, b̄1, . . . such that a ≤
∨

i b̄i and,
for every i, ν(b̄i) = ν(bi).

Finally, ν is called faithful if for any a ∈ P which is not an atom,
there is a b < a such that 0 < ν(b) < ν(a).

(ii) Let ν be a normal submeasure on P. Then

dν: P × P → [0, 1], (a, b) 7→ ν(a△b)

is called the metric on P induced by ν. Here, a△b = (a \ b) ∪
(b \ a) is the symmetric difference of a and b.

For some submeasure ν, we will occasionally express the fact that
ν(a) = v by saying that a is of measure v.

It is easy to verify that the metric on a boolean algebra induced by a
normal submeasure is indeed a metric; cf. [Fre2, Lemma 393B].

We further note that the condition of homogeneity of a submeasure on
a boolean algebra may be split into two parts.

Lemma 2.2 Let ν: P → [0, 1] be a submeasure on a complete boolean

algebra P. Then ν is homogeneous if and only if the following two

conditions hold:

(i) For any a, b0, b1, . . . such that ν(a) ≤ ν(
∨

i bi), there are b̄0, b̄1, . . .

such that a =
∨

i b̄i and, for every i, ν(b̄i) ≤ ν(bi).

(ii) For any a, b such that ν(a) ≤ ν(b) there is a b̄ ≥ a such that

ν(b̄) = ν(b).
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We will see that the conditions enumerated in Definition 2.1(i) enable
us to describe completely the structure of submeasures. To that end,
however, we have to assume that the underlying boolean algebra is
of a particularly easy form, namely that it is atomistic and complete.
Although it surely would be desirable to drop these assumptions, we
will see that the aim of this paper, to motivate the usage of any specific
continuous t-norm, is still achievable.

For an element a of a complete atomistic boolean algebra P, we will
denote by A(a) the set of atoms below a. We may then identify P with
the algebra of subsets of A(1). We note that we could express all what
follows also in set-theoretical terms; however, the reason to prefer the
algebraic notation is to support our intuition that we have to do with
a system of propositions and also to simplify consistency with future
works.

So the rest of this section is devoted to the characterisation of nor-
mal submeasures which are continuous from below, homogeneous, and
faithful. We start with the simplest way of how to construct submea-
sures.

In the sequel, card X denotes the cardinality of some set X. Recall
that a boolean algebra is separable if it is countably generated.

Definition 2.3 Let (P;≤,¬,0, 1) be an atomistic, separable, σ-complete
boolean algebra. If then n = cardA(1) is finite, let N = {0, 1, . . . , n},
else N = N. Let s: N → [0, 1] be such that (α) s(0) = 0, (β) k < l

implies s(k) < s(l) for k, l ∈ N , (γ) s(k + l) ≤ s(k) + s(l) for k, l ∈ N

such that k + l ∈ N , and (δ)
∨

{s(k): k ∈ N} = 1. Then we call

σ: P → [0, 1], a 7→

{

s(cardA(a)) if A(a) is finite,
1 else.

a standard submeasure on P.

Note that a standard submeasure is indeed a submeasure. Its intuitive
meaning is clear: It is nothing but the counting measure whose range,
an initial piece of the natural numbers plus infinity, is squeezed into the
real unit interval, in a way probably giving up additivity, but preserving
subadditivity.
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The following four examples will illustrate our further analysis. Already
here, the structural similarity of certain submeasures on the one hand
and continuous t-norms on the other hand, is clearly seen.

Example 2.4 Let X be a countable set, and let P be the boolean
algebra of subsets of X. We shall give four examples of a submeasure
ν: P → [0, 1]. Let A ⊆ X.

1. 1 Let X be finite; let X contain n elements. Define

ν(A) =
card A

n
.

2. 2 Let X be countably infinite. Define

ν(A) =

{

1 − 1
2m if m = card A < ∞

1 if A is infinite.

3. 3 Let X = {xi: i < λ}, where 1 ≤ λ ≤ ω, and let mi ∈ R, i < λ,
such that 0 < m1 < m2 < . . . and

∨

i mi = 1. Define

ν(A) =
∨

{mi: ai ∈ A}.

