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Propositional Theories, Frames, and Fuzzy Algebras

B. BANASCHEWSKI

Department of Mathematics & Statistics
McMaster University
Hamilton, Ontario L8S 4K1, Canada

E-mail: penny@mcmail.CIS.McMaster.ca

Entities like the T-fuzzy subalgebras and congruences of an algebra (in the sense of Universal
Algebra) will be described as the T-valued models of suitable propositional theories, thus
linking them to frames (= complete Heyting algebras) and providing a systematic approach
to the study of the partially ordered sets arising in this context. It will be shown how this
approach leads to suggestive new proofs of familiar facts as well as a variety of new results.



Pure States

C. J. MULVEY

School of Mathematical Sciences
University of Sussex, Falmer
Brighton, BN1 9QH, Great Britain

E-mail: C.J.Mulvey@sussex.ac.uk

The concept of a pure state of a C*-algebra A is equivalent to that of an irreducible rep-
resentation of the C*-algebra. Within the quantale Max A that is the spectrum of A , the
notion of pure state may be abstracted to play an important role. In turn, this leads to links
with orthocomplemented sup-lattices through the concept of Hilbert quantale. In this talk,
we explore the interaction between the roles played by pure states within these contexts.



Discrete Triangular Norms

BERNARD DE BAETS"*, RADKO MESIAR?

!Department of Applied Mathematics and Computer Science
University of Gent
B-9000 Gent, Belgium

E-mail: Bernard.DeBaets@rug.ac.be

2Department of Mathematics
Slovak Technical University
SK-81368 Bratislava, Slovakia,

E-mail: mesiar@cvt.stuba.sk

1 T-norms and additive generators

Triangular norms (t-norms) have been introduced in the sixties by Schweizer and Sklar [7]
as commutative, associative and increasing [0, 1] — [0, 1] mappings with neutral element 1.
Continuous t-norms have been completely characterized as ordinal sums with continuous
Archimedean summands [5, 7]. Recall that continuous Archimedean t-norms are character-
ized by the diagonal inequality (Vo €10, 1[)(7 (z,z) < ).

Continuous Archimedean t-norms are representable by means of additive generators [5]:
a t-norm 7 is continuous and Archimedean if and only if there exists a continuous, strictly
decreasing [0, 1] — [0, co] mapping f with f(1) = 0 (called an additive generator of 7) such
that T(z,y) = f Y(min(f(0), f(z) + f(v))), for any (z,y) € [0,1]2. Note that an additive
generator f of a continuous Archimedean t-norm 7 is unique up to a positive multiplicative
constant.

Any continuous Archimedean t-norm 7 is either a strict t-norm (i.e. continuous and
strictly increasing on ]0,1]?) or a nilpotent (i.e. non-strict) t-norm. Strict t-norms are
characterized by unbounded additive generators (f(0) = +o00) and are isomorphic to the
product t-norm Tp(z,y) = zy. On the other hand, nilpotent t-norms are characterized by
bounded additive generators (f(0) < +oo) and are isomorphic to the Lukasiewicz t-norm
Tr(z,y) = max(0,x +y — 1).

2 Discrete t-norms

Practical applications supported by computer implementations are often based on arguments
taken from a finite scale, i.e. a finite subchain {z1,... ,z,} of [0,1], where 21 =0 < 22 <

. < z, = 1. Note that any other scale of length n can be transformed into a scale of
the above type. Since there is no problem with introducing the concept of a t-norm on an
arbitrary bounded poset [3] (for an in-depth study, in particular on product lattices, see [2]),
we can introduce t-norms on a finite chain as well.

Definition 1. Consider a finite chain C,, = {x1,... ,2,}, n € N, with 1 < 22 < ... < 2.
A C? — C mapping D is called a discrete t-norm (on C) if it is commutative, associative,
increasing and has z,, as neutral element, i.e. (Vi € {1,... ,n})(D(z;,x,) = ;).

All algebraic notions (the Archimedean property, strict monotonicity, nilpotent elements,
..) introduced for t-norms on [0, 1] can be introduced for discrete t-norms in a straightfor-
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ward way. The particular structure of a finite chain, however, leads to additional observa-
tions [2]: the Archimedean property is equivalent to the diagonal inequality, there exists no
strictly increasing discrete t-norm, etc.

The number of discrete t-norms on a finite chain C,, is known only for n < 14 [1] (for
n = 14 there are 382.549.464 discrete t-norms). An important subclass is the class of smooth
discrete t-norms characterized by Mayor and Torrens as a counterpart of continuous t-norms
on [0, 1] [6]. In fact, the continuity of a t-norm T on [0,1] is equivalent with

(V(z,y) € [0,1]*)(z <y & (32 € [0,1])(z = T(y,2))).

However, for a discrete t-norm D on a finite chain C,,, the above property is equivalent with
the following: for any (4,5) € {2,...,n}? it holds that if D(z;,z;) = x,, then D(z;_1,x;) =
xp and D(x;,x5-1) = x4 with r — 1 < p,q¢ < r. This property is called the smoothness
property by Godo and Sierra [4]; it can be seen as some kind of Lipschitz condition. The
class of smooth discrete t-norms on a finite chain C,, has been characterized completely
by Mayor and Torrens [6]. Firstly, there exists a unique smooth Archimedean discrete t-
norm Dy, on it, defined by Dr(z:,7;) = Zmax(1,i+j—n)- Secondly, for any given subset [
of {x2,...,2,—1}, there exists a unique smooth discrete t-norm that has I as set of non-
trivial idempotent elements. As a consequence, smooth discrete t-norms show an ordinal sum
structure similar to that of continuous t-norms on [0, 1]. It then also follows that there exist
2"=2 smooth discrete t-norms on C,,.

3 Discrete versus discretized

An interesting problem with possible practical consequences is that of the extension of a
discrete t-norm D on a finite subchain C,, = {1,... ,z,} of [0,1], where 1 = 0 < 23 <
...<z, =1,t0 atnorm 7 on [0,1], i.e. to a t-norm 7 on [0,1] such that 7|c2 = D. The
following results hold:

(i) A right-continuous extension of D is always possible.

(ii) A continuous extension of D is not always possible. In fact, there exist Archimedean
discrete t-norms without continuous extension. Hence, Archimedean discrete t-norms
are not necessarily representable by means of a continuous additive generator.

(iii) If D is smooth, then it can always be extended to a continuous t-norm 7 that has the
same idempotent elements as D.

(iv) There exist non-smooth discrete t-norms with a continuous extension. This is the case
for the weakest discrete t-norm Dyy (defined by Dy (x5, z;) = 0 whenever max(x;, z;) <
1).

Obviously, the problem of characterizing all discrete t-norms admitting a continuous exten-
sion is still open!

On the other hand, we may wonder when a discretization of a t-norm on [0, 1] yields
a discrete t-norm, i.e. given a t-norm 7 on [0, 1], for which finite subchains C of [0,1] is
D = T|c> a discrete t-norm. The main problem is, of course, that the discretization should
yield an operation which is internal on the selected subchain. The following results hold:

(i) For T = Ty (the minimum operator), any finite subchain C is suitable and D = Dy,
is also the minimum operator.

(ii) For a strict t-norm 7, only the trivial scale C = {0, 1} is acceptable and then, of course,
D is nothing else but the Boolean conjunction.



(iii)

(iv)

For a nilpotent t-norm 7 with additive generator f, it holds that D is a discrete t-norm
if and only if f(C) = {f(z) | * € C} is relatively closed under addition, i.e. for any
(x,y) € C? there either exists z € C such that f(z)+ f(y) = f(z) or f(z)+ f(y) > f(0).

Finally, we consider the case of a general continuous t-norm 7 with ordinal sum repre-
sentation ({ax, bk, Tx))rer - In this case, C' can contain any of the idempotent elements
of T and Cy = CN]ay, by can be non-empty if and only if 7}, is nilpotent. In that case,
if fi is an additive generator of Ty, for any k € K, a necessary and sufficient condition
is again that f(Cy) is relatively closed under addition.
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Non-Continuous Generated T-Norms

PETER VICENIK

Department of Mathematics
Slovak Technical University
SK-81368 Bratislava, Slovakia,

E-mail: vicenik@vox.svf.stuba.sk

Let us recall some definitions.
Definition 1. A function T : [0,1]? — [0, 1] which Vz,y, 2 € [0,1] fulfills:

T(T(2,y),2z)=T(x,T(y,2))
r<z=T(x,y) <T(z,y)
T(x,y) =T(y,z)

T(z,1) =z

associativity)
monotonicity)
commutativity)
boundary condition)

Py

is called a triangular norm (a t-norm for short).

Definition 2. Let f : [0,1] — [0, oc] be a non-increasing function. Then the function f(-1)
[0,00] — [0, 1] defined by

Fy) = sup{e € [0,1] | f(z) >y}
is called the pseudo-inverse of function f.

Definition 3. Let f : [0,1] — [0, 00] be a strictly decreasing function, f(1) = 0 and let the
function T : [0,1]% — [0, 1] be given by formula

T(z.y) = fCV(f(@) + f(y)) Va,y€[0,1] (1)

where (-1 is the pseudo-inverse of the function f. Then the function f is called a conjunctive
additive generator of the function T.

Definition 4. Let f : [0,1] — [0, co] be a non-increasing function. The range of the function
1 is relatively closed under the addition if and only if for all z,y € [0,1] we have f(z)+ f(y) €

Ran(f) or f(x) + f(y) =2 lim f(x).
z—0*t
Theorem 1 was introduced by Klement, Mesiar and Pap in [4].

