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Since their inception in 1980, the Linz Seminars on Fuzzy Set Theory have emphasized the develop-
ment of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and estab-
lished mathematicians whose work outside the fuzzy setting can provide direction for further research.
The seminar is deliberately kept small and intimate so that informal critical discussion remains cen-
tral. There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

Linz2001 is the 22" seminar carrying on this tradition. Linz2001 deals with the use of Valued Rela-
tions and Capacities in Decision Theory. It is the hope of the organizers that the talks will provide
a mathematical setting for both the theory and the practice of decision under imprecision and uncer-
tainty, multiple attribute decision making, group decision making and game theory.
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Quaternary Fuzzy Relations in Preference Modelling

JANOS FopoRr!

Department of Biomathematics and Informatics, Faculty of Veterinary Science
Szent Istvan University
H-1078 Budapest, Hungary

E-mail: jfodor@univet.hu

Abstract

In this paper we introduce quaternary fuzzy relations in order to describe difference structures.
Three model sare devel oped and studied, based on three different interpretations of animplication.
Functional forms of the quaternary relation are determined by solutions of functional equations
of the same type.

Keywords: measurement theory; difference structure; fuzzy quaternary relations; implications;
t-norms; t-conorms; uninorms.

1 Introduction

Preference modelling is a fundamental step of (multi-criteria) decision making, operations research,
social choice and voting procedures, and has been studied extensively for several years. Typically,
three binary relations (strict preference, indifference, and incomparability) are built up as a result of
pairwise comparison of the alternatives. Then a single reflexive relation (the weak preference, or
large preference) is defined as the union of the strict preference and indifference relations. All the
three previous binary relations can be expressed in terms of the large preference in a unique way.
Therefore, it is possible (and in fact, this is typical) to start from a reflexive binary relation , and build
up strict preference, indifference and incomparability from it.

Some important classes of binary preferences have also been studied with respect to their repre-
sentation by a real function of the alternatives [7]. As an illustration, consider a finite set of alternatives
A and a binary relation P on A. Then there is a real-valued function f on A satisfying

aPb < f(a)> f(b) (1)

if and only if P is asymmetric and negatively transitive. Such a P is called a strict weak order. If P
is strict preference then a function f satisfying (1) is called a utility function [7]. In this situation we
have an ordinal scale: transformations ¢ : f(A) — R where ¢ o f is also satisfies (1) are the strictly
increasing functions.

The representation (1) arises in the measurement of temperature if P is interpreted as “warmer
then™. According to the previous result, temperature is an ordinal scale — although it is well known

1Supported in part by OTKA T025163, FKFP 0051/2000, and Flanders-Hungary B-8/00.
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that temperature is an interval scale. There is no contradiction: one can obtain this result by using
judgments of comparative temperature difference.

To make this precise, one should introduce a quaternary relation D on a set A of objects whose
temperatures are being compared. The relation abDuv is interpreted as the difference between the
temperature of a and the temperature of b is judged to be greater than that between the temperature
of u and the temperature of v. We would like to find a real-valued function f on A such that for all
a,b,u,v € A we have

abDuv < f(a)— f(b) > f(u) — f(v). (2)

The main aim of the present paper is to study whether it is possible to extend, in a rational way,
this approach to the use of a quaternary fuzzy relation on A. Note that the classical binary preference
theory has successfully been extended in [4], and developed significantly further since that time (see
the overview [1]).

The paper is organized as follows. In the next section we briefly summarize some results on
difference measurement, especially on the representation (2). Some of these observations will guide
us in the study of fuzzy extensions in Section 3. We will deal with the non-strict version W of D
and investigate three models based on different forms of fuzzy implications. The functional form of
an appropriate fuzzy difference operator will be given through solving some functional equation in
each case. Using these forms we can characterize fuzzy extensions of (2). In Section 4 we study the
strict quaternary relation D and the indifference E, based on W. We close the paper with concluding
remarks.

We would like to emphasize that the study and the results in the present paper mean only the first
steps in the topic. Any comments and suggestions are welcome.

2 Difference measurement

In classical measurement theory the following situation has been studied in full details. Let A be a set
and D be a quaternary relation on A. In addition to the temperature interpretation, abDuv makes sense
also in preference: | like a over b more than I like u over v. We write D(a,b,u,Vv) or, equivalently,
abDuv. If the representation (2) holds then it is called (algebraic) difference measurement.