4. 4 Let X = Y ∪ Z, where Y = {y1, . . . , ym} and Z = {z1, . . . , zn}
are finite disjoint sets. Define

ν(A) =

{

cardA
2m

if A ∩ Y = ∅
1
2

+ card (A∩Z)
2n

else.

Note how submeasure (4) is composed from two submeasures of type
(1). It is this kind of construction which also underlies the general
case, treated in the subsequent Theorem 2.5. Informally, we then might
describe the construction as the “ordinal sum” of submeasures of type
(1) and (2).

In the following, a set {ci : i ∈ I} of pairwise disjoint non-zero ele-
ments of a boolean algebra such that

∨

i ci = 1, is called a partition.
Furthermore, for an element a of a boolean algebra P, we denote the
subalgebra of elements below a by P(a).
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Theorem 2.5 Let (P;≤,¬,0, 1) be an atomistic, separable, σ-complete

boolean algebra. Let (I;≤) be a countable linearly ordered set, and let

{ci : i ∈ I} be a partition of P. Associate to every i ∈ I an interval

[vi, wi] ⊆ [0, 1] such that (α) vi < wi, (β) for any j > i wi ≤ vj, and

(γ)
∨

i wi = 1.

For every i ∈ I, let σi : P(ci) → [0, 1] be a standard submeasure. Let

t = σi(e) for an atom e below ci; and let τi : [t, 1] → [0, 1] be a linear

function with positive coefficients such that vi < τi(t) < τi(1) = wi.

Define νi: P(ci) → [0, 1] by νi(0) = 0 and νi(a) = τi(σi(a)) for a > 0.

Define now ν : P → [0, 1] as follows. Let ν(0) = 0. For a non-zero

a ∈ P, let Ia = {i ∈ I : a ∩ ci > 0}. If Ia has the maximal element j,

set ν(a) = νi(a∩ cj); otherwise set ν(a) =
∨

i∈Ia
vi. Then ν is a normal

submeasure on P which is continuous from below, homogeneous, and

faithful.

All normal submeasures on P which are continuous from below, homo-

geneous, and faithful, arise in this way.

Proof. The proof of the first part is somewhat tedious, but does not
contain any difficult steps, so we skip it.

Assume that ν is a normal submeasure on P such that ν is continuous
from below, homogeneous, and faithful. Let I = {ν(e) : e ∈ A(1)};
endow I with the natural order; and for each i ∈ I, let ci =

∨

{e ∈
A(1): ν(e) = i}, so that {ci : i ∈ I} is a partition. Furthermore, let
vi = ν(

∨

{e ∈ A(1): ν(e) < i}) and wi = ν(ci) for any i ∈ I. Note that
I does not contain 0, because ν is strictly positive.

Let now i ∈ I, and assume that i is not minimal in I (note that I need
not be have a minimal element at all). Choose an atom f such that
ν(f) = i, and let e1, e2, . . . be atoms such that ν(e1), ν(e2), . . . < ν(f).
We claim that then ν(

∨

k ek) < ν(f). Indeed, otherwise there are by
homogeneity ē1, ē2, . . . ∈ P such that f ≤

∨

k ēk and ν(ē1), ν(ē2), . . . <

ν(f). Since f is an atom, we would have f ≤ ēl for some l, a contra-
diction.

It follows in particular vi < i. This strict inequality holds evidently
also for the case that i is minimal in I.

Next, let e1, e2 ∈ A(1) be distinct and of the same measure i. Then
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ν(e1 ∨ e2) > ν(e1); otherwise e1 ∨ e2 as well as all non-zero elements
strictly below e1∨e2 are of measure i, a contradiction to the faithfulness
of ν.