Theorem 5. Let f : [0,1] — [0,00] be a conjunctive additive generator of T with Ran(f)
relatively closed under the addition. Then the function T is a t-norm.

The requirement 'Ran(f) is relatively closed under the addition’ is sufficient but not
necessary condition of associativity of corresponding generated function 7. We can formulate
questions: What is the characterization of additive generators of t-norms whose range is not
relatively closed under the addition? What are the sufficient (or necessary) conditions of the
associativity of T' defined by (1)?

Next Theorem 2 gives one of the necessary conditions of the associativity of T'. First we
have to introduce some notation:

Dy(0,1) ={a € (0,1) | fla-)> flay)}

L(f)={veR"|3te (0,1, v=f(t-)}
H_(f)={veR"| 3a€D(0,1), v = fla) - fa)}.



Theorem 6. Let f : [0,1] — [0, 0] be a conjunctive additive generator of T. If T is a t-norm,
then H (f)NL_(f)=0.

From this theorem we can obtain that if f : [0,1] — [0, co] is a left-continuous conjunctive
additive generator of the function T and T is a t-norm then f is continuous function on (0, 1]
(and then T is a continuous Archimedean t-norm).

Now we will characterize the set I of all non-trivial idempotent elements of generated
function T'. Denote

Do = Do(f) ={a € (0,1) | a € Dy and 2f(a) < f(a-)}.
It ={2€(0,1) | T(z,z) =2} (idempotent elements)
for M C [0, o0,
C(M)={t€[0,00] | H{zn}nen C M —{t} and t = nh_)rr;o X}

Theorem 7. Let f be some additive generator of t-norm T. Then It = Dy.

Set I has following properties: It C Dy, Ir is countable set and C(Ir) C {0,1}.
Next Theorem 4 gives one of the sufficient conditions ensuring the associativity of 7. Let
Dy = Dg and 3¢ € Dy such that ¢ = max Dy.
Denote
a=max{D;N[0,a)} VYaeD;U1l

(note that max @ = 0). We know that a < a.

Theorem 8. Let f be a conjunctive additive generator of T' and Dy = Dy. If there exists
c¢c=max Dy and for all a € Dy it holds f(ay) — f(a=) < f(cy), then T is a t-norm.

There are examples of generated t-norms with infinite set of non-trivial idempotents (these
t-norms are not Archimedean).
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Powers of T-Norms
C. WALKER, E. A. WALKER

Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003, USA

E-mail: hardy@nmsu.edu/elbert@nmsu.edu

The rth power of a continuous t-norm is defined for positive real numbers r, generalizing
the notion of the 2nd power discussed in a paper of Mesiar and Navara [4] on diagonals of
continuous triangular norms. Our definition is based on an example presented in [2] that
called upon powers of strict t-norms. We generalize the results of Mesiar and Navara some-
what, and make the point that, in general, use of automorphisms of the ordered unit interval
as generators enables one to take advantage of the underlying algebra, as this group provides
a natural mathematical framework in which to sort out what is going on and to describe
the results. In this spirit, we point out that the representation theorems for Archimedean
t-norms can be phrased as follows.

Theorem. A t-norm o is strict if and only if it is isomorphic to multiplication on the unit
interval—that is, given a strict t-norm o, there is an automorphism f of I = ([0,1],<)
satisfying f (xoy) = f (z) f (y) for oll z,y € [0,1]. Two automorphisms f and g of I give
isomorphisms for the same t-norm if and only if there is a positive real number s such that
f(x) = (g())° for all x € 0,1].

The automorphism f is called a (multiplicative) generator for o, since o is obtained from
multiplication by the formula x oy = f=1 (f (z) f (v)).

Theorem. A t-norm o is nilpotent if and only if it is isomorphic to the Lukasiewicz t-
norm x & y = (z+y—1) V0, that is, there is an isomorphism f : (I,0) — (I, e) satisfying
flxoy)=(f(z)+ f(y) —1) VO for all x,y € [0,1]. The isomorphism f is unique.

We call the isomorphism f the L-generator for o, since o is obtained from the Lukasiewicz
t-norm by the formula z oy = f= ((f () + f (y) — 1) V 0). Note that f is, in particular, an
automorphism of T.

For positive integers n, the nth power of o is zI") = zo0z0---0x (n times). The
2nd power of o is 22 = z o z, commonly known as the diagonal of the t-norm o. The
notion of nth power naturally extends to rth powers for positive real numbers r. The theory
readily provides a mechanism for representing these rth powers for strict t-norms as the
functions z["l = f~'rf (z), where f is any isomorphism of o with multiplication and r
represents the ordinary rth power r (x) = 2", and for nilpotent t-norms as the functions
2"l = f1((r- f(x) —r+1)V0), where f is the L-generator of o and r - f(x) denotes
the ordinary product of r and f(z). The functions z["l are independent of the choice of
isomorphism and satisfy the usual properties of powers.

Mesiar and Navara proved in [4] that any automorphism § of I satisfying d (x) < « for all
x € (0,1) is the diagonal of a strict t-norm, that is, for any such ¢ there exists an f € Aut (I)
such that § (x) = f~1(f(x) f(x)). We generalize this characterization to arbitrary rth
powers as follows.

Theorem. Let r € RT. A function & : [0,1] — [0,1] is the rth power for some strict t-norm
o if and only if 0 € Aut (I) and one of the following holds:

1. r>1and 6 (z) <z for all x € (0,1).

2. r=1and §(z) =2z for all x € (0,1).

11



3. r<1and é(z) >x for all z € (0,1).

Two automorphisms f, g € Aut (I) generate strict t-norms having the same rth power if
and only if fg~! is in the centralizer of r in Aut (I). The question of uniqueness of the strict
t-norm is thus reduced to the problem of describing the centralizer of r in Aut (I). This is
done in terms of automorphisms of subintervals of the unit interval.

We prove theorems analogous to the above for nilpotent t-norms. The characterization
of rth powers of continuous t-norms can be pieced together from the characterizations for
strict and nilpotent t-norms.
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Semiring-Valued Measures and Integrals
E. Pap

Institute of Mathematics
University of Novi Sad
YU-21000 Novi Sad, Yugoslavia

E-mail: pap@unsim.ns.ac.yu

In modeling fuzzy systems and decision making there are different types of integrals as Cho-
quet, Sugeno, Weber, Maslov, Sugeno-Murofushi, etc. (see [1], [2], [5]). On other side there
are general integrals with values in abstract structures (see [6]) and multi-valued integrals.

We shall present an integral, which will cover many of important integrals, and which takes
values in an abstract semiring endowed with some special metric. Namely, it is known, that
the topology of a uniform semigroup (X, @) with a neutral element 0 can be characterized
by a family of pseudo-metrics {d;};c; which satisfy the inequality

difz® 2" ydy') < di(z,y) + di(2',y") (1)

forie Iz, 2 y,y € X (see [3]).
We consider a semiring (P, @, ®) with a compatible partial ordering < which is endowed
with a metric d compatible with < and which if & is idempotent satisfies the condition

dz @2’y & y') <max(d(z,y),d(z',y"))

otherwise d satisfies the condition (1).

Let ¥ be a o-algebra. We consider ¢-measure m : ¥ — P, i.e., m(f) = 0; for every
A, B € X such that AN B = @ we have m(A U B) = m(A) & m(B), and for every sequence
{A4,} ifrom ¥ and A € ¥ such that A,, 1T A we have m(A4,) T m(A4). We introduce an integral
with respect to @-measure using e-net construction (see [5]). If @ is idempotent extension of
@-measure is not unique (see [4]). This has implications on the corresponding integrals.
We present some applications in optimization, and nonlinear partial differential equations.
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Varieties Generated by Strict de Morgan Systems on the
Unit Interval

M. GEHRKE, C. WALKER, E. A. WALKER

Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003, USA

E-mail: mgehrke@nmsu.edu/hardy@nmsu.edu/elbertOnmsu.edu

Much research in fuzzy logic and fuzzy sets concentrates on the study of various algebraic
systems based on the unit interval such as de Morgan systems since such algebraic systems
give rise to corresponding operations on fuzzy sets and connectives of fuzzy logic. As de-
scribed in our paper [1], two algebras with the same arity operations give rise to the same
fuzzy logic — or equivalently, yield the same equational properties of fuzzy sets — if and only
if the two algebras generate the same variety in the sense of universal algebra [According to
Birkhoff’s fundamental theorem, a variety may either be seen as a class of algebras closed un-
der homomorphic images, subalgebras, and products, or as the class of all algebras satisfying
some set of equations].

In our paper [2], we advocate an abstract algebraic point of view in the study of de Morgan
systems. Rather than talking of generators for norms and negations, we considered these as
isomorphisms between algebraic systems. Thus we determined exactly which Archimedean
de Morgan systems are isomorphic. It is clear that if two algebraic systems are isomorphic
then they satisfy the same equational properties and thus generate the same variety. The
converse is however far ;jfrom true. That is, non-isomorphic algebras can generate the same
variety. In fact, all varieties other than ones consisting solely of one element algebras have
many generators. For a more pertinent example, the systems (I, o) and (I, A) where I is the
unit interval as a bounded lattice and o is any strict t-norm and A is any nilpotent t-norm
generate the same variety. In contrast, we will show that the variety generated by one strict
de Morgan system is contained in another such if and only if the de Morgan systems are
isomorphic. In conjunction with our previous characterization of the isomorphism classes
of strict de Morgan systems [2], we thus get a complete account of the distinct varieties
generated by a strict de Morgan system since there is one for each isomorphism class. This
yields uncountably many distinct fuzzy logics.

