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Chapter 3

Evolving Fuzzy Systems — Fundamentals, Reliability,
Interpretability, Useability, Applications

Edwin Lughofer

This chapter provides a round picture of the development and advances in the field of evolving
fuzzy systems (EFS) made during the last decade since their first appearance in 2002. Their
basic difference to conventional fuzzy systems (discussed in other chapters in this book) is
that they can be learned from data on-the-fly (fast) during on-line processes in an incremental
and mostly single-pass manner. Therefore, they stand for a very emerging topic in the field
of soft computing for addressing modeling problems in the quickly increasing complexity
of real-world applications, more and more implying a shift from batch off-line model design
phases (as conducted since the 80s) to permanent on-line (active) model teaching and
adaptation. The focus will be placed on the definition of various model architectures used in
the context of EFS, on providing an overview about the basic learning concepts, on listing
the most prominent EFS approaches (fundamentals), and on discussing advanced aspects
toward an improved stability, reliability and useability (usually must-to-haves to guarantee
robustness and user-friendliness) as well as an educated interpretability (usually a nice-to-
have to offer insights into the systems’ nature). It will be concluded with a list of real-world
applications where various EFS approaches have been successfully applied with satisfactory
accuracy, robustness and speed.

3.1. Introduction — Motivation

Due to the increasing complexity and permanent growth of data acquisition sites, in
today’s industrial systems there is an increasing demand of fast modeling algorithms
from on-line data streams (Gama, 2010). Such algorithms are ensuring that models
can be quickly adapted to the actual system situation and thus are able to provide
reliable outputs at any time during on-line real-world processes. There, changing
operating conditions, environmental influences and new unexplored system states
may trigger a quite dynamic behavior, causing previously trained models to become
inefficient or even inaccurate (Sayed-Mouchaweh and Lughofer, 2012). In this sense,
conventional static models which are trained once in an off-line stage and are not
able to adapt dynamically to the actual system states are not an adequate alternative
for coping with these demands (severe downtrends in accuracy have been examined
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in previous publications). A list of potential real-world application examples relying
on on-line dynamic aspects and thus demanding flexible modeling techniques can
be found in Table 3.3 (Section 3.6.5).

Another challenge which has recently become a very hot topic within the
machine learning community and is given a specific attention in the new European
framework programme Horizon 2020, is the processing and mining of so-called Big
Data,1 usually stemming from very large data bases (VLDB).2 The occurrence of
Big Data takes place in many areas such as meteorology, genomics, connectomics,
complex physics simulations and biological and environmental research (Reichmann
et al., 2011). This data is that big (exabytes) such that it cannot be handled in a
one-shot experience, such as exceeding virtual memory of nowadays conventional
computers. Thus, standard batch modeling techniques are not applicable.

In order to tackle the aforementioned requirements, the field of “evolving
intelligent systems (EIS)”3 or, in a wider machine learning sense, the field of
“learning in dynamic environments (LDE)” enjoyed an increasing attraction during
the last years (Angelov et al., 2010). This even lead to the emergence of their own
journal in 2010, termed as “Evolving Systems” at Springer (Heidelberg).4 Both
fields support learning topologies which operate in single-pass manner and are
able to update models and surrogate statistics on-the-fly and on demand. Single-
pass nature and incrementality of the updates assure on-line and in most cases
even real-time learning and model training capabilities. While EIS focus mainly
on adaptive evolving models within the field of soft computing, LDE goes a step
further and also joins incremental machine learning and data mining techniques,
originally stemming from the area of “incremental heuristic search”.5 The update
in these approaches concerns both, parameter adaptation and structural changes,
depending on the degree of change required. The structural changes are usually
enforced by evolution and pruning components, and finally responsible for the
terminus Evolving Systems. In this context, Evolving should be not confused with
Evolutionary (as sometimes happened in the past, unfortunately). Evolutionary
approaches are usually applied in the context of complex optimization problems
and learn parameters and structures based on genetic operators, but they do this by
using all the data in an iterative optimization procedure rather than integrating new
knowledge permanently on-the-fly.

1http://en.wikipedia.org/wiki/Big_data.
2http://en.wikipedia.org/wiki/Very_large_database.
3http://en.wikipedia.org/wiki/Evolving_intelligent_system.
4http://www.springer.com/physics/complexity/journal/12530.
5http://en.wikipedia.org/wiki/Incremental_heuristic_search.
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Apart from the requirements and demands in industrial (production and
control) systems, another important aspect about evolving models is that they
provide the opportunity for self-learning computer systems and machines. In fact,
evolving models are permanently updating their knowledge and understanding
about diverse complex relationships and dependencies in real-world application
scenarios by integrating new system behaviors and environmental influences (which
are manifested in the captured data). Their learning follows a life-long learning
context and is never really terminated, but lasts as long as new information
arrives. Therefore, they can be seen as a valuable contribution within the field
of computational intelligence (Angelov and Kasabov, 2005) or even in artificial
intelligence (Lughofer, 2011a).

There are several possibilities for using an adequate model architecture within
the context of an evolving system. This strongly depends on the learning problem
at hand, in particular whether it is supervised or unsupervised. In case of the
later, techniques from the field of clustering, usually termed as incremental
clustering (Bouchachia, 2011) are a prominent choice. In case of classification and
regression models, the architectures should support decision boundaries respectively
approximation surfaces with an arbitrary non-linearity degree. Also, the choice may
depend on past experience with some machine learning and data mining tools: for
instance, it is well-known that SVMs are usually among the top-10 performers for
many classification tasks (Wu et al., 2006), thus are a reasonable choice to be used
in an on-line classification setting as well [in form of incremental SVMs (Diehl
and Cauwenberghs, 2003; Shilton et al., 2005)]; whereas in a regression setting
they are usually performing much weaker. Soft computing models such as neural
networks (Haykin, 1999), fuzzy systems (Pedrycz and Gomide, 2007) or genetic
programming (Affenzeller et al., 2009) and any hybrid concepts of these [e.g.,
neuro-fuzzy systems (Jang, 1993)] are all known to be universal approximators
(Balas et al., 2009) and thus able to resolve non-linearities implicitly contained in
the systems’ behavior (and thus reflected in the data streams). Neural networks suffer
from their black box nature, i.e., not allowing operators and users any insight into
the models extracted from the streams. This may be essential in many context for the
interpretation of model outputs to realize why certain decisions have been made etc.
Genetic programming are a more promising choice in this direction, however they
are often expanding unnecessarily complex formulas with many nested functional
terms [suffering from the so-called bloating effect (Zavoianu, 2010)], which are
again hard to interpret.

Fuzzy systems are specific mathematical models which build upon the concept
of fuzzy logic, firstly introduced in 1965 by Lotfi A. Zadeh (Zadeh, 1965), are a
very useful alternative, as they contain rules which are linguistically readable and
interpretable. This mimicks the human thinking about relationships and structural
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dependencies being present in a system. This will become more clear in the
subsequent section when mathematically defining possible architecture variants
within the field of fuzzy systems, which have been also used in the context of data
stream mining and evolving systems. Furthermore, the reader may refer to Chapter 1
in this book, where the basic concepts of fuzzy sets and systems are introduced and
described in detail.

3.2. Architectures for EFS

The first five subsections are dedicated to architectures for regression problems,
for which evolving fuzzy systems (EFS) have been preliminary used. Then, various
variants of fuzzy classification model structures are discussed, as have been recently
introduced for representing of decision boundaries in various forms in evolving fuzzy
classifiers (EFC).

3.2.1. Mamdani

Mamdani fuzzy systems (Mamdani, 1977) are the most common choice for coding
expert knowledge/experience into a rule-based IF-THEN form, examples can be
found in Holmblad and Ostergaard (1982); Leondes (1998) or Carr and Tah (2001);
Reveiz and Len (2010).

In general, assuming p input variables (features), the definition of the i th rule
in a single output Mamdani fuzzy system is as follows:

Rulei : IF (x1 IS µi1) AND . . .AND (xp IS µip) THEN li (�x) IS �i ,

with �i the consequent fuzzy set in the fuzzy partition of the output variable used
in the consequent li (�x) of the i th rule, and µi1, . . . , µip are the fuzzy sets appearing
in the rule antecedents. The rule firing degree (also called rule activation level) for
a concrete input vector �x = (x1, . . . , x p) is then defined by:

µi (�x) =
p

T
j=1
µi j (x j ), (1)

with T a specific conjunction operator, denoted as t-norm Klement et al. (2000) —
most frequently, minimum or product are used, i.e.,

µi(�x) =
p

min
j=1
(µi j (x j )) µi (�x) =

p∏
j=1

(µi j (x j )). (2)

It may happen, that �i = � j for some i �= j . Hence, a t-conorm (Klement
et al., 2000) is applied which combines the rule firing levels of those rules having
the same consequents to one output set. The most common choice for the t-conorm is
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the maximum operator. In this case, the consequent fuzzy set is cut at the alpha-level:

αi = max ji=1,...,Ci (µ ji (�x)), (3)

with Ci the number of rules whose consequent fuzzy set is the same as for Rule
i , and ji the indices of these rules. This is done for the whole fuzzy rule base and
the various α-cut output sets are joined to one fuzzy area employing the supremum
operator. An example of such a fuzzy output area is shown in Figure 3.1.

In order to obtain a crisp output value, a defuzzification method is applied, most
commonly used are the mean of maximum (MOM) over the whole area, the center
of gravity (COG) or the bisector (Leekwijck and Kerre, 1999) which is the vertical
line that will divide the whole area into two sub-regions of equal areas. For concrete
formulas of the defuzzification operators, please refer to Piegat (2001) and Nguyen
et al. (1995). MOM and COG are exemplarily shown in Figure 3.1.

Due to the defuzzification process, it is quite intuitive that the inference in
Mamdani fuzzy systems looses some accuracy, as an output fuzzy number is reduced
to a crisp number. Therefore, they have been hardly applied within the context of
on-line modeling and data stream mining, where the main purpose is to obtain an
accurate evolving fuzzy model in the context of precise evolving fuzzy modeling [an
exception can be found in Rubio (2009), termed as the SOFMLS approach]. On the
other hand, they are able to provide linguistic interpretability on the output level,
thus may be preferable in the context of interpretability demands for knowledge
gaining and reasoning (see also Section 3.5). The approach in Ho et al., 2010, tries

Figure 3.1: Mean of maximum (MOM) and center of gravity (COG) defuzzification for a rule
consequent partition (fuzzy partition in output variable Y ) in a Mamdani fuzzy system, the shaded
area indicates the joint consequents (fuzzy sets) in the active rules (applying supremum operator);
the cutoff points (alpha cuts) are according to maximal membership degrees obtained from the rule
antecedent parts of the active rules.
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to benefit from this while keeping the precise modeling spirit by applying a switched
architecture, joining Mamdani and Takagi–Sugeno type consequents in form of a
convex combination.

3.2.2. Takagi–Sugeno

Opposed to Mamdani fuzzy systems, Takagi–Sugeno (TS) fuzzy systems (Takagi
and Sugeno, 1985) are the most common architectorial choice in evolving fuzzy
systems approaches (Lughofer, 2011b). This has several reasons. First of all, they
enjoy a large attraction in many fields of real-world applications and systems
engineering (Pedrycz and Gomide, 2007), ranging from process control (Babuska,
1998; Karer and Skrjanc, 2013; Piegat, 2001), system identification (Abonyi, 2003;
Nelles, 2001), through condition monitoring (Serdio et al., 2014a, 2014b) and
chemometric calibration (Cernuda et al., 2013; Skrjanc, 2009) to machine vision
and texture processing approaches (Lughofer, 2011b; Riaz and Ghafoor, 2013).
Thus, their robustness and applicability for the standard batch modeling case has
been already proven since several decades. Second, they are known to be universal
approximators (Castro and Delgado, 1996), i.e., being able to model any implicitly
contained non-linearity with a sufficient degree of accuracy, while their interpretable
capabilities are still intact or may offer even advantages: while the antecedent parts
remain linguistic, the consequent parts can be interpreted either in a more physical
sense (see Bikdash, 1999; Herrera et al., 2005) or as local functional tendencies
(Lughofer, 2013) (see also Section 3.5). Finally, parts of their architecture (the
consequents) can be updated exactly by recursive procedures, as will be described
in Section 3.3.1. This is a strong point as they are converging to the same solution as
when (hypothetically) sending all data samples at once into the optimization process
(true optimal incremental solutions).

3.2.2.1. Takagi–Sugeno standard

A single rule in a (single output) standard TS fuzzy system is of the form

Rule i : IF (x1 IS µi1) AND . . . AND (xp IS µip) (4)

THEN li(�x) = wi0 + wi1x1 + wi2x2 + · · · + wip x p (5)

where �x = (x1, . . . , x p) is the p-dimensional input vector and µi j the fuzzy set
describing the j -th antecedent of the rule. Typically, these fuzzy sets are associated
with a linguistic label. As in case of Mamdani fuzzy systems, the AND connective
is modeled in terms of a t-norm, i.e., a generalized logical conjunction (Klement
et al., 2000). Again, the output li = li (�x) is the so-called consequent function of
the rule.
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The output of a TS system consisting of C rules is a linear combination of the
outputs produced by the individual rules (through the li ’s), where the contribution
of each rule is given by its normalized degree of activation �i , thus:

f̂ (�x) = ŷ =
C∑

i=1

�i(�x) · li (�x) with �i(�x) = µi (�x)∑C
j=1µ j (�x)

, (6)

with µi (�x) as in Equation (1). From statistical point of view, a TS fuzzy model
can be interpreted as a collection of piecewise local linear predictors by a smooth
(normalized) kernel, thus in its local parts (rules) having some synergies with local
weighted regression (LWR) (Cleveland and Devlin, 1988). The difference is that
in LWR the model is extracted on demand based on the nearest data samples
[also termed as the reference base in an instance-based learning context for data
streams (Shaker and Hüllermeier, 2012)] while TS fuzzy systems are providing a
global model defined over the whole feature space (thus preferable in the context of
interpretability issues and on-line prediction speed).

