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Abstract. In this paper, we are applying a hybrid soft computing ap-
proach for optimizing the performance of electrical drives where many
degrees of freedom are allowed in the variation of design parameters.
The hybrid nature of our approach originates from the application of
multi-objective evolutionary algorithms (MOEAs) to solve the complex
optimization problems combined with the integration of non-linear map-
pings between design and target parameters. These mappings are based
on artificial neural networks (ANNs) and they are used for the fitness
evaluation of individuals (design parameter vectors). The mappings sub-
stitute very time-intensive finite element simulations during a large part
of the optimization run. Empirical results show that this approach finally
reduces the computation time for single runs from a few days to several
hours while achieving Pareto fronts with a similar high quality.
Keywords: hybrid soft computing methods, multi-objective genetic al-
gorithms, feed-forward artificial neural networks, electrical drives

1 Introduction

1.1 Motivation

Today about 70% of the total consumption of electrical energy in industry and
about 40% of global electricity is used for electric drives. In [3] it is stated that
about 200TWh are actually needless wasted energy in the European Union and
could be saved by increasing the efficiency of electrical drives. For that reason,
a regulation was concluded in 2009 by the European Union forcing a gradual
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increase of the energy efficiency of electrical drives [8]. However, manufacturers
of electrical machines need to take more than just the efficiency into account in
order to be competitive on the global market. To be able to successfully compete,
the electrical drives should be fault-tolerant, should offer easy controllable oper-
ational characteristics and compact dimensions, and, last but not least, should
have a very competitive price. As such, the need to simultaneously optimize
electrical drives with regards to several objectives is self evident.

In order to evaluate (predict) the operational behavior of an electrical ma-
chine for a concrete design parameter setting, very time-intensive finite element
(FE) simulations (on partial differential equations) need to be performed due to
the nonlinear behavior of the used materials. Even the state-of-the-art optimiza-
tion algorithms, typically require the evaluation of thousands of such designs
in order to produce high quality results. By using computer clusters, several
evaluations can be performed in parallel, significantly speeding up the opti-
mization procedure. Still, the need to evaluate every single design by means
of FE-simulations remains a major drawback. Because of this dependency on
FE-simulations, optimization runs can take several days to complete, even when
distributing computations over a computer cluster. In this paper we describe
an effective hybrid soft computing approach which is able to greatly reduce the
optimization run-time by relaxing the dependency on FE-simulations.

1.2 Problem Statement and State-of-the-art

The design of an electrical machine usually comprises at least the optimization
of the geometric dimensions of a pre-selected topology. Furthermore, because
of volatility in the global raw material market, companies tend to investigate
the quality of the electrical drive design with regard to different construction
materials. Formally, the three multi-objective optimization problems (MOOPs)
that we use in this study, can be defined as:

min (f1(x), f2(x), ..., fk(x))

where
f1(x), f2(x), ..., fk(x) and xT =

[
x1 x2 . . . xn

]
(1)

are the objectives and the design parameter vector (e.g. geometric dimensions,
material properties, etc.). Additionally, hard constraints like g(x) can be spec-
ified in order to make sure that the drive exhibits a valid operational behavior
(e.g. the torque ripple is upper bound). Such constraints are also used for inval-
idating designs with a very high price.

g(x) ≤ 0 ∈ Rm (2)

Generally, in order to characterize the solution of MOOPs it is helpful to first
explain the notion of Pareto dominance [4]: given a set of objectives, a solution
A is said to Pareto dominate another solution B if A is not inferior to B with
regards to any objectives and there is at least one objective for which A is better
than B.
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In MOOPs, a single optimal solution is extremely difficult to find and, in
many cases, such a solution does not even exist. The result of an optimization
process for a MOOP is usually a set of Pareto-optimal solutions named the
Pareto front [4]. The ideal result of the optimization is an evenly spread Pareto
front which is as close as possible to the true Pareto front of the problem, i.e.
the set of all non-dominated solutions in the search space.

A widespread classical approach to solve MOOPs is to combine the multiple
objectives into a single aggregating objective (e.g. a linear combination of the
initial objectives) and then use a single-objective optimization technique to find
a solution [4]. The downside of this method is that when trying to find multiple
(Pareto-optimal) solutions, several independent runs are needed with the hopes
that each run would yield a different solution. Unsurprisingly, population based
optimization methods from the field of soft computing like particle swarm opti-
mization [19], ant colony optimization [2] and especially evolutionary algorithms
[4] perform much better in the context of MOOPs. This is because of the inherent
trait of all these methods to step-wise improve sets (populations) of solutions.
As such, various extensions aimed at making the contained populations store
and efficiently explore Pareto fronts have enabled these types of algorithms to
efficiently find multiple Pareto-optimal solutions for MOOPs in one single run.

