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Triangular Norms: What They Are and
What They Are Good For!

ErRIcH PETER KLEMENT

Fuzzy Logic Laboratorium Linz-Hagenberg
Department of Algebra, Stochastics, and Knowledge-Based Mathematical Systems
Johannes Kepler University
A-4040 Linz, Austria

E-mail: klement@flll.uni-linz.ac.at

The history of triangular norms started with the paper “Statistical metrics” [39]. The
main idea of Karl Menger was to construct metric spaces where probability distributions
rather than numbers are used in order to describe the distance between two elements
of the space in question. Triangular norms (t-norms for short) naturally came into the
picture in the course of the generalization of the classical triangle inequality to this
more general setting. The original set of axioms for t-norms was considerably weaker,
including among others also the functions which are known today as triangular conorms.

Consequently, the first field where t-norms played a major role was the theory of
probabilistic metric spaces (as statistical metric spaces were called after 1964). Berthold
Schweizer and Abe Sklar in [45, 46, 47] provided the axioms of t-norms, as they are
used today, and a redefinition of statistical metric spaces given in [50] led to a rapid
development of the field. Many results concerning t-norms were obtained in the course
of this development, most of which are summarized in the monograph [49].

Mathematically speaking, the theory of (continuous) t-norms has two rather indepen-
dent roots, namely, the field of (specific) functional equations and the theory of (special
topological) semigroups.

Concerning functional equations, t-norms are closely related to the equation of asso-
ciativity (which is still unsolved in its most general form). The earliest source in this
context seems to be [1], further results in this direction were obtained in [8, 11, 2, 27].
Especially Jédnos Aczél’s monograph (both the German [3] and the English [4] version)
had (and still has) a big impact on the development of t-norms. The main result based
on this background was the full characterization of continuous Archimedean t-norms by
means of additive generators in [34] (for the case of strict t-norms see [47]). Further
significant contributions are due to a group of Spanish researchers around Enric Trillas
and Claudi Alsina.

Another direction of research was the identification of several parameterized families
of t-norms as solutions of some (more or less) natural functional equations. The perhaps
most famous result in this context has been proven in [19], showing that the family of
Frank t-norms and t-conorms (together with ordinal sums thereof) are the only solutions
of the so-called Frank functional equation.

1Slightly modified introduction of the monograph “Triangular Norms” (Kluwer, in press) by E.P.
Klement, R. Mesiar and E. Pap [32]



The study of a class of compact, irreducibly connected topological semigroups was
initiated in [17], including a characterization of such semigroups, where the boundary
points (at the same time annihilator and neutral element) are the only idempotent ele-
ments and where no nilpotent elements exist. In the language of t-norms, this provides
a full representation of strict t-norms. In [40] all such semigroups, where the bound-
ary points play the role of annihilator and neutral element, were characterized (see also
[43]). Again in the language of t-norms, this provides a representation of all continuous
t-norms [34].

Several construction methods from the theory of semigroups, such as (isomorphic)
transformations (which are closely related to generators mentioned above) and ordinal
sums [14, 13, 48], have been successfully applied to construct whole families of t-norms
from a few given prototypical examples [48].

Summarizing, starting with only three t-norms, namely, the minimum 7, the prod-
uct Tp and the Lukasiewicz t-norm Ti,, it is possible to construct all continuous t-norms
by means of isomorphic transformations and ordinal sums [34].

Many specific results, such as characterizations of the order or convergence theorems,
are based on this general representation for continuous t-norms.

Non-continuous t-norms, such as the drastic product Tp, have been considered from
the very beginning [46]. In [34] even an additive generator for this t-norm was given.
However, a general classification of non-continuous t-norms is still not known.

For the construction of not necessarily continuous t-norms, several methods, which
are more or less related to those already mentioned, have been proposed recently.

Besides the already mentioned probabilistic metric spaces, t-norms and t-conorms
proved to be useful or even indispensable in a number of additional areas:

e Based on the seminal work of Jan Lukasiewicz [35, 36, 37] and Kurt Gddel [20]
in the twenties and thirties, an extensive theory of many-valued logics has been
developed during the past few decades. The crucial role of t-norms in this context
is presented in the monographs [24, 26, 12].

e Already in his first paper [60] on fuzzy sets, Lotfi A. Zadeh suggested to use the
minimum 7», the product Tp and, in a restricted sense, the Lukasiewicz t-conorm
SL. Very early traces of (some slight variations of) t-norms and t-conorms in the
context of integration of fuzzy sets can be found in [52], first concepts for a unified
theory of fuzzy sets (based on Ty and Sy) were presented in [41] and [21, 22, 23].
The use of general t-norms and t-conorms for modeling the intersection and the
union of fuzzy sets (see, e.g., [33, 42]) apparently goes back to some seminars held
by Enric Trillas and to suggestions given by Ulrich Héhle during some conferences
in the late seventies. The first papers using general t-norms and t-conorms for
operations on fuzzy sets were [6, 5, 15, 29, 30] (see also [16]). A full characterization
of strong negations as models of the complement of fuzzy sets can be found in [56].
Fuzzy sets recently found many practical applications, in particular in connection
with intelligent control (see [38, 55] and [54, 53]).

e A very fast developing field is that of general (not necessarily associative) aggrega-
tion operators [61, 58, 18, 25], some of which have a close relationship with t-norms,
e.g., uninorms [59, 31] and nullnorms [10].



e In the context of generalized measures and integrals, t-norms and t-conorms can

be used to generalize the standard set operations [9], on the one hand, or standard
arithmetic operations, on the other hand [28, 52, 57, 44] (compare also [51]).
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Compositional Rule of Inference as
Generalized Modus Ponens

BERNADETTE BOUCHON-MEUNIER', RADKO MESIAR?