A representation theorem is known for (2). Here we do not go into details, the interested reader
can find more results in [7].

We introduce two quaternary relations E and W based on D as follows:
abEuv < [not abDuv and not uvDab],
abWuv <« [abDuv or abEuv].

Notice that in case of (2) we have

abEuwv & f(a)
abWuv < f(a)

(u) — f(v), @)
(u) = f(v). (4)

Closing this section, we collect here some properties valid in the classical case. We would like to
keep as many as possible for the fuzzy extension in the next section.

_f f(u) —
_f f(u) —
Forall a,b,u,v,x,y € A we have
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W1. W (a,b,u,v) =W (a,u,b,v)
W2. W (a,b,u,v) =W (v,u,b,a)
W3. W (a,b,x,x) =W (a,b,y,y)

W4. W (a,b,u,v) implies W (a,b,x,y) or W(x,y,u,v).

3 Fuzzy extensions

Our aim is to extend (4) to allow W to be a quaternary fuzzy relation. We fuzzify W and not D because
of technical reasons on one hand. On the other hand, this way we can follow traditions in building
preferences starting from a weak relation, and defining its strict part later on (see [4]).

Therefore, let | be any fuzzy implication, and A be any fuzzy difference operator.

At this formulation stage we require only the following general properties of I and A:
I1. 1is a function from [0,1]? to [0, 1];
12. 1 is nonincreasing in the first argument;
13. I is nondecreasing in the second place;

14. 1(0,0) =1(0,1) =1(1,1) =1, 1(1,0) = 0 (that is, | an implication on {0,1}).

D1. Ais a function from R? to [0, 1];
D2. Ais nondecreasing in the first argument;

D3. Ais nondecreasing in the second place.

Then, define W by
W (a,b,u,v) = I(A(f(u), f(v)),A(f(a), f(b))), (5)
forany a,b,u,v € A.

Notice that in the classical case (4) we have

1 ifu<y, _
|(U,V):{O ifu>v. ’ and A(X,y)—X—y,

where u,Vv and x,y can be any real number, not necessarily restricted to be in [0, 1].

In the sequel we study three models of the implication I. In any case, we restrict our investiga-
tions to implications defined from continuous Archimedean t-norms or t-conorms, or representable
uninorms.
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3.1 Modd 1: Theuseof R-implications

We do recall only some essential parts from the theory of t-norms and related operations. We refer to
the recent book [6] to find detailed results and proofs.

Suppose now that | = It is the R-implication defined from a continuous Archimedean t-norm T.
An additive generator of T is denoted by t. Then It has the following functional form:

It (x,y) =t~ (max{t(y) —t(x),0}). (6)
Therefore, the quaternary fuzzy relation W is given by
W (a,b,u,v) =t~ (max{t(A(f(a), f (b)) — t(A(f(u), f(v))),0}). @)

It is obvious now that property W1 is formulated as follows:
A(f(u), f(v)) <A(f(a), f(b)) < A(f(b), f(v)) <A(f(a), f(u)),
and for A(f(u), f(v)) > A(f(a), f(b)) we have
t(A(f(a), f(b))) —t(A(f(u), £(v))) =t(A(f(a), f(u))) —t(A(f(b), f(v))).

In order to avoid complicated and heavy notation, we use simply the letters a, b, u, v, etc. to denote
the function values f(a), f(b), f(u), f(v). This can be done without any confusion.

Thus, the last equation can also be written as
t(A(a, b)) +t(A(b,v)) =t(A(a,u)) +t(A(u,v)). (8)

For obtaining the general solution of this equation for A, we apply the following theorem. The
functional equation (9) and its solution plays a key role in the paper. The proof of the following result
will be included in the full version of this paper.

Theorem 1. The general solution of

F(xy) +F(y,2) = F(x,u)+F(u,2) 9)

is
F(Xay) = h(y) - h(X) +Ca (10)
where h is any real function and C is any constant. O

Since equation (8) is just that type in the theorem, we get the following result about A and W.