During the last decade, the use of soft computing methods like genetic algo-
rithms [15] and particle swarm optimization [17] has also become state-of-the-art
in the design process of electrical machines and associated electronics. A detailed
review regarding the performance of these and other optimization methods used
in the field of electrical machine design can be found in [6].

1.3 Our Approach

Recent hybrid learning and optimization methods have proven to be very efficient
at tackling complex real-world problems [1]. In order to obtain a fast and effi-
cient optimization framework, we also resort to a hybrid approach that combines
two well known methods from the field of soft computing [10]: 1.) evolutionary
algorithms - in particular, we consider the specialized class of multiple-objective
evolutionary algorithms (MOEAs) [4] and 2.) artificial neural networks (ANNs)
- in particular, network models belonging to the multilayer perceptron (MLP)
paradigm [12].

The use of MOEAs to efficiently explore the search space and converge (in
relatively few generations) to an accurate Pareto can be considered a somewhat
conventional approach and, throughout this paper, we shall refer to this basic
application of MOEAs in the design process as ConvOpt. The fitness evaluation
function in ConvOpt is very time-intensive as it dependents on FE-simulations.
As such, despite the rather fast convergence in terms of generations that need
to be computed, the entire optimization process is quite slow.

Our idea for reducing the evaluation time of individuals is to substitute the
time-intensive evaluation function based on FE simulations with a very fast
approximation function based on highly accurate regression models, i.e. map-
pings between the motor design parameters and the target values which should
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be estimated. These targes are actually optimization specific objectives (1) and
constraints (2). As the mappings are specific for each optimization scenario, they
need to be constructed on-the-fly, at each run of the evolutionary algorithm. This
means that only individuals from the first few generations will be evaluated with
the time-intensive FE-based evaluation function in order to construct a training
set for the target mappings. For the remaining generations, the mappings will
substitute the FE simulation as the basis of the fitness function. This hybrid
approach (HybridOpt) will yield a significant reduction in computation time,
from a few days to several hours, as we verified during empirical tests.

Initially, for constructing the mappings, we considered easy and fast to train
linear models. However, these models turned out not to be sufficiently accu-
rate. Thus, we exploited non-linear techniques and finally decided to use ANNs
because of the following reasons: 1.) they possess the universal approximation
capability [14], 2.) they are known to perform very well on noisy data [16] (in our
application, noise may arise due to slight environmental variations during the
optimization) and 3.) they have already been successfully applied in evolutionary
computation for designing mappings for surrogate functions on several instances
[13]. In order to elicit ANN models of optimal complexity (# of neurons), we
rely on a best parameter grid search and we designed a new selection method
(Section 2.2) that successfully balances model accuracy and sensitivity on the
one side and model complexity on the other.

2 Optimization Procedure

2.1 Multi-Objective Evolutionary Algorithms

Two of the mainstream evolutionary algorithms used for solving MOOPs are
NSGA-II [5] and SPEA2 [21]. Because of the similar design principles and similar
performance of the two algorithms with regards to our test scenarios, we decided
to apply NSGA-II for the purpose of this research. The individuals with which
the algorithm operates are represented by real valued design parameter vectors.
The size of the design vector ranges from six to ten. For all considered objectives,
minimization towards a value of 0 is the preferred option (as explained in Section
1.2).

NSGA-II stores at each generation t two distinct populations of the same
size n, a parent population P (t) and an offspring population O(t). Population
P (t+ 1) is obtained by selecting the best n individuals from the combined pop-
ulations of the previous generation, i.e., from C(t) = P (t) ∪O(t). The fitness of
an individual is assessed by using two metrics. The first metric is a classification
of the individuals in the population into non-dominated fronts. The first front
F1(t) is the highest level Pareto front and contains the Pareto optimal set from
C(t). The subsequent lower-level fronts Fj(t), j > 1 are obtained by removing
higher level Pareto fronts from the population and extracting the Pareto optimal
set from the remaining individuals, i.e., Fj(t), j > 1 contains the Pareto optimal

set from C(t) \
⋃j−1

k=1 Fk(t). Individuals in a higher-level front Fj(t) are ranked
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as having a higher fitness than individuals in a lower-level front Fj+1(t). NSGA-
II uses a second metric, the crowding distance, in order to rank the quality of
individuals from the same front. The crowding distance associated to a certain
individual is an indicator of how dense the non-dominated front is around that
individual. Population P (t+1) is obtained by adding individuals from the higher
non-dominated fronts, starting with F1(t). If a front is too large to be added com-
pletely, ties are broken in favor of the individuals that have the higher crowding
distance — are located in a less crowded region. Population O(t+ 1) is obtained
from population P (t + 1) by using binary tournament selection, simulated bi-
nary crossover and polynomial mutation. At every generation t, the individuals
that do not satisfy the imposed constraints (2) are removed from O(t) before
constructing C(t).