Laboratoire d’Informatique de Paris 6
Université Paris 6
75252 Paris Cédex 05, France

E-mail: Bernadette.Bouchon-Meunier@lip6.fr

?Department of Mathematics, Faculty of Civil Engineering
Slovak University of Technology
813 68 Bratislava, Slovakia

E-mail: mesiar@vox.svf.stuba.sk

Compositional rule of inference is defined to describe the inference process in fuzzy
environment and its general form is

B'(y) = SggT(A'($)7R($,y)), yeyt, (1)

where T is a left continuous conjunctor ( monotone extension of the Boolean conjunction
with neutral element 1, mostly some continuous t-norm) and R is a fuzzy relation defined
on X x Y. We restrict our considerations to the case when R(x,y) = r(A(x), B(y)) with
r:[0,12 = [0,1] and A € [0,1]%,B € [0,1]Y with Ran A = Ran B = [0,1]. We will
discuss under which conditions the compositional rule of inference yields a generalized
modus ponens, i.e., if A’ = A then (1) results in B’ = B, or equivalently,

EIEJET(A(w),r(A(x)aB(y))) =B(y), yeY. (2)

Under the above requirements, (2) can be rewritten into the form

sup T(u,r(u,v)) =v, ve€l0,1]. (3)
w€e(0,1]

It is immediate that (3) requires r < I, where I is the residual operator adjoined to T'

via
Ir(u,v) = sup (w € [0, 1]|T(u, w) < wv) ,
r(1,1) =1 and r(1,0) = 0.

Note that » < It ensures

sup T(u,r(u,v)) <wv, vel0,1].
u€l0,1]

Supposing the left continuity of r(.,v), v € [0,1], r solves (3) if and only if » < I and
for all v € [0,1] there is some u, that T'(u,,r(u,,v)) = v. This holds, e.g., if either (i)
or (ii) holds true, where

10



(i) r(1,v) = v for all v € [0,1],
(ii) r(v,v) =1 for all v € [0,1].
Note that the validity either of the condition (i) or (ii) ensures

sup T(u,r(u,v)) > v, v€l0,1].
u€l0,1]

EXAMPLES.

(1) For any conjunctor T*, especially for any ¢-norm 7%, we have
T <Ip and T*(1,v)=wv, ve€]0,1].

The case r = T' = min leads just to the Mamdani model, and T" = min, r = Tp is the
Larsen model.

(2) For any left-continuous conjunctor 7% > T, I+« < Ip and Ip«(1,v) = v, Ip«(v,v) =
v. Especially, Godel implication I, = r can be combined with any ¢-norm 7', and
I = r can be combined with T.

(3) Any S-implication Ig(u,v) = S(n(u),v) fulfills Is(1,v) = v,v € [0,1], so we have
only to check the relation Is < Ir, to be allowed to combine r = Ig and T. So, e.g.,
Kleene-Dienes implication Iax(u, v) = max(1 — u, v) can be combined with any 7.

(4) Rescher-Gaines implication

1 ifu<wo
0 else,

Irs(u,v) = {

fulfills I s(v,v) = 1,v € [0,1], and it can be combined with any T'.

(5) Any fuzzy equivalence relation r on [0, 1] fulfills r(v,v) = 1,v € [0, 1], and hence
only the inequality r < I should be checked.
Acknowledgements
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A New Approach for Interpolation and
Extrapolation of Compact Fuzzy Quantities

The One-Dimensional Case

SANDOR JENEI

Fuzzy Logic Laboratorium Linz-Hagenberg
Department of Algebra, Stochastics, and Knowledge-Based Mathematical Systems
Johannes Kepler University
A-4040 Linz, Austria

E-mail: sandor@flll.uni-linz.ac.at

1 Introduction

Fuzzy set theory is a formal framework for modeling input-output relations, for which
only vague/linguistic information is available to describe them. In this talk we deal with
the problem of rule interpolation and rule extrapolation for fuzzy and possibilistic sys-
tems. Such systems are used for representing and processing vague If-Then-rules, and
recently, they have been increasingly applied above all in the field of control engineer-
ing, pattern recognition and expert systems. The methodology of rule interpolation is
required for deducing plausible conclusions from sparse (incomplete) rule bases. The
methods proposed so far in the literature for rule interpolation are mainly conceived for
the application to fuzzy control and miss certain logical characteristics of an inference.

Rule interpolation may be considered as an “inference technique” for fuzzy rule bases
for which the premises do not cover the whole input space. Of course, any inference
mechanism has to satisfy certain logical criterions. It may be said that the methods
proposed so far in the literature are mainly conceived for the application to fuzzy control
purposes and that they are not appropriate for applications where the logical aspects of
approximate reasoning are intrinsically important. All this serves as a motivation for
looking for a more flexible method which is superior to the proposed ones above all with
respect to its general applicability to fuzzy as well as to possibilistic systems.

2 Conditions on rule interpolation/extrapolation

[I0] Validity of the conclusion
The conclusion should be a fuzzy subset of the universe ) with a valid membership
function. Usually, further conditions for validity are required too: For example,
when a method is restricted to the use of e.g. trapezoidal membership functions,
then the result may be expected to be trapezoidal too. The normality of the
quantities is frequently supposed too.

13



[11]

[12]

[13]

[14]
[15]
[16]

[16%]

[17]

Compatibility with the rule-base
Foralli e {1,... ,N} and all A € F(X) it follows from A = A; that Z(A) = B;.
This condition is the modus ponens rule in logic.

Monotonicity condition

If A* € F(X) is more specific than A € F(X), then Z(A*) is more specific than
Z(A), ie., for all A, A* € F(X) the inequality A* T A implies the inequality
Z(A*) CZ(A).

Continuity condition
For ¢ > 0 there exists § > 0 such that if A, A* € F(X), and dy(A, A*) < § then
for the corresponding conclusions we have dy(Z(A),Z(A*)) < e.

T(Any A*) =Z(A) Ny Z(A*), whenever A Ny A* has valid membership function.

Z(AUy A*) 3TI(A) Uy I(A*) whenever AUy A* has valid membership function.

Identity principle

It X =Y, Z(A)) = Ay and Z(A2) = As then for any observation A for which the
antecedents of the basis of interpolation/extrapolation are A; and As we should
have Z(A) = A.

Linearity principle

X =Y=IR,Z(A;) = A1 +cand Z(As) = Ay + ¢ then for any observation A for
which the antecedents of the basis of interpolation/extrapolation are A; and Ay we
should have Z(A) = A+ c.