Other questions we consider are: existence of a finite basis for such varieties, finite gen-
eration, subvariety structure and generalizations to varieties generated by other de Morgan
systems. The existence of a finite basis, that is, a finite set of equations that determines
the variety — such as there is for the variety generated by the isomorphism class of Boolean
systems, also known as the variety of MV-algebras — essentially means that we have a logic in
the classical sense: that is, a finitary syntactic deduction system corresponding to the logic
in question. It should be noted that it follows from a cardinality consideration that all but
at most countably many of the varieties generated by de Morgan systems are not finitely
based. Finite generation, that is, a variety being generated by a single finite algebra — such
as is the case for classical fuzzy logic (given by lattice meet) [1] — has as consequence that the
corresponding logical equivalence relation is decidable. This is also extremely rare: we show
that none of the varieties generated by strict de Morgan systems are finitely generated. The
subvarieties of a variety correspond to the extensions of the corresponding logic. Finally, we
discuss generalizations of these results.
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Preliminaries. Let L = (L,<,A,V,*) be a completely distributive GL-monoid (cf e.g.
[1], [2]). It is well known that every G L-monoid is residuated, i.e. there exists a further binary
operation - implication ” —— 7 such that axg8 <4 <= a<f+—v Va,8,7€ L.

n—1

We set a? = a * a and further by induction: a” = a * QU

Modifying slightly the terminology of U.Hdhle (cf e.g. [2]) by an L-valued set we call a
pair (X, E) where X is a set and E is an L-valued equality, i.e. a mapping E: X x X — L
such that

(leq) Blz,a) =1;
(2eq)  E(z,y) = E(y,2);

(3eq)  E(z,y) x E(y,2) < E(z,2).

An L-valued set (X, E) is called separated if
(deq) E(zy)=l<=uz=y

By L — SET(L) we denote the category whose objects are triples (X, E, A) where (X, E)
is an L-valued set and A is its extensional L-subset (i.e. a mapping A : X — L such
that sup, A(z) * E(x,y) < A(y),Vy € X) and morphisms from (X, Ex, A) to (Y, Ey, B)
are mappings f : X — Y which preserve equalities (i.e. Ex(x1,22) < Ey(fx1, fx2)) and
"respect L-subsets”, i.e. A < Bo f. Let L — SET'(L) stand for the full subcategory of the
category L — SET (L) determined by separated L-valued sets.

To recall the concept of an L—fuzzy category [4, 5], consider an ordinary (classical) cat-
egory C and let w : Ob(C) — L and u : Mor(C) — L be L—fuzzy subclasses of its objects
and morphisms respectively. Now, an L—fuzzy category can be defined as a triple (C,w, u)
satisfying the following axioms ([5], cf [4] in case x = A):

19 u(f) w(X)Aw(Y) VX,Y €0b(C)and Vf € Mor(X,Y);
29 u(go f) > u(f) * u(g) whenever the composition g o f is defined;
3% p(ex) = w(X) where ex : X — X is the identity morphism.
Our aim is, starting from the category L — SET(L), to define a fuzzy category L —

FSET(L) having the same class of objects as L — SET (L) but an essentially wider class of
”potential” morphisms.
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Definition of the fuzzy category L — FSET(L).

Let L — FSET(L) denote the (ordinary) category having the same objects as L — SET(L)
and whose morphisms, called (potential) fuzzy functions, from (X, Ex, A) to (Y, Ey, B) are
L-relations F' : X x Y — L (cf e.g. [3]) such that

(1ff) sup, A(z) * F(z,y) < B(y) YyeY;
(2ff) F(ib,y) * Ex(ib,ib,) * EY(yvyl) S F(xlvyl) V.T,.TI € Xa Vy,y, € Y7
(3ff) F(x,y)* F(2',y") * Ex(z,2') < Ey(y,y') Va,2' € X,Vy,y' €Y.

Given two fuzzy functions F' : (X,Ex,A) — (Y,Ey,B) and G : (Y,Ey,B) — (Z,E;,C)
we define their composition G o F' : (X, Ex,A) — (Z,Ez,C) by setting (G o F)(z,2) =
V,ey (F(z,y) * G(y, 2)); the identity morphism is defined by the corresponding L-valued
equality: E: (X,E,A) = (X, E, A).

Further, we define an L-subclass p of the class of all morphisms of L — FSET(L) by
setting

u(F) = inf sup F(x,y).
Ty

In case u(F) > a we refer to F' as a fuzzy a-function or a fuzzy a-morphism

Noticing that u(G o F) > u(G) * u(F) (by complete distributivity of L) and u(E) = 1 we
conclude that a fuzzy category L — FSET(L)= (L — FSET (L), loyL—FsET(L)): 1) i thus
obtained.

Some (fuzzy) subcategories of the fuzzy category L — FSET(L).

For a fixed o let L — F,SET(L) consist of all objects of L — FSET(L) and its fuzzy a-
morphisms. In case « is idempotent, L—F,SET(L) is a usual (crisp) category. In particular,
it is a crisp category in case a = 1.

If Ly, Ly, Ly C L, then by Ly — FSET (Lo, L3) we denote the (fuzzy) subcategory of L —
FSET(L), whose objects (X, E, A) satisfy the conditions A(X) C L; and E(X x X) C
L., and whose morphisms satisfy the condition F(X x Y) C Ls. By specifying the sets
Ly, Ly and L3 some known and new (fuzzy) categories related to L-sets can be characterized
as (fuzzy) subcategories of Ly — FSET (L, L3)-type or of Ly — FSET'(Lsy, L3)-type.

Images and preimages of L-sets under fuzzy functions.

Given a fuzzy function F : (X,Ex) — (Y, Ey) and L-subsets A: X — Land B:Y — L of
X and Y respectively, we define a fuzzy set F(A) : Y — L (the image of A under F) by the
equality F(A)(y) = sup, F(x,y) ® A(x) and a fuzzy set F(B) : X — L (the preimage of B
under F) by the equality F'(B)(z) = sup, F(z,y) ® B(y); here ©® can be chosen either as A
or as .

Proposition 1 [Basic properties of images and preimages of L-sets under fuzzy functions]

1 F(Ver(A) = Vier F(A)  W{A; i€} c LX;
2 F(AL \A2) S F(A)ANF(As) VA, As € LY,

3 (Niez F(B))” < F(N\ier(Bi) < Niez F(B:)  W{Bi:i eI} C L%,
30 (Niez F(B:)? < F(Nier(B) < Niey F(Bi)  V{B;i:i€ I} CLX —incase®=A;

3% Niez F(Bi) = F(\;c7(B5)) V{B;:i €I} C LY —incase ® =%=A

4 (Viez F(B)” < F(Viez(Bi)) < Vier F(B:)  V{BizieI}c L,

4 (Vier F(B))? < F(V,er(B)) < Vier F(B)  ¥{Bi:i € T} C LX —incase® = A;
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48 (V,ez F(By)) = F(V,c7(By)) V{B;:i €I} C LY —incase ®=x=A;

5. F(F(B)) < Bif ® = .

Injectivity, surjectivity and bijectivity of fuzzy functions.

A fuzzy function F : (X, Ex, A) — (Y, Ey, B) is called injective, if

(inj)  F(z,y)* F(2',y') * By (y,y') < Ex(z,2');

a fuzzy function F' : (X, Ex, A) — (Y, Ey, B) is called a-surjective if

(surl®) inf,sup, F(xz,y) > a and

(sur2) F(A)=B.

In case F' is injective and a-surjective, it is called a-bijective.

A fuzzy function F : (X, Ex,A) — (Y, Ey, B) defines a fuzzy relation F~' : (Y, Ey,B) —
(X, Ex, A) by setting F~!(y,z) = F(z,y) Vz € X,VyeY.

Proposition 2 [Basic properties of injections, a-surjections and a-bijections

1 F~!is a fuzzy function iff F is injective;
2 F is a-bijective iff F~1 is a-bijective.

3 If Fis injective then (F(Al) /\ F(AQ))S S F(Al /\AQ) S F(Al) /\ F(AQ) \V/Al, A2 S
LX.
In particular:

3/\ (F(Al)/\F(AQ))S S F(Al A\ AQ) S F(Al)/\F(AQ) VAl,AQ S LX — in case
© =N

3ﬁ F(Al /\AQ):F(Al)/\F(AQ) VAl,AQ ELX —in case ©® = A = x;

4 If F is a-surjective, then F(F(B)) > B VB € LY; and hence, in particular, F(F(B)) =
B in case ® = *.

Some categorical properties of the fuzzy category L — FSET (L) will be discussed. In
particular, it will be shown that
Products and coproducts in the fuzzy category L — FSET(L) are defined, respectively,
by the products and coproducts in the category L — SET(L).

On the basis of L — FSET(L) some fuzzy categories related to topology and algebra can
be naturally defined. Here are two examples:

Category FTOP(L). Let (X,Ex) = (X,Ex,1x) and let 7x C L* be the (Chang-
Goguen) L-topology on X. A fuzzy function F : (X, Ex,7x) — (Y, Ey,7y) is called con-
tinuous if F(V) € 7x for all V € 7y. L-topological spaces and continuous fuzzy mappings
between them form the category FTOP(L).