The most convenient choice for fuzzy sets in EFS and fuzzy systems design in
general are Gaussian functions, which lead to so-called fuzzy basis function networks
(Wang and Mendel, 1992) and multi-variate kernels following normal distributions
are achieved for representing the rules’ antecedent parts:

µi(�x) =
p∏

i=1

exp

(
−1

2

(xi − ci )
2

σ 2
i

)
. (7)

In this sense, the linear hyper-planes li are connected with multi-variate Gaussians
to form an overall smooth function. Then, the output form in Equation (6) becomes
some synergies with Gaussian mixture models (GMMs) (Day, 1969; Sun and Wang,
2011), often used for clustering and pattern recognition tasks (Bishop, 2007; Duda
et al., 2000). The difference is that li ’s are hyper-planes instead of singleton weights
and do not reflect the degree of density of the corresponding rules (as mixing
proportion), but the linear trend of the approximation/regression surface in the
corresponding local parts.

3.2.2.2. Takagi–Sugeno generalized

Recently, the generalized form of Takagi–Sugeno fuzzy systems has been offered
to the evolving fuzzy systems community, launching its origin in Lemos et al.
(2011a) and Leite et al. (2012a); latter explored and further developed in Pratama
et al. (2014a) and Pratama et al. (2014b). The basic principle is that it employs
multidimensional normal (Gaussian) distributions in arbitrary position for repre-
senting single rules. Thus, it overcomes the deficiency not being able to model local
correlations between input and output variables appropriately, as is the case with the
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Figure 3.2: Left: Conventional axis parallel rules (represented by ellipsoids) achieve an inaccurate
representation of the local trends (correlations) of a non-linear approximation problem (defined
by noisy data samples). Right: Generalized rules (by rotation) achieve a much more accurate
representation.

t-norm operator used in standard rules (Klement et al., 2000) — these may represent
inexact approximations of the real local trends and finally causing information loss
in rules (Abonyi et al., 2002).

An example for visualizing this problematic nature is provided in Figure 3.2: in
the left image, axis-parallel rules (represented by ellipsoids) are used for modeling
the partial tendencies of the regression curves which are not following the input
axis direction, but are rotated to some degree; obviously, the volume of the rules
are artificially blown-up and the rules do not represent the real characteristics of the
local tendencies well→ information loss. In the right image, non axis-parallel rules
using general multivariate Gaussians are applied for a more accurate representation
(rotated ellipsoids).

To avoid such information loss, the generalized fuzzy rules have been defined
in Lemos et al., 2011a (there used for evolving stream mining), as

IF �x IS (about)�i THEN li (�x) = wi0 + wi1x1 + wi2x2 + · · · + wipx p, (8)

where � denotes a high-dimensional kernel function, which in accordance to the
basis function networks spirit are given by the generalized multivariate Gaussian
distribution:

�i(�x) = exp

(
−1

2
(�x − �ci)

T�−1
i (�x − �ci )

)
, (9)

with �ci the center and �−1
i the inverse covariance matrix of the i th rule, allowing

any possible rotation and spread of the rule. It is also known in the neural network
literature that Gaussian radial basis functions are a nice option to characterize local
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properties (Lemos et al., 2011a; Lippmann, 1991); especially, someone may inspect
the inner core part, i.e., all samples fulfilling (�x − �ci )

T�−1
i (�x − �ci ) ≤ 1, as the

characteristic contour/spread of the rule.
The fuzzy inference then becomes a linear combination of multivariate Gaussian

distributions in the form:

ŷ =
∑C

i=1 li (�x) ∗ exp
(− 1

2(�x − �ci )
T�−1

i (�x − �ci )
)

∑C
i=1 exp

(− 1
2 (�x − �ci )T�

−1
i (�x − �ci )

) =
C∑

i=1

li(�x)�i(�x), (10)

with C the number of rules, li (�x) the consequent hyper-plane of the i th rule and �i

the normalized membership degrees, summing up to 1 for each query sample.
In order to maintain (input/output) interpretability of the evolved TS fuzzy

models for users/operators (see also Section 3.5), the authors in Lughofer et al.
(2013) foresee a projection concept to form fuzzy sets and classical rule antecedents.
It relies on the angle between the principal components directions and the feature
axes, which has the effect that long spread rules are more effectively projected than
when using the inner contour spreads (through axis parallel cutting points). The
spread σi of the projected fuzzy set is set according to:

σi = max j=1,...p

(
r√
λ j

cos(�(ei , a j ))

)
, (11)

with r the range of influence of one rule, usually set to 1, representing the (inner)
characteristic contour/spread of the rule (as mentioned above). The center of the
fuzzy set in the i th dimension is set equal to the i th coordinate of the rule center.
�(ei , a j ) denotes the angle between principal component direction (eigenvector a j )
and the i th axis ei , λ j the eigenvalue of the j th principal component.

3.2.2.3. Takagi–Sugeno extended

An extended version of Takagi–Sugeno fuzzy systems in the context of evolving
systems has been applied in Komijani et al. (2012). There, instead of a hyper-plane
li = wi0 +wi1x1 +wi2x2 + · · · +wipx p the consequent function for the i th rule is
defined as LS_SVM model according to Smola and Schölkopf (2004):

li (�x) =
N∑

k=1

αik K (�x , �xk)+ βi , (12)

with K (., .) a kernel function fulfilling the Mercer criterion (Mercer, 1909) for
characterizing a symmetric positive semi-definite kernel (Zaanen, 1960), N the
number of training samples and α and β the consequent parameters (support vectors
and intercept) to learn. The li ’s can be in principle combined within in any inference
scheme, either with the standard one in Equation (6) or with the generalized one in
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Equation (10) [in Komijani et al. (2012), they are combined with Equation (6)]. The
advantage of these consequents are that they are supposed to provide more accuracy,
as a support vector regression modeling (Smola and Schölkopf, 2004) is applied to
each local region. Hence, non-linearities within local regions may be better resolved.
On the other hand, the consequents are more difficult to interpret.

3.2.3. Type-2

Type-2 fuzzy systems were invented by Lotfi Zadeh in 1975 (Zadeh, 1975) for the
purpose of modelling the uncertainty in the membership functions of usual (type-1)
fuzzy sets. The distinguishing feature of a type-2 fuzzy set µ̃i j versus its type-1
counterpart µi j is that the membership function values of µ̃i j are blurred, i.e., they
are no longer a single number in [0, 1], but are instead a continuous range of values
between 0 and 1, say [a, b] ⊆ [0, 1]. One can either assign the same weighting
or a variable weighting to membership function values in [a, b]. When the former
is done, the resulting type-2 fuzzy set is called an interval type-2 fuzzy set. When
the latter is done, the resulting type-2 fuzzy set is called a general type-2 fuzzy set
(Mendel and John, 2002).

The i th rule of an interval-based type-2 fuzzy system is defined in the following
way (Liang and Mendel, 2000; Mendel, 2001):

Rulei : IF x1 IS µ̃i1 AND . . .AND xp IS µ̃ip THEN li(�x) = f̃i ,

with f̃i a general type-2 uncertainty function.
In case of a Takagi–Sugeno based consequent scheme (as e.g., used in Juang and

Tsao (2008), the first approach of an evolving Type-2 fuzzy system), the consequent
function becomes:

li (�x) = w̃i0 + w̃i1x1 + w̃i2x2 + · · · + w̃ipx p, (13)

with w̃i j an interval set (instead of a crisp continuous value), i.e.

w̃i j = [ci j − si j , ci j + si j ]. (14)

In case of a Mamdani based consequent scheme (as e.g., used in Tung et al. (2013),
a recent evolving approach), the consequent function becomes: li = �̃i , with �̃i a
type two fuzzy set.

An enhanced approach for eliciting the final output is applied, the so-called
Karnik–Mendel iterative procedure (Karnik and Mendel, 2001), where a type
reduction is performed before the defuzzification process. In this procedure, the
consequent values l̄i = ci0 − si0+ (ci1− si1)x1+ (ci2− si2)x2+ · · · + (cip − sip)x p

and l
¯
i = ci0 + si0 + (ci1 + si1)x1 + (ci2 + si2)x2 + · · · + (cip + sip)x p are sorted

in ascending order denoted as ȳi and y
¯

i for all i = 1, . . . ,C . Accordingly, the



July 20, 2015 16:57 Handbook on Computational Intelligence — Volumes I & II - 9.75in x 6.5in b2017-v1-ch03 2nd Reading page 77

Evolving Fuzzy Systems 77

membership values �̄i(�x) and�
¯

i(�x) are sorted in ascending order denoted as ψ̄i (�x)
and ψ

¯
i (�x). Then, the outputs ȳ and y

¯
are computed by:

ȳ =
∑L

i=1 ψ̄i(�x) ȳi +∑C
i=L+1 ψ

¯ i
(�x) ȳi∑L

i=1 ψ̄i (�x)+∑C
i=L+1 ψ

¯ i
(�x) y

¯
=
∑R

i=1 ψ
¯ i
(�x)y

¯ i
+∑C

i=R+1 ψ̄i (�x)y
¯ i∑R

i=1 ψ
¯ i
(�x)+∑C

i=R+1 ψ̄i (�x)
(15)

with L and R positive numbers, often L = C
2 and R = C

2 . Taking the average of
these two yields the final output value y.

3.2.4. Neuro-Fuzzy

Most of the neuro-fuzzy systems (Fuller, 1999) available in literature can be
interpreted as a layered structural form of Takagi–Sugeno–Kang fuzzy systems.
Typically, the fuzzy model is transformed into a neural network structure (by
introducing layers, connections and weights between the layers) and learning
methods already established in the neural network context are applied to the
neuro-fuzzy system. A well-known example for this is the ANFIS approach (Jang,
1993), where the back-propagation algorithm (Werbos, 1974) is applied and the
components of the fuzzy model (fuzzification, calculation of rule fulfillment degrees,
normalization, defuzzification), represent different layers in the neural network
structure. However, the inference scheme finally leads to the same model outputs
as for conventional TS fuzzy systems. A visualization example is presented in
Figure 3.3. This layered structure will be used by several EFS approaches as can be
seen from Tables 3.1 and 3.2.

Recently, a new type of neuro-fuzzy architecture has been proposed by Silva
et al. (2014), termed as neo-fuzzy neuron network, and applied in evolving context.
It relies on the idea to use a set of TS fuzzy rules for each input dimension

(a) (b)

Figure 3.3: (a) Standard Takagi–Sugeno type fuzzy system, (b) Equivalent neural network structure.
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independently and then connect these with a conventional sum for obtaining the
final model output. The domain of each input i is granulated into m complementary
membership functions.

3.2.5. Hierarchical Structures

Hierarchical architectures for evolving fuzzy modeling have been recently intro-
duced in Shaker et al. (2013) and Lemos et al. (2011b). Both architectures have
been designed for the purposes to provide a more slim, thus more transparent rule
base by inducing rules with flexible lengths. This is opposed to all the flat model
architectures which have been presented above, always using all input features in
all rules’ antecedent parts.

The first approach is an incremental extension of top-down induction of fuzzy
pattern trees (Senge and Huellermeier, 2011) and thus uses a hierarchical tree-like
concept to evolve nodes and leaves on demand. Thereby, a collection of fuzzy sets
and aggregation operators can be specified by the user as allowed patterns and
conjunction operators in the leaf nodes. In particular, a pattern tree has the outlook
as shown in the example of Figure 3.4. Thereby, one basic difference to classical
fuzzy systems is that the conjunction operator do not necessarily have to be t-norms
[can be a more general aggregation operator (Saminger-Platz et al., 2007)] and the
type of the fuzzy sets can be different in different tree levels [as indicated in the
rectangles in Figure 3.4 (left)], allowing a composition of a mixture of patterns in
hierarchical form. Another difference is the possibility to obtain a single compact
rule for describing a certain characteristics of the output (a good house price quality
with 0.9 in the example in Figure 3.4).

Figure 3.4: Left: Example of a fuzzy pattern tree which can be read as “IF ((Size is med AND Dist
is high) AND Size is HIGH) OR Age is LOW THEN Output (Quality) is 0.9”. Right: Example of a
fuzzy decision tree with four rules, a rule example is “IF x1 is LESS THAN 5 AND x2 is GREATER
THAN 3 THEN y2 = −2x1 + x2− 3x3+ 5”.
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The second one (Lemos et al., 2011b) has some synergies to classical decision
trees for classification tasks [CART (Breiman et al., 1993) and C4.5 (Quinlan,
1993)], where, however, the leafs are not class labels, but linear hyper-planes as
used in classical Takagi–Sugeno fuzzy systems. Thus, as the partitioning may
be arbitrarily fine-granuled as is the case for classical TS fuzzy systems, they
still enjoy the favorable properties of being universal approximators. A visual
example of such a tree is shown in the right image in Figure 3.4. It is notable
that the nodes do not contain crisp decision rules, but fuzzy terms “Smaller Than”
and “Greater Than”, which are represented by sigmoidal fuzzy sets: e.g., “Less
Than 5” is a fuzzy set which cuts the fuzzy set “Greater than 5” at x = 5 with a
membership degree 0.5. One path from the root node to a terminal node represents
a rule, which is then similar to a classical TS fuzzy rule, but allowing an arbitrary
length.

3.2.6. Classifiers

Fuzzy classifiers have been enjoyed a wide attraction in various applications since
almost two decades (Eitzinger et al., 2010; Kuncheva, 2000; Nakashima et al.,
2006). Their particular strength is the ability to model decision boundaries with
arbitrary non-linearity degree while maintaining interpretability in the sense “which
rules on the feature set imply which output class labels (classifier decisions)”. In
a winner-takes-it-all concept, the decision boundary proceeds between rule pairs
having different majority class labels. As rules are usually non-linear contours in
the high-dimensional space, the non-linearity of the decision boundary is induced —
enjoying arbitrary complexity due to a possible arbitrary number of rules. If rules
have linear contours, then overall non-linearity is induced in form of piecewise linear
boundaries between rule pairs.

3.2.6.1. Classical and extended single-model

The rule in a classical fuzzy classification model architecture with singleton
consequent labels is a widely studied architecture in the fuzzy systems community
(Ishibuchi and Nakashima, 2001; Kruse et al., 1994; Kuncheva, 2000; Nauck and
Kruse, 1998) and is defined by:

Rulei : IF x1 IS µi1 AND . . .AND xp IS µip THEN li = Li (16)

where Li is the crisp output class label from the set {1, . . . , K } with K the number
of classes for the i th rule. This architecture precludes use of confidence labels
in the single classes per rule. In case of clean classification rules, when each
single rule contains/covers training samples from a single class, this architecture
provides adequate resolution of the class distributions. However, in real-world
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problems, classes usually overlap significantly and therefore often rules are extracted
containing samples from more than one class.