Preserving “in between”

If the observation A is in between A; and A; (resp. A; is in between A and A;)
then Z(A) should be in between B; and Bj (resp. Bj should be in between Z(A)
and B;).

Definition 1. We call a mapping Z : F(X) — F(Y) interpolation/extrapolation if it
satisfies axioms [I0]-[I5] and linear interpolation/extrapolation if it satisfies axioms [I0]—-
[I6] (in case X =) = IR also [I6%*] is required).

3 Flank-representation of compact fuzzy quantities

Let A be a compact fuzzy quantity. Denote l4 and 74 the left and the right endpoints
of its support, respectively. Let p4 (called the reference point of A) be a point in the
kernel of A. In particular, we may use e.g.

pa = ca where c4 denotes the center of the kernel of A; it exists since the support
is compact and therefore the kernel is also compact, or we will use

pa = my where m 4 denotes the midpoint of A which is the center of its support
(given by (I4 +174)/2) when A is balanced: We call a compact fuzzy quantity A
balanced if pa(ma) = 1.

The left and the right side-functions of A are defined by MA|[1A,[A]I] and /‘A|[[AHF,TA]’

respectively.
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Figure 1: An example membership function (left), its first (center) and second (right)
flank-functions

Definition 2. We represent compact fuzzy quantities by representing triples of the form
(p, f,g) where p is a real number, f and g are flank-functions, that is, non-decreasing
and left-continuous functions mapping from [0, 1] to | — 00, 0]. For a compact fuzzy quan-
tity A equipped with a reference point p 4 its representing triple (pa, fa, g4) is defined by

-1 -1
fa@) = (algapa e (+24) 7 (@) and ga(@) = (alpara o 0a =) @) (@€
[0,1]). 1) stand for the pseudo-inverse. For a visualization, see Figure 1. .
The normalized flank-functions of A (of type [0,1] — |—o0, 0]) are defined by fa(z) =

fa(@) if f4(0) =0 a(x) = ga(z) if ga(0) =0
—{cj“g"g; otherwise ’ galr) = —i‘:(("gg otherwise °

4 The new method — description

In out method both the input and the output space will be specified to the set of the reals;
that is, X = )Y = IR. Further, we will work with compact fuzzy quantities. Suppose that
our knowledge base consists a finite number of rules of the following form: If X = A;
Then YV = B; (i = 1,2,...,n) where each A; and B; is a compact fuzzy quantity.
Further, suppose that our observation is the compact fuzzy quantity A (represented by
(pa, fa,94)). We would like to determine the conclusion B which corresponds to A.

Which rules to choose? In the first step the determination of the two rules which
are going to be used for the linear interpolation is performed. We consider the set
{pa;, | i=1,2,... ,n} which divides IR into n — 1 intervals and two half-lines. Since we
are dealing with interpolation we may suppose that p4 lies in one of the intervals of the
partition and not in one of the half-lines. In case p4 lies in one of the half-lines linear
extrapolation is required. Choose those indices ¢, where p4 is in the interval [p4,, pa.].
(If pa coincides with one of the points, say with p4, then we choose ¢ and another £ for
which p 4, is next to pa,.) Without loss of generality we may assume that pa € [pa,,pa,]
and so A lies ’'in between’ 4 and As.

Linear averages: In the second step A’ — a linear average of A; and Ay — is
computed in the following way: We determine the coefficient r which produces p4 as
the linear combination of p4, and pa,; that is, let r = I%. We have r € [0,1] and
pa=71-pa, +(1 —71)-pa,. The triplet (par, far, gar) representing the linear average of
Aq and Ajs is defined by

pa = DA,
fa(x) = r-fa (@) +(1=7r)- fa,(2), (1)
gar(x) = r-ga () +(1—71): ga,(2)
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The triplet (pp, fBr,gp’) representing the “same” linear average of By and Bj is com-
puted analogously.

pp = 1-pp +(1—71) pp,,
fe(x) = r-fp () + (1 —=7r)- fpy(2), (2)
gp(x) = 7-gp (2)+(1—7) gB, (7).

For a visualization, see Figure 2 where p4 = ¢4 is used.

0.5
! 10 20 30 40 50 60 70
Ax A Ao

Figure 2: Computation of the linear average A’ (note that the reference point of A’ is
determined by the reference point of the observation)

Measuring the “difference” between the observation and the linear aver-
age: At this point given are A, A’ and B’ by their triplets (pa, fa,94), (par, far,gar)
and (ppr, fpr, gpr) respectively. Before B is computed it is precisely “measured” how A
arises from A’. The main principle is:

B should be derived from B’ in the same manner as A has been derived from A’’.

To reach this goal first this “measurement” is presented: It is done by means of two
transformations; one of them transforms f4 into f4 the other one transforms gus into
ga. That is, we need two transformations ¢4 y and 4 4 such that

fA = tA,fofA’a (3)
ga = tA,gogA’-

This means that ¢4 ; should be a function of type [0, f4/(0)] — [0, f4(0)] and similarly,
ta,q should be a function of type [0, g4/ (0)] = [0,94(0)] defined by

tA,f = fAOfA(ATI)a (4)
tA — o (71)
.9 GA O Gp

Computation of the conclusion: We can not apply t4 s directly to obtain fp
from fp/, that is fg = t4 s o fp doesn’t work, since the range of fp may be different
from the domain of 24 ;. The same applies to t4 4. Therefore we first “linearly rescale”
[ (resp. gpr) to fit t4 5 (vesp. to fit t4 4) by the help of a linear transformation. Then
we apply ta s (vesp. ta,) and finally we apply the inverse of this “rescaling”. Let ¢y
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(resp. ¢4) be a function of type [0, fp/(0)] — [0, 00[ (resp. [0,9p(0)] — [0, c0[) given by

ng(.ﬁ) = ) )
_ P (5)
bolw) = U@

Denote tp ; = go}l otafo@y (resp. tpy = <p;1 0tag©@g). Then B is defined by the
representing triple (pp, fB,gp) via

bpB = pPB
fB = tpyofp, (6)
g = tpgogm.

