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Abstract. This research is focused on reducing the average size of the
solutions generated by an enhanced GP process without affecting the
high predictive accuracy the method exhibits when being applied on a
complex, industry proposed, regression problem. As such, the effects the
GP enhancements have on bloat have been studied and, finally, a bloat
control system based on dynamic depth limiting (DDL) and iterated
tournament pruning (ITP) was designed. The resulting bloat control
system is able to improve by ' 40% the average GP solution parsimony
without impacting average solution accuracy.
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1 Introduction

For the concrete, industry proposed, system identification problem that has been
considered for this research, an enhanced GP algorithm (Ehd-GP) developed by
the HEAL team is able to produce high quality regression models that were of
comparable, if not even better, accuracy than the regression models obtained us-
ing other, more well established, non-linear, data-mining techniques like support
vector machines (SVMs) and artificial neural networks (ANNs) [6] [11]. Further
evidence of the high quality of the solutions generated by Ehd-GP is summarized
in [9].

The main advantage of using GP for the given regression problem task lies
in the the ability of the this method to produce white-box, human interpretable,
models than can be easily used by human domain experts to gain new insight into
phenomena associated with the given industrial process. However, the degree of
interpretability a GP generated regression model exhibits is proportional to its
parsimony as trying to analyze large and/or highly complex models can be a
quite tedious task.

A general threat to GP model interpretability comes in the form of a well
studied phenomenon known as bloat : a generation-wise rapid growth in the size
of evolved programs without any corresponding benefits in terms of accuracy.
This phenomenon is very well known to GP practitioners and literature proposes
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a large set of studies regarding bloat. Controlling and combating bloat is an open
and fairly complicated task as Silva and Costa [8] argue that the phenomenon
is very likely to be a natural consequence of combining an evolutive (fitness
driven) search with a variable-length solution representation (i.e. two of the
main characteristics of the GP theory).

With the above mentioned evidence of the ability of Ehd-GP to produce high
accuracy regression models, the purpose of this research is to analyze the impact
the modifications in Ehd-GP have on bloat and, consequently, try to control the
bloating phenomenon in this GP process such as to reduce the average size of
the resulting solution models without affecting the high average quality of these
models.

2 The Ehd-GP Process

The Offspring Selection Strategy (OS) The most important modification
the Ehd-GP proposes over the standard GP process described by Koza [5] is the
incorporation of the offspring selection strategy [1]. The idea behind this elitist
selection method is that an offspring is accepted as a member of the population
of the next generation if and only if it outperforms the fitness of its own parents.
As with conventional GP, offspring are generated by parent selection, crossover
and mutation. The difference consists in the introduction of a second (offspring)
selection stage. A variable called success ratio indicates the ratio of the next
generation members that must outperform their respective parents. As long as
this ratio is not fulfilled, offspring are created and the successful ones are inserted
into the next generation, while those that do not outperform their parents are
stored in a rejection pool. After enough successful next generation offspring have
been created, the rest of the members of the generation are randomly chosen from
the rejection pool.

The Linear Scaled Error Measure The second important enhancement that
Ehd-GP proposes is the use of a linear scaled error measure (as described by
Keijzer in [4]) in the fitness evaluation function. The advantage of using a scaled
mean squared error (MSE), as opposed to the traditional approach, lies in “the
change of the view” that the selection operator has on the worth of an individual
expression. As this error measure rescales the expression on the optimal slope
and intercept, selection will favor expressions that are close in shape with the
target, instead of demanding first that the scale is correct.