Category L — FGr(L). Let X be a group,

Ex be an L-valued equality on X such that Ex(z -y, 2’ -y') > Ex(z,2") * Ex(y,y’) for
all z.2",y,y’ € X and Gx : X — L be an L-subgroup of X (see e.g. [3]). A fuzzy
function F : (X, Ex,Gx) — (Y, Ey,Gy) is called a fuzzy homomorphism if F(x-2', y-y') >
F(x,y)« F(2',y') for all z,2',€ X, y,y' €Y

Some properties of the categories FTOP(L) and L — FGr(L) will be discussed.
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Let A be the automorphism group of ([0,1], <), the unit interval with its usual order
structure. That is, A is the set of one-to-one order preserving maps of [0,1] onto itself,
and the group operation is composition of maps. Elements f of A give strict t-norms via
r Ay = fHf(x)f(y)). Some well known families of t-norms come from subgroups of A.

For example, consider the one parameter family { a+(17a“;?(’$+y7w) :a > 0} of t-norms. A
generator of g g a)z(’ﬂyﬂy) is the automorphism TTalia) and the set {m ca >0}

is a subgroup G. of A. It is an example of a one parameter subgroup of A. It is a particularly
transparent example: composition in G corresponds to multiplication of the parameters
involved. Thus, if f,(z) = m, then fofs = fas. So this group is isomorphic to the
multiplicative group of positive real numbers. Clearly, one parameter subgroups of A give
one parameter families of t-norms.

Some well known families of t-norms do not fit this mold, the Frank family

flog, (1+ =20 sas 0021}

a—1

a®—1)
a—1

One goal here is to examine the well known families of t-norms from this viewpoint, and
to construct new families by finding one and two parameter subgroups of A. But instead of
limiting ourselves to subgroups of A, we consider subgroups G of the group M of all automor-
phisms and antiautomorphisms of ([0, 1], <). If such a group contains a negation 7, then for
any automorphism f € G, f and n give a triple system with t-norm generated by f., negation
given by 7, and t-conorm cogenerated by fn, all of these elements being in G. So such a group
gives rise to a family of triple systems. Here is an example. Let G = {e~(=1n®)" .y #£0}.
The automorphisms in G are the elements with » > 0, the antiautomorphisms with r < 0,

with generators { ca>0,a# 1} being one such.

. oy L

and only 7 = —1 gives a negation. The family of t-norms is {e_((_l‘”) He=ny) )y > O}.
s ry L

So for r > 0, we get the triple system with t-norm e~ ((=1n2)"+(=1ns)")™ "pesation eﬁ, and

r ry L
t-conorm e~ ((=m@)"+(=ny)")™ For y = 1, this becomes the triple system with t-norm xy,
Inzlny

negation eﬁ7 and t-conorm e ™==v . We will present other examples, and some pertinent
group theoretic facts. This research is in its infancy.
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4 Motivation

Triangular norms play basic role in several disciplines of mathematics, e.g., in fuzzy sets theory and
its applications. Left-continuity of a t-norm is a frequently quoted property in the literature. The
role of left-continuous t-norms having strong induced negations (that is, Girard monoids on [0, 1])
are even more relevant. They are applied e.g. in the field of non-classical logics.

Continuous t-norms are known as ordinal sums of continuous Archimedean t-norms (see e.g. [10])
hence their structure is well understood. But despite of the importance of the topic, there isn’t any
result in the literature concerning the structure left-continuous t-norms. Moreover, only three basic
examples of left-continuous t-norms having strong induced negations are known so far: One is the
(continuous) nilpotent class, its representative is the Lukasiewicz t-norm given by

T(z,y) = max(z+y — 1,0). (1)
An other is the family of nilpotent minimum [1], its representative is

0 ify<l-—z
min(z,y) otherwise

7, = { B

The third is the family of nilpotent ordinal sums [4] (in narrow sense). This family (in wide sense)
contains the two previous ones. A representative is given by

0 ife<l—y
T(z,y) =4 t4+z+y-1 ifi<zy<Zandz>1-y . 3)
min(z,y) otherwise

In order to fill in the gap between the particular importance of left-continuous t-norms and the
pure knowledge concerning them we completely describe here the structure of left-continuous t-norms
having strong induced negations.

In case of continuous t-norms this description is the following: The indecomposable class is
the class of continuous Archimedean t-norms. Decomposition and construction is answered by the
well-known ordinal sum theory. So for the description of left-continuous t-norms having strong
induced negations we need to know the following three things: What is indecomposability, how to
decompose into indecomposable units and finally, how to construct left-continuous t-norms having
strong induced negations. All these questions are answered in this talk.

After the basic definitions in Section 5 for left-continuous t-norms two properties are introduced
in Section 6: The rotation invariancy property and the self quasi-inverse property. These properties
hold for a t-norm 7' if and only if T is a left-continuous triangular norm having strong induced
negation; whence any of these properties characterizes the class of left-continuous triangular norms
having strong induced negations. The names and the geometrical meaning of these properties are
investigated, explained and examples are given. For more on this topic we refer to [3].

To make the understanding of the constructions in Sections 8 and 9 easier we define ’in medias
res’ indecomposability and present the decomposition theorem in Section 7. The interested reader
can find the details in [9].

TSupported in part by OTKA (Hungarian Scientific Research Fund) T019455
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Inspired by results of Section 6 a new method is introduced in Section 8 which from any left-
continuous triangular norm which has no O-divisors produces a left-continuous but not continuous
triangular norm having strong induced negation. The method is called rotation. The name is moti-
vated by a geometrical feature of the resulted t-norm, namely, its graph is produced via the ’rotation’
of the graph of the starting t-norm. For more on this construction see [7]. For the deeper under-
standing of the motivation of rotation construction we refer the reader to [3].

Then in Section 9 we introduce the second method which produces left-continuous t-norms which
have strong induced negations from a pair of certain connectives. The construction is called rotation-
annthilation. For more on this contruction we refer to [8].

An infinite number of new families of left-continuous triangular norms having strong induced
negations can be generated with these constructions, which provides a tremendously wide spectrum
of choice for e.g. logical and set theoretical connectives in non-classical logic and in fuzzy theory;
thus fairly enlarging the set of the above described three families which are until now the only known
examples.

If first we decompose and than we construct from the decomposed units we get back the starting
connective. If we construct first and than we can decompose the constructed t-norm into the starting
connective(s). Therefore the presented decomposition and construction are inverse operations of each
other. In this way the structure of left-continuous triangular norms having strong induced negations
is completely described.

Finally, we remark that results of the present talk are generalized in the setting of partially-ordered
semigroups in [5] and [6].

5 Basic Definitions

We need the following definitions in order to make the formulation and the reading of the results
easier.

Definition A A triangular norm (t-norm for short) on [a, ] C R is a function T' : [a,b]* = [a, b]
such that for all z,y, z € [a, b] the following four axioms (T1)-(T4) are satisfied:

(T1) Symmetry T (2,5) =T (y,2)

(T2) Associativity T(z, T (y,2) =T (T (z,y),2)

(T8) Monotonicity T(z,y) <T(z,z) whenevery< z
(T4) Boundary condition T (z,b) ==z

(T5) Boundary condition T (z,a)=a

(T6) Range condition T (z,y) < min(z,y).

It is immediate to see that (T3) and (T4) imply (T5), and that (T1), (T3) and (T4) imply (T6).
Clearly, a t-norm on [0, 1] means simply t-norm in the usual sense.

Now we introduce a new class of two-place functions. This class will play a key-role in the sequel:

Definition 1. A triangular subnorm (t-subnorm for short) on [a,b] C R is a function T : [0, 1]* —
[0, 1] such that for all z,y, z € [0,1] axioms (T1), (T2), (T3) and (T6) are satisfied. A t-subnorm on
[0,1] is called simply a t-subnorm.

Clearly any t-norm is a t-subnorm.

We say that T has O-divisors if there is x,y €]a,b] such that T (z,y) = a. A t-norm (resp.
t-subnorm) is said to be continuous or left-continuous if it is continuous or left-continuous as a
two-place function. Further, a t-norm (resp. t-subnorm) on [a,b] is clearly not else but a linear
transformation of a t-norm (resp. t-subnorm):

Definition B Let [a,b] C IR. For any function T : [0,1] x [0, 1] — [0, 1], call the function Ty, p:
[a,b] x [a,b] — [a, b] defined by

_ T—a y—a
T[a,b](x7y)_a+T<b_a7b_a>
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the linear transformation of T into [a,b]. For Tj,4 : [a,b] X [a,b] — [a,b] call the function T'
[0,1] x [0,1] — [0, 1] defined by

T (a,b) = Tiap) (@ + 2(b—a)), (a + y(b—a)))

the linear transformation of Tj,; into [0,1]. Observe that linear transformation preserves left-
continuity and 0-divisors.

Definition C A negation N on [a,b] C IR is a non-increasing function on [a, b] with boundary
conditions N (a) = b and N (b) = a. Such a negation is called strong if N (N (z)) = z holds for all
z € [a,b]. We remark, that a strong negation is automatically a continuous function.

Definition D Let 7" be a left-continuous t-subnorm on [a,b] C IR. The residuated implication
I generated by T is given by Ir (z,y) = sup{t € [a,b] | T (z,t) < y}. The negation induced by T
is a negation on [a, b] it is denoted by N7 and given by Nt (z) = Ir (z,a). We say that a t-norm T'
has strong induced negation if Nt is a strong negation on [a, b].

In Figure 1 we present the three-dimensional plots of the product t-norm given by T'(z,y) =z -y
and an ordinal sum with one Lukasiewicz summand. One can see easily the induced negation of them
in the plane XY. It is basically the 'limit line’ between the 0 and the positive part of the graphs.

Figure 1: How the induced negation can be seen on the graph of the t-norm

We will need the following definition ([4]).