Note the analogy between (6) and (3). In a more detailed form, fp = cp]l ofao ff(;l) o

¢fofp and gp = gpg_l ogao ggfl) o4 0 gp and straightforward computation shows that

defining ¢; : [0,1] = [0,00[, (resp. ¥, : [0,1] — [0,0¢[) by ¢f(x) = I (0)-fa(0) o

fa(0)
(resp. Yy(z) = —% - 2) we have
fB = ¢f0fA0f£171)0fB'7 ,
_ e SV (7)
g = Yg09gacgy ogp-

Theorem 3. Suppose that our rule-base consist of n rules of the form If X = A; Then
Y = B; where A; and B; are compact fuzzy quantities of IR for all 1 <1 < n.

a.) If their reference points are the center of their kernels, respectively, then the method
presented here is a linear interpolation in the sense of Definition 1 if and only if

i. the A;’s are modeled by continuous membership functions

w. the constant parts in jia;|ger(a,) fit to the constant parts in up,
is, for each i =1,... ,n, Ran(fBi) - Ran(fAi).

iii. the observations (A’s) are modeled by fuzzy peaks and

Ker(B;): that

b.) The method presented here is a linear interpolation in the sense of Definition 1
which in addition satisfies [I7] if and only if the A;’s, the B;’s and the observations
are balanced, their reference points are the center of their supports, respectively,
and the above-listed three conditions hold.

Remark 4. Any other choice is as well possible in Theorem 3 /a provided that D(A, A*) <
J ensures |pg — pa-| < constant - 4.

The presented method is suitable for linear extrapolation of compact fuzzy quantities
as well. If p4 lies in one of the half-lines of the partition defined by {pa, | i =1,2,... ,n}
then we take those indices (, ¢ for which p4, is the end-point of the half-line in question
and p4, lies next to pa.. Without loss of generality we may assume ¢ = 1 and § = 2; that
is, pA, € [pa,,pa]. By defining r as in the case of the interpolation we have now r < 0.
Therefore the definitions in (1) and (2) may not yield valid representing triples since
the functions in question may violate monotonicity and non-positivity. In this case the
linear averages A’ and B’ are not computable. Two solutions are proposed: 1. Shifting
the “extreme” rule, 2. Careful construction of the knowledge-base
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Since for the fuzzy quantities reference points are assigned to, all the results of the
classical interpolation theory can be adapted to this method. For instance, a polinomial
can be constructed for a finite number of pre-described points of the form (p4,, pp,) with
the help of Lagrange interpolation. Then the linear average is computed accordingly: In
general, the linear average of the antecedents is computed form different rules than the
linear average for the consequences.
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Hierarchical Fuzzy Rule Bases and Interpolation
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One of the most important objectives of both symbolic and subsymbolic intelligent com-
putational methods is to find an acceptable tradeoff between approximation error and
computational complexity when dealing with very complex and analytically unknown
systems modelling, control and reasoning.

The inclusion of subsymbolic information as fuzzy membership functions, NN acti-
vation functions, etc, and later the introduction of rule interpolation in fuzzy rule based
systems did help with reducing the complexity compared to earlier symbolic and dense
models. On the other hand, the hierarchical structured models of certain well structured
systems with high state space dimensionality contributed to more drastic complexity
reduction as locally the number of state variables could be decreased.

However, in general, no method is available, which effectively reduces the dimension-
ality in the case of a more general class of systems. Our approach proposes a combination
of the structured hierarchical approach with interpolation, in this case among the sub-
rule bases themselves in addition to the rule interpolation within the sub-rule bases.
The essential point in this approach is that this former type of interpolation is done
in the projection subspaces rather than in the cylindric extensions forming the common
superspaces of the sub-rule bases in question.

The problem of model identification within such a model will be also touched upon.
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A Double Dualization in Categorical Logic and Some of its
Applications
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Starting from a duality between distributive lattices and posets, we describe a double
dual endofunctor on the category of distributive lattices (and some of its enrichments).
This functor is used to obtain completeness and conservativeness theorems for some non-
classical logics (including some modal logics) in a unified manner. Furthermore strong
amalgamation (‘pushouts of monos are monos’) is proved for some enrichments of the
category of distributive lattices. As a consequence, a form of the interpolation lemma
for the corresponding calculi is obtained.

The lifting of this functor from distributive lattices to coherent categories turns out
to be the Makkai’s topos of types. This topos is used to prove some completeness as
well as conservativeness results in first-order modal logic.
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Fuzzy Sets and Non-Monotonic Reasoning:
The Possibilistic Connection
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While many researchers in fuzzy set theory, especially on the engineering side have
focused on the relationship between fuzzy logic and neural nets, another, less visible
trend has devoted efforts towards bridging the gap between fuzzy sets and commonsense
exception-tolerant reasoning. The key idea is to exploit the properties of qualitative pos-
sibility and necessity measures. A possibility distribution basically encodes a plausibility
ordering over a set of states of nature and represents a cognitive state. The plausible
entailment of a proposition A from a proposition B in the framework of a plausibility
ordering, called ”possibilistic entaiment” means that B is true in all most plausible states
where A is true. The plausibility ordering is then said to sanction the rule ”if A then B”.
This entailment is non monotonic and its characteristic properties have been laid bare. It
can also be described using the notion of conditional necessity function. This entailment
is a good model of a rule tainted with exceptions and it captures the logic of jumping to
plausible conclusions. Conversely a rule ”if A then B” is interpreted as a constraint that
delimits the set of possibility distributions where the plausible entailment of B from A
takes place. Inference of a new rule from a set of such rules means that the entailment
expressed by this new rule holds for all possibility distributions sanctioning the set of
rules. This kind of entailment, called preferential entailment, has been studied in the
literature under various guises. A syntactic calculus of rules which is sound and complete
with respect to the above semantics has been devised by Kraus Lehmann and Magidor.
A rule can also be interpreted as a conditional event, introduced by De Finetti, as studied
by Nguyen, Goodman, Walker, and Calabrese. Probabilistic semantics of preferential
inference also exist, either using infinitesimal probabilities, or restricting to a special
class of probabilities called ”big-stepped probabilities”. However preferential inference
is very cautious and it is more useful to select a particular possibility distribution among
the feasible ones sanctioning the rule base, actually the least informative one in some
sense. It comes down to computing a complete preordering on the rule base, attaching
priorities to rules. The set of rules sanctioned by that particular plausibility ordering is
called the "rational closure” of the rule-base. Rational closure can actually be computed
by replacing rules by their material implication counterparts, keeping the ordering and
applying possibilistic logic to the obtained ordered set of classical logic propositions.
This leads to computerized exception tolerant plausible inference tools.