2.2 Fitness Function Calculation using ANNs

Fig. 1. Diagram of the state-of-the-art, conventional optimization process - ConvOpt
(left side) and of our ANN-based hybrid approach - HybridOpt (right side)

Basic Idea Figure 1 contains an overview of the computational stages of the
two optimization processes when wishing to evolve a total of M generations.
Because of the very lengthy runs, for both methods, the result of a single run is
the Pareto front extracted from the combined set of all the evaluated individuals.

In the FE-based MOEA execution stage the first N generations of each
MOEA run are computed using FE simulations and all the valid individuals
evaluated at this stage will form the training set used to construct ANN map-
pings. Each sample in this training set contains the initial electrical motor design
parameter values and the corresponding target output values computed using
FE simulation software. In the mapping construction stage, we use systematic
parameter variation and a selection process that takes into consideration both
accuracy and architectural simplicity in order to find the most robust ANN de-
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sign for each of the considered target variables and train the appropriate ANN
mapping models.

The next step is to switch the MOEA to a mapping-based evaluation function
for the remaining generations that we wish to compute (mapping-based MOEA
execution stage). The mapping-based evaluation function is extremely fast when
compared to its FE-based counterpart, and it enables the prediction of targets
based on input variables within milliseconds.

In the mapping-based Pareto front computation stage a preliminary mapping-
based Pareto front is extracted only from the combined set of individuals eval-
uated using the mappings. All the solutions contained in the mapping-based
Pareto front are re-evaluated using FE computations in the next stage of
HybridOpt (the FE-based reevaluation stage). This is necessary in order to as-
sure geometric valid solutions. In the final Pareto front computation stage, the
final Pareto front of the simulation is extracted from the combined set of all the
individuals evaluated using FE simulations.

ANN-based mapping - Structure and Training The multilayer perceptron
(MLP) architecture (Figure 2(a)) consists of one layer of input units (nodes),
one layer of output units and one or more intermediate (hidden) layers. MLPs
implement the feed-forward information flow which directs data from the units in
the input layer through the units in the hidden layer to the unit(s) in the output
layer. Any connection between two units ui and uj has an associated weight
wuiuj

that represents the strength of that respective connection. The weights
are initialized with small random values and they are subsequently adjusted
during a training process based on the standard back-propagation algorithm
[18].

In our modeling tasks, we use MLPs that are fully connected and have a
single hidden layer. The number of units in the input layer is equal to the size
of the design parameter vector. Also, as we construct a different mapping for
each target variable in the data sample, the output layer contains just one unit
and, at the end of the feed-forward propagation, the output of this unit is the
predicted regression value of the elicited target, e.g. P (o1) for the MLP presented
in Figure 2(a).

We have chosen to adopt an early stopping mechanism that terminates the
execution whenever the prediction error computed over a validation subset V
does not improve over 200 consecutive iterations, thus preventing the model
from over-fitting. This validation subset is constructed at the beginning of the
training process by randomly sampling 20% of the training instances.

ANN-based mapping - Evaluation and Automatic Model Selection
One important issue in our approach concerns an appropriate automatic selection
of parameters in order to construct an accurate and robust model (mapping) in
terms of expected prediction quality on new data. The basic idea is to conduct a
best parameter grid search, iterating over different parameter value combinations
(including number of hidden neurons, the learning rate and the momentum). For
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(a) Diagram of MLP (b) The model selection strategy

Fig. 2. Multilayer perceptron architecture and model selection strategy

each parameter combination, a model is constructed and its predictive quality
is assessed using 10-fold cross validation. This leads to a fairly large pool of
different models.