Theorem 2. Assume that the implication | is represented by equation (6), where t is any additive
generator of a continuous Archimedean t-norm. Define a quaternary fuzzy relation W by (7). Then W
satisfies condition W1 (i.e., W (a,b,u,v) =W (a,u,b,v)) if and only if A is of the following form:

A(a,b) =t~}(h(b) —h(a) +C), (11)
where h is an appropriately chosen non-decreasing function and C is any positive constant.
In this case the quaternary relation W can be written as follows:

W (a,b,u,v) =t L(max{h(u) — h(v) — h(a) + h(b),0}). (12)
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We would like to illustrate how to choose function h and the constant C “appropriately”. Because
(8) holds, we can apply Theorem 1 with F(x,y) = t(A(x,y)). Thus, we must have

t(A(a,b)) = h(b) — h(a) +C.

We have to guarantee that this equation is solvable. That is, the value h(b) —h(a) + C must be in
the range of the additive generator t. That range is either the set of non-negative real numbers, or an
interval of [0, )], with a finite w.

In any case, let a < 3 be real numbers, and choose C := 3 —a. Let h be a function from R to the
bounded interval [a, B]. This choice squezees the value of h(b) —h(a) + C in the interval [0,2C].

If the range of t is the set of non-negative real numbers then C can be any positive number. If the
range of t is [0, ], then any C < w/2 is a good choice.

Notice the effect of the choice of C to the membership values (preference intensities). If the range
of t is [0,w], then C < w/2 implies we cannot reach zero degree of preference. This is always the
case when t(1) = +o0. The lowest membership degree can be arbitrarily close to zero, but it is always
positive. Such positive relations play a key role in some classes of fuzzy weak orders studied in [3].

Fortunately, the quaternary relation W defined in the previous theorem satisfies all the four prop-
erties analogous to the classical case, as we state it now.

Theorem 3. The quaternary fuzzy relation W defined in (12) satisfies all the following properties:

FW1. W (a,b,u,v) =W (a,u,b,v)
FW2. W (a,b,u,v) =W (v,u,b,a)
FW3. W (a,b,x,x) =W (a,b,y,y)

FW4. W (a,b,u,v) < max{W(a,b,x,y),W (x,y,u,v)}.

Example. We would like to show an example. Consider the tukasiewicz t-norm T (X,y) =
max{x +y — 1,0}, which has an additive generator t(x) = 1 —x, so the inverse is t=1(x) = 1 —x
(x€[0,1]). The range of tis [0,1], so leta =0,B=1,C=1/2, and

X

h(x) (x € R).

T 1teX

Then, the quaternary fuzzy relation W has the following form:

gu gV ed eb
W(a,b.u,v) =1—max — — 0;.
(8,b,u.v) {1+eu Tre Ited 11ep }
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3.2 Modd 2: Theuseof Simplications

Another broad class of fuzzy implications is based on a t-conorm S and a strong negation N:
Isn(x%y) =S(N(x),y) (xy€][0,1]). (13)
With the help of an S-implication, we can define the quaternary relation W as follows:
W (a,b,u,v) = S(N(A(u,v)),A(a,b)). (14)
Suppose that S is a continuous Archimedean t-conorm with additive generator s (that is, we have
S(x,y) = s~H(min{s(x) +s(y),s(1)}), and N(x) = ¢—(1 — ¢(x)). Then (14) can be rewritten as
W(a,b,u,v) = s t(min{s(N(A(u,v)))+s(A(a,b)),s(1)})

sH(min{s(¢ (1~ d(A(u.v)))) +5(A(a,b)),s(1)})
= s '(min{g(1-T(u,v)+g(F (a,b)).s(1)}), (15)

where g(x) = s(¢~1(x)) and I'(a,b) = ¢(A(a,b)).
Now we formulate again property FW1 (see in Theorem 3) with the actual functional form of W

min{g(1—T(u,v)) +9(T(a;b)),s(1)} = min{g(1—T(b,v)) +9(I(a,u)),s(1)}. (16)

From this equality it follows that g(1— T (u,v)) +g(I"(a,b)) < s(1) if and only if g(1 — I (b,v)) +
g(I(a,u)) <s(1). In this case (16) reduces to
9(1—T(u,v))+9(F(a,b)) =g(1—-T(b,v)) +9g(T(a,u)). 17)

Theorem 4. Suppose s is an additive generator of a continuous Archimedean t-norm, and W is rep-
resented as in (14). Then property FW1 implies that

A(a,b) = s *(h(b) —h(a) +C), (18)
where h is an appropriately chosen non-increasing function and C is a positive constant.
In this case
W (a,b,u,v) = s~X(min{sNs~(h(v) —h(u) +C) 4+ h(b) —h(a) +C,s(1)}). (19)

As we stated, the form of W given in (19) is only necessary for having property FW1.