Preferential entailment is monotonic with respect to the addition of new rules in
the rule base, but rational entailment is not. In particular, it can be proved that rules
contained in the rational closure of a rule base, but not in the preferential one, can be
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canceled, or, even, the converse rule can be derived, by simple addition of suitable rules
to the rule-base. It enable rule bases which provide counterintuitive conclusions to be
repaired through the addition of missing relevant information.
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Properties of the Lattice Change Functor
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Work in the foundations of fuzzy sets allows multiple targets for the truth functions:
we may consider several diffferent discretizations of the unit interval, several different
t-norms on [0,1], or several different complete lattice ordered semigroups. In practice we
may want to allow for the needed level of fuzziness to change with further information
about the system we are modeling or trying to control (allowing for richer lattices of
truth values) and we may need to make decisions by defuzzifying. Such a change in
the underlying structure where the truth values lie gives us a systematic change in the
fuzzy sets. What properties that systematic change will have depends on the preservation
properties of the change of lattice.

First we can consider how the propositional fuzzy logic changes: a function f : L1 —
Lo transforms an Lq-fuzzy subset of A to an Lso-fuzzy subset of A by composition with f.
If f is order preserving this will induce a functor from the category of Li-fuzzy subsets of
A to the category of Lo-fuzzy subsets. Additional preservation properties will be needed
for this to preserve the additional structure we use in fuzzy set theory.

At a somewhat richer level we can look at the properties of two functors f* :
Set(Ly) — Set(L;) and ¥ : Set(L;) — Set(Ls) induced by pullback along f and
compositon with f. Since these categories of fuzzy sets are quasitopoi with a second
closed structure and weak representation of unbalanced subobjects, we can ask what
preservation properties result of these functors result from properties of f.

We can also consider a much larger category whose objects are triples (A, L, « :
A — L) and whose morphisms from (A,L,a: A — L) to (B,L',3: B — L) are pairs
(f: A— B,¢: L — L' with 3(f(a)) > &(a(a)) for all @ € A. For fixed L this is a
fibration over Sets. For a fixed set A it is fibred over the appropriate category of lattices.
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Monad Compositions and Generalized Terms
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We compose set functors with the term monad and show how such compositions can
be extended to monads. Composition of monads thus provides a method for extending
the notion of terms. Variable substitutions, viewed as morphisms in the corresponding
Kleisli categories over composed monads, can then be seen more generally as variables
assigned e.g. to (many-valued) sets of terms. We discuss some examples of powerset and
double powerset functors composed with the term functor. Further we will provide more
general results on constructing new monads from given ones, in particular concerning
composition of submonads.
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Fuzzy t-Norm Predicate Logic is Hard
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Recent development of mathematical fuzzy logic will be briefly surveyed. In particular,
the Basic predicate logic BLY and its three strengthenings LV (Lukasiewicz predicate
logic), GV (Godel predicate logic) and IV (product predicate logic) will be recalled. Each
of has a natural axiom system which is complete with respect to all “sound” interpreta-
tions over any algebra from the respective class of algebras (BL-algebras, MV-algebras,
G-algebras and II-algebras.) LV, GV and IIV have each its own standard semantics,
the ordered interval 0, 1] with the corresponding continuous t-norm and its residuum
(Lukasiewicz, G6del and product t-norm). A standard tautology of such a logic is a for-
mula true in all interpretations of the language over the standard semantics. It is known
that the set of all standard tautologies of GV is recursively axiomatizable, whereas the
corresponding sets of LV and IV are not (see my Metamathematics of fuzzy logic, Kluwer
1998, for details). Analogously we may define a standard tautology of BLY to be a formula
true in all interpretations over all t-algebras, i.e. [0,1] with any continuous t-norm and
its residuum. The following is the main result: the set of all formulas of predicate logic
that are tautologies with respect to all continuous t-norms (standard BLV-tautologies) is
heavily non-recursive (IIp-hard).
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Fuzzy Sets in a Heyting Valued Model
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The aim of this talk is to present a new and natural interpretation of fuzzy sets, fuzzy
relations, and fuzzy mappings in a Heyting valued model for intuitionistic set thoery. By
this interpretation we can consistently obtain various notions and properties of fuzzy sets,
relations and mappings. Though the model is essentially the same as that of Takeuti-
Titani etc., the interpretation is original and unique.

We interpret fuzzy sets and relations in a cumulative Heyting valued model for in-
tuitionistic set thoery. In the model we can easily define basic notions and operations
of sets and relations. By the interpretation with the canonical embedding we can get
most of the standard defining equations of basic notions and operations of fuzzy sets and
relations. There are several definitions of fuzzy mapping in the literature, one of which
identifies fuzzy mapping with fuzzy relation. Our interpretation of fuzzy mappings seems
to be unique but quite natural and it would make clear the meaning of Zadeh’s extension
principle.

Let H be a complete Heyting algebra and V) be the H-valued model in [1]. The
Heyting value ||| is defined for every sentence ¢ of V*). The canonical embedding cor-
responds each crisp set x to its check set Checkz. Basic operations such as intersection,
union, and complement of sets, and composition and inverse of relations are naturally
defined in the model.