Our new, automatic, model selection strategy (Figure 2(b)) is divided into
two stages. Initially, all the models are ranked according to a metric that takes
into account the accuracy of their predictions measured in terms of the mean R2

over all folds minus the standard deviation of R2 over all folds. The latter re-
flects the sensitivity of the model for the concrete choices of the folds, indicating
whether a mapping is biased towards specific regions of the search space. Next,
an accuracy threshold is computed as the mean of the accuracies of the best
performing 2% of all models. The choice of the final model is made using a com-
plexity metric that favors the least complex model (i.e., lowest number of hidden
units) which has a predictive accuracy higher than the accuracy threshold.

3 Evaluation and Results

3.1 The Optimization Scenarios

We consider three multi-objective optimization scenarios from the field of de-
signing and prototyping electrical drives:

The first scenario (Scenario OptS1 ) is on an electrical drive featuring a slot-
ted stator with concentrated coils and an interior rotor with buried permanent
magnets. The rotor and stator topologies are shown in Figure 3. The design
parameter vector is given by XT =

[
hm αm er dsi bst bss

]
, where all param-

eters are shown in Fig. 3 except for αm, which denotes the ratio between the
actual magnet size and the maximum possible magnet size as a result of all other
geometric parameters of the rotor. For this scenarios, the targets of the ANN
mapping construction phase are the four, unconstrained, Pareto objectives:
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– −η - where η denotes the efficiency of the motor. In order to minimize the
losses of the motor, the efficiency should be maximized and therefore −η is
selected for minimization.

– TcogPP - the peak-to-peak-value of the motor torque for no current excita-
tion. This parameter denotes the behavior of the motor at no-load operation
and should be as small as possible in order to minimize vibrations and noise
due to torque fluctuations.

– TotalCosts- the material costs associated with a particular motor. Obvi-
ously, minimizing this objective is a very important task in most optimiza-
tion scenarios.

– TrippPP - the equivalent of Tcog,PP at load operation. The values of this
objective should also be as small as possible.

The second problem (Scenario OptS2 ) is on an electrical machine featuring an
exterior rotor. The design parameter vector contains seven geometric dimensions.
The aim of this optimization problem was to simultaneously minimize the total
losses of the system at load operation (unconstrained Pareto objective) and the
total mass of the assembly (constrained Pareto objective). This scenarios also
contains a secondary constraint (2) imposed on a geometrical dimension of the
evolved motor designs. This means that, for this scenario, we have a total of
three targets in the mapping construction stage.

The third problem (Scenario OptS3 ) also concerns a motor with an exterior
rotor. The design parameter vector has a size of ten. This scenario proposes four
constrained Pareto objectives: 1.) ls - the total axial length of the assembly, 2.)
TotalMass - the total mass of the assembly, 3.) PCu- the ohmic losses in the
stator coils, 4.)Pfe - the total losses due to material hysteresis and eddy currents
in the ferromagnetic parts of the motor.

3.2 The Testing Framework

Both ConvOpt and HybridOpt use the NSGA-II and SPEA2 implementations
provided by the jMetal package [7]. In case of all the tests reported in Section
3.4, we used NSGA-II with a crossover probability of 0.9, a crossover distribution
index of 20, a mutation probability of 0.2 and a mutation distribution index of
20. These are standard values recommended by literature [5] and set as default
in jMetal. We conducted a preliminary tuning phase with ConvOpt to check
whether different settings for the crossover and mutation distribution indexes
would yield better results but we found no improvement over the standard values.

In the case of HybridOpt, we performed the mapping training stage after
N = 25 generations (for the motivation of this choice, please see Section 3.4). As
we used a population size of 50, the maximum possible size of the training sets
is 1250. The size of the actual training sets we obtained was smaller, ranging
from 743 to 1219 samples. This is because some of the evolved design configura-
tions were geometrically unfeasible or invalid with regards to given optimization
constraints.

The MLP implementation we used for our tests is largely based on the one
provided by the WEKA (Waikato Environment for Knowledge Analysis) open
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(a) Stator (b) Rotor

Fig. 3. Interior rotor topology with embedded magnets

source machine learning platform [11]. In the case of the best parameter grid
searches that we performed in order to create the MLP-based mappings: 1.) the
number of hidden units was varied between 2 and double the number of design
variables, 2.) the learn rate was varied between 0.05 and 0.40 with a step of 0.05
and 3.) the momentum was varied between 0.0 and 0.7 with a step of 0.1.

The search is quite fine grained as it involves building between 704 (scenario
OptS1 ) and 1216 (scenario OptS3 ) MLP models for each elicited target. This
approach is possible because we make use of the early stopping mechanism in
the model training process (see Section 2.2) which in turn assures a quite low
average MLP model training time of 361.12 seconds. We achieve a considerable
speedup in the mapping creation stage by distributing all the MLP training tasks
over a cluster computing environment that is also used to run in parallel required
FE-simulations. As a result, the mapping creation stage took, on average, 149.26
minutes, over all performed tests.