Moreover, for some i ∈ I, let f1, . . . , fm be pairwise distinct atoms of
measure i, let also g1, . . . , gn ∈ A(1) be of measure i, and let d1, . . . , e1,

. . . ∈ A(1) be of measure strictly smaller than i. We claim that then
ν(f1 ∨ . . . ∨ fm ∨

∨

k dk) ≤ ν(g1 ∨ . . . ∨ gn ∨
∨

k ek) implies m ≤ n.
Indeed, by homogeneity f1 ∨ . . . ∨ fm ≤ ḡ1 ∨ . . . ∨ ḡn ∨

∨

k ēk, where
ν(ḡ1) = . . . = ν(ḡn) = i and ν(ēk) < i for all k. For l = 1, . . . , n, due
to the last paragraph, there cannot be two distinct atoms of measure i

below ḡl. It follows that f1∨ . . .∨fm is below the supremum of at most
n atoms of measure i and further atoms of measure strictly smaller
than i. Because f1, . . . , fm are m distinct atoms, we conclude m ≤ n.

Again, let i ∈ I, let f1, . . . , fn be pairwise distinct atoms of measure i,
and let e1, . . . be all the atoms of measure strictly smaller than i. We
shall show that ν(f1 ∨ . . .∨fn ∨

∨

k ek) = ν(f1 ∨ . . .∨fn). From the last
paragraph we know that ν(f1∨ . . .∨fn−1∨

∨

k ek) < ν(f1∨ . . .∨fn). By
Lemma 2.2(ii), there is a g ∈ P such that ν(f1∨ . . .∨fn−1∨g∨

∨

k ek) =
ν(f1 ∨ . . .∨ fn), and g can neither cover only atoms of measure strictly
smaller than i, nor can g cover an atom of measure strictly larger than
i; so g covers an atom of measure i, which is moreover distinct from
f1, . . . , fn−1. Now, if ν(f1 ∨ . . . ∨ fn) < ν(f1 ∨ . . . ∨ fn ∨

∨

k ek), there
would be again some h which covers an atom of measure i distinct
from f1, . . . , fn−1, g, such that ν(f1 ∨ . . . ∨ fn−1 ∨ g ∨ h ∨

∨

k ek) =
ν(f1 ∨ . . . ∨ fn ∨

∨

k ek), in contradiction to the last paragraph.

It follows in particular that wi = ν(ci) = ν(
∨

{e ∈ A(1): ν(e) ≤ i}) ≤
vj for any j > i. It moreover follows

∨

i wi = ν(1) = 1.

For any i ∈ I, let now νi be the restriction of ν to ci. Clearly then, 1
wi

νi

is a normal submeasure; and by what we have shown, 1
wi

νi is actually
a standard submeasure. In particular, νi is a standard submeasure
multiplied by a positive constant.

Let a ∈ P be such that a ∧ ci > 0, but a ∧ cj = 0 for every j > i,
i ∈ I. We have shown that ν(a) = ν(a ∩ ci), whence ν(a) = νi(a ∩ ci).
Moreover, let a ∈ P be such that there is no such i. From a =

∨

{e ∈
A(1): e ≤ a}, we conclude by continuity from below that a =

∨

{vi :
a ∩ ci > 0}. 2
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3 Similarity relations

with respect to t-norms

We have dealt so far with a boolean algebra endowed with a metric,
which is meant to express to what degree two elements of the algebra
differ. We will now change our point of view in a straightforward way:
As the metric d was also assumed to be bounded from above by 1, we
may reverse the order of its range, that is, we may pass from d to a
new binary function E(·, ·) = 1 − d(·, ·). E then expresses the degree
to which two elements resemble: E(a, b) is the closer to the value 1
the more similar the two elements a and b are. So E is a binary fuzzy
relation expressing similarity, that is: E is a similarity relation.

For an overview over the theory of similarity relations, we refer to
[KlMePa]. Various different names have been used for this concept.
We follow, in a slightly modified way, Zadeh’s proposal; in [Hoe], “sep-
arated [0, 1]-valued equalities” are studied; in [DeMe2], the notion “T-
equality” is introduced, which is also used in [KlMePa]. For the con-
nection between metrics and similarity relations in general, we refer to
[Hoe]. The interplay between metrics and similarity relations w.r.t. t-
norms which, like the archimedean continuous ones, have an additive
generator, is studied in [DeMe1] and further elaborated in [DeMe3].

Definition 3.1 Let P be a boolean algebra.