Definition 2. Let N be a strong negation (on [0, 1]) and ¢ is unique fixed point. Let d € [t,1[. Then
Ng : [0,1] — [0, 1] defined by

N(z-[d—N(d)]+ N(d)) — N(d)

Na (=) = d— N (d)

is a strong negation (on [0,1]). Call Ny the zoomed d-negation of N.

6 Geometrical Properties

We introduce now two properties of left-continuous t-norms:

23



Definition 3. Let [a,b] € [0,1], T be a left-continuous t-norm on [a,b] and N be a strong negation
on [a,b]. We say that 7" admits the rotation invariancy property with respect to N (or T is rotation
invariant with respect to N) if for all z,y, z € [a, b] we have

T(x,y)<z & T(y,N(2)) <N(z).

We say that 7" admits the self quasi-inverse property (with respect to N) if for all z,y, z € [a, b] we
have

It (z,y) =2 & T(z,N(y))=N(z).

Theorem 4. Let N be a strong negation on [a,b] C [0,1]. A left-continuous t-norm on [a,b] is
rotation invariant (resp. has the self quasi-inverse property) w.r.t. N if and only if its induced
negation is equal to N.

Hence any of the above two properties in characteristic for the class of left-continuous t-norms
having strong induced negations.

The following theorem explains the geometrical content of the rotation invarinacy property.

Theorem 5. Rotation invariancy property for T means exactly that the part of the space [0,1] X
[0,1] % [0, 1] which is strictly below the graph of T remains invariant under an order 3 transformation.
This transformation is indeed a rotation of [0,1]* (with angle 2% around the aze which is based on

3
the points (0,0,1) and (1,1,0)) when N (z) =1 — z.

In Figure 2 the first coloumn presents the three-dimensional plots of the t-norms given by (1),
(2) and (3). Since their induced negations equal 1 — x one can realise easily the geometrical meaning
of the rotation invariancy property.

The following theorem explains the geometrical content of the self quasi-inverse property.

Theorem 6. The self quasi-inverse property for T w.r.t. 1 — z means ezxactly that the graph of any
partial mapping T (z,-) : [0,1] — [0,1] has the following geometrical property. First extend the
discontinuities of T (z,-) with vertical line segments. Then the obtained graph is invariant under the
reflection at the second median (given by y=1—z).

In Figure 2 the second coloumn presents plots on the partial mappings T' (x, %) of the t-norms

given by (1), (2) and (3).

7 Decomposition

Definition 7. Let T be a left-continuos t-subnorm having strong induced negation N and ¢ be its
unique fixed point. Define the set of decomposition points of T" by

D={zelt,1[| T (y,z) = z for all y €]t,z] z €]z, 1]}.
Call T indecomposable if D = (), decomposable if D # () and totally decomposable if ¢t € D.

Theorem 8. (Total decomposition) Let T be a totally decomposable a left-continuous t-norm
having strong induced negation N. Define a binary operator T3 on [t,1] by

_J T(zy) ifzy>t
Ts(a,y) = { t otherwise

Let Ty be the linear transformation of Ts into [0,1]. Then Ti is a left-continuous t-norm without
0-divisors.
In Figure 3 the total decomposition of the t-norm, which is given by (2) is presented.

Theorem 9. (Decomposition) Let T' be decomposable a left-continuous t-norm having strong in-
duced negation N. Suppose that d € D 1is a decomposition point of T which is different to the fized
point of N and let Ny be the zoomed d-negation of N. Define a binary operator T3 on [d, 1] by

b)

T3(x,y):{ T(x,y) ifx7y>d

d otherwise
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and another binary operation Ty on [N (d),d] by

N(d) ifz<N(y)
T (z,y) otherwise

Tu(z,y) = {

Let Ty (resp. T>) be the linear transformation of Ts (resp. T4) into [0,1]. Then
1. T1 1s a left-continuous t-norm.

1. If T has no 0-divisors then Ts is a left-continuous t-subnorm fulfilling the rotation invariancy
property w.r.t. Ng.

If T1 has 0-divisors then T> is a left-continuous t-norm having (strong) induced negation equal
to Ng.

Theorem 10. (Maximal decomposition) Let T' be decomposable a left-continuous t-norm having
strong 1nduced megation, D be the set of its decomposition points. Then inf D € D, that 1s, the
infimum of the decomposition points is a decomposition point.

By decomposing with the least decomposition point we obtain the 'biggest possible’ T} and a
’smallest possible’ indecomposable T5.

In Figure 4 a possible decomposition of the t-norm given by (3) is presented. The chosen decom-

position point is %, Ti is the minimum t-norm, 7% is the Lukasiewicz t-norm. This decomposition is
2

at the same time the maximal decomposition, since £

is the least decomposition point of this t-norm.

8 Rotation Construction

In this section we introduce a new method which produces left-continuous (but not continuous)
t-norms which have strong induced negations from any left-continuous t-norm 7% which has no 0-
divisors. This construction is the 'inverse’ of the total decomposition theorem in the sense as it is
explained at the end of Section 4. First we need a definition.

Definition 11. Let N be a strong negation, ¢ its unique fixed point and 7% be a left-continuous
t-norm having no 0-divisors. Let T3 be the linear transformation of T} into [t,1]. Let IT =]¢, 1],
I~ =10,t] and define Ty : [0,1] x [0,1] — [0, 1] by

Ts(z,y) if 2,y € I*

Iy (o) = 4 N @ N @) o€t andye

INY) =Y N(Ip, (y,N(2)) ifzel andyelt
0 if z,y €™

Further, define

IT3 (x7y) if Y € I+

_ ] Nm@Nw) ifrertandyerr

Ity (z,y) = 1 ifeel andyelt @

Ity (N (y), N (z)) ifz,yel”

Call Ty the N-rotation of T1. If N(z) = 1—x (the standard negation) then call Ty simply the rotation
Of T1 .

Theorem 12. (Rotation construction) Let N be a strong negation, t its unique fized point and
T1 be a left-continuous t-norm having no 0-divisors. Let Ty be the N—-rotation of Thv. Then Ty s a
left-continuous t-norm, its induced negation is N and the residuated 1mplication generated by Ty is

I, given by (4).

Remark 13. Let T be a left-continuous t-norm without 0-divisors, N be a strong negation. Observe
that the fixed point ¢ of N is a decomposition point of T3 (the N-rotation of 71) and the total
decomposition of Ty with ¢ gives back T1.

On the other hand, suppose T is a totally decomposable left-continuous t-norm having strong
induced negation N. If we decompose T with the fixed point of N (with Theorem 8) then the
N-rotation of the obtained 0-divisor free left-continuous t-norm gives back 7'.

In Figure 5 the rotation of the minimum t-norm and the rotation of the product t-norm can
be seen. Observe that the nilpotent minimum t-norm (see (2)) is not else but the rotation of the
minimum t-norm.
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9 Rotation-Annihilation Construction

In this section we introduce the second method which produces left-continuous t-norms which have
strong induced negations from a pair of certain connectives as it is given in the following definition.
This construction is the ’inverse’ of the decomposition theorem in the sense as it is explained at the
end of Section 4.

Definition 14. Let N be a strong negation, ¢ its unique fixed point, d €]t, 1] and N4 be the zoomed
d-negation of N. Let T be a left-continuous t-norm.

1. If T has no O-divisors then let 75 be a t-subnorm which admits the rotation invariancy property
with respect to Ny. Further, let I =]d, 1], I~ =[0,d[ and I° = [N (d), d).
2. If T has 0-divisors then let T5 be a left-continuos t-norm having strong induced negation equal
to Ny4. Further, let 1T = [d,1], I~ =[0,d] and I° =]N (d) , d[.
Let T3 be the linear transformation of 73 into [d7 1], T4 be the linear transformation of 75 into
[N (d),d] and
Ts : [N(d),d] x [N (d),d] — [0,1] be the annihilation of 74 given by

0 if z < N (y)
zTyy otherwise

7 (o) = {

Define Ty : [0,1] x [0,1] — [0,1] by

Ts5(z,y) ifr,yelt
N (I, (z,N(y) ifzeclt yel”
N (Ity (y,N () ifzel ,yel"
0 ifz,yel”

Ty (z,y) =< Ts(z,9) if z,yeI°

Y ifrelItandyel®
x ifrel®andyelt
0 ifrel andyel®
0 ifrel®andy el

Further, define Ir; : [0,1] x [0,1] — [0, 1] by

(I1y (2,9) ifz,yel*
N (Ts(z,N (y) ifaelt yel”
1 ifrel ,yelt
Iry (N (y), N (z)) ifz,y€l”

Iry (z,y) =% Iz, (2,9) if 2,y € I° : (5)

y ifzeltandyel®
N (z) ifzel®andyeI™
1 iferel andyel®

L 1 ifrelPandyel™

Call Ty the N-d-rotation-annihilation of T1 and T>. If N(z) = 1 — z (the standard negation) then
call Ty simply the d—rotation-annihilation of Th and T5.

Theorem 15. (Rotation-annihilation construction) Let N be a strong negation, t its unique
fized point, d €]t,1] and T1 be a left-continuous t-norm. Take T> depending on the 0-divisors of Ti,
as it 1s taken in Definition 1] and let Ty be the N-d—rotation-annihihation of Th and T>. Then Ty s
a left-continuous t-norm, its induced negation is N and the residuated implication generated by Ty
1s given by (5).

Remark 16. The analogue of Remark 13 holds true for this case.

In Figure 6 the rotation-annihilation of T} and 7% is presented, where T} is an ordinal sum defined
by a Lukasiewicz t-norm and a product t-norm and 75 is the rotation of the product.