Theorem 5. Assume that conditions of Theorem 4 hold. Then the quaternary fuzzy relation W defined
by (19) satisfies FW1 if and only if s(1) < oo, and the strong negation N is generated also by s.

If s(1) = 1 then we have
W (a,b,u,v) = s~(min{1—h(v) +h(u) + h(b) —h(a),1}). (20)
O

Comparing the formula (20) with the one coming from R-implications in equation (12), one can
see that they are different in general, even in the case when S and T are duals (i.e., when s(x) = t(1—
x)). However, in case of Example 1 we have t(x) = 1—x, s0 s(x) =X, and thus s71(x) =x =1 —t~(x).
It means that in this particular case both functional forms of the quaternary relation W coincide.
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3.3 Modd 3: theimplication comes from a representable uninorm

In our third model we start from a representable uninorm (see [5]), and use its residual implication [2]
(which is indeed an implication satisfying properties 11-14) in the definition of W.

Let us recall that a uninorm is a function U : [0,1] x [0, 1] — [0, 1] which is commutative, associa-
tive, nondecreasing, and has a neutral element e € [0,1] (i.e., U (e,x) = x for all x € [0, 1}).

Representable uninorms can be obtained as follows. Consider e €]0,1[ and a strictly increasing
continuous [0,1] — R mapping g with g(0) = —oo, g(e) = 0 and g(1) = +o0. The binary operator U
defined by

U(xy) =g 19 +9(y), if (xy) €[0,12\{(0,1),(1,0)},
and either U(0,1) =U(1,0) =0,0rU(0,1) =U(1,0) = 1, is a uninorm with neutral element e (called
representable uninorm). The function g is called an additive generator of U.

In case of a uninorm U, the residual operator Iy can be defined by
lu(x,y) = sup{z€[0,1] |U(x,2) <y}.

In some cases (for instance, when U is representable) Iy is an implication.

It is easily seen that in case of a representable uninorm U with additive generator function g the
residual implication Iy is of the following form [2]:

_ g_l(g(y)—g(X)) if (Xay) € [07 1]2\{(0a0)7(1a1)}
lu(x,y) = { 1 , otherwise ' (21)
Then, the quaternary fuzzy relation W can be introduced as follows:
_ 1 if (A(a,b),A(u,v)) € {(0,0),(1,1)},
W(a.b,u,v) = { gL(9(A(a, b)) — g(Au,v)) otherwise. NG

Then, condition FW1 implies the functional equation
9(A(a,b)) +9(A(b,v)) = g(A(a,u)) +g(A(u,v)), (23)
similarly to the previous two occurrences of the same type.

Theorem 6. Assume that the implication | is represented by equation (21), where g is any additive
generator of a representable uninorm. Define a quaternary fuzzy relation W by (22). Then W satisfies
condition FW1 (i.e., W(a,b,u,v) =W (a,u,b,v)) if and only if A is of the following form:

A(a,b) = g~1(h(b) —h(a) +C), (24)

where h is any non-increasing function and C is any constant.
In this case the quaternary relation W can be written as follows:

W (a,b,u,v) = g *(h(u) —h(v) —h(@) +h(b)). (25)
We emphasize that in the present case the equation
9(A(a,b)) =h(b) —h(a)+C

has solution without any restriction to h or C, because the range of g is R.
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4  Strict preference and indifference

There exist axiomatic approaches to defining preference structures when we use binary fuzzy relations,
see [4]. We try to apply those results in the present environment of quaternary fuzzy relations.

We start with a simple observation. According to the semantical meaning of abWuv in the crisp
case, it is obvious that W can be considered as a binary relation on A x A. Thus, our task is easily
completed.

First of all, recognize that W (as a binary relation on A x A) is strongly complete: forany a,b,u,v e
A we have either abWuv, or uvWab. Therefore, any axiomatization leads to the following unique
formula for the strict preference D and indifference E (see [4]):

D(a,b,u,v) = N(W(u,v,a,b)),
E(a’b’uﬂv) = min(W(a7b7u7V)7W (uﬂvﬂa7b))7

where N is a strong negation.