3 Test Setup

The industry proposed main modeling scenario used in our tests contains 44
dependent variables and has been split into a training set, a validation set and a
test set. For a detailed description of the benefits of using this data partitioning
strategy in GP based modeling please see [9].
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Methodology Because GP remains at its core a stochastic method, we have
performed 100 GP runs of a given configuration in order to determine the general
behavior of that configuration (in terms of solution size and accuracy). We shall
refer to the data set that contains all the 100 solutions obtained for a specific
GP configuration as the the full data set of that configuration. Since solution
accuracy is the first performance GP criteria, we are especially interested in an-
alyzing and improving the best solutions that can be generated with a given GP
configuration. As a result, for each GP configuration, we have also constructed
a top accuracy subset that only contains the 25 most accurate solutions in the
full data set. Ties were broken in favor of the more parsimonious model.

Throughout this paper, our comparisons are based on basic central tendency
indicators (the average - µ, the standard deviation - σ and the median - µ1/2 )
for both the full solution data sets and the top accuracy subsets.

When comparing among GP configuration results based on the full data
sets, we also make use of significance testing to confirm our empirically based
hypotheses. The significance test we use is the Mann-Whitney-Wilcoxon test
(also know as the Mann-Whitney U test). The used significance level is α = 0.05
in the case of one-tailed tests. The choice for this particular non-parametric
test was made because we do not wish to presume that our solution data set is
normally distributed, either according to size or accuracy.

In order to provide a simple but accurate and suggestive overview of the
performance of the GP solutions in the full and top accuracy data sets, for each
GP configuration, we construct comparative kernel density estimation plots of
the the solution size and of the solution MSE.

GP Configurations The Ehd-GP was configured to enforce a strict OS thus
forcing every member of the next generation to outperform both its parents.
When generating a new offspring, one parent was chosen using proportional
selection and the other was chosen using random selection.

For our tests we have also used a Koza style standard GP process (Std-GP)
in which both parents were selected according to proportional selection.

Both GP processes used only point mutation and in both cases constants
were initialized and modified uniformly (between -20 and 20), whilst variables
were initialized and modified according to a normal distribution N(0, 1). The
other, more common, GP algorithm parameters that were used by both the Std-
GP and the Ehd-GP processes are: an arithmetic function library (+, −, ∗, %,
power, sqrt), a population size of 1000 individuals, a mutation rate of 15%, a
max tree height of 15 and a maximum number of evolved generations of 1000.

The initial population initialization method was PTC2 [7] for both GP pro-
cesses and the stopping criterion stated that a run should be terminated if no
validation wise improvement was found in the last 100 generations.

The max tree height limit value was chosen empirically after performing sys-
tematic tests on the modeling scenarios considered in this research and observing
that the very good solutions have a depth smaller than 10.
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4 Ehd-GP performance analysis

The performances of Std-GP and of Ehd-GP with regards to average solution
accuracy and average solution size are summarized in Table 1. The corresponding
comparative kernel density plots are presented in Fig. 1.

Our first empirical observation that the Ehd-GP is far superior in terms
of average solution accuracy is statistically significant as the Mann-Whitney-
Wilcoxon test yielded a one-tailed p-value smaller than 0.001.

The second empirical observation that the Ehd-GP tends to produce solu-
tions of lower parsimony than the Std-GP is also statistically significant, being
confirmed as the one-tailed Mann-Whitney-Wilcoxon test produced a one-tailed
p-value of 0.005.

5 A Bloat Control System for Ehd-GP

The main challenge of fitting an efficient bloat control mechanism in Ehd-GP
came from trying to integrate this such a modification with the existing OS
strategy.

For instance, anti-bloat selection methods [10][3] proved fairly difficult to
combine with the offspring selection enhancement because their most effective
implementations are based on dynamical adjustments of their control param-
eters. When using OS with a linear scaled error measure, the GP algorithm
converges quite fast (in > 90% of the runs the solution was found before the
22nd generation) and this means that there are far fewer opportunities for pa-
rameter adjustment.

In the case of anti-bloat genetic operators [2], our educated guess is that
for Ehd-GP, the combination between size and/or depth limitations imposed to
genetic operators (i.e. restricting the number of offspring than can be generated)
and OS has a high chance of leading to premature convergence (because of a rapid
drop in genetic diversity).