Every set A in VU is called an H-fuzzy set, and for a crisp set X every subset
in VU of the check set CheckX is called an H-fuzzy subset of X. The mapping fi4 :
X — H; x — || Checkz € A is called the membership function of A on X. There is
a natural correspondence between H-fuzzy subsets of X and mappings from X to H,
which preserves order and basic set operations. Namely, if A and B are H-fuzzy subsets
of X, then A C B in VW iff uy < up, and we have puanp = pa ApB, pauB = piaV UB,
and fiCheckx\a = T HA-

An H-fuzzy subset R of X x Y is called an H -fuzzy relation from X to Y. If R and
S are H-fuzzy relations from X to Y and from Y to Z respectively, then the composition
SoR is also an H-fuzzy relation from X to Z, and pigep(22) = V, ey (Hr{TY) Aps{yz)) for
allz € X,z € Z. If R is an H-fuzzy relation from X to Y, then the inverse relation R~!
is an H-fuzzy relation from Y to X, and pp-1(yx) = pugr(ry) for all z € X,y € Y. For
an H-fuzzy relation R on X, R is reflexive (in V) iff pp(zz) = 1 (Vo € X), symmetric
iff pr{ry) = prl{yz) (Va,y € X), and transitive iff pp{xy) Augr{yz) < pr{rz) Va,y,z €

An H-fuzzy mapping f from X to Y is a mapping from CheckX to CheckY in V),
For an H-fuzzy relation f from X to Y, f is an H-fuzzy mapping from X to Y iff its
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membership function p1y on X x Y satisfies the following two conditions:

(1) Vyey upfzy) =1 (Vo € X), (2) pp(ey) Applrz) > 0 implies y = = (Vo €
X,Vy,z €Y).

Images and inverse images of relations and mappings are also naturally defined in the
model. For an H-fuzzy mapping f from X to Y and an H-fuzzy set A, the image f(A)
is an H-fuzzy subset of Y. For every crisp mapping ¢ : X — Y, its check set Checky
is an H-fuzzy mapping from X to Y, and then for all H-fuzzy set A, Checky(A) is an
H-fuzzy subset of Y and its membership function satisfies the equation in the famous
Zadeh’s extension principle.
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In this paper, we examine and compare De Morgan-, Kleene-, and Boolean-disjunctive
and conjunctive normal forms and consider their role in fuzzy settings. In particular, we
show that there are normal forms and truth tables for classical fuzzy propositional logic
and interval-valued fuzzy propositional logic that are completely analogous to those for
Boolean propositional logic. Thus, determining logical equivalence of two expressions in
fuzzy propositional logic is a finite problem, and similarly for the interval-valued case.
Algorithms for getting normal forms from truth tables for the classical fuzzy case and
for the interval-valued case are provided. This also sheds some mathematical light on
Turksen’s work on ”interval valued fuzzy sets”.
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Images of fuzzy sets under fuzzy relations have been investigated mainly in two contexts:
On the one hand, mostly under the term “full image” [5], they can be regarded as very
general tools for fuzzy inference, leading to the so-called “compositional rule of inference”
[1, 5]. On the other hand, under the term “extensional hull”, the image of a fuzzy set
under a fuzzy equivalence relation yields the smallest superset which is “closed” under
the relation, where this property is usually called “extensionality” [6].

In the first part of this contribution, after recalling some basic definitions and prop-
erties, we propose a new generalized concept of closedness under a fuzzy relation (let
us call it “congruence”) which naturally extends the notion of extensionality to arbi-
trary binary fuzzy relations. Based on these considerations, under the assumption of
T-transitivity, we are able to give explicit formulae for the congruent opening, i.e. the
largest congruent subset, and the congruent closing, i.e. the smallest congruent superset,
of a fuzzy set. It will turn out that this directly leads to full images—as already known
for fuzzy equivalence relations.

The second part is devoted to a new view on images of fuzzy sets under fuzzy
relations—by integration of the results on congruence and the inference-based interpreta-
tion of images under fuzzy relations, we are able to provide a new framework for defining
linguistic modifiers, both ordering-based ones like “at least”, “at most”, or “between”
and usual weakening and intensifying ones like “more or less”, “roughly”, or “very”.
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The methods for rewriting a Boolean, Kleene, or De Morgan expression to a normal
form use equational properties of the variety of Boolean, Kleene, or De Morgan algebras,
respectively. For De Morgan systems, where there is no practical hope for normal forms,
we take a broader point of view and examine some of the inequalities (equalities) that
hold. In previous work, we used families of inequalities to separate the varieties generated
by strict De Morgan systems—algebras consisting of the unit interval with its natural
order, a strict t-norm, and a strong negation. In that work we showed, in fact, that
the family of varieties generated by nonisomorphic strict De Morgan systems forms an
antichain. This is a continuation of that investigation.
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Abstract

In many applications of fuzzy sets, especially in fuzzy control, the notions of fuzzy
points and fuzzy functions play an important role. Nevertheless, these concepts are
usually understood and used on a very intuitive basis without providing a formal
definition. In this paper we discuss an proach to clarify and formalise these notions
and show some consequences for fuzzy control and fuzzy interpolation.

Our basic framework for fuzzy sets is the unit interval L = [0, 1] endowed with some
continuous t-norm, denoted by *. This t-norm induces a residuated implication and a
biimplication, denoted by — and <, respectively.

The very fundamental notion that we need, is the concept of an equality relation that
allows to introduce the notion (fuzzy) singletons, which is crucial for the definition of
fuzzy functions.

In approximate reasoning if-then rules of the form

If £ is A, then n is B (1)

are very common where £ and 7 are variables with domains X and Y, respectively. A
and B are linguistic terms like positive big or approximately zero. These linguistic terms
are usually modelled by suitable fuzzy sets, say pa € L~ and pup € LY. In addition to
such general rules one has specific information like

Eis A (2)

where A’ is represented by the fuzzy set pa € LX (or simply by u € L¥X). The
application of a single rule of the form (1) to the information (2) is usually formalised
on the basis of a computing scheme of the following form. The rule is encoded as a fuzzy
relation of the form

p(r,y) = po(z,y) = pa(r) © pp(y) (3)

where @ is either the operation * or the residuated implication —. For a given input
information in the form of the fuzzy set uy € LY, the ‘output’ fuzzy set Veonclusion 19
computed as the composition of the fuzzy relatlon po and the fuzzy set pq, i.e.

plual(y) = \/ {par(x) * p(z, y)} (4)

zeX
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for all y € Y. This scheme is called sup-*-inference. In fuzzy control, for instance,
usually * = min = ® is chosen.
For a collection of if-then rules of the form

If £ is A;, then n is By, (i € I), (5)

where the linguistic terms A; and B; are modelled by the fuzzy set u4, € L™ and
pp, € LY. The output fuzzy set for a given ‘input fuzzy set’ u € L* is usually computed
either by

N\ pilud, (6)

i€l

when the fuzzy relations p; are of the type p_, or by

\/ wilil (™)

i€l

when the fuzzy relations p; are of the type p.. In other words, we associate with the
collection (5) of if-then-rules either the fuzzy relation

pu(r,y) = N\p=(xy) = \(mi(x) = vily)) (8)

el i€l

or the fuzzy relation

pu(zy) =\ pulzy) =\ (i) * vi(y)) (9)

i€l i€l
Considering (5) as the system of fuzzy relational equations
pluil =viforiel

where the fuzzy sets p; and v; are given and solution of the system in the form of a fuzzy
relation p has to be constructed, then it is well known that py is always a solution if
there exists a solution at all. In this case, py is the greatest solution. p might not be a
solution, even if there exists a solution of the system.