(i) Let ⊙ be a t-norm. Then we call E: P × P → [0, 1] a similarity

relation w.r.t. ⊙ if (α) E(a, b) = 1 iff a = b, (β) E(a, b) = E(b, a),
and (γ) E(a, b) ⊙ E(b, c) ≤ E(a, c) for a, b, c ∈ P.

(ii) Let ν be a normal submeasure on P and let dν be the metric
associated to ν. Then we call

Eν: P × P → [0, 1], (a, b) 7→ 1 − dν(a, b)

the similarity relation on P induced by ν.

The terminology of part (ii) is justified as follows [Hoe].
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Proposition 3.2 Let P be a boolean algebra, and let ν a normal sub-

measure on P. Then Eν is a similarity relation w.r.t. the  Lukasiewicz

t-norm.

Moreover, let P be atomistic, and assume that ν(a) =
∨

{ν(e) : e ∈
A(a)} for a ∈ P. Then Eν a similarity relation w.r.t. the minimum

t-norm.

Proof. The first part is evident. For the second part, note that dν is an
ultrametric. 2

We now arrive at the main point of this paper: the question how the
metric on a boolean algebra may give rise to a specific continuous t-
norm, which is so-to-say characteristic for this metric. The idea is
simple: Given a metric d, then E = 1−d is a similarity relation w.r.t. a
t-norm ⊙ if and only if

E(a, b) ⊙ E(b, c) ≤ E(a, c) (1)

holds for any a, b, c ∈ P; so there might be a weakest t-norm fulfilling
(1). This t-norm would have the property that the estimation of E(a, c)
out of E(a, b) and E(b, c) is the best possible.

If E = Eν is based on a submeasure ν of the kind considered in Section
2, there is indeed a continuous t-norm which could be called the weakest
t-norm fulfilling (1) up to isomorphism. However, this t-norm is not
the natural choice, and we will proceed differently.

The operation ⊙, as it appears in (1), is in general not used in total;
actually only its restriction to the range of the similarity relation E is
of interest. This gives reason to consider first an analogue of t-norms
defined on a subset U of [0, 1] only; we will call these operations U -based
t-norms. What we have in mind is to determine the weakest ran(E)-
based t-norm fulfilling (1). However, this will be only an intermediate
step; the ran(E)-based t-norm will be extendable to an ordinary t-norm
in a natural way.

Definition 3.3 Let U be a countable subset of the real unit interval
containing 0 and 1. Then a binary operation ⊙U on U is called a U-

based t-norm if (α) (U ;≤,⊙U , 1) is an ordered commutative monoid,
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where ≤ is the natural order, and (β) for any pair a, b there is a largest
element c such that b ⊙U c ≤ a. Moreover, ⊙U is called continuous if
for any a, b such that a ≤ b there is an element c such that b⊙U c = a.

In other words, a continuous U -based t-norm is the monoidal operation
of a BL-algebra whose base set is the countable linearly ordered set U .
Note furthermore that U -based t-norms, where U is finite, are discrete
t-norms, which were studied by several authors, see [KlMePa].

In what follows, we will freely apply Definition 3.1 also to the case that
the involved t-norm ⊙ is U -based, where U = ran(E).

Furthermore, a t-norm ⊙1 - an ordinary or a U -based one - will be
called weaker than a second one ⊙2 if a ⊙1 b ≥ a ⊙2 b for all a, b.

Definition 3.4 Let P be a boolean algebra, and let Eν: P×P → [0, 1]
be the similarity relation induced by some submeasure ν on P. Let
U = ran(Eν), and let ⊙U be a continuous U -based t-norm. We say
that Eν determines ⊙U if ⊙U is the weakest among all continuous U -
based t-norms w.r.t. which Eν is a similarity relation.

As a first step, we formulate the problem how a similarity relation
induced by a submeasure determines a t-norm, directly with respect to
the involved submeasure.

Lemma 3.5 Let ν be a normal submeasure on a complete boolean al-

gebra P. Then Eν is a similarity relation w.r.t. the t-norm ⊙ if and

only if

ν(a) ⊕ ν(b) ≥ ν(a ∨ b) for a, b ∈ P such that a ∧ b = 0, (2)

where ⊕ is the t-conorm dual to ⊙.