To show an example for a rotation invariant t-subnorm (which is not a t-norm), consider the
following example:

T(x,y) = max(z +y — 1 —¢,0), (6)
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where ¢ is in [0,1]. Observe that the case ¢ = 0 gives back the Lukasiewicz t-norm, while ¢ = 1
defines the drastic t-subnorm 7' : [0,1] x [0,1] — [0,1], T(z,y) = 0 (which is not the so called
drastic t-norm!)

In Figure 7 the rotation-annihilation of T} and 75 is presented, where T} is the same as in the
1

previous example and T is the t-subnorm given by (6) with € = 3.

10 Further Examples

Even when we start only with continuous t-norms having no 0-divisors we can obtain by rotation an
infinite number of new families of left-continuous but not continous t-norms having strong induced
negations. (On a family we understand a t-norm together with its ¢-transformations.)

Another way to construct such t-norms is to rotate an ordinal sum of left-continuous (or/and
continuous) t-norms. The only thing we have to pay attention is that this ordinal sum should have
no O-divisors. The left-continuous summands may be generated by a previous rotation or rotation-
annihilation. Iteration of this idea leads to quite ’egzotic and beautiful’ t-norms.

The role of T5 in Theorem 15 can be played by e.g. any left-continuous t-norm having strong
induced negation (see Theorem 4).

For the brief illustration of the wide spectrum of left-continuous t-norms having strong induced
negations and for the illustration of the power of our construction methods we give an ’exotic’ example
via the corresponding 3-dimensional plot in Figure 8:
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Figure 3: Total decomposition of the Nilpotent Minimum t-norm
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Figure 4: A possible decomposition of the Nilpotent Ordinal Sum t-norm
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Variable Basis Fuzzy Topology and Compactifications:
A Status Report
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This report summarizes categorical foundations for topology and fuzzy topology in which the basis
of a space—the lattice of membership values—is allowed to change from one object to another within
the same category (the basis of a space being distinguished from the basis of the topology of a space).
With such foundations, all the following questions can be answered in the affirmative:

1. Are there categories for variable-basis topology or variable-basis fuzzy topology which are
topological over their ground (or base) categories?

2. Are there categories for variable-basis topology or variable-basis fuzzy topology which cohere
or unite all known canonical examples of point-set lattice-theoretic (or poslat) spaces, even
when they are based on different lattices of membership values? For example, is there a single
category containing all the fuzzy real lines and unit intervals

{R(L),1(L): L € DQML[}

and in which fuzzy real lines with different underlying bases may be “compared” by “homeo-
morphisms” or “non-homeomorphic continuous morphisms” (where DQML is the category of
deMorgan quasi-monoidal lattices defined below)?

3. Are there categories for variable-basis topology or variable-basis fuzzy topology which cohere or
unite known, important fixed-basis categories for topology or fuzzy topology as subcategories
within a single category?

4. Are there categories for variable-basis topology or variable-basis fuzzy topology which make
no essential use of algebraic notions such as associativity, commutivity, and idempotency of
the traditional meet operation?

5. Are there categories for variable-basis topology or variable-basis fuzzy topology in which there
exist variable-basis compactification reflectors, and are there informative relationships between
such compactifications, traditional compact Hausdorff spaces, and “canonical” lattice-valued
spaces such as the fuzzy unit intervals?

Restated, the topological theory summarized in this report may be thought of as satisfying four
important boundary conditions:

e the topological condition addressed in (1) above,
e the unification/coherence conditions addressed in (2,3) above,

e the non-algebraic condition addressed in (4) above, and

the applicability condition addressed in (5).

Unexpected bonuses arising from this program of research will also be highlighted: for example, the
richness of morphisms in variable-basis topology, the close link between variable fuzzy topology being
topological and the Adjoint Functor Theorem, a resolution of the separation axiom question, and the
creation of a new class of fuzzy real lines and unit intervals, the former having jointly-continuous
arithmetic operations for all such real lines having semiframe bases. An outline of this report is as
follows:

Lattice-Theoretic Bases
Motivating Examples of Fixed-Basis Objects
Variable-Basis Ground Categories
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Variable-Basis Image and Prelmage Operators
Topological Categories for Variable-Basis Topology
and Fuzzy Topology
Categorical Isomorphisms and Embeddings
Unification of Topology and Fuzzy Topology by C-TOP
and C-FTOP
Unification of Canonical Examples by C-TOP and C-FTOP
Compactification Reflectors for Entire Fixed-Basis Categories
of Topology
Compactification Reflectors for Variable-Basis Categories
of Topology
Appendix: Soberification, Compactification, [0, 1], I* (L),
and I(L)
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The aim of this paper is to investigate the problem to which extent topological spaces are algebras —
i.e. objects provided with a certain set of n-ary operations. It is interesting to see that a partially
ordered monad T over a given monoidal closed category K (cf. [5, 6]) offers an appropriate axiomatic
foundation. In this context a topological space can be defined as an object X of the associated Kleisli
category KCrp provided with a unary operation U satisfying the important axiom (cf. [3])

u < nx

where 7nx denotes the identity of A € |ICp|. Hence topology is not necessarily based on set theory !
In order to illustrate this situation we mention the following special cases: Let K always denote
the category SET of ordinary sets.

1. Let T be the semi-filter monad. Then topological spaces are generalized topological spaces of
type U. Here the symbol 2 refers to the french word ”voisinage” (cf. [1, 2]) . In particular ,
if U is idempotent, then (X,U) is a generalized topological space of type V. (cf. [1, 7]).

2. Let T be the filter monad. Then topological spaces are generalized topological spaces of type
Up (cf. [1, 2]). In particular, if U is idempotent, then (X,U) is a generalized topological
space of type B p, — i.e. a topological space satisfying the usual Kuratowski axioms (cf. [1]).

3. Let L be a complete lattice and T, be the L-filter monad. Further let (A,U) be a topological
space. If U is idempotent, then (A,U) is an L-topological space (cf. [4]).
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The purpose of this talk is to exibit an approach to fuzzy topology regarded as a suitable M-fuzzy
set on a powerset associated to any L-fuzzy set.

The ground category L — AF Set is the well known catagory (see [2,3]) whose objects are L-fuzzy
sets and whose morphisms from Z € LT to Y € L¥ are L-fuzzy functions i.e. maps f: T — X s. t.
Yof>2Z.

This category is the domain of fuzzy powerset functors

—r: L — AFSet — Set and <+r:L— AFSet — CLat°?
which associate to an L-fuzzy set Y € L™ the complete lattice [0, Y] = {4 € L* : A< Y}, and to an
L-fuzzy function f : Z = Y,z € LT, Y € LX, the forward powerset operator f~ : [0, Z] = [0, Y]
defined by f7(A)(z) = V{A(t) : f(t) = z} and the opposite of the backward powerset operator
f:[0,Y] =[O, Z]s.t.fT(B) = Bo f A Z, respectively (see [1,3]).

Then M-fuzzy topological spaces on L-fuzzy sets are defined as pairs (Y, 7), Y any L-fuzzy set
on some set X, 7 any function from [O, Y] to M that satisfy the well known conditions

Hr(0)=7(Y)=1

DA, A €[0,Y]=1(ANA) > 1(A)AT(A)

3)AT € [0, YIVjeJ= (VA :jeJ)>N{A :je J}
so extending similar definitions given in [4,5].

An L-fuzzy function from Z € LT to Y € L¥ is M-fuzzy continuous with respect to M-fuzzy
topologies ¢ in Z and 7 in Y iff the related backward powerset operator is an L-fuzzy function from
Ttoo

fCir—=o0

Which means oo f7 > 7.
M -fuzzy topological spaces on L-fuzzy sets are objects and M-fuzzy continuous L-fuzzy functions
are morphisms of a category

(L,M) — AFTop

By the obvious ordering, the set of all M-fuzzy topologies on a fixed L-fuzzy set Y can be given
the structure of a complete lattice, but this require L to be a frame and M to be a completely
distributive complete lattice.

Given a morphism f : Z — Y in L — AFSet (L a frame), a completely distributive complete
lattice M and M-fuzzy topologies ¢ in Z and 7 in Y, by means of the powerset operators of f :
MOYT _ NfIO-Z] the initial M-fuzzy topology of 7 and the final M-fuzzy topology of o by f can be
constructed, as they are respectively

(F9) () and  (F9) (o),

This allow to characterize M-fuzzy topological L-subspaces and M-fuzzy topological L-product
spaces in (L, M) — AFTop.

We remark that the use of powerset operators of (suitable) maps between (suitable) complete
lattices, namely in the above context f*, suggests and allows a possible pointless approach to M-
fuzzy topology as a suitable M-fuzzy set on a complete lattice, so overcoming the problem of changing
the base L in the above description.

Aknowledgement. Most of the result in this note were obtained during a visit of the author at
the Mathemetical Department of Rhodes University in Grahamstown.
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Although some concrete facts will be mentioned, the main aim of the talk is to open discussion on
some contrasts and some common features of the fuzzy and point-free approaches to topology.
Metaphorically: While fuzzy topology is concerned with the fuzziness of open sets, point-free
topology, in particular the enriched one (nearness, uniform, metric locales) is concerned with fuzzy,
that is, blurred points and fuzzy (blurred) maps. The basic notions of point-free nearness, etc., will
be recalled and the mentioned point of view explained.
Further topics to be discussed:

- the information lost when viewing a fuzzy space as a frame,

- fuzzification of a point-free space (is there a motivation for studying various degrees of openness
of crisp subsets?),

- Banaschewski interpretation of completeness in the point-free context (T-valued Cauchy points vs.
T-valued points),

- imitating point-free techniques in studying enriched fuzzy spaces (e.g.: fuzzy metric spaces).
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There is no doubt that the L-reals R(L) and, in particular, the unit L-interval I(L) are among the
most important and canonical examples of L-topological structures (at least in one of those various
disciplines which all claim to be named fuzzy topology).