In some applications of approximate reasoning, especially in fuzzy control, the if-
then-rules (5) are intended to describe a functional dependence between the variable £
and 7. In this case we would expect the fuzzy relation py or pr constructed from these
rules to behave like a fuzzy function. But what do we mean by a fuzzy function? A
fundamental property of a function is that it is a relation that does never assign two
or more elements from the codomain to one element of the domain. Thus we need the
concept of a one-element (fuzzy) set again which means that we have to assume suitable
equality relations on the domains X of the variable £ and Y of the variable 7. In our
considerations we will usually choose special equality relations on X respectively Y that
are induced by the fuzzy sets appearing in the rules. But for the moment we do not need
this assumption, we just have to assume that there is an equality relation £ on the set
X and an equality relation F' on the set Y. We require a similar extensionality property
from a fuzzy relation as from fuzzy sets.
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In this framework, we can provide various results that connect the notion of a fuzzy
function with fuzzy control and approximate reasoning schemes.

Let us now return to the fuzzy relations py and pr that are induced by the collection
of if-then-rules (5). The following theorem shows that they are extensional when the
considered fuzzy sets are extensional.

Theorem 1. Let the fuzzy sets p; and v; appearing in the if-then-rules (5) be normal. (A
fuzzy set jt is normal if there exists an x such that u(x) =1 holds.) The fuzzy relation
pr defined in Equation (9) is a solution to the system of fuzzy relational equations

pluil = vi(i € I) if and only if

(Vij e D) |\ (ui(e) * u@) <\ (wily) & vi(y) (10)

zeX yey
holds.

Theorem 2. Let E and F be equality relations on X and Y, respectively, such that
the fuzzy sets p; and vj correspond to the extensional hulls of the points x; and y;,
respectively (i € I). If the ordinary partial function f(x;) = y; is extensional w.r.t. E
and F, then the fuzzy relation pr, is a partial fuzzy function and pr, = py holds.

In the same context the fuzzy relation py is a fully defined fuzzy relation, but usually
not a partial fuzzy function. The proof is obvious from the definition of pg;.

Corollary 3. Let E and F be equality relations on X and Y, respectively, such that
the fuzzy sets p; and v; correspond to the extensional hulls of the points x; and yj,
respectively (i € I). Then

\ pula,y) =1

yey
holds.

Theorem 4. Let E and F be equality relations on X and Y, respectively, and let f :
X =Y be an (ordinary) extensional function. Let {z;|i € I} C X be a set of elements
of X and let fr denote the (ordinary) partial function defined by fr(x;) = f(x;) for
1 € I. Let u; denote the extensional hull of the point x; w.r.t. E, and let v; denote the
extensional hull of the point f(x;) w.r.t. F. Then

pL = pf < pf < pu
holds.

We can interpret Theorem 3 in the context of fuzzy control in the following way.
Fuzzy control aims at determining an (unknown) control function

f: XY

This function is described by if-then-rules of the form (5). The fuzzy sets p; and v;
appearing in the rules are considered as extensional hulls of single points x; and y;.
Thus the rules specify the partial control function f;. Of course, the underlying equality
relations must be related to the control function in the sense that the control function
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f is extensional. This means simply that we choose narrower fuzzy sets where exact
values are quite important for a good control and wider fuzzy sets where even a rough
controller output provides a reasonable control. Since the partial control function f; does
not specify controller outputs for all inputs, we have to take the information encoded
in the fuzzy sets (or in the equality relations) into account. Therefore we consider the
extensional hull of the partial control function f; that is equal to the fuzzy relation
oL, in other words, to the Mamdani-type fuzzy control scheme. This provides a lower
approximation for the extensional hull of the (unknown) control function f. The fuzzy
relation py can be seen as an upper approximation of the extensional hull of f.

Corollary 5. Let E and F be equality relations on X and Y, respectively, such that
the fuzzy sets p; and v; correspond to the extensional hulls of the points x; and y;,

respectively (i € I). Let the ordinary partial function f(x;) = y; be extensional w.r.t. E
and F. If

PL = pPU

holds, then pr and py are fuzzy functions.
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In this paper a consistent model of the generalized modus ponenses is discussed in the
approximate reasoning. Inputs are implication rules (the so-called: IF-THEN structures)
and statements. Output is a statement (conclusion). Approximate reasoning allows fuzzy
inputs, fuzzy antecedents, fuzzy consequents, or combinations of these. In general in the
approximate reasoning the continous logic is used instead of classical logic.

One of the most successful area of fuzzy theory is the fuzzy control based on infer-
ence, although from logical point of view only few theoretical papers deal with it. The
problem is, that there are several operator systems in fuzzy logic (conjunction, disjunc-
tion, negation) and there are a lot of implication. The so-called modifiers also play an
important role and they still no have any axiomatic bases. The inference is an algorithm
to calculate the unknown values. But what kind of inference is good?

Fuzzy theory deals with uncertain information, but in control the input and the result
are not uncertain. (So the membership function should have a different meaning, etc.)

As in control area the only strict monotonously increasing operator is useful. We are
concentrating on only those operators that come from this class. The theoretical basis
of the modifiers is also given. The crucial point is choosing the implicaton, because the
residual implication is non-continuous.