This is why we will work in the sequel with t-conorms instead of t-
norms. We will assume that all definitions given for t-norms are dually
also defined for t-conorms. This applies moreover also to U -based t-
norms, which correspond to V -based t-conorms, where V = 1 − U =
{1 − u: u ∈ U}.

Now, the first step for the solution of our problem is as follows.
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Theorem 3.6 Let P be an atomistic, separable, σ-complete boolean

algebra. Let ν be a normal submeasure on P which is continuous from

below, homogeneous, and faithful. Let V = ran(ν). Then we may define

v ⊕V w = max {ν(a ∨ b): ν(a) = v, ν(b) = w} (3)

for v, w ∈ V . Moreover, let U = ran(Eν) = 1 − V and v ⊙U w =
1 − ((1 − v) ⊕V (1 − w)) for v, w ∈ U ; then ⊙U is the continuous

U-based t-norm determined by Eν.

Proof. According to the analysis of ν in Theorem 2.5, ⊕V may be
described as follows. There are a linearly ordered set (I;≤) and pairs
vi, wi ∈ V for every i ∈ I such that vi < wi and wi ≤ vj if i < j.

Moreover, for every i, let Vi = [vi, wi] ∩ V = {x
(k)
i : k ≤ λi}, where

1 ≤ λi ≤ ω and vi = x
(0)
i < x

(1)
i < x

(2)
i < . . . < x

(λi)
i = wi. Then ⊕V

acts on Vi as follows: x
(k)
i ⊕V x

(l)
i = x

(k+l)
i in case k, l < ω and k+ l ≤ λi;

else the result is x
(λi)
i . Finally, ⊕V puts any two elements of V not lying

both in an interval [vi, wi] for some i, to their supremum. So it follows
that ⊕V is a V -based t-conorm, and it is in particular evident that the
maximum in (3) always exists.

It is furthermore clear that ⊕V is among all functions fulfilling (2) the
minimal one. So the remaining part of the assertion follows. 2

Let ⊙U be the U -based t-norm associated to a submeasure according
to Theorem 3.6. The analysis of the preceeding proof shows that ⊙U

is the ordinal sum of three kinds of operations: the boolean AND on
{0, 1}; the  Lukasiewicz conjunction on {0, 1

n
, . . . , 1} for some n ≥ 2;

and the product conjunction on {(1
2
)n : n < ω} ∪ {0}. So there is

natural way how to extend ⊙U to a continuous t-norm; we may simply
use the minimum t-norm in the first case, the  Lukasiewicz t-norm in
the second case, and the product t-norm in the third case.

However, there are more possibilities, and we will give an axiomatic
characterisation of the desired case.

For clarity, we will mark intervals in U ⊆ [0, 1] by a suffix, that is,

[a, b]U
def
= {x ∈ U : a ≤ x ≤ b} for a, b ∈ U .
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Definition 3.7 For some U ⊆ [0, 1], let ⊙U be a continuous U -based
t-norm.

(i) Let a, b, c, d ∈ U such that a < b and c < d. We will say that the
intervals [a, b]U , [c, d]U ⊆ U are injective for ⊙U if for all e ∈ [a, b]U
and all f ∈ [c, d]U , the mappings [c, d]U → U, x 7→ e ⊙U x and
[a, b]U → U, x 7→ f ⊙U x are injective.

(ii) Let ⊙ be a continuous t-norm extending ⊙U . Then we say that
⊙ extends ⊙U smoothly if, for all a, b ∈ [0, 1], we have a⊙ b < a, b

exactly in the case that there are intervals [a0, a1]U , [b0, b1]U ⊆ U

injective for ⊙U , such that a < a1, b < b1, and a ⊙ b ≥ a0 ⊙ b0.

It will turn out that for smoothness implies uniqueness of the extension,
and we will base the main definition on this notion.

Definition 3.8 Let P be a boolean algebra, and let Eν: P×P → [0, 1]
be the similarity relation induced by some submeasure ν on P. Let U =
ran(Eν), and let ⊙U be the continuous U -based t-norm determined by
Eν . We say that Eν determines the continuous t-norm ⊙ if ⊙ smoothly
extends ⊙U .