Thus, an extended fuzzy classification model that includes the confidence levels
con fi1,...,K of the i th rule in the single classes has been applied in evolving, adaptive
learning context, see e.g., Bouchachia, 2009; Bouchachia and Mittermeir, 2006:

Rulei : IF x1 IS µi1 AND . . .AND xp IS µip

THEN li = [con fi1, con fi2, . . . , con fi K ] (17)

Thus, a local region represented by a rule in the form of Equation (17) can better
model class overlaps in the corresponding part of the feature space: for instance,
three classes overlap with a support of 200, 100 and 50 samples in one single fuzzy
rule; then, the confidence in Class #1 would be intuitively 0.57 according to its
relative frequency (200/350), in Class #2 it would be 0.29 (100/350) and in Class #3
it would be 0.14 (50/350). A more enhanced treatment of class confidence levels will
be provided in Section 3.4.5 when describing options for representing reliability in
class responses.

In a winner-takes-it-all context [the most common choice in fuzzy classifiers
(Kuncheva, 2000)], the final classifier output L will be obtained by

L = li∗ with li∗ = argmax1≤k≤K con fi∗k i∗ = argmax1≤i≤C µi (�x) with (18)

In a more enhanced (weighted) classification scheme as recently used for
evolving fuzzy classifiers (EFC) in Lughofer (2012a), the degree of purity is
respected as well and integrated into the calculation of the final classification
response L:

L = argmaxk=m,m∗

(
con fk = µ1(�x)h ∗1,k +µ2(�x)h∗2,k

µ1(�x)+ µ2(�x)
)

(19)

with

h∗1,k = h1,k

h1,m + h1,m∗
h∗2,k = h2,k

h2,m + h2,m∗
(20)

and hi,k the class frequency of class k in rule i , and µ1(�x) the membership degree
of the nearest rule (with majority class m), and µ2(�x) the membership degree of
the second nearest rule with a different majority class m∗ �= m. This difference is
important as two nearby lying rules with the same majority class label do not induce
a decision boundary in-between them. The nearest rule and second nearest rule are
obtained by sorting the membership degrees of the current query point to all rules.

Figure 3.5 shows an example for decision boundaries induced by Equation (18)
(left image) and by Equation (19) (right image). Obviously, a more purified rule
(i.e., having less overlap in classes, right side) is favored among that with significant
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Figure 3.5: (a) Classification according to the winner takes it all concepts using Equation (18); (b) The
decision boundary moves towards the more unpurified rule due to the gravitation concept applied in
Equation (19).

overlap (left side), as the decision boundary moves away → more samples are
classified to the majority class in the purified rule, which is intended to obtain a
clearer, less uncertain decision boundary. A generalization of Equation (19) would
be that k varies over all classes: then, an overwhelmed but significant class in two
nearby lying rules may become also the final output class label L , although it has no
majority in both rules. On the other hand, this variant would then be able to output
a certainty level for each class, an advantage which could be used when calculating
a kind of reliability degree overall classes (see Section 3.6.4) respectively when
intending to normalize and study class certainty distributions. This variant has not
been studied under the scope of EFC so far.

3.2.6.2. Multi-model one-versus-rest

The first variant of multi-model architecture is leaned on the well-known one-
versus-rest classification scheme from the field of machine learning (Bishop, 2007)
and has been introduced in the fuzzy community and especially evolving fuzzy
systems community in Angelov et al. (2008). It diminishes the problematic of having
complex non-linear multi-decision boundaries in case of multi-class classification
problems, which is the case for single model architecture as all classes are coded
into one model. This is achieved by representing K binary classifiers for the K
different classes, each one for the purpose to discriminate one single class from the
others (→ one-versus-rest). Thus, during the training cycle (batch or incremental),
for the kth classifier all feature vectors resp. samples belonging to the kth class are
assigned a label of 1, and all other samples belonging to other classes are assigned
a label of 0.

The nice thing is that a (single model) classification model D( f ) = C
respectively any regression model D( f ) = R (such as Takagi–Sugeno variants
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discussed above) can be applied for one sub-model in the ensemble. Interestingly,
in Angelov et al. (2008), it has been studied that, when using Takagi–Sugeno
architecture for the binary classifiers by regressing on {0, 1}, the masking problem as
occurring in linear regression by indicator matrix approach can be avoided (Hastie
et al., 2009). This is due to the increased flexibility of TS fuzzy systems, being able
to resolve non-linearities in the class regression surfaces.

At the classification stage for a new query point �x that model which is producing
the maximal model response is used as basis for the final classification label output
L , i.e.,

L =argmaxm=1,...,K f̂m(�x) in case when D( f ) = R,

L =argmaxm=1,...,K con fm(�x) in case when D( f ) = C. (21)

Recently, a rule-based one-versus-rest classification scheme was proposed
within the context of a MIMO (Multiple Input Multiple Output) fuzzy system and
applied in an evolving classification context (Pratama et al., 2014c). There, a rule is
defined by:

IF �x IS (about) �i THEN li = �x	i (22)

where

	i =




w1
i0 w2

i0 . . . wK
i0

w1
i1 w2

i1 . . . wK
i1

...
...

...
...

w1
ip w2

ip . . . wK
ip


.

Thus, a complete hyper-plane for each class per rule is defined. This offers the
flexibility to regress on different classes within single rules, thus to resolve class
overlaps in a single region by multiple regression surfaces (Pratama et al., 2014c).

3.2.6.3. Multi-model all-pairs

The multi-model all-pairs (aka all-versus-all) classifier architecture, originally
introduced in the machine learning community (Allwein et al., 2001; Fürnkranz,
2002) and firstly introduced for (evolving) fuzzy classifiers design in Lughofer
and Buchtala (2013), overcomes the often occurring imbalanced learning problems
induced by one-versus-rest classification scheme in case of multi-class (polychoto-
mous) problems. On the other hand, it is well-known that imbalanced problems
cause severe down-trends in classification accuracy (He and Garcia, 2009). Thus, it
is beneficial to avoid imbalanced problems while still trying to enforce the decision
boundaries as easy as possible to learn. This is achieved by the all-pairs architecture,
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as for each class pair (k, l) an own classifier is trained, decomposing the whole
learning problem into binary less complex sub-problems.

Formally, this can be expressed by a classifier Ck,l which is induced by a training
procedure Tk,l when using (only) the class samples belonging to classes k and l:

Ck,l ←− Tk,l(Xk,l) Xk,l = {�x|L(�x) = k ∨ L(�x) = l}, (23)

with L(�x) the class label associated with feature vector �x . This means that Ck,l is a
classifier for separating samples belonging to class k from those belonging to class l.
It is notable that any classification architecture as discussed above in Section 3.2.6.1
or any regression-based model as defined in Section 3.2.2 can be used for Ck,l .

When classifying a new sample �x , each classifier outputs a confidence level
con fk,l which denotes the degree of preference of class k over class l for this sample.
This degree lies in [0, 1] where 0 means no preference, i.e., a crisp vote for class
l, and 1 means a full preference, i.e., a crisp vote for class k. This is conducted for
each pair of classes and stored into a preference relation matrix R:

R =




0 con f1,2 con f1,3 . . . con f1,K

con f2,1 0 con f2,3 . . . con f2,K

...
...

...
...

...

con fK ,1 con fK ,2 con fK ,3 . . . 0


. (24)

If we assume reciprocal preferences, i.e., con fk,l = 1 − con fl,k , then the
training of half of the classifiers can be omitted, hence finally K (K−1)

2 binary
classifiers are obtained. The preference relation matrix in Equation (24) opens
another interpretation dimension on output level: considerations may go into partial
uncertainty reasoning or preference relational structure in a fuzzy sense (Hüllermeier
and Brinker, 2008). In the most convenient way, the final class response is often
obtained by:

L = argmaxk=1,...,K (scorek) = argmaxk=1,...,K

( ∑
K≥i≥1

con fk,i

)
. (25)

i.e., the class with the highest score = highest preference degree summed up over
all classes is returned by the classifier.

In Fürnkranz (2002, 2001) it was shown that pairwise classification is not only
more accurate than one-versus-rest technique, but also more efficient regarding
computation times [see also Lughofer and Buchtala (2013)], which is an important
characteristics for fast stream learning problems. The reason for this is basically
that binary classification problems contain significantly lower number of samples,
as each sub-problem uses only a small subset of samples.
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3.3. Fundamentals

Data streams are one of the fundamental reasons for the necessity of applying
evolving, adaptive models in general and evolving fuzzy systems in particular. This
is simply because streams are theoretically an infinite sequence of samples, which
cannot be processed at once within a batch process, even not in modern computers
with high virtual memory capacities. Data streams may not necessarily be on-line
based on permanent recordings, measurements or sample gatherings, but can also
arise due to a block- or sample-wise loading of batch data sites, e.g., in case of very
large data bases (VLDB)6 or in case of big data problems (White, 2012); in this
context, they are also often referred as pseudo-streams. In particular, a data stream
(or pseudo-stream) is characterized by the following properties (Gama, 2010):

• The data samples or data blocks are continuously arriving on-line over time. The
frequency depends on the frequency of the measurement recording process.
• The data samples are arriving in a specific order, over which the system has no

control.
• Data streams are usually not bounded in a size; i.e., a data stream is alive as long

as some interfaces, devices or components at the system are switched on and are
collecting data.
• Once a data sample/block is processed, it is usually discarded immediately,

afterwards.

Changes in the process such as new operation modes, system states, varying
environmental influences etc. are usually implicitly also effecting the data stream in
way that for instance drifts or shifts may arise (see Section 3.4.1), or new regions in
the feature/system variable space are explored (knowledge expansion).

Formally, a stream can be defined as an infinite sequence of samples (�x1, �y1),

(�x2, �y2), (�x3, �y3), . . . .., where �x denotes the vector containing all input features
(variables) and �y the output variables which should be predicted. In case of
unsupervised learning problems, �y disappears — note that, however, in the context of
fuzzy systems, only supervised regression and classification problems are studied.
Often y = �y, i.e., single output systems are encouraged, especially as it is often
possible to decast a MIMO (multiple input multiple output problem) system into
single independent MISO (multiple input single output problem) systems (e.g., when
the outputs are independent).

Handling streams for modeling tasks in an appropriate way requires the usage of
incremental learning algorithms, which are deduced from the concept of incremental
heuristic search (Koenig et al., 2004). These algorithms possess the property to
build and learn models in step-wise manner rather than with a whole data set at

6http://en.wikipedia.org/wiki/Very_large_database.
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once. From formal mathematical point of view, an incremental model update I of
the former model fN (estimated from the N initial samples) is defined by

fN+m = I ( fN , (�xN+1,...,N+m , �yN+1,...,N+m)) (26)

So, the incremental model update is done by just taking the new m samples and the
old model, but not using any prior data. Hereby, the whole model may also include
some additional statistical help measures, which needs to be updated synchronously
to the ‘real’ model. If m = 1, we speak about incremental learning in sample mode
or sample-wise incremental learning, otherwise about incremental learning in block
mode or block-wise incremental learning. If the output vector starts to be missing
in the data stream samples, but a supervised model has been trained already before
which is then updated with the stream samples either in unsupervised manner or
by using its own predictions, then someone speaks about semi-supervised (on-line)
learning (Chapelle et al., 2006).

Two update modes in the incremental learning process are distinguished:

(1) Update of the model parameters: in this case, a fixed number of parameters
�N = {φ1, . . . , φl}N of the original model fN is updated by the incremental
learning process and the outcome is a new parameter setting �N+m with the
same number of parameters, i.e., |�N+m | = |�N |. Here, we also speak about a
model adaptation resp. a model refinement with new data.

(2) Update of the whole model structure: this case leads to the evolving learning
concept, as the number of the parameters may change and also the number of
structural components may change automatically (e.g., rules are added or pruned
in case of fuzzy systems) according to the characteristics of the new data samples
�xN+1,...,N+m . This means that usually (but not necessarily) |�N+m | �= |�N |
and CN+m �= CN with C the number of structural components. The update of
the whole model structure also may include an update of the input structure,
i.e., input variables/features may be exchanged during the incremental learning
process — see also Section 3.4.2.

An important aspect in incremental learning algorithms is the so-called
plasticity-stability dilemma (Abraham and Robins, 2005), which describes the
problem of finding an appropriate tradeoff between flexible model updates and
structural convergence. This strongly depends on the nature of the stream: in some
cases, a more intense update is required than in others (drifting versus life-long
concepts in the stream). If an algorithm converges to an optimal solution or at least
to the same solution as the hypothetical batch solution (obtained by using all data up
to a certain sample at once), it is called a recursive algorithm. Such an algorithm is
usually beneficial as long as no drifts arise, which make the older learned relations
obsolete (see Section 3.4.1).
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An initial batch mode training step with the first amount of training samples
is, whenever possible, usually preferable to incremental learning from scratch, i.e.,
a building up of the model sample per sample from the beginning. This is because
within a batch mode phase, it is possible to carry out validation procedures [such
as cross-validation (Stone, 1974) or bootstrapping (Efron and Tibshirani, 1993)] in
connection with search techniques for finding an optimal set of parameters for the
learning algorithm in order to achieve a good generalization quality. The obtained
parameters are then usually reliable start parameters for the incremental learning
algorithm to evolve the model further. When performing incremental learning from
scratch, the parameters have to be set to some blind default values, which may be
not necessarily appropriate for the given data stream mining problem.

In a pure on-line learning setting, however, incremental learning from scratch is
indispensable. Then, often start default parameters of the learning engines need to be
parameterized. Thus, it is beneficial that the algorithms require as less as possible
parameters (see Section 3.3.5). Overcoming unlucky settings of parameters, can
be sometimes achieved with dynamic structural changes such as component-based
split-and-merge techniques (as described in Section 3.6.2).

3.3.1. Recursive Learning of Linear Parameters

A lot of the EFS approaches available in literature (see Section 3.3.5) use the TS-
Type fuzzy systems architecture with linear parameters in the consequents. The
reason lies in the highly accurate and precise models which can be achieved with
these systems (Lughofer, 2011b), and therefore enjoy a wide attraction in several
application fields, see Sections 3.2.2 and 3.6.5. Also within several classification
variants, TS-fuzzy systems may be used as regression-based binary classifiers, e.g.,
in all-pairs technique (Lughofer and Buchtala, 2013) as well as in one-versus-
rest classification schemes (Angelov et al., 2008). Sometimes, singleton numerical
values in the consequents (native Sugeno systems) or higher order polynomials
(Takagi–Sugeno–Kang) are used in the consequents. These just change the number
of parameters to learn but not the way how to learn them.