In this talk, we first give a brief account os some of the topological results involving L-reals,
separation axioms, and compactness.

We then put emphasis on how the functor ¢7, modifies the L-unit interval and on the properties of
the natural topology it produces. This natural topology on I(L) can either be described as a certain
quotient topology of a subspace of the product LI op just as the interval topology of the lattice
I(L).

The new material involves the natural topology of I(L). For a suitable L, we shall present an
analogue of the Brouwer fixed point theorem for Hilbert L-cubes (= products of countably many
copies of I(L) with its Hutton L-topology). The proof depends on a fixed point theorem od D.
Papert Strauss. Actually, as proved recently by D. Zhang and the author, each Tychonoff L-cube has
the fixed point property.

Some related open questions will also be recalled.

Each lattice L must have an order-reversing involution; minimal assumption: completeness; max-
imal assumption: complete distributivity plus a countable basis.
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Let FTS denote the category of fuzzy topological spaces (in the sense of Lowen) and fuzzy
continuous maps. The categorical compactness notions (as defined in [3]) corresponding to three
categorical closure operators on FTS identified by the author and G. Castellini in [1] are characterized.

Two of these closure operators are weakly hereditary and idempotent, and give rise to alpha-
compactness and alpha*-compactness [4] respectively. The third closure operator, although weakly
hereditary, is not idempotent. The corresponding compactness notion in FTS can be characterized
in terms of the compactness of certain closure spaces, as defined by Cech in [2].
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In [1], an a-Hausdorff space is defined to be a fuzzy topological space (X, 7), where Vz,y € X s.t.
z#y, Ju,v € 7 s.t. u(z) > a, v(y) > a, and v Ay = 0. In other words, the fuzzy topology separates
the crisp points to a degree > «, since the crisp points belong separately to the disjoint sets u and
v to a degree > a. This paper explores an ”extension” of the notion of a-separation of crisp points
which suggests itself from the work of S. Watson [2]. In this paper, Watson calls a discrete family of
points D of a topological space X separated if there is a disjoint family {Uy : d € D} of open sets
in X s.t. (Vd € D) d € Ug; and given any discrete family of points, then, it is possible to form Z,
the family of all separated subsets of ). Watson also defines the following property, which is crucial
to our arguments below: a family of separated subsets Z € P(k) (k a cardinal—see [2]) is said to
be diagonally-closed if, whenever A C k, {F; : j € w} is an increasing family of finite subsets of Z
and {Bj : j € w} is a partition of A s.t.

(Vj€ew) (Ybe B)) (Vy€A) (3CeE;) {B,v}CC

then A € Z. Now suppose, given a fuzzy Hausdorff topological space (X, 7), we take the family Z of
all subsets of P(k) for which there exists a disjoint family of fuzzy sets {Uq : d € D} in T s.t.

(Vd € D) Uy(d) > «

(we shall refer to such families as a-F-separated). Is it true (as is proved for the crisp case in
[2], Theorem 3) that for such an a-F-separated family of sets Z, it must be the case that T is
diagonally-closed and contains all sets of size 27

A number of issues arise before this question can be addressed. It is important to note that diagonal
closure is a set-theoretic property of (a subset of) the crisp elements which interacts with (helps to
characterize) the topology over these elements (i.e., diagonal closure is a non-topological property of
a cardinal which accrues as a result of the topological ”standing” of the cardinal). We must wonder,
therefore, whether it is possible to fuzzify such theorems as Theorem 3 of [2] in any meaningful way,
since the exact value of o in an a-F-separation would seem to be irrelevant. This raises issues
related to properties of fuzzy (Hausdorff) topologies which have been known for many years but
whose implications remain essentially unexplored, viz., the fact that many fuzzy topologies can have
the same topological modification and the fact that fuzzy topologies can be “highly non-topological”
[3]. In any case, it would appear to be difficult to make any reasonable claims about the connection
between particular fuzzy Hausdorff topological spaces and diagonally-closed subsets of the domain
of their topological modifications; as a result, diagonal closure would not appear to be uniquely
extendible (in the sense of [3]) to fuzzy topology. Issues involving local and global separation of
points [4] also arise in this connection and are explored in the paper.

The concept required to provide effective extendibility of diagonal closure to fuzzy topological spaces
would appear to be sobriety (good summaries, references, and applications in [5], [6]). Take any
fuzzy topological space (X, F,I) (I an AgBj lattice [6]), along with ptF', the collection of all frame
maps from F to I. If (X, F,I) is (fuzzy) sober, then ptF should inherit the separability of X in its
topology {®(u) : u € F'}. We show that this is indeed the case, i.e., that the correct generalization
of separation and diagonal closure is to be found in ptF mediated through bijective (sober) maps
from X to ptF. For the crisp case, such “property transference” (from X to ptT) is clear; for the
fuzzy case, we show that sobriety carries the relevant properties from the (crisp) element set to pt F'.
This, of course, lends credence to and derives support from the notion of frame fuzzy points and
their connection to Hausdorfness [7], [8]. With sobriety, then, it is possible to prove a fuzzy analogue
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of Theorem 3 in [2], which is (in short) that if 7 is the family of all a- F-separated subsets of X (wrt
(X, F, I) for some o and (X, F, I) is fuzzy Hausdorff, then

{V; (j€T):j—ptF}

is diagonally-closed and includes all sets of size 2 (wrt ®(u)). The method of proof of this theorem
also sheds some light on the remark by Kotzé ([6], p. 263) that the relationship between Hausdorff
and sobriety is not as simple as in the classical case.
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Some properties of regular L-topological spaces will be presented. These are related to the Lowen
functors ¢7, and wr,, where L a continuous lattice with its Scott topology. In particular maximal L-
regular topologies are characterized as those which are topologically generated from maximal regular
crisp topologies.

With appropiate definition of H-lindelofness (4 la Hutton compactness) one has the following:
L-regular and H-Lindelof are L-normal.

The behaviour of the lim-inf convergence with respect to the complete L-regularity is shown
and a link between lim-inf convergence and the functors .z and wr (for L a continuous lattice), is

established.
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To obtain theorems on compactness for fuzzy subsets in function spaces in the category FCS of
Lowen’s fuzzy convergence spaces, we first define the fuzzy convergence of pointwise convergence
where compactness is easily established via a Tychonoff theorem and then secondly introduce a
notion of even continuous fuzzy subsets on which pointwise convergence and the important notion
of continuous convergence coincide. Both fuzzy convergences and even continuity extend well known
notions from the theory of classical convergence spaces and moreover can be characterized in a natural
way also in the category FNS of Lowen’s fuzzy neighborhood spaces.
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The aim of this paper is to underline that many-valued topologies (cf. [6]) have non-trivial applications
to probability theory and statistics.

In 1921 M. Fréchet [3] proved that there does not exist any generalized distance dist on the space
L of all almost everywhere defined measurable functions such that convergence in the sense of dist is
equivalent to almost
everywhere pointwise convergence. It is not difficult to show that this result can be strengthen
as follows: There does not exist any binary, generalized topology (Uy),czo of type U (cf. p. 172—
174 in [4], [1]) on L° such that the convergence of sequences in the sense of (Up),czo is equivalent
to almost everywhere pointwise convergence. In this paper we show that there exists a Boolean valued
topology 7 on L° such that almost everywhere convergence is equivalent to convergence of sequences
in the sense of 7. As an application of this result we give a purely topological characterization of 1
inear, stochastic processes with continuous trajectories (cf. [2, 5]).

Further let X be an ordinary (i.e. binary) compact topological space. There exists a [0, 1]-
valued topology 7x on X such that the space R* (X) of all Radon probability measures on X is the
compactification of X w.r.t. Tx — i.e. there exists a compact [0, 1]-topology on the space R'(X)
such that X is a dense subspace of R'(X). Since any ordinary compact subspace is an ordinary
closed subset, it is clear that such a result is impossible in the case of ordinary (i.e. binary) topologies.
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A basic notion for monadic convergence structures is that of partially ordered monad ® = (¢, <,n, u),
where (¢, n, 1) is a monad over SET, each set ¢ X is equipped with a partial ordering and some
conditions on these partial orderings are required.

In the classical case of filter convergence structures, ® is the partially ordered filter monad (F
,m, ), where F is the filter functor, which assigns to each set X the set FX of all filters on X.
indicates that the sets FX are equipped with the finer relations of filters.

An important more general case is that of the partially ordered L-fuzzy filter monad (Fr,<,n, ),
where L is any non-degenerate complete Heyting algebra. For each set X, Fr X consists of all L-
fuzzy filters on X, that is, of all mappings M : LX — L such that M(a) < a, M(I) = 1 and
M(fAg)=M(f) ANM(g) for all o € L and f, g € L, where a is the constant mapping of X into
L with value a.