Our solution is using the classical extension with approximate properties. We use
different models for the inference: solving equations, optimization and surface approxi-
mation. We show that all of them are consistent with the classical inference.
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The LUKASIEWICZ systems, the GODEL systems, and the product logic all are systems
of many-valued logic which are (or can be) t-norm based in the sense that one may
start the semantic considerations with a particular (even continuous) t-norm in the real
unit interval, which serves a truth degree function for some conjunction connective. In
a uniform way one can defines all the other connectives on this basis.

So one has a kind of standard semantic approach toward a large class of many-valued
logics. The problem then is to look for adequate axiomatizations for these t-norm based
systems. Because of the diversity of t-norms the most suitable way to reach this goal
seems to be to look for axiomatizations which cover a wide class of such systems — in
the sense that the particular t-norm based systems then can be axiomatized by some
extension of the “core” system.

There is, however, an important difference between the standard approach toward all
these particular systems, and also toward the POST systems, and the present situation
to look for some core system for the t-norm based systems in general: for all these
particular systems S some single, “standard” semantical approach is constitutive which
is determined by some standard logical matrix for S.

For some core system for the class of all t-norm based systems in general (it seems
that) one does not have such a standard logical matrix. Therefore another type of se-
mantical characterization is needed, which is provided by some suitable class of algebraic
structures, similarly to the semantical characterizations of the LUKASIEWICZ systems by
MV-algebras.

Looking at the actual approaches using t-norms, one recognizes that there is an
important restriction — to left continuous (or even to continuous) t-norms, because one
(usually) likes to have available an R-implication connective in each one of these t-norm
based systems of many-valued logic.

In any case it is structurally important for the t-norm based systems that one has on
the one hand that the basic t-norm constitutes a commutative semigroup with a neutral
element, on the other hand it is important that the usual ordering (of the reals of the
unit interval) is a (lattice) ordering which has a universal lower bound and a universal
upper bound. And it is also important that both structures “fit together” in the sense
that the semigroup operation t is non-decreasing w.r.t. this lattice ordering.

Furthermore one usually likes to have the t-norm combined with a corresponding
R-implication operation, which algebraically means that the lattice-ordered monoid con-
stituted by the truth degree structure should even be a residuated one.
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Based on this type of algebraic structure one has given adequate axiomatizations of
the logics which are characterized by such classes of algebraic structures. They cover the
classes of t-norm based many-valued logics.

These approaches shall be discussed, some recent results explained, and some open
problems mentioned.
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Galois connections were introduced by Ore [1]. Recall that a Galois connection is es-
tablished between two posets P and () whenever there exist mappings f : P — @ and
g : Q — P) such that

f(p1) € f(p2) whenever p1 D ps

9(q1) € g(q2) whenever ¢1 D qo

and
Voergf(p) 2 p.Yeeof9(a) 2 q

Hoéhle [2] points out that residuation in a commutative po-monoid is equivalent to
the existence of a Galois connection between the underlying poset and its dual, i.e., in a
commutative po-monoid M with underlying poset (L, <), if

frxa<~yea<(f—7),Ya,pB,v € L (residuation)

then

where 3 — and (% denote (the obvious) maps from L to L for fixed 3, and o denotes
composition.

This equivalence is most clearly expressed (though not in so many words) in [1] (p.
500), where Ore shows that the Galois correspondence between a (complete) poset P and
its dual is given by

p—= @0 )

where p is the least element containing p in a substructure of P (P;) with all (fi-
nite and infinite) intersections matching and p* is the greatest element containing p in
an isomorphic substructure of P (Q;, to P;) with all unions matching (those of P),
and « is an isomorphism between P; and 1. This form of “auto- connection” makes
clear the “implication-like” character of Galois connections. Thus, the existence of a
Galois connection between a poset P and its dual guarantees that each element of P is
bounded above and below by a “closed” element of P. It is apparent that, w.r.t. the
connection between residuation and Galois connections noted by Hohle, 7 — generates
the P; substructure and % generates the Q1 substructure needed to establish the Galois
connection.
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The connection between Galois connections and (binary) relations has also been
noted, both for the crisp [1] and the fuzzy case [3]. It is known, for instance, that
([1], Th. 10), any Galois connection between the structures of all subsets of two sets can
be defined by means of a binary relation between the two sets. To prove similar results
in the fuzzy case it is necessary, first of all, to motivate a notion of subsethood for fuzzy
subsets: this is done (in [3], following [4]) by setting the subsethood degree of A; in As
(in universe X) to be

A (Ai(@) = As(a)).

zeX
Once this has been done, a fuzzy Galois connection can be defined in a manner analogous
to the crisp case.

It is also known from [2] that the singletons of an M-valued set (X, E') and morphisms
from (X, E) to these singletons in the category M-SET (M-valued sets and structure-
preserving maps between them) yield an algebraic theory (in clone form) in this same
category. From this it follows that there exists a T-algebra ((X, E),¢); the monadic
character of the set of all such T-algebras is apparent (see [5], p. 137 for a relevant
comment). Hohle ([2], see esp. p. 60 and p.56) also points out that every (strict and
extensional) L-fuzzy subset of (X, E) corresponds to a morphism (of a certain type) in
M-SET.

Koslowski [6] notes that pre-ordered sets can be viewed as monads in rel (the bi-
category of sets, relations, and inclusions), and proceeds from this insight to arrive at a
deeper understanding of the fact that the bicategory idl of pre-ordered sets, order-ideals,
and inclusions inherits properties from rel. It is the intent of this paper to motivate
and discuss the properties of another bicategory which I shall call mbi. This bicategory
consists of M-valued sets as O-cells, strict and extensional L-fuzzy subsets as 1-cells,
and inclusions as 2-cells. It will be shown that mbi is a sub-bicategory of kar (the
Cauchy-completion of rel). It will be seen that this bi-categorical view serves to unify
(to a degree) the various properties and interrelationships adumbrated above (residua-
tion, Galois connections, (fuzzy) binary relations). In fact, M- valued sets will be seen
to be fuzzy information systems in the sense of [7], i.e., fuzzy “interpolads,” [6], and the
link from mbi to rel will be seen to be mediated by these fuzzy interpolads just as the
link from id] to rel is mediated by the monadic status of pre-ordered sets.
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