The currently available EFS techniques rely on the optimization of the least-
squares error criterion, which is defined as the squared deviation between observed
outputs y1, . . . , yN and predicted outputs ŷ1, . . . , ŷN ; thus:

J = ‖y − ŷ‖L2 =
N∑

k=1

(y(k)−
C∑

i=1

li; �w(�x(k))�i(�x(k)))2 → min
�w
!. (27)

This problem can be written as a classical linear least squares problem with a
weighted regression matrix containing the global regressors

�ri (k) = [�i(�x(k)) x1(k)�i(�x(k)) · · · x p(k)�i(�x(k))], (28)
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for i = 1, . . . ,C , with C the current number of rules and k the kth data sample
denoting the kth row. For this problem, it is well-known that a recursive solution
exists which converges to the optimal one within each incremental learning step,
see Ljung (1999) and Lughofer (2011b). Also Chapter 2 for its detailed derivation
in the context of evolving TS fuzzy systems.

However, the problem with this global learning approach is that it does not
offer any flexibility regarding rule evolution and pruning, as these cause a change
in the size of the regressors and thus a dynamic change in the dimensionality of the
recursive learning problem, which leads to a disturbance of the parameters in the
other rules and to the loss of optimality. Therefore, the authors in Angelov et al.
(2008) emphasize the usage of local learning approach which learns and updates
the consequent parameters for each rule separately. Adding or deleting a new rule
therefore does not affect the convergence of the parameters of all other rules; thus,
optimality in least squares sense is preserved. The local learning approach leads to a
weighted least squares formulation for each rule given by (without loss of generality
the i th):

Ji =
N∑

k=1

�i(�x(k))(y(k)− ŷi(k))
2 → min

�wi

i = 1, . . . ,C, (29)

with ŷi(k) = li; �wi (�x(k)).
This problem can be written as a classical weighted least squares problem, where

the weighting matrix is a diagonal matrix containing the basis function values �i

for each input sample. Again an exact recursive formulation can be derived [see
Lughofer (2011b) and Chapter 2], which is termed as recursive fuzzily weighted
least squares (RFWLS). As RFWLS is so fundamental and used in many EFS
approaches, we explicitly deploy the update formulas (from the kth to the k + 1st
cycle):

�wi(k + 1) = �wi(k)+ γ (k)(y(k + 1)− �r T (k + 1) �wi (k)), (30)

γ (k) = Pi(k + 1)�r(k + 1) = Pi (k)�r(k + 1)
λ

�i (�x(k+1)) + �r T (k + 1)Pi (k)�r(k + 1)
, (31)

Pi(k + 1) = 1

λ
(I − γ (k)�r T (k + 1))Pi (k), (32)

with Pi (k) = (Ri (k)T Qi(k)Ri (k))−1 the inverse weighted Hessian matrix and �r(k+
1) = [1 x1(k + 1) x2(k + 1) . . . x p(k + 1)]T the regressor values of the k +
1st data sample, which is the same for all i rules, and λ a forgetting factor, with
default value equal to 1 (no forgetting) — see Section 3.4.1 for a description and
meaning of its usage. Whenever λ < 1 the following function is minimized: Ji =∑N

k=1 λ
N−k�i(�x(k))(y(k)− ŷi(k))2, instead of Equation (29), thus samples which
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appeared a long time ago are almost completely out-weighted. Obviously, the actual
weight of the sample is�i (the membership degree to Rule i), thus a sample receives
a low weight when it does not fall into rule i : then, the Kalman filter gain γ (k) in
Equation (31) becomes a value close to 0 and the update of Pi and �wi is marginal.
Again, Equation (30) converges to the optimal solution within one incremental
learning step.

The assurance of convergence to optimality is guaranteed as long as there is not
structural change in the rules’ antecedents. However, due to rule center movements
or resettings in the incremental learning phase (see Section 3.3.4), this is usually
not the case. Therefore, a kind of sub-optimality is caused whose deviation degree
to the real optimality could have been bounded for some EFS approaches such as
FLEXFIS (Lughofer, 2008) and PANFIS (Pratama et al., 2014a).

Whenever a new rule is evolved by a rule evolution criterion, the parameters and
inverse weighted Hessian matrix (required for an exact update) have to be initialized.
In Ljung (1999), it is emphasized to set �w to 0 and Pi to α I with α big enough.
However, this is for the purpose of a global modeling approach starting with a faded
out regression surface over the whole input space. In local learning, the other rules
defining other parts of the feature space remain untouched. Thus, setting the hyper-
plane of the new rule which may appear somewhere inbetween the other rules to
0 would lead to an undesired muting of one local region and to discontinuities in
the on-line predictions (Cernuda et al., 2012). Thus, it is more beneficial to inherit
the parameter vector and the inverse weighted Hessian matrix from the most nearby
lying rule (Cernuda et al., 2012).

Recent extensions of RFWLS are as follows:

• In PANFIS (Pratama et al., 2014a), an additional constant α is inserted, conferring
a noteworthy effect to foster the asymptotic convergence of the system error and
weight vector being adapted, which acts like a binary function. In other words,
the constant α is in charge to regulate the current belief of the weight vectors
�wi and depends on the approximation and the estimation errors. It is 1 whenever
the approximation error is bigger than the system error, and 0 otherwise. Thus,
adaptation takes fully place in the first case and completely not place in the second
case (which may have advantages in terms of flexibility and computation time).
A similar concept is used in the improved version of SOFNN, see Leng et al.
(2012).
• Generalized version of RFWLS (termed as FWGRLS) as used in GENEFIS

(Pratama et al., 2014b): this exploits the generalized RLS as derived in Xu
et al. (2006) and adopts it to the local learning context in order to favor from
its benefits as discussed above. The basic difference to RFWLS is that it adds
a weight decay regularization term in the least squares problem formulation in
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order to punish more complex models. In a final simplification step, it ends up
with similar formulas as in Equations (30) to (32), but with the difference to
subtract the term αPi (k+ 1)∇φ( �wi (k)) in Equation (30), with α a regularization
parameter and φ the weight decay function: one of the most popular ones in
literature is the quadratic function defined as φ( �w) = 1

2‖ �w‖2, thus ∇φ = �w).
• In some approaches [e.g., eMG (Lemos et al., 2011a) or rGK (Dovzan and

Skrjanc, 2011)], weights �i of the data samples are integrated in the second
term of Equation (30) as well, which however do not exactly follow the original
derivation of recursive weighted least-squares (Aström and Wittenmark, 1994;
Ljung, 1999), but leads to a similar effect.

Alternatively, Cara et al. (2013) proposes a different learning scheme for
singleton consequent parameters (in a Sugeno fuzzy system) within an evolving
fuzzy controller design, which relies on the prediction error of the current model.
The update of the i th rule singleton consequent parameter wi0 becomes:

wi0(k + 1) = wi0(k)+ Cµi (�x(k + 1))(y(k + 1)− ŷ(k + 1)), (33)

with µi the activation degree of the i th rule as present in the previous time step
k (before being updated with the new sample �x(k + 1)), and C a normalization
constant. Hence, instead of γ , µi is used as update gain which is multiplied with
the normalization constant.

3.3.2. Recursive Learning of Non-Linear Parameters

Non-linear parameters occur in every model architecture as defined throughout
Section 3.2.2, mainly only in the fuzzy sets included in the rules’ antecedent parts —
except for the extended version of TS fuzzy systems (Section 3.2.2.3), where they
also appear in the consequents. Often, the parameters in the fuzzy sets define their
centers c and characteristic spreads σ , but often the parameters may appear in a
different form — for instance, in case of sigmoid functions they define the slope and
the point of gradient change. Thus, we generally refer to a non-linear parameter as
φ and a whole set of non-linear parameters as �. The incremental update of non-
linear parameters is necessary in order to adjust and move the fuzzy sets and rules
composed by the sets to the actual distribution of the data in order to achieve always
the correct, well-placed positions. An example is provided in Figure 3.6 where the
initial data cloud (circles) in the left upper part changes slightly the position due to
new data samples (rectangles). Leaving the original rule (marked with an ellipsoid)
untouched, would cause a misplacement of the rule. Thus, it is beneficial to adjust
the rule center and its spread accordingly to the new samples. This figure also shows
the case of a rule evolution in the lower right part (new samples significantly away
from the old rule contour) — as will be discussed in the subsequent section.
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Figure 3.6: Three cases affecting rule contours (antecedents): The left upper part shows a case where a
rule movement is demanded to appropriately cover the joint partition (old and new samples), the lower
right part shows a case where a new rule should be evolved and the upper right part shows a case where
sample-wise incremental learning may trigger a new rule which may turn out to be superfluous later
(as future samples are filling up the gap forming one cloud)→ (back-)merge requested as discussed
in Section 3.3.4.

A possibility to update the non-linear parameters in EFS is again, similar
to the consequent parameters, by applying a numerical incremental optimization
procedure. Relying on the least squares optimization problem as in case of recursive
linear parameter updates, its formulation in dependency of the non-linear parameters
� becomes:

J = J (�) =
N∑

k=1

‖(yk − ŷ(�))‖L2 → min�;[ �w]!. (34)

In case of TS fuzzy systems, for instance, ŷ(�) = ∑C
i=1 li(�x)�i(�)(�x). Then,

the linear consequent parameters �w needs to be synchronously optimized to the
non-linear parameters (thus, in optional braces), in order to guarantee optimal
solution. This can be done either in an alternating nested procedure, i.e., perform an
optimization step for non-linear parameters first, see below, and then optimizing the
linear ones, e.g., by Equation (30), or within one joint update formula, e.g., when
using one Jacobian matrix on all parameters, see below).

Equation (34) is still a free optimization problem, thus any numerical, gradient-
based or Hessian-based technique for which a stable incremental algorithm can
be developed is a good choice: this is the case for steepest descent, Gauss–
Newton method and Levenberg–Marquardt. Interestingly, a common parameter
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update formula can be deduced for all three variants (Ngia and Sjöberg, 2000):

�(k + 1) = �(k)+ µ(k)P(k)−1ψ(�x(k),�)e(�x(k),�), (35)

where ψ(�x(k),�) = ∂y
∂�
(�x(k)) the partial derivative of the current model y after

each non-linear parameter evaluated at the current input sample �x(k), e(�x(k),�) is
the residual in the kth sample: e(�x(k),�) = yk − ŷk . and µ(k)P(k)−1 the learning
gain with P(k) an approximation of the Hessian matrix, which is substituted in
different ways:

• For the steepest descent algorithm, P(k) = I , thus the update depends only on
first order derivative vectors; furthermore, µ(k) = µ

‖�r(k)‖2 with �r(k) the current
regression vector.
• For Gauss–Newton,µ(k) = 1−λ and P(k) = (1−λ)H (k)with H (k) the Hessian

matrix which can be approximated by JacT (k)Jac(k) with Jac the Jacobian
matrix (including the derivatives w.r.t. all parameters in all rules for all samples
up to the kth) resp. by JacT (k)diag(�i (�x(k)))Jac(k) in case of the weighted
version for local learning (see also Section 3.3.1) — note that the Jacobian matrix
reduces to the regression matrix R in case of linear parameters, as the derivatives
are the original input variables (thus, H = RT R in case of recursive linear
parameter learning resulting in the native (slow) recursive least squares without
inverse matrix update). Additionally to updating the parameters according to
Equation (35), the update of the matrix P is required, which is given by:

P(k) = λP(k − 1)+ (1− λ)ψ(�x(k),�)ψ(�x(k),�)T . (36)

• For Levenberg–Marquardt, P(k) = (1 − λ)H (k)+ α I with H (k) as in case of
Gauss–Newton and again µ(k) = 1− λ. The update of the matrix P is done by:

P(k) = λP(k − 1)+ (1− λ) (ψ(�x(k),�)ψ(�x(k),�)T + α I
)
. (37)

Using matrix inversion lemma (Sherman and Morrison, 1949) and some
reformulation operations to avoid matrix inversion in each step (P−1 is required in
Equation (35)) leads to the well-known recursive Gauss–Newton approach, which
is e.g., used in Komijani et al. (2012) for recursively updating the kernel widths in
the consequents and also for fine-tuning the regularization parameter. It also results
in the recursive least squares approach in case of linear parameters (formulas for the
local learning variant in Equation (30)). In case of recursive Levenberg Marquardt
(RLM) algorithm, a more complex reformulation option is requested to approximate
the update formulas for P(k)−1 directly (without intermediate inversion step). This
leads to the recursive equations as successfully used in the EFP method by Wang and
Vrbanek (2008) for updating centers and spreads in Gaussian fuzzy sets (multivariate
Gaussian rules), see also Lughofer (2011b) and Chapter 2.
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3.3.3. Learning of Consequents in EFC

The most common choice in EFC design for consequent learning is simply to use the
class majority voting for each rule separately. This can be achieved by incrementally
counting the number of samples falling into each class k and rule i , hik , (the rule
which is the nearest one in the current data stream process). The class with majority
count k∗ = argmaxK

k=1hik is the consequent class of the corresponding (i th) rule in
case of the classical architecture in Equation (16). The confidences in each class per
rule can be obtained by the relative frequencies among all classes con fik = hik∑K

k=1 hik

in case of extended architecture in Equation (17). For multi-model classifiers, the
same strategy can be applied within each single binary classifier. An enhanced
confidence calculation scheme will be handled under the scope of reliability in
Section 3.4.5.

3.3.4. Incremental Partitioning of the Feature Space (Rule Learning)

A fundamental issue in evolving systems, which differs them from adaptive systems is
that they possess the capability to change their structure during on-line, incremental
learning cycles — adaptive systems are only able to update their parameters as
described in the preliminary two sub-sections. The evolving technology addresses
the dynamic expansion and contraction of the rule base. Therefore, almost all of the
EFS approaches foresee two fundamental concepts for incremental partitioning of
the feature space (only some foresee only the first option):

• Rule evolution: It addresses the problem when and how to evolve new rules on-
the-fly and on demand→ knowledge expansion.
• Rule pruning: It addresses the problem when and how to prune rules in

the rule base on-the-fly and on demand → knowledge contraction, rule base
simplification.