3.3 Considered Performance Metrics

In order to compare the performance and behavior of the conventional and hybrid
optimization processes we use four performance metrics: 1.) the hypervolume
metric H [9] measures the overall coverage of the obtained Pareto set; 2.) the
generalized spread metric S [20] measures the relative spatial distribution of the
non-dominated solutions; 3.) the FE utility metric U offers some insight on the
efficient usage of the FE evaluations throughout the simulation (higher values are
better); 4.) the run-time metric T records the total runtime in minutes required
by one simulation; The H metric has the added advantage that it is the only
MOEA metric for which we have theoretical proof [9] of a monotonic behavior.
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Table 1. The average performance over five runs of ConvOpt and HybridOpt

Metric
Scenario OptS1 Scenario OptS2 Scenario OptS3

ConvOpt HybridOpt ConvOpt HybridOpt. ConvOpt HybridOpt

H 0.9532 0.9393 0.8916 0.8840 0.4225 0.3691

S 0.7985 0.6211 0.8545 0.8311 0.4120 0.4473

U 0.1315 0.2210 0.0016 0.0064 0.2901 0.2362

T 2696 991 3798 1052 4245 2318

This means that the maximization of the hypervolume constitutes the necessary
and sufficient condition for the set of solutions to be maximally diverse Pareto
optimal solutions. In the case of the S metric, a value closer to 0.0 is better,
indicating that the solutions are evenly distributed in the result space.

3.4 Results

In order to obtain a quick overview of the performance of linear models compared
to ANN non-linear mappings, we conducted some preliminary modeling tests on
the 11 targets of all three optimization scenarios: it turned out that the average
model quality measured in terms of R2 was 0.859 in case of the linear models,
whereas ANNs achieved a value of 0.984. On three targets, the linear models
were almost useless, as they achieved an R2 of around 0.6.

In the current version of HybridOpt, it is very important to choose a good
value for the parameter N that indicates for how many generations we wish to
run the initial FE-based execution stage.

Finally, based on extensive tests, we have chosen N = 25 as this is the small-
est value of N for which the trained models exhibit both a high prediction accuracy
as well as a high prediction stability. Over all three data sets and the 6 non-linear
targets, the generational coefficients of determination (for generations 31 to 100)
obtained by the models constructed using samples from the first 25 generations
1.) are higher than 0.9 in 94.52% of the cases; and 2.) are higher than those
obtained by the models constructed using 20-24 generations in 57.52% of the
cases and by those obtained by the models constructed using 26-30 generations
in 42.52% of the cases.

The comparative performance of ConvOpt and HybridOpt is presented in
Table 1. The results for each scenario are averaged over five optimization runs.
On the highly constrained scenario OptS3, the hybrid optimization process is a
little bit worse. The main reason for this is that the hard constraints determine
a high ratio of invalid individuals to be generated during the mapping based
evaluation stage. However, the computation time could still be reduced by ≈
45%. Even though, for this scenario, ConvOpt produces Pareto fronts with a
better H, HybridOpt is still able to evolve well balanced individual solutions in
key sections of the Pareto front — please see Figure 4 for two such examples.
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(a) (b)

Fig. 4. 2D projections of the full Pareto fronts for the highly constrained scenario
OptS3. The black dots denote solutions obtained using HybridOpt. These solutions are
relatively equally distanced, with regards to the considered objectives, from the origin
of the projected Pareto space.

4 Conclusion

In this paper, we investigated multi-objective optimization algorithms based on
evolutionary strategies, using the famous and widely used NSGA-II algorithm,
for the purpose of optimizing the design of electrical drives in terms of efficiency,
costs, motor torque behavior, total mass and others. As the design and the target
parameter space is quite large, we end up having complex optimization scenarios
that require very long computation runs.

In order to alleviate this problem, we experimented with a system that au-
tomatically creates, on-the-fly, non-linear MLP-based mappings between design
and target parameters. Empirical observations over averaged results indicate
that, by replacing the time-intensive FE simulations with fast mapping based
estimations of the target values, we are able to reduce the overall run-time of
the optimization process, in average, by more than 60%. At the same time, the
hybrid optimization process is able to produce Pareto fronts of similar quality
to the ones obtained using the conventional FE-based optimization.
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