Continuous t-conorms are ordinal sums of the three standard t-conorms;
we will call the latter  Lukasiewicz conorm, product conorm, and max-
imum conorm, respectively.

Theorem 3.9 Let (P;≤,¬,0, 1) be an atomistic, separable, σ-complete

boolean algebra. Let ν be a normal submeasure on P which is contin-

uous from below, homogeneous, and faithful. Then Eν determines a

continuous t-norm, which is unique up to isomorphism.

Moreover, up to isomorphism, all continuous t-norms arise in this way.

Proof. Let V = 1 − ran(Eν), and let ⊕V be the V -based t-conorm
defined by (3). We shall use the same notation as in the proof of
Theorem 3.6; in particular, (I;≤) is a linear order and, for every i ∈ I,
ui, vi ∈ V . It is obvious how we may ⊕V extend to a t-conorm ⊕.
Namely, we extend, for any i ∈ I, the restriction of ⊕V to Vi to the
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whole interval [vi, wi] as follows: in case λi = 1, we let ⊕ on [vi, wi]
be the maximum conorm; in case 2 ≤ λi < ω, we take (an isomorphic
copy of) the  Lukasiewicz conorm, and in case λi = ω, we take (an
isomorphic copy of) the product conorm. In all other cases, we set ⊕
to the maximum of the two arguments.

It is not difficult to see that ⊕ extends ⊕V smoothly; so Eν determines
⊕. We claim that ⊕ is up to isomorphism the only continuous t-norm
with this property. Indeed, let ⊕′ be any smooth extension of ⊕V to a
continuous t-conorm. Then ⊕′ has, like ⊕, the idempotents vi and wi

for all i ∈ I. Consider first an interval [vi, wi] such that λi ≥ 2. Then

⊕′ clearly cannot have any idempotent within [x
(1)
i , wi). Furthermore,

the intervals [vi, x
(1)
i ]V , [vi, x

(1)
i ]V ⊆ V are injective for ⊕V ; it follows

that ⊕′ cannot have an idempotent in (vi, x
(1)
i ) either. So ⊕′ is on

[vi, wi] isomorphic to ⊕. Consider second two idempotents v, w such
that v < w and such that (v, w) is disjoint from all [vi, wi] such that
λi ≥ 2. Then a ⊙ b > a, b for any a, b ∈ [v, w] contradicts smoothness,
because injective intervals are necessarily within some [vi, wi]U , where
λi ≥ 2. It follows that ⊕′ takes, like ⊕, the maximum values outside
the intervals [vi, wi] such that λi ≥ 2.

The fact that all continuous t-norms arise in this way, is an immediate
consequence of the representation theorem of continuous t-conorms by
means of ordinal sums. 2

4 Conclusion

We found a way to motivate the usage of any specific continuous t-norm.
Our framework are certain metric boolean algebras; such algebras are
naturally endowed with a similarity relation w.r.t. several continuous
t-norms; we have shown how to choose the weakest one among them
and that this can be every continuous t-norms.

To conclude the paper, let us have a look on related and possible further
research. The framework which we have chosen is of a rather specific
nature, and it would be clearly desirable to explore further possibilities.
It actually would be desirable to define a general abstract framework
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within which fuzzy-logical connectives would find their natural inter-
pretation – comparably to the case of modal logics and Kripke models.
Few efforts in this direction were made. For instance, in [Par], a for-
malism is developed in which alternatively the usage of the minimum
t-norm or the product t-norm naturally appears. Searching for a moti-
vation to use continuous t-norms, we may certainly also go the opposite
way: we may wonder which t-norms have which kind of practical use.
Systematic work in this direction can be found in [BaNa].

In view of the present work itself, we note that several questions re-
mained open. We are in particular interested in the question if there is
an analogous version of Theorem 3.9 which assumes the boolean algebra
just to be separable and σ-complete. This would result in a much more
general framework. Unfortunately, the present results are not of much
use for this aim, being heavily dependent on the atomicity condition.

Furthermore, it would clearly be desirable to characterise a wider class
of t-norms, like e.g. the left-continuous ones, in a similar way as pro-
posed here. However, this will be difficult as long as we are lacking a
general structure theory.
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