The first issue guarantees to include new systems states, operation modes, process
characteristics in the models to enrich their knowledge and expand them to so far
unexplored regions in the feature space. The second issue guarantees that a rule
base cannot grow forever and become extremely large, hence is responsible for
smart computation times and compactness of the rule base which may be beneficial
for interpretability reasons, see Section 3.5. Also, it is a helpful engine for preventing
model over-fitting, especially in case when rules are evolved close to each other or
are moving together over time, thus turning out to be superfluous at a later stage.
Whenever new rules are evolved, the incremental update of their parameters (as
described in the preliminary sub-sections) can begin and continue in the subsequent
cycles.
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The current state-of-the-art in EFS is that both concepts are handled in different
ways in different approaches, see Lughofer (2011b) and “Evolving Systems” Journal
by Springer7 for recently published approaches. Due to space limitations of this book
chapter in the whole encyclopedia, it is not possible to describe the various options
for rule evolution and pruning anchored in the various EFS approaches. Therefore,
we outline the most important directions, which enjoy some common understanding
and usage in various approaches.

One concept which is widely used is the incremental clustering technique
[see Bouchachia (2011)] for a survey of methods], which searches for an optimal
grouping of the data into several clusters, ideally following the natural distribution of
data clouds. In particular, the aim is that similar samples contribute to the (formation
of the) same cluster while different samples should fall into different clusters (Gan
et al., 2007). In case when using clustering techniques emphasizing clusters with
convex shapes (e.g., ellipsoids), these can then be directly associated with rules. Due
to their projection onto the axes, the fuzzy sets appearing in the rule antecedents
can be obtained. The similarity concept applied in the various approaches differ:
some are using distance-oriented criteria [e.g., DENFIS (Kasabov and Song, 2002),
FLEXFIS (Lughofer, 2008) or eFuMo (Zdsar et al., 2014)], some are using density-
based criteria [e.g., eTS (Angelov and Filev, 2004) and its extension eTS+ Angelov
(2010), or Almaksour and Anquetil (2011)] and some others are using statistical-
oriented criteria [e.g., ENFM (Soleimani et al., 2010)]; this also effects the rule
evolution criterion, often being a threshold (e.g., a maximal allowed distance) which
decides whether a new rule is evolved or not. Distance-based criteria may be more
prone to outliers than density-based and statistical-based ones; on the other hand,
the latter ones can be quite lazy until new rules are evolved (e.g., a significant new
dense area is required such that a new rule is evolved there). A summary of EFS
approaches and which one applies which criterion will be given in Section 3.3.5.

Fundamental and quite common to many incremental clustering approaches is
the update of the centers �c defining the cluster prototype given by

�c(N + 1) = N �c(N) + �x(N + 1)

N + 1
, (38)

and the update of the inverse covariance matrix �−1 defining the shape of clusters
given by

�−1(N + 1) = �−1(N)

1− α −
α

1− α
(�−1(N)(�x − �c))(�−1(N)(�x − �c))T

1+ α((�x − �c)T�−1(N)(�x − �c)) ,

7http://www.springer.com/physics/complexity/journal/12530.
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with α = 1
N+1 and N the number of samples seen so far. Usually, various

clusters/rules are updated, each representing an own covariance matrix�−1
i , thus the

symbol N = ki then represents the number of samples “seen by the corresponding
cluster so far”, i.e., falling into the corresponding cluster so far (also denoted as the
support of the cluster).

Other concepts rely

• On the degree of the coverage of the current input sample, i.e. when the coverage
is low, a new rule is evolved [e.g., SOFNN (Leng et al., 2005), the approach in
Leng et al. (2012)].
• On the system error criteria such as the one-step-ahead prediction, i.e., when

this is high, a new rule is evolved (e.g., as in SOFNN (Leng et al., 2005) or
the approach in Leng et al. (2012)) or even a split is performed as in AHLTNM
(Kalhor et al., 2010).
• On the rule significance in terms of (expected) statistical contribution and

influence, i.e., when a new rule is expected to significantly influence the output of
the system it is actually added to the system [e.g. SAFIS (Rong et al., 2006) and
its extensions (Rong et al., 2011; Rong, 2012) PANFIS (Pratama et al., 2014a),
GENEFIS (Pratama et al., 2014b)).
• On Yager’s participatory learning concept (Yager, 1990), comparing the arousal

index and the compatibility measure with thresholds [as in ePL (Lima et al., 2010;
Lemos et al., 2013), eMG (Lemos et al., 2011a)].
• On the goodness of fit tests based on statistical criteria (e.g., F-statistics) for

candidate splits. The leafs are replaced with a new subtree, inducing an expansion
of the hierarchical fuzzy model [e.g., in Lemos et al. (2011b) or incremental
LOLIMOT (Local Linear Model Tree) (Hametner and Jakubek, 2013)].

Furthermore, most of the approaches which are applying an adaptation of the
rule contours, e.g., by recursive adaptation of the non-linear antecedent parameters,
are equipped with a merging strategy for rules. Whenever rules are forced to move
together due to the nature of data stream samples falling in-between these, they may
become inevitably overlapping, see the upper right case in Figure 3.6 for an example.
The rule evolution concepts cannot omit such occasions in advance, as streaming
samples are loaded in the same timely order as they are appearing/recorded in the
system — sometimes, originally it may seem that two clusters are contained in the
data, which may turn out later as erroneous assumption. Various criteria have been
suggested to identify such occurrences and to eliminate them, see Lughofer (2013)
and Section 3.2 for a recent overview. In Lughofer and Hüllermeier (2011); Lughofer
et al. (2011a), a generic concept has been defined for recognizing such over-
lapping situations based on fuzzy set and rule level. It is applicable for most of the
conventional EFS techniques as relying on a geometric-based criterion employing a
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rule inclusion metric. This has been expanded in Lughofer et al. (2013) to the case
of adjacent rules in the feature space showing the same trend in the antecedents and
consequents, thus guaranteeing a kind of joint homogeneity. Generic rule merging
formulas have been established in Lughofer et al. (2011a) and go hand in hand with
consistency assurance, especially when equipped with specific merging operations
for rule consequent parts, see also Section 3.5.

3.3.5. EFS Approaches

In this section, we provide an overview of most important EFS approaches developed
since the invention of evolving fuzzy systems approximately 10 years ago. Due to
space limitations and the wide variety and manifold of the approaches, we are not
able to give a compact summary about the basic methodological concepts in each of
these. Thus, we restrict ourselves to report a rough comparison, which is based on
the main characteristics and properties of the EFS approaches. This comparison is
provided in Table 3.1. Additionally, we demonstrate a pseudo-code in Algorithm 3.1,
which shows more or less a common denominator which steps are performed within
the learning engines of the EFS approaches.

Algorithm 3.1. Key Steps in an Evolving Fuzzy Systems Learning Engine

(1) Load new data sample �x .
(2) Pre-process data sample (e.g., normalization).
(3) If rule-base is empty, initialize the first rule with its center to the data sample
�c = �x and its spread (range of influence) to some small value; go to Step (1).

(4) Else, perform the following steps (5–10):
(5) Check if rule evolution criteria are fulfilled

(a) If yes, evolve a new rule (Section 3.3.4) and perform body of Step (3)
(without if-condition).

(b) If no, proceed with next step.

(6) Update antecedents parts of (some or all) rules (Sections 3.3.4 and 3.3.2).
(7) Update consequent parameters (of some or all) rules (Sections 3.3.3 and 3.3.1).
(8) Check if the rule pruning/merging criteria are fulfilled

(a) If yes, prune or merge rules (Section 3.3.4); go to Step (1).
(b) If no, proceed with next step.

(9) Optional: Perform corrections of parameters towards more optimality.
(10) Go to Step (1).

One comment refers to the update of antecedents and consequents: some approaches
may only update those of some rules (e.g., the rule corresponding to the
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winning cluster), others may always update those of all rules. The former may
have some advantages regarding preventing the unlearning effect in parts where
actual samples do not fall (Lughofer, 2010a), the latter achieves significance
and thus reliability in the rule parameters faster (more samples are used for
updating).

Although many of these have different facets with a large variety of pros and
cons, which cannot be strictly arranged in an ordered manner to say one method is
for sure better than the other, the number of parameters (last but one column) gives
somehow a bit clarification about the useability resp. the effort to tune the method
and finally, to let it run. Tendentially, the more parameters a method has, the more
sensitive it is to a particular result and the higher the effort to get it successfully run in
an industrial installation. In case when mentioning “X − Y ” number of parameters
it means that Y parameters are the case when forgetting is parameterized (fixed
forgetting factor), which is often an optional choice in many applications.

For further details about the concrete algorithms and concepts of the approaches
listed in Tables 3.1 and 3.2, please refer to Lughofer (2011b), describing approaches
in a compact detailed form from the origin of EFS up to June 2010 and to recently
published ones (since July 2010) in “Evolving Systems” Journal by Springer8 as
well as papers in the recent special issues “Evolving Soft Computing Techniques
and Applications” (Bouchachia et al., 2014) in Applied Soft Computing Journal
(Elsevier) and “On-line Fuzzy Machine Learning and Data Mining” (Bouchachia
et al., 2013) in Information Sciences Journal (Elsevier), and also some recent regular
contributions in “IEEE Transactions on Fuzzy Systems”9 and “IEEE Transactions
on Neural Networks and Learning Systems”10 (neuro-fuzzy approaches).

3.4. Stability and Reliability

Two important issues when learning from data streams are the assurance of stability
during the incremental learning process and the investigation of reliability of model
outputs in terms of predictions, forecasts, quantifications, classification statements
etc. These usually leads to an enhanced robustness of the evolved models. Stability
is usually guaranteed by all the aforementioned approaches listed in Tables 3.1
and 3.2 as long as the data streams from which the models are learnt appear in a
quite “smooth, expected” fashion. However, specific occasions such as drifts and
shifts (Klinkenberg, 2004) or high noise levels may appear in these, which require a
specific handling within the learning engine of the EFS approaches. Another problem

8http://www.springer.com/physics/complexity/journal/12530.
9http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91.
10http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385.
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is dedicated to high-dimensional streams, usually stemming from large-scale time-
series (Morreale et al., 2013) embedded in the data, and mostly causing a curse of
dimensionality effect, which leads to over-fitting and downtrends in model accuracy.
As can be realized from Column #7 in Tables 3.1 and 3.2, only a few approaches
embed any on-line dimensionality reduction procedure so far in order to diminish
this effect. Although high noise levels can be automatically handled by RFWLS, its
spin-offs and modifications as well as by the antecedent learning engines discussed
in Sections 3.3.2 and 3.3.4, reliability aspects in terms of increasing the certainty in
model outputs respecting the noise are weakly discussed. Drift handling is included
in some of the methods by forgetting strategies, but these are basically only applied
for consequent learning in Takagi–Sugeno type fuzzy models (see Column 6 in
Tables 3.1 and 3.2).

This section is dedicated to a summary of recent developments in stability,
reliability and robustness of EFS which can be generically used in combination
with most of the approaches listed in Tables 3.1 and 3.2.

3.4.1. Drift Handling in Streams

Drifts in data streams refer to a gradual evolution of the underlying data distribution
and therefore of the learning concept over time (Tsymbal, 2004; Widmer and
Kubat, 1996) and are frequent occurrences in nowadays non-stationary environments
(Sayed-Mouchaweh and Lughofer, 2012). Drifts can happen because the system
behavior, environmental conditions or target concepts dynamically change during
the on-line learning process, which makes the relations, concepts contained in the
old data samples obsolete. Such situations are in contrary to new operation modes
or system states which should be integrated into the models with the same weight
as the older ones in order to extend the models, but keeping the relations in states
seen before untouched (still valid for future predictions). Drifts, however, usually
mean that the older learned relations (as parts of a model) are not valid any longer
and thus should be incrementally out-weighted, ideally in a smooth manner to avoid
catastrophic forgetting (French, 1999; Moe-Helgesen and Stranden, 2005).

A smooth forgetting concept for consequent learning employing the idea of
exponential forgetting (Aström and Wittenmark, 1994), is used in approximately
half of the EFS approaches listed in Tables 3.1 and 3.2 (refer to Column #6). The
strategy in all of these is to integrate a forgetting factor λ ∈ [0, 1[ for strengthening
the influence of newer samples in the Kalman gain γ — see Equation (31). Figure 3.7
shows the weight impact of samples obtained for different forgetting factor values.
This is also compared to a standard sliding window technique, which weights all
samples up to a certain point of time in the past equally, but forget all others before
completely → non-smooth forgetting. This variant is also termed as decremental
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Figure 3.7: Smooth forgetting strategies achieving different weights for past samples; compared to
a sliding window with fixed width→ complete forgetting of older samples (decremental learning).

learning (Bouillon et al., 2013; Cernuda et al., 2014), as the information contained in
older samples falling out of the sliding window is fully unlearned (=decremented)
from the model. The effect of this forgetting factor integration is that changes of the
target concept in regression problems can be tracked appropriately, i.e., a movement
and shaping of the current regression surface towards the new output behavior is
enforced, see Lughofer and Angelov (2011). Decremental learning may allow more
flexibility (only the latest N samples are really used for model shaping), but increases
the likelihood of catastrophic forgetting.

Regarding a drift handling in the antecedent part, several techniques may be
used such as a reactivation of rule centers and spreads from a converged situation
by an increase of the learning gain: this is conducted in Lughofer and Angelov
(2011) for the two EFS approaches eTS and FLEXFIS and has the effect that rules
are helped out from their stucked, converged positions to cover the new data cloud
appearance of the drifted situation. In eFuMo, the forgetting in antecedent learning
is integrated as the degree of the weighted movement of the rule centers �c. towards
a new data sample �xN+1:

�ci (N + 1) = �ci (N) +�ci(N + 1) with �ci(N + 1),

= µi (�xN+1)
η(�xN+1 − �ci(N))

si (N + 1)
, (39)
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with si (N+1) = λsi (N)+µi (�xN+1)
η the sum of the past memberships µi(�x j ), j =

1, . . . , N , η the fuzziness degree also used as parameters in fuzzy c-means, and λ
the forgetting factor. Forgetting is also integrated in the inverse covariance matrix
and determinant update defining the shape of the clusters. All other EFS techniques
in Tables 3.1 and 3.2 do not embed an antecedent forgetting.