Dynamic Depth Limits - DDL In [8], Silva and Costa present a simple
yet effective solution for overcoming most of the shortcomings of static depth
limitation. Their idea is to dynamically adjust the value of the depth limit during
the run. Compared to the original method, we have made a series of modifications
in order to integrate DDL into the Ehd-GP process. In our implementation of
the concept (Algorithm 1), the dynamic limit is initially set to a low value
(InitialDepthLimit), that is usually 20-30% higher than that of the maxium
depth in the initial population. An offspring is automatically accepted in the
next generation if it satisfies the accuracy constraint and at the same time does
not infringe the depth limit. If an offspring infringes the depth limit but is the
best individual found so far, then it is accepted in the next generation if the
increase in size is matched by the increase in accuracy. In the latter case, the
limit is raised to match the depth of the new best-of-the-run individual. If during
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Algorithm 1 The dynamic depth limiting module (DDL module)

1: AcceptStatus = true
2: if OffDepth ≤ DepthLimit then
3: if (BestMSE / OffspringMSE - 1) ≥ (DLimit - OffspringDepth) * Clower then
4: if OffspringDepth > InitialDepthLimit then
5: DLimit = OffspringDepth
6: else
7: DLimit = InitialDepthLimit
8: end if
9: end if

10: else
11: if (BestMSE / OffMSE - 1) ≥ (OffspringDepth - DLimit) * Craise then
12: DLimit = OffspringDepth
13: else
14: AcceptStatus = false
15: end if
16: end if
17: return AcceptStatus

the run the best found individual at a given time has a depth that is significantly
lower than the current depth limit, the limit will be lowered.

The condition on Line 11 states that the DDL should be raised if each extra
depth level is matched by an increase in training accuracy of at least Craise%.
Analogously, the condition on Line 3 states that the DDL should be lowerd
if each decreased depth level is matched by an increase in training accuracy
of at least Clower%. As an empirical rule, tests have shown that the relation
Clower = 2 ∗ Craise enables the DDL to have a stable behaviour throughout the
run for all the considered test scenarios. Furthermore, after testing on three other
modeling scenarios, we discovered that Craise = 0.015 is also a stable setting.

Iterated Tournament Pruning - ITP Largely inspired by [9], and taking
into consideration all the particularities of the GP process we are trying to
enhance, we also decided to implement and test a bloat control strategy based
on syntax-tree pruning. Our ITP strategy is described in Algorithm 2 and is
based on a series of consecutive pruning tournaments. In each tournament we
create several pruning candidates of the syntax-tree model we wish to prune in
that tournament (the pruning base model). A pruning candidate for a model is
created through a very simple process (Line 6) that randomly selects a subtree
from the given model an replaces it with the mean value obtained by evaluating
that subtree over all the records in the training set. The size of the excised
subtree is limited to at most MaxPruning% with regards to the pruning base
model. At the end of each tournament the pruning candidate with the highest
accuracy (minimum MSE) will be selected as the next pruning base.

Initial tests performed with various settings for the configuration parameters
ITP supports indicate that: the MaxPruning and IterationsCount parameters
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should be set such as to generally avoid the possibility of reducing a model to a
single node; ITP displays the best results when applied only to the individuals
that are not among the best 10-15% nor among the worst 20-40% according to
accuracy; an increased mutation rate of 25-50% would improve solution accuracy;

Algorithm 2 The iterated tournament pruning module (ITP module)

1: BestMSE = ∞
2: PrunSolution = Φ
3: PrunBase = OriginalModel
4: for i = 0 to IterationsCount do
5: for j = 0 to TournamentSize do
6: PrunCandidate = StochasticPrune(PrunBase, MaxPruning)
7: PrunMSE = ComputeMSE(PrunCandidate)
8: if PrunMSE < BestMSE then
9: PrunSolution = PrunCandidate

10: BestPrunMSE = PrunMSE
11: end if
12: end for
13: PrunBase = PrunSolution
14: end for
15: return PrunSolution

The Resulting Bloat Control System - BCS From the previous descrip-
tions, one can observe that DDL and ITP have two complementary ways of
fighting bloat. Whilst the former tries to prevent the creation and propagation
of bloat, the latter directly attempts to remove superfluous code from the popu-
lation members. As such, trying to combine both methods in a single integrated
solution aimed at combating bloating, seemed a very natural approach.