There are more important examples of partially ordered monads. A method of creating such
examples consists in assigning each partially ordered monad ® its homogeneous partially ordered
submonad defined by the subfunctor ¢ of ¢, where ' X = {M € pX | M < \ nx(z)}.

z€X

, <
<

In the following let ® be any partially ordered monad over SET. A ®-convergence structure on
a set X is a subset T" of X x X such that, writing M — =z instead of (M,z) € T, we have (1)
nx(z) s zforalze X, Q) M 52, N <M = N s z,and 3) M -z = MVnx(z) = z.
Special ®-convergence structures are the ®-limit structures, the ®-pretopologies and the ®-topologies.
®-pretopologies can be given as the mappings p : X — ¢X with nx < p, and ®-topologies as the
®-pretopology p for which pux o ppop =p.

Let T be a ®-convergence structure and let M € pX. nbM = (ux o ¢p)(M), with p the finest
®-pretopology coarser than 7', is the neighborhood of M. Let t; and t» be the first and second
projection of T into ¢ X and X, respectively. Then the image ¢t2(L) of the coarsest £ € ¢T with
(px o pt1)(L) = M, is the closure of M, denoted cIM. For the ®-limit structures further suitable
notions can be defined, for instance the axioms Tq, T1, T2, regularity and normality and the notions
compactness and local compactness. In the filter case we obtain the related classical notions.

By means of & and a partial ordered set K, a partially ordered monad (v, <,n’,u'), denoted
K®, is defined as follows. For each set X, ¥ X is the set of all families (Ma)ack of elements of
©X. M < N means Mo < N, for all @ € K. nx(2)a = nx(z) for all z € X and a € K, and
Wy (L)a = px (X 7a(La)) for all £ € 1pX and a € K, where 7, is the mapping M +— M.

A K-graded convergence structure with respect to @ is a family (Ta)acx of ®-conver-
gence structures. It can be canonically identified with a K ®-convergence structure. In the following
let K be a complete lattice. If the family (Ta)ack is isotone, then for each N' € ¢ X, A  « and

nba N =N

/\ « are the degrees of openness and of closedness of N, respectively, where nbo N and clo N/
o N=N
are meant with respect to T,. If this family is antitone, then for each N’ € ¢ X, V  ais the

(N, 2)ETy

degree of convergence of N to z. In case ® is the partially ordered filter monad, examples of isotone
and antitone K-graded convergence structures are the limit towers and the probabilistic convergence
structures, respectively.

If ® is the partially ordered L-fuzzy filter monad (Fr, <,n, u), then the ®-topologies are the L-
fuzzy topologies and special isotone K ®-topologies are the L, K-fuzzy topologies, which respectively
can be given as special subsets of LX and special mappings of L* into K. If changing here from &
to the related homogeneous partially ordered submonad, then instead of the L-fuzzy topologies we
obtain the stratified L-fuzzy topologies.

More informations and the related references will be given in the talk.
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Fuzzy topology has used a definition which has a fuzzy topological space consisting of a crisp set
of fuzzy subsets of a crisp set. The notion of a topological space object in Set(L) provides a
generalization of this concept to that of a fuzzy set of fuzzy subsets of a fuzzy set. This paper
provides connections with more mainstream fuzzy topology.

Definition 1. A topological space object in Set(L) is an object (A, a) equipped with an unbalanced
subobject T' = (PA,T) > P(A,a) such that

1. The unbalanced subobjects (A, 0) and (A, a) both have 7 with value 1.

2. T is closed under pairwise *: this says there is a lifting

*

TxT 5T
l

1
P(A,0) x P(A,a)) = P(Aa)

3. T is closed under arbitrary internal unions: this says there is a lifting

PT & 7
= 4
P(P(A,0)) & Pa,a)

where @ : P(P(A,a)) — P(A,a) is the adjoint of the smallest characteristic function of
EI‘"’2((613(14,61) ® (A7 0‘)) * (P(A,Oz) ® 6(A,a)))

Definition 2. A morphism f : (A,a) — (B, 3) is continuous with respect to the topologies T4 and
T'p if there is a lifting

TB — TA

1 {

f71

PB "— PA
The category FFTop(L) is the category of fully fuzzy topological space objects in Set(L) with
continuous morphisms.

Theorem 3. The category of fully fuzzy topological spaces is topological over Set(L). That is, given
any U-structured source f; : (A,a) — U((Bs, 5i), TB;) there is a unique smallest structure of a fully
fuzzy topology on (A, a) making all of the f; continuous.

Two theorems explain the relationship FFTS and topological spaces and FFTS and fuzzy topo-
logical spaces:

Theorem 4. If (PA,7) is a fully fuzzy topology on (A, T) then each of the sets T, = {A’ C
A|r(xar) > h} is a topology on A. Furthermore; if h < h' then Ty, C Ty.

The approach used here is different from the a-cuts approach of fuzzy topology in that instead of
asking for fuzzy sets which are (crisp) members of the topology and considering the sets of elements
with membership at least o we look at crisp subsets with membership at least « in the fully fuzzy
topology.

Theorem 5. A fully fuzzy topological space structure on a crisp set (A, T) with only crisp members
18 a fuzzy topology in the sense of Lowen if * = min.
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If you do not use min for * then a fuzzy topological space need not give a subobject closed under
x. If the fuzzy topological space is not fully stratified (the Lowen constants condition), then the
resulting subobject of P(A) will not be closed under internal unions.

After defining an interior operator for a FFTS we consider non-emptiness conditions and how
they relate to definition of neighborhoods and quasineighborhoods.

49
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A theory of L—uniform spaces is presented which covers U. Hohle’s approach to L-valued uni-
formities (cf. [3]) and also Lowen’s approach (viewed as generalised uniformities) (cf. [6] and [1]).

Let (L,<,®,*) be an enriched cgm-lattice (cf. [5] Subsection 1.2) such that (L,<,®) is a ¢k
quasi-monoid (cf. [5] Section 1) and (L, <,*) is a commutative, strictly two-sided quantale (cf. [5]
Subsection 1.1).

Definition. ( L—uniform space) Let X be a nonempty set and U be a stratified L—filter (cf.
Definition 6.1.4. in [5]) on X x X . L 1s called an L—uniformity on X iff it satisfies the following
arioms:
(V2)  U(d) < A d(z,z) for all d € LX*¥X.

FI=D.¢
(V3) U(d) < U(d™t) where d™ (z,y) = d(y,x).

(V4)  Ud) < \% (11(61)*11(62))*( A ((61062)—>d)($,y))

e1,e0 €LX XX z,y€X

(where (e1 0 e2)(z,y) = zé/Xel(ac, z) *e2(z,y)).

We call (X,4) an L—uniform space.

Let (X,841) and (X,8) be L-uniform spaces and ¢ : X — Y be a mapping. Then ¢ is said to
be L-uniformly continuous if

Vee IV i (g x 9)" () 2 tale).

Obuviously L-uniform spaces and L—uniformly continuous mappings form a category L-UNIF over

SET.

In particular, in case (L,<,#) is a complete MV -algebra with square roots and @ = ® the
monoidal mean operator (cf. [5] Remark 1.2.6), given a T—filter F (cf. [5] Remark 6.2.3) we define the
characteristic value of F with respect to f € LX as ¢/ (F) = A{a€L: (a—= 1)— f€F} and
use it to prove that any probabilistic uniformity V (cf. [3]) induces an L—uniformity . Moreover,
the L-neighbourhood systems induced by V and il are the same. Consequently the category of
probabilistic uniform spaces is a full subcategory of L-UNIF.

On the other hand, in case @ = * = A, axiom (V4) can be rewritten in the following form:
(V4)  d(d) <V Ule).
eoe<d

Then we prove that there exists an isomorphism between the category of generalised uniformities L—
GUNIF (cf. [1], [2]), or according to the terminology used in [4] L—uniformities of ordinary subsets,
and the category of strongly stratified L-uniformities L-SSUNIF (cf. [2]). Moreover, if i is the
strongly stratified L—uniformity induced by the generalised uniformity u, then the L-neighbourhood
systems induced by u and 4 are the same.

Taking into account that in the case L = [ and ® = % = A generalised uniformities and
Lowen’s uniformities are equivalent concepts (cf. [2]) this proves that the category of Lowen uniform
spaces is isomorphic to the full subcategory [-SSUNIF of strongly stratified [—uniform spaces.
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It is well known that in classical uniformities, there are both the entourage approach due to Weill
(and developed by Bourbaki) and the covering approach due to Tukey (and developed by Isbell [2]
and others). As pointed out by this author [4], the latter has its counterpart in fuzzy sets in the
Hutton uniformities [1], [3].

It is this writer’s opinion that the Hutton approach is elegant, describes the important examples
of the fuzzy real lines and unit intervals, plays a fundamental role in separation and metrization
(particularly as they apply to the real lines and unit intervals), and is strongly lattice-theoretic. An
early attempt to put this approach in a variable-basis context was that of [4].

The Hutton approach has, however, been lacking in development. This may be due in part to workers
being unaware of the covering approach ab initio in the classical setting. It might also be due to the
unsettled state of lattice-theoretic bases vis-a-vis uniformities (in either approach) in a fuzzy setting.
In the covering approach, there has up to now been the requirement of complete distributivity because
of the dependence on Raney’s Lemma (see[1], [3], [4]). Among other things, we find such dependence
to be unnecessary.

This short report explores the lattice-theoretic restrictions in the covering or Hutton approach. The
question of restrictions divides into the following:

1. What  lattice-theoretic ~ restrictions  are needed to  have covering  quasi-
uniformities?

2. What lattice-theoretic restrictions are needed to have covering uniformities?

3. What lattice-theoretic restrictions on morphisms are needed for covering uniform continuity in
the fixed-basis case?

4. What lattice-theoretic restrictions on morphisms are needed for covering uniform continuity in
the variable-basis case?
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