An important investigation is the question when to trigger forgetting and when
to apply the conventional life-long learning concept (all samples equally weighted)
(Hamker, 2001). In Shaker and Lughofer (2014), it could be analyzed that when using
a permanent (fixed) forgetting factor respectively an increased model flexibility in
case when no drift happens, the accuracy of the evolved models may decrease over
time. Thus, it is necessary to install a drift indication concept, which is able to detect
drifts and in ideal cases also to quantify their intensity levels; based on these, it is
possible to increase or decrease the degree of forgetting, also termed as adaptive
forgetting. A recent approach for EFS which performs this by using an extended
version of Page–Hinkley test (Mouss et al., 2004), (a widely known and respected
test in the field of drift handling in streams (Gama, 2010; Sebastiao et al., 2013) is
demonstrated in Shaker and Lughofer (2014). It is also the first attempt to localize
the drift intensity by quantifying drift effects in different local parts of the features
space with different intensities and smoothly: EFS are a perfect model architecture
to support such a local smooth handling (fuzzy rules with certain overlaps).

3.4.2. On-Line Curse of Dimensionality Reduction

For models including localization components as is the case of evolving fuzzy
systems (in terms of rules), it is well-known that curse of dimensionality is very
severe in case when a high number of variables are used as model inputs (Pedrycz and
Gomide, 2007), e.g., in large-scale time-series, recorded in multi-sensor networks
(Chong and Kumar, 2003). This is basically because in high-dimensional spaces,
someone cannot speak about locality any longer (on which these types of models
rely), as all samples are moving to the edges of the joint feature space — see Hastie
et al. (2009) and Chapter 1 for a detailed analysis of this problem.

Therefore, the reduction of the dimensionality of the learning problem is highly
desired. In data stream sense, to ensure an appropriate reaction onto the system
dynamics, the feature reduction should be conducted on-line and be open for anytime
changes. A possibility is to track the importance levels of features over time and
to cut out that ones which become unnecessary — as has been used in connection
with EFS for regression problems in Angelov (2010); Pratama et al. (2014b) and
for classification problems in a first attempt in Bouchachia and Mittermeir (2006).
However, features which are unimportant at an earlier point of time may become
important at a later stage (feature reactivation). This means that crisply cutting out
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some features with the usage of on-line feature selection and ranking approaches
such as Li (2004); Ye et al. (2005) can fail to represent the recent feature dynamics
appropriately. Without a re-training cycle, which, however slows down the process
and causes additional sliding window parameters, this would lead to discontinuities
in the learning process (Lughofer, 2011b), as parameters and rule structures have
been learnt on different feature spaces before.

An approach which is addressing input structure changes incrementally on-
the-fly is presented in Lughofer (2011c) for classification problems using classical
single model and one-versus-rest based multi-model architectures (in connection
with FLEXFIS-Class learning engine). It operates on a global basis, hence features
are either seen as important or unimportant for the whole model. The basic idea is
that feature weights λ1, . . . , λp ∈ [0, 1] for the p features included in the learning
problem are calculated based on a stable separability criterion (Dy and Brodley,
2004):

J = trace(S−1
w Sb), (40)

with Sw the within scatter matrix modeled by the sum of the covariance matrices for
each class, and Sb the between scatter matrix, modeled by the sum of the degree of
mean shift between classes. The criterion in Equation (40) is applied 1). Dimension-
wise to see the impact of each feature separately — note that in this case it reduces
to a ratio of two variances — and 2). For the remaining p − 1 feature subspace in
order to gain the quality of separation when excluding each feature. In both cases,
p criteria J1, . . . , Jp according to Equation (40) are obtained. For normalization
purposes to [0, 1], finally the feature weights are defined by:

λ j = 1− Jj − min j=1,...,p(Jj )

max j=1,...,p(Jj )− min j=1,...,p(Jj )
. (41)

To be applicable in on-line learning environments, updating the weights in
incremental mode is achieved by updating the within-scatter and between-scatter
matrices using the recursive covariance matrix formula (Hisada et al., 2010). This
achieves a smooth change of feature weights = feature importance levels over time
with new incoming samples. Features may become out-weighted (close to 0) and
reactivated (weights significantly larger than 0) at a later stage without “disturbing”
the parameter and rule structure learning process. Hence, this approach is also
denoted as smooth and soft on-line dimension reduction — the term softness comes
from the decreased weights instead of a crisp deletion. Down-weighted features then
play a marginal role during the learning process, e.g., the rule evolution criterion
relies more on the highly weighted features.

The feature weights concept has been recently employed in Lughofer et al.
(2014), in the context of data stream regression problems, there with the usage
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of generalized rules as defined in Section 3.2.2.2, instead of axis-parallel ones as
used in Lughofer (2011c). The features weights are calculated by a combination of
future-based expected statistical contributions of the features in all rules and their
influences in the rules’ hyper-planes (measured in terms of gradients), see Lughofer
et al. (2014).

3.4.3. Incremental Smoothing

Recently, a concept for incremental smoothing of consequent parameters has been
introduced in Rosemann et al. (2009), where a kind of incremental regularization
is conducted after each learning step. This has the effect to decrease the level of
over-fitting whenever the noise level in the data is high. Indeed, when applying
the local recursive least squares estimator as in Equations (30) to (32) and some
of its modifications, the likelihood of over-fitting is small due to the enforcement
of the local approximation and interpretation property [as analyzed in Angelov
et al. (2008)], but still may be present. The approach in Rosemann et al. (2009)
accomplishes the smoothing by correcting the consequent functions of the updated
rule(s) by a template T measuring the violation degree subject to a meta-level
property on the neighboring rules.

Finally, it should be highlighted that this strategy assures smoother consequent
hyper-planes over nearby lying or even touching rules, thus increases the likelihood
of further rule reduction through extended simplicity assurance concepts (adjacency,
homogeneuity, trend-continuation criteria) as discussed in Lughofer (2013) and
successfully applied to obtain compact rule bases in data stream regression
problems in Lughofer et al. (2013), employing generalized fuzzy rules, defined
in Section 3.2.2.2.

3.4.4. Convergence Analysis/Ensurance

Another important criterion when applying EFS is some sort of convergence of the
parameters included in the fuzzy systems over time (in case of a regular stream
without a drift etc.) — this accounts for the stability aspect in the stability-plasticity
dilemma (Hamker, 2001), which is important in the life-long learning context.
This is for instance accomplished in the FLEXFIS approach, which, however only
guarantees a sub-optimality subject to a constant (thus guaranteeing finite solutions)
due to a quasi-monotonic decreasing intensity of parameter updates, but is not
able to provide a concrete level of this sub-optimality, see Lughofer (2008) and
Lughofer (2011b) and Chapter 3. In the approach by Rubio (2010), a concrete
upper bound on the identification error is achieved by the modified least squares
algorithm to train both, parameters and structures, is achieved with the support of
Lyapunov function. The upper bound depends on the actual certainty of the model
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output. Another approach which is handling the problem of constraining the model
error while assuring parameter convergence simultaneously is applied within the
PANFIS learning engine (Pratama et al., 2014a): This is achieved with the usage of
an extended recursive least squares approach.

3.4.5. Reliability

Reliability deals with the interpretation of the model predictions in terms of
classification statements, quantification outputs or forecasted values in time series.
Reliability points to the trustworthiness of the predictions of current query points
which may be basically influenced by two factors:

• The quality of the training data resp. data stream samples seen so far.
• The nature and localization of the current query point for which a prediction

should be obtained.

The trustworthiness/certainty of the predictions may support/influence the
users/operators during a final decision finding — for instance, a query assigned
to a class may cause a different user’s reaction when the trustworthiness about this
decision is low, compared to when it is high. In this sense, it is an essential add-on
to the actual model predictions which may also influence its further processing.

The first factor basically concerns the noise level in measurement data. This
also may cover aspects in the direction of uncertainties in users’ annotations
in classification problems: a user with lower experience level may cause more
inconsistencies in the class labels, causing overlapping classes, finally increasing
conflict cases (see below); similar occasions may happen in case when several users
annotate samples on the same systems, but have different opinions in borderline
cases.

The second factor concerns the position of the current query point with respect
to the definition space of the model. A model can show a perfect trend with little
uncertainty, but a new query point appears far away from all training samples
seen so far, yielding a severe degree of extrapolation when conducting the model
inference process. In a classification context, a query point may also fall close in
a highly overlapped region or close to the decision boundary between two classes.
The first problem is denoted as ignorance, the second as conflict (Hüllermeier and
Brinker, 2008; Lughofer, 2012a). A visualization of these two occasions is shown
in Figure 3.8 (a) (for conflict) and 3.8 (b) (for ignorance). The conflict case is due to
a sample falling in-between two classes and the ignorance case due to a query point
falling outside the range of training samples, which is indeed linearly separable, but
by several possible decision boundaries [also termed as the variability of the version
space (Hüllermeier and Brinker, 2008)].
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Figure 3.8: (a) Two conflict cases: query point falls inbetween two distinct classes and within the
overlap region of two classes; (b) Ignorance case as query point lies significantly away from the training
samples, thus increasing the variability of the version space (Hüllermeier and Brinker, 2008); in both
figures, rules modeling the two separate classes are shown by an ellipsoid, the decision boundaries
indicated by solid lines.

In the regression context, the estimation of parameters through RWFLS and
modifications usually can deal with high noise levels in order to find a non-
overfitting trend of the approximation surface. However, it is not possible to represent
uncertainty levels of the model predictions later on. These can be modeled by
so-called error bars or confidence intervals (Smithson, 2003). In EFS they have
been developed based on parameter uncertainty in Lughofer and Guardiola (2008a)
[applied to on-line fault detection in Serdio et al. (2014a)] and in an extended
scheme in Skrjanc (2009) (for chemometric calibration purposes). The latter is
based on a funded deduction from statistical noise and quantile estimation theory
(Tschumitschew and Klawonn, 2012). Both are applicable in connection with local
(LS) learning of TS consequent parameters.

In the classification context, conflict and ignorance can be reflected and
represented by means of fuzzy classifiers in a quite natural way (Hühn and
Hüllermeier, 2009). These concepts have been only recently tackled once in the
field of evolving fuzzy classifiers (EFC), see Lughofer and Buchtala (2013), where
multiple binary classifiers are trained in an all-pairs context for obtaining simper
decision boundaries in multi-class classification problems (see Section 3.2.6.3). On
a single rule level, the confidence in a prediction can be obtained by the confidence
in the different classes coded into the consequents of the rules having the form of
Equation (17). This provides a perfect conflict level (close to 0.5→ high conflict,
close to 1 → low conflict) in case of overlapping classes within a single rule. If
a query point �x falls in-between rules with different majority classes (different
maximal confidence levels), then the extended weighted classification scheme in
Equation (19) is requested to represent a conflict level. If the confidence in the final
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output class L , con fL , is close to 0.5, conflict is high, when it is close to 1, conflict is
low. In case of all-pairs architecture, Equation (19) can be used to represent conflict
levels in the binary classifiers. Furthermore, an overall conflict level on the final
classifier output is obtained by Lughofer and Buchtala (2013):

conflictdeg =
scorek

scorek + scorel
, (42)

with k and l the classes with the highest scores.
The ignorance criterion can be resolved in a quite natural way, represented by

a degree of extrapolation, thus:

Igndeg = 1− C
max
i=1

µi (�x), (43)

with C the number of rules currently contained in the evolved fuzzy classifier. In
fact, the degree of extrapolation is a good indicator of the degree of ignorance,
but not necessarily sufficient, see Lughofer (2012a), for an extended analysis and
further concepts. However, integrating the ignorance levels into the preference
relation scheme of all-pairs evolving fuzzy classifiers according to Equation (24)
for obtaining the final classification statement, helped to boost the accuracies of
the classifier significantly, as then classifiers which show a strongly extrapolated
situation in the current query are down-weighted towards 0, thus masked-out,
in the scoring process. This lead to an out-performance of incremental machine
learning classifiers from MOA framework11 (Bifet et al., 2010) on several large-
scale problems, see Lughofer and Buchtala (2013). The overall ignorance level of
an all-pairs classifier is the minimal ignorance degree calculated by Equation (43)
over all binary classifiers.

3.5. Interpretability

Improved transparency and interpretability of the evolved models may be useful
in several real-world applications where the operators and experts intend to gain a
deeper understanding of the interrelations and dependencies in the system. This may
enrich their knowledge and enable them to interpret the characteristics of the system
on a deeper level. Concrete examples are decision support systems or classification
systems, which sometimes require the knowledge why certain decisions have been
made, e.g., see Wetter (2000): Insights into these models may provide answers to
important questions (e.g., providing the health state of a patient) and support the
user in taking appropriate actions. Another example is the substitution of expensive
hardware with soft sensors, referred to as eSensors in an evolving context (Angelov

11http://moa.cms.waikato.ac.nz/.



July 20, 2015 16:57 Handbook on Computational Intelligence — Volumes I & II - 9.75in x 6.5in b2017-v1-ch03 2nd Reading page 111

Evolving Fuzzy Systems 111

and Kordon, 2010a; Macias-Hernandez and Angelov, 2010): The model has to
be linguistically or physically understandable, reliable, and plausible to an expert,
before it can be substituted for the hardware. In often cases, it is beneficial to provide
further insights into the control behavior (Nelles, 2001).

Interpretability, apart from pure complexity reduction, has been addressed very
little in the evolving systems community so far (under the scope of data stream
mining). A recent position paper published in Information Sciences journal Lughofer
(2013) summarizes the achievements in EFS, provides avenues for new concepts
as well as concrete new formulas and algorithms and points out open issues as
important future challenges. The basic common understanding is that complexity
reduction as a key pre-requisite for compact and therefore transparent models is
handled in most of the EFS approaches, which can be found nowadays in literature
(please also refer to Column “Rule pruning” in Tables 3.1 and 3.2), whereas other
important criteria [known to be important from conventional batch off-line design
of fuzzy systems (Casillas et al., 2003; Gacto et al., 2011)], are more or less loosely
handled in EFS. These criteria include:

• Distinguishability and Simplicity
• Consistency
• Coverage and Completeness
• Local Property and Addition-to-One-Unity
• Feature Importance Levels
• Rule Importance Levels
• Interpretation of Consequents
• Interpretability of Input–Output Behavior
• Knowledge Expansion

Distinguishability and simplicity are handled under the scope of complexity
reduction, where the difference between these two lies in the occurrence of the degree
of overlap of rules and fuzzy sets: Redundant rules and fuzzy sets are highly over-
lapping and therefore indistinguishable, thus should be merged, whereas obsolete
rules or close rules showing similar approximation/classification trends belong to
an unnecessary complexity which can be simplified (due to pruning). Figure 3.9
visualizes an example of a fuzzy partition extracted in the context of house price
estimation (Lughofer et al., 2011b), when conducting native precise modeling (left)
and when conducting some simplification steps according to merging, pruning and
constrained-based learning (right). Only in the right case, it is possible to assign
linguistic labels to the fuzzy sets and hence to achieve interpretation quality.