In our initial tests of the combined bloat control system, we decided to use for
the two bloat control methods the same parameter settings from the stand-alone
configurations. To our surprise, the approach proved quite successful.

6 Conclusions

Individually both the DDL and ITP modules managed to reduce the average
Ehd-GP solution size (see Table 1). Both improvements were statistically signif-
icant with Mann-Whitney-Wilcoxon test p-values smaller than 0.0001.

The combination of the two bloat control methods proved to reduce even
more the average Ehd-GP solution size (see Table 1). The average decrease of
solution size determined by BCS was statistically significant both with regards
to individual DDL (p-value = 0.0183) and to individual ITP (p-value < 0.0001).

While empirical observations may suggest that BCS also slightly increased
the average solution quality of the Ehd-GP, there was no solid statistic proof
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Fig. 1. Kernel density estimation plots for Std-GP and Ehd-GP

Table 1. Accuracy and size information regarding Std-GP and of Ehd-GP solutions

Full data set Acc. subset

µ σ µ1/2 µ σ µ1/2

Std-GP MSE 2.178 1.046 1.821 1.177 0.177 1.232

Ehd-GP MSE 1.448 0.584 1.280 0.929 0.037 0.930

DDL-GP MSE 1.514 0.643 1.345 0.919 0.049 0.940

ITP-GP MSE 1.228 0.925 1.065 0.962 0.035 0.970

BCS-GP MSE 1.339 0.470 1.210 0.915 0.032 0.900

Std-GP size 45.44 33.50 39.00 44.84 24.55 43.00

Ehd-GP size 52.60 28.11 47.00 53.36 29.94 52.00

DDL-GP size 32.92 16.30 30.50 34.16 14.32 34.00

ITP-GP size 39.34 18.65 35.00 42.16 18.43 38.00

BCS-GP size 29.17 11.18 28.00 26.36 10.21 23.00

that the average solution accuracy of the BCS augmented Ehd-GP process (BCS-
GP) was any different from that of original Ehd-GP. The BCS-GP process was
further tested on two more symbolic regression problems in [11] and the results
confirmed the findings reported in this paper. The corresponding comparative
kernel density plots of Ehd-GP and BCS-GP are presented in Fig. 1.
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In spite of the very good results obtained by the final bloat control system,
we consider that, at the current stage of development, its main function is that
of a proof of concept with regards to the successful combination of two bloat
combating methods that are based on different but complementary paradigms.

Acknowledgments

The work described in this paper was done within the Josef Ressel Centre
for Heuristic Optimization Heureka! and sponsored by the Austrian Research
Promotion Agency (FFG). For more information about Heureka! please visit
http://heureka.heuristiclab.com.
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11. Zăvoianu, A.C.: Towards solution parsimony in an enhanced genetic programming
process. Master’s thesis, International School Informatics: Engineering & Manage-
ment, ISI-Hagenberg, Johannes Kepler University, Linz (2010)

http://heureka.heuristiclab.com

	Improving the Parsimony of Regression Models for an Enhanced Genetic Programming Process
	Introduction
	The Ehd-GP Process
	The Offspring Selection Strategy (OS)
	The Linear Scaled Error Measure


	Test Setup
	Methodology
	GP Configurations


	Ehd-GP performance analysis
	A Bloat Control System for Ehd-GP
	The Resulting Bloat Control System - BCS

	Conclusions