Consistency addresses the problem of assuring that no contradictory rules, i.e.,
rules which possess similar antecedents but dissimilar consequents, are present in
the system. This can be achieved by merging redundant rules, i.e., those one which
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Figure 3.9: (a) Weird un-interpretable fuzzy partition for an input variable in house pricing; (b)
The same partition achieved when conducting merging, pruning options of rules and sets during the
incremental learning phase→ assignments of linguistic labels possible.

are similar in their antecedents, with the usage of the participatory learning concept
introduced by Yager (1990). An appropriate merging of the linear parameter vectors
�w is given by Lughofer and Hüllermeier (2011):

�wnew = �wR1 + α · Cons(R1, R2) · ( �wR2 − �wR1), (44)

where α = kR2/(kR1 + kR2) represents the basic learning rate with kR1 the support
of the more supported rule R1 and Cons(R1, R2) the compatibility measure between
the two rules within the participatory learning context. The later is measured by a
consistency degree between antecedent and consequents of the two rules. It relies
on the exponential proportion between rule antecedent similarity degree (overlap)
and rule consequent similarity degree.

Coverage and completeness refers to the problem of a well-defined coverage
of the input space by the rule-base. Formally, ε-completeness requires that for each
new incoming data sample there exists at least one rule to which this sample has
a membership degree of at least ε. A specific re-adjustment concept of fuzzy sets
and thus rules is presented in Lughofer (2013), which restricts the re-adjustment
level in order to keep the accuracy high. An alternative, more profound option
for data stream regression problems is offered as well in Lughofer (2013), which
integrates a punishment term for ε-completeness into the least squares optimization
problem. Incremental optimization techniques based on gradients of the extended
optimization function may be applied in order to approach but not necessarily
fully assure ε-completeness. On the other hand, the joint optimization guarantees
a reasonable tradeoff between model accuracy and model coverage of the feature
space.

Local property and addition-to-one-unity have been not considered so far, but
will go a step further by ensuring fuzzy systems where only maximal 2p rules
fire at the same time (Bikdash, 1999), with p the input dimensionality. From our
point of experience, this cannot be enforced by significantly loosing some model
accuracy, as it requires significant shifts of rules away from the real position of the
data clouds/density swarms.
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Feature importance levels are an outcome of the on-line dimensionality
reduction concept discussed in Section 3.4.2. With their usage, it is possible to
obtain an interpretation on input structure level which features are more important
and which ones are less important. Furthermore, they may also lead to a reduction
of the rule lengths thus increasing rule transparency and readability, as features
with weights smaller than ε have a very low impact on the final model output and
therefore can be eliminated from the rule antecedent and consequent parts when
showing the rule base to experts/operators.

Rule importance levels could serve as essential interpretation component as they
tend to show the importance of each rule in the rule base. Furthermore, rule weights
may be used for a smooth rule reduction during learning procedures, as rules with
low weights can be seen as unimportant and may be pruned or even re-activated at a
later stage in an on-line learning process (soft rule pruning mechanism). This strategy
may be beneficial when starting with an expert-based system, where originally all
rules are fully interpretable (as designed by experts/users), however some may turn
out to be superfluous over time for the modeling problem at hand (Lughofer, 2013).
Furthermore, rule weights can be used to handle inconsistent rules in a rule base, see
e.g., Pal and Pal (1999); Cho and Park (2000), thus serving for another possibility
to tackle the problem of consistency (see above). The usage of rule weights and
their updates during incremental learning phases, was, to our best knowledge, not
studied so far in the evolving fuzzy community. In Lughofer (2013), a first concept
was suggested to adapt the rule weights, integrated as non-linear parameters in the
fuzzy systems architecture, based on incremental optimization procedures, see also
Section 3.3.2.

Interpretation of consequents is assured by nature in case of classifiers with
consequent class labels plus confidence levels; in case of TS fuzzy systems it is
assured as soon as local learning of rule consequents is used (Angelov et al., 2008;
Lughofer, 2011b) Chapter 2 and Lughofer (2013). Please also refer to Section 3.3.1:
Then, a snuggling of the partial linear trends along the real approximation surface is
guaranteed, thus giving rise in which parts of the feature space the model will react
in which way and intensity (gradients of features).

Interpretability of Input–Output Behavior refers to the understanding which
output(s) will be produced when showing the system concrete input queries. For
instance, a model with constant output has a maximal input–output interpretability
(as being very predictable what outcome will be produced for different input values),
however usually suffers from predictive accuracy (as long as the behavior of the
system to be modeled is non-constant). Most actively firing rules can be used as
basis for this analysis.

Knowledge expansion refers to the automatic integration of new knowledge
arising during the on-line process on demand and on-the-fly, also in order to expand
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the interpretation range of the models, and is handled by all conventional EFS
approaches through rule evolution and/or splitting, see Tables 3.1 and 3.2.

3.5.1. Visual Interpretability

Visual interpretability refers to an interesting alternative to linguistic interpretability
(as discussed above), namely to the representation of a model in a graphical form. In
our context, this approach could be especially useful if models evolve quickly, since
monitoring a visual representation might then be easier than following a frequently
changing linguistic description. Under this scope, alternative “interpretability
criteria” may then become interesting which are more dedicated to the timely
development of the evolving fuzzy model — for instance, a trajectory of rule centers
showing their movement over time, or trace paths showing birth, growth, pruning
and merging of rules; first attempts in this direction have been conducted in Henzgen
et al. (2013), employing the concept of rule chains. These have been significantly
extended in Hentzgen et al. (2014) by setting up a visualization framework
with a grown-up user front-end (GUI), integrating various similarity, coverage
and overlap measures as well as specific techniques for an appropriate catchy
representation of high-dimensional rule antecedents and consequents. Internally,
it uses the FLEXFIS++ approach (Lughofer, 2012b) as incremental learning
engine.

3.6. Useability and Applications

In order to increase the useability of evolving fuzzy systems, several issues are
discussed in this section, ranging from the reduction of annotation efforts in clas-
sification settings through a higher plug-and-play capability (more automatization,
less tuning) to the decrease of computational resources and as well as to on-line
evaluation measures for supervising modeling performance. At the end of this
section, a list of real-world applications making use of evolving fuzzy systems
will be discussed.

Finally, the increase of the useability together with the assurance of inter-
pretability serves as basis for a successful future development of the human-inspired
evolving machines (HIEM) concept as discussed in Lughofer (2011a), which is
expected to be the next generation of evolving intelligent systems12 — the aim is to
enrich the pure machine learning systems with human knowledge and feelings, and
to form a joint concept of active learning and teaching in terms of a higher-educated
computational intelligence useable in artificial intelligence.

12http://en.wikipedia.org/wiki/Evolving_intelligent_system.
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3.6.1. Single-Pass Active Learning

3.6.1.1. For classification problems

In on-line classification tasks, all evolving and incremental classifier variants require
provision of the ground truth in form of true class labels for incoming samples to
guarantee smooth and well-defined updates for increased classifiers’ performance.
Otherwise, classifiers’ false predictions self-reinforce and are back-propagated into
their structure and parameters, leading to a deteriorization of their performance over
time (Gama, 2010; Sayed-Mouchaweh and Lughofer, 2012). The problem, however,
is that the true class labels of new incoming samples are usually not included in the
stream neither provided automatically by the system. Mostly, operators or experts
have to provide the ground truth which requires considerable manpower and fast
manual responses in case of on-line processes. Therefore, in order to attract the
operators and users to work and communicate with the system, thus to assure
classifier useability in on-line mode, decreasing the number of required samples
for evolving and improving a classifier over time is essential.

This task can be addressed by active learning (Settles, 2010), a technique where
the learner itself has control over which samples are used to update the classifiers
(Cohn et al., 1994). Conventional active learning approaches operate fully in batch
mode: 1. New samples are selected iteratively and sequentially from a pool of training
data; 2. The true class labels of the selected samples are queried from an expert; and
3. Finally, the classifier is re-trained based on the new samples together with those
previously selected. In an on-line setting such iteration phases over a pool of data
samples are not practicable. Thus, a requirement is that the sample selection process
operates autonomously in a single-pass manner, omitting time-intensive re-training
phases.

Several first attempts have been made in connection with linear classifiers (Chu
et al., 2011; Sculley, 2007). A non-linear approach which employs both, single
fuzzy model architecture with extended confidence levels in the rule consequents
[as defined in Equation (17)] and the all-pairs concept as defined in Section 3.2.6.3, is
demonstrated in Lughofer (2012a). There, the actual evolved fuzzy classifier itself
decides for each sample whether it helps to improve the performance and, when
indicated, requests the true class label for updating its parameters and structure. In
order to obtain the certainty level for each new incoming data sample (query point),
two reliability concepts are explored: conflict and ignorance, both motivated and
explained in detail in Section 3.4.5: when one of the two cases arises for a new data
stream sample, a class label is requested from operators. A common understanding
based on several results on high-dimensional classification streams (binary and
multi-class problems) was that a very similar tendency of accuracy trend lines over
time can be achieved when using only 20–25% of the data samples in the stream for
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classifier updates, which are selected based on the single-pass active learning policy.
Upon random selection, the performance deteriorates significantly. Furthermore, a
batch active learning scheme based on re-training cycles using SVMs classifiers
(Schölkopf and Smola, 2002) (lib-SVM implementation13) could be significantly
out-performed in terms of accumulated one-step-ahead accuracy (see Section 3.6.4
for its definition).

3.6.1.2. For regression problems

On-line active learning may be also important in case of regression problems
whenever for instance the measurements of a supervised target are quite costly to
obtain. An example are the gathering of titration values within a spin-bath analytics at
a viscose production process (courtesy to Lenzing GmbH), which are for the purpose
to supervise the regulation of the substances H2SO4, Na2SO4 and ZnSO4 (Cernuda
et al., 2014). There, active learning is conducted in incremental and decremental
stages with the help of a sliding window-based approach (sample selection for
incoming as well as outgoing points) and using TS fuzzy models connected with
PLS. It indeed exceeds the performance of conventional equidistant and costly model
updates, but is not fully operating in a single-pass manner (a window of samples
is required for re-estimation of statistics etc.). Single-pass strategies have been, to
our best knowledge, not handled in data stream regression problems, neither in
connection with evolving fuzzy systems.

3.6.2. Toward a Full Plug-and-Play Functionality

The plug-and-play functionality of on-line incremental learning methods is one of
the most important properties in order to prevent time-intensive pre-training cycles in
batch mode and to support an easy useability for experts and operators. The situation
in the EFS community is that all EFS approaches as listed in Tables 3.1 and 3.2 allow
the possibility to incrementally learn the models from scratch. However, all of these
require at least one or a few learning parameters guiding the engines to correct, stable
models — see Column #8 in these tables. Sometimes, a default parametrization
exists, but is sub-optimal for upcoming new future learning tasks, as having been
optimized based on streams from past processes and application scenarios. Cross-
validation (Stone, 1974) or boot-strapping (Efron and Tibshirani, 1993) may help to
guide the parameters to good values during the start of the learning phase (carried
out on some initial collected samples), but, apart that these iterative batch methods
are eventually too slow (especially when more than two parameters need to be
adjusted), a stream may turn out to change its characteristics later on (e.g., due

13http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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to a drift, see Section 3.4.1). This usually would require a dynamic update of the
learning parameters, which is not supported by any EFS approach so far and has to
be specifically developed in connection with the concrete learning engine.

An attempt to overcome such an unlucky or undesired parameter setting is
presented in Lughofer and Sayed-Mouchaweh (2015) for evolving cluster models,
which, however, may be easily adopted to EFS approaches, especially to those
ones performing an incremental clustering process for rule extraction. Furthermore,
the prototype-based clusters in Lughofer and Sayed-Mouchaweh (2015) are axis-
parallel defining local multivariate Gaussian distributions in the feature space. Thus,
when using Gaussian fuzzy sets in connection with product t-norm, the same rule
shapes are induced. The idea in Lughofer and Sayed-Mouchaweh (2015) is based
on dynamic split-and-merge concepts for clusters (rules) which are either moving
together forming a homogenous joint region (→ merge requested) or are internally
containing two or more distinct data clouds, thus already housing some internal
heterogeneity (→ split requested), see Figure 3.10 (Cluster #4) for an example, also
showing the internal structure of Cluster #4 in the right image. Both occurrences
may be arising either due to the nature of the stream or often due to a wrong
parametrization of the learning engine (e.g., a too low threshold such that new rules
are evolved too early). The main difficulty lies on the identification of when to merge
and when to split: parameter-free options are discussed in Lughofer and Sayed-
Mouchaweh (2015). Opposed to other joint merging and splitting concepts in some
EFS approaches, one strength of the approach in Lughofer and Sayed-Mouchaweh
(2015) is that it can be used independently from the concrete learning engine.
The application of the unsupervised automatic splitting and merging concepts

Figure 3.10: (a) The cluster structure after 800 samples, Cluster #4 containing already a more
distinct density area, (b) Its corresponding histogram along Feature X1, showing the clear implicit
heterogenous nature.
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to supervised streaming problems under the scope of EFS/EFC may thus be an
interesting and fruitful future challenge.

3.6.3. On Improving Computational Demands

When dealing with on-line data stream processing problems, usually the compu-
tational demands required for updating the fuzzy systems are an essential criteria
whether to install and use the component or not. It can be a kick-off criterion,
especially in real-time systems, where the update is expected to terminate in real-
time, i.e., before the next sample is loaded, the update cycle should be finished.
Also, the model predictions should be in-line the real-time demands, but these
are known to be very fast in case of fuzzy inference scheme (significantly below
milliseconds) (Kruse et al., 1994; Pedrycz and Gomide, 2007; Piegat, 2001). An
extensive evaluation and especially a comparison of computational demands for
a large variety of EFS approaches over a large variety of learning problems with
different number of classes, different dimensionality etc. is unrealistic, also because
most of the EFS approaches are hardly downloadable or to obtain from the authors.
A loose attempt in this direction has been made by Komijani et al. (2012), where they
classify various EFS approaches in terms of computation speed into three categories:
low, medium, high.

Interestingly, the consequent update is more or less following the complexity of
O(Cp2) with p the dimensionality of the feature space and C the number of rules,
when local learning is used (as for most EFS approaches, compare in Tables 3.1
and 3.2), and following the complexity of O((Cp)2)when global learning is applied.
The quadratic terms p2 resp. (Cp)2 are due to the multiplication of the inverse
Hessian with the actual regressor vector in Equation (31), and because their sizes are
(p+1)×(p+1) and p+1 in case of local learning (storing the consequent parameters
of one rule) resp. (C(p+ 1))× (C(p+ 1)) and C(p+ 1) in case of global learning
(storing the consequent parameters of all rules). Regarding antecedent learning, rule
evolution and pruning, most of the EFS approaches try to be restricted to have at
most cubic complexity in terms of the number of rules plus the number of inputs.
This may guarantee some sort of smooth termination in an on-line process, but it
is not a necessary pre-requisite and has to be inspected for the particular learning
problem at hand.

However, some general remarks on the improvement of computational demands
can be given: first of all, the reduction of unnecessary complexity such as merging
of redundant overlapping rules and pruning of obsolete rules (as discussed in
Section 3.3.4) is always beneficial for speeding up the learning process. This also
ensures that fuzzy systems are not growing forever, thus restricted in their expansion
and virtual memory requests. Second, some fast version of incremental optimization
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techniques could be adopted to fuzzy systems estimation, for instance, there exists
a fast RLS algorithm for recursively estimating linear parameters in near linear time
(O(nlog(n))), but with the costs of some stability and convergence, see Douglas
(1996); Gay (1996) or Merched and Sayed (1999). Another possibility for decreasing
the computation time for learning is the application of active learning for exquisitely
selecting only a subset of samples, based on which the model will be updated, please
also refer to Section 3.6.1.

3.6.4. Evaluation Measures

Evaluation measures may serve as indicators about the actual state of the evolved
fuzzy systems, pointing to its accuracy and trustworthiness in predictions. In a data
streaming context, the temporal behavior of such measures plays an essential role
in order to track the model development over time resp. to realize down-trends in
accuracy at an early stage (e.g., caused by drifts), and to react appropriately (e.g.,
conducting a re-modeling phase, changes at the system setup etc.). Furthermore,
the evaluation measures are indispensable during the development phase of EFS
approaches. In literature dealing with incremental and data-stream problems (Bifet
and Kirkby, 2011), basically three variants of measuring the (progress of) model
performance are suggested:

• Interleaved-test-and-then-train
• Periodic hold out test
• Fully-train-and-then-test

Interleaved-test-and-then-train, also termed as accumulated one-step ahead
error/accuracy, is based on the idea to measure model performance in one-step ahead
cycles, i.e., based on one newly loaded sample only. In particular, the following steps
are carried out:

(1) Load a new sample (the N th).
(2) Predict its target ŷ using the current evolved fuzzy systems.
(3) Compare the prediction ŷ with the true target value y and update the performance

measure pm:

pm(y, ŷ)(N)← upd(pm(y, ŷ)(N − 1)). (45)

(4) Update the evolved fuzzy system (arbitrary approach).
(5) Erase sample and go to Step 1.

This is a rather optimistic approach, assuming that the target response is immediately
available for each new sample after its prediction. Often, it may be delayed (Marrs
et al., 2012; Subramanian et al., 2013), postponing the update of the model
performance to a later stage. Furthermore, in case of single sample updates its
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prediction horizon is minimal that makes it difficult to really provide an clear
distinction between training and test data, hence weakening their independence.
In this sense, this variant is sometimes too optimistic, under-estimating the true
model error. On the other hand, all training samples are also used for testing, thus it
is quite practicable for small streams.

The periodic holdout procedure can “look ahead” to collect a batch of examples
from the stream for use as test examples. In particular, it uses each odd data block
for learning and updating the model and each even data block for eliciting the model
performance on this latest block; thereby, the data block sizes may be different for
training and testing and may vary in dependence of the actual stream characteristics.
In this sense, a lower number of samples is used for model updating/tuning than
in case of interleaved-test-and-then-train procedure. In experimental test designs,
where the streams are finite, it is thus more practicable for longer streams. On the
other hand, this method would be preferable in scenarios with concept drift, as it
would measure a model’s ability to adapt to the latest trends in the data — whereas
in interleaved-test-and-then-train procedure all the data seen so far is reflected in
the current accuracy/error, becoming less flexible over time. Forgetting may be
integrated into Equation (45), but this requires an additional tuning parameter (e.g.,
a window size in case of sliding windows). The following steps are carried out in a
periodic holdout process:

(1) Load a new data block X N = �xN∗m+1, . . . , �xN∗m+m containing m samples.
(2) If N is odd:

(a) Predict the target values ŷ1, . . . , ŷm using the current evolved fuzzy systems.
(b) Compare the predictions ŷN∗m+1, . . . , ŷN∗m+m with the true target values

yN∗m+m , . . . , yN∗m+m and calculate the performance measure (one or more
of Equation (46) to Equation (51)) using �y and �̂y.

(c) Erase block and go to Step 1.

(3) Else (N is even):

(a) Update the evolved fuzzy system (arbitrary approach) with all samples in
the buffer using the real target values.

(b) Erase block and go to Step 1.

Last but not least, an alternative to the on-line evaluation procedure is to
evolve the model an a certain training set and then evaluate it on an independent
test set, termed as fully-train-and-then-test. This procedure is most heavily used
in many applications of EFS, especially in non-linear system identification and
forecasting problems, as summarized in Table 3.3. It extends the prediction horizon
of interleaved-test-and-then-train procedure with the size of the test set, but only
does this in one occasion (at the end of learning). Therefore, it is not useable in drift
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cases or severe changes during on-line incremental learning processes and should
be only used during development and experimental phases.

Regarding appropriate performance measures, the most convenient choice in
classification problems is the number of correctly classified samples (accuracy). In
the time instance N (processing the N th sample), the update of the performance
measure as in Equation (45) is then conducted by

Acc(N) = Acc(N − 1) ∗ (N − 1)+ I ( ŷ, y)

N
, (46)

with Acc(0) = 0 and I the indicator function, i.e., I (a, b) = 1 whenever a == b,
otherwise I (a, b) = 0, ŷ the predicted class label and y the real one. It can be
used in the same manner for eliciting the accuracy on whole data blocks as in the
periodic hold out case. Another important measure is the so-called confusion matrix
(Stehman, 1997), which is defined as:

C =




N11 N12 . . . N1K

N21 N22 . . . N2K
...

...
...

...

NK 1 NK 2 . . . NKK


, (47)

with K the current number of classes, where the diagonal elements denote the
number of class j samples which have been correctly classified as class j samples
and the element Nij denotes the number of class i samples which are wrongly
classified to class j . These can be simply updated by counting.

Furthermore, often someone may be not only interested how strong the samples
are miss-classified, but also how certain they are classified (either correctly or
wrongly). For instance, a high classification accuracy with a lot of certain classifier
outputs may have a higher value than with a lot of uncertain outputs. Furthermore,
a high uncertainty degree in the statements point to a lot of conflict cases (compare
with Equation (19) and Figure 3.5), i.e., a lot of samples falling into class overlap
regions. Therefore, a measure telling the uncertainty degree over samples seen so
far is of great interest — a widely-used measure is provided in (Amor et al., 2004):

RelN = 1− 1

K

K∑
k=1

|con fk(N)− yk(N)|, (48)

where yk(i) = 1 if k is the class the current sample N belongs to, and yk(i) = 0
otherwise, and con fk the certainty level in class k, which can be calculated by
Equation (19), for instance. It can be accumulated in the same manner as the accuracy
above.
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In case of regression problems, the most common choices are the root mean
squared error (RMSE), the mean absolute error (MAE) or the average percentual
deviation (APE). Their updates are achieved by:

RMSE(N) =
√

1

N
∗ ((N − 1) ∗ (RMSE(N − 1)2)+ (y − ŷ)2

)
. (49)

MAE(N) = 1

N
∗ ((N − 1) ∗MAE(N − 1)+ |y − ŷ|). (50)

APE(N) = 1

N
∗
(
(N − 1) ∗APE(N − 1)+ |y − ŷ|

range(y)

)
. (51)

Their batch calculation for even blocks in periodic hold out test is following the
standard procedure and thus can be realized from Wikipedia. Instead of calculating
the concrete error values, often the observed versus predicted curves over time
and their correlation plots are shown. This gives an even better impression under
which circumstances and at which points of time the model behaves in which way.
A systematic error shift can be also realized.

Apart from accuracy criteria, other measures rely on the complexity of the
models. In most EFS application cases (refer to Table 3.3), the development of the
number of rules over time is plotted as a two-dimensional function. Sometimes, also
the number of fuzzy sets are reported as additionally criteria which depend on the rule
lengths. These mostly depend on the dimensionality of the learning problem. In case
of embedded feature selection, there may be a big drop in the number of fuzzy sets
once some features are discarded resp. out-weighted (compare with Section 3.4.2).
Figure 3.11 shows a typical accumulated accuracy curve over time in the left image

Figure 3.11: (a) Typical accumulated accuracy increasing over time in case of full update and active
learning variants (reducing the number of samples used for updating while still maintaining high
accuracy); (b) Typical evolution of the number of rules over time.
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(using an all-pairs EFC including active learning option with different amount of
samples for updating) and a typical development of the number of rules in the right
one: At the start, rules are evolved and accumulated, later some rules turned out to
be superfluous and hence are back-pruned and merged. This guarantees an anytime
flexibility.

3.6.5. Real-World Applications of EFS — Overview

Due to space restrictions, a complete description of application scenarios in which
EFS have been successfully implemented and used so far is simply impossible. Thus,
we restrict ourselves to a compact summary within Table 3.3 showing application
types and classes and indicating which EFS approaches have been used in the

Table 3.3: Application classes in which EFS approaches have been successfully applied so far

Application
Type/Class
(alphabetically) EFS approaches (+ refs) Comment

Active learning /
human-machine
interaction

FLEXFIS-Class (Lughofer et al., 2009;
Lughofer, 2012d), EFC-AP (Lughofer,
2012a), FLEXFIS-PLS (Cernuda et al.,
2014)

Reducing the annotation
effort and measurement
costs in industrial
processes

Adaptive on-line
control

evolving PID and MRC controllers in
(Angelov and Skrjanc, 2013), eFuMo (Zdsar
et al., 2014), rGK (Dovzan et al., 2012),
self-evolving NFC (Cara et al., 2013),
adaptive controller in (Rong et al., 2014).

Design of fuzzy controllers
which can be updated and
evolved on-the-fly

Bioinformatics EFuNN (Kasabov, 2002) Specific applications such
as ribosome binding site
(RBS) identification, gene
profiling

Chemometric
Modeling and
Process Control

FLEXFIS++ (Cernuda et al., 2013, 2012);
the approach in Bodyanskiy and
Vynokurova (2013)

The application of EFS onto
processes in chemical
industry (high-dim. NIR
spectra)

EEG signals
classification
and processing

eTS (Xydeas et al., 2006), epSNNr (Nuntalid
et al., 2011)

Time-series modeling with
the inclusion of time
delays

Evolving Smart
Sensors
(eSensors)

eTS+ (Macias-Hernandez and Angelov, 2010)
(gas industry), (Angelov and Kordon,
2010a, 2010b) (chemical process industry),
FLEXFIS (Lughofer et al., 2011c) and
PANFIS (Pratama et al., 2014a) (NOx
emissions)

Evolving predictive and
forecasting models in
order to substitute
cost-intensive hardware
sensors

(Continued)
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Table 3.3: (Continued)

Application
Type/Class
(alphabetically) EFS approaches (+ refs) Comment

Forecasting and
prediction
(general)

AHLTNM (Kalhor et al., 2010) (daily temp.),
eT2FIS (Tung et al., 2013) (traffic flow),
eFPT (Shaker et al., 2013) (Statlog from
UCI), eFT (Lemos et al., 2011b) and eMG
(Lemos et al., 2011a) (short-term electricity
load), FLEXFIS+ (Lughofer et al., 2011b)
and GENEFIS (Pratama et al., 2014b)
(house prices), LOLIMOT inc. (Hametner
and Jakubek, 2013) (maximum cylinder
pressure), rGK (Dovzan et al., 2012) (sales
prediction) and others

Various successful
implementations of EFS

Financial
domains

eT2FIS (Tung et al., 2013), evolving granular
systems (Leite et al., 2012b), ePL (Maciel
et al., 2012), PANFIS (Pratama et al.,
2014a), SOFNN (Prasad et al., 2010)

Time-series modeling with
the inclusion of time
delays

Identification of
dynamic
benchmark
problems

DENFIS (Kasabov and Song, 2002), eT2FIS
(Tung et al., 2013), eTS+ (Angelov, 2010),
FLEXFIS (Lughofer, 2008), SAFIS (Rong,
2012), SEIT2FNN (Juang and Tsao, 2008),
SOFNN (Prasad et al., 2010)

Mackey-Glass,
Box-Jenkins, etc.

On-line fault
detection and
condition
monitoring

eMG for classification (Lemos et al., 2013),
FLEXFIS++ (Lughofer and Guardiola,
2008b; Serdio et al., 2014a), rGK (Dovzan
et al., 2012)

EFS applied as SysID
models for extracting
residuals

On-line
monitoring

eTS+ (Macias-Hernandez and Angelov, 2010)
(gas industry)

Supervision of system
behaviors

Robotics eTS+ (Zhou and Angelov, 2007) In the area of
self-localization

Time-series
modeling

DENFIS (Widiputra et al., 2012), ENFM
(Soleimani et al., 2010) and eTS-LS-SVM
(Komijani et al., 2012) (sun spot)

Local modeling of multiple
time-series versus
instance-based learning

User behavior
identification

eClass and eTS (Angelov et al., 2012; Iglesias
et al., 2010), eTS+ (Andreu and Angelov,
2013), FPA (Wang et al., 2013)

Analysis of the user’s
behaviors in multi-agent
systems, on computers,
indoor environments etc.

Video processing eTS, eTS+ (Angelov et al., 2011; Zhou and
Angelov, 2006)

Including real-time object
id., obstacles tracking and
novelty detection

Visual quality
control

EFC-AP (Lughofer and Buchtala, 2013),
FLEXFIS-Class (Eitzinger et al., 2010;
Lughofer, 2010b), pClass (Pratama et al.,
2014c)

Image classification tasks
based on feature vectors
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circumstance of which application type. In all of these cases, EFS(C) helped to
increase automatization capability, improving performance of the models and finally
increasing the useability of the whole systems; in some cases, no modeling has been
(could be) applied before at all.
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