5 Concluding remarks

We have developed three approaches to quaternary fuzzy relations modelling difference measurement.
Three simple formulas have been obtained which may be useful and attractive also in applications.
We hope that the study can also be applied to fuzzy weak orders, where representations analogous to
(1) could be proved only in two particular cases.
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The linearity/completeness of orderings is a fundamental property not only in pure mathematics, but
also in preference modeling, since it corresponds, in a more general setting, to the absence of incom-
parability of preference relations.

In the crisp case, an ordering < is called linear if and only if, for all x,y € X,

X =2Y)V(y =x). 1)

The above axiom is just a simple formulation of a property which has a much deeper meaning in
logical and algebraic terms. In particular, there are three essential aspects of relationship between
orderings and linear orderings:

(i) Every ordering can be represented as the intersection of linear orderings.

(if) There is a one-to-one correspondence between linearity and maximality with respect to inclu-
sion, i.e. an ordering is linear if and only if there exists no larger ordering.

(iii) Every ordering can be linearized (Szpilrajn’s Theorem [6]).

The fuzzy community has witnessed several approaches to generalizing the concept of completeness
to fuzzy relations. This contribution is devoted to a detailed study of the two most common classes of
approaches with respect to the three fundamental properties mentioned above, where we consider the
general case of fuzzy orderings admitting vague equality [1, 5].

Firstly, many authors have fuzzified (1) by replacing the crisp disjunction with a t-conorm (usually
called S-completeness [3]):

S(R(x,Y),R(y,x)) =1
Here the case S = max plays a specifically important role [2, 3, 8]:

Secondly, it is possible to reformulate (1) such that only the implication (and implicitly the nega-
tion) is involved:

(x=y)=0) = (y=x). )
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Replacing the crisp implication by a fuzzy implication | yields the second class of approaches [5]. We
will refer to this property as I-completeness in the following:

I(R(x.Y),0) <R(y,x)

We are going to formulate and prove the following assertions:

a)

b)

f)

Property (i) is preserved even for the strongest axiom—max-completeness in the following
sense: any T-E-ordering can be represented as the intersection of max-complete relations [7].
The possibility that these relations are T-E-orderings themselves, however, can only be main-
tained under the condition that the Szpilrajn Theorem holds.

The Szpilrajn Theorem is not necessarily fulfilled for the t-conorm-based family of axioms,
mostly only under unacceptably strong assumptions [4, 8].

If the underlying t-norm T (which is used for defining antisymmetry and transitivity) is left-
continuous, then I-completeness with respect to the residual implication of T allows to fulfill
the Szpilrajn Theorem [5].

In case that the underlying t-norm is not left-continuous, maximality and a corresponding Szpil-
rajn Theorem do not even make sense.

Under the assumptions of c), the following chain of implications holds:
max-completeness = maximality = |-completeness

For the special case that the underlying t-norm is nilpotent, there are also correspondences be-
tween S-completeness and I-completeness. However, neither S-completeness nor I-completeness
have a one-to-one correspondence to maximality.

Maximality cannot be expressed by a property which only involves pairs of values (i.e. an ex-
pression with only two free variables). More specifically, in the crisp case, the global property of
maximality can be characterized by a criterion which is defined locally—for pairs of elements.
In the fuzzy case, this characterization does not hold anymore.

We conclude that it is not possible to formulate a generalized axiom of linearity which can be
expressed in a simple form like (1) or (2) and preserves all three fundamental properties.
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The introduction of the outranking concept plays an important role in the history of multi-criteria
decision procedure, because the preference relation turns into the central point and the incomparability
is also taken into consideration.

The influence of this view gives new perspective on different areas of the decision theory. The
valued preference modeling, strict preference, indifference and incomparability are the components.
The theoretical results of Fodor show how we can get these components from a weak preference
relation.

In our work we show that incomparability has a quite different nature. Getting the preference
relation from aggregation of the preference components (responsible for different characteristics of
the object) it can be viewed as an integral of a function regarding to its importance factor. We show
that the incomparability can be measured by the sharpness of the above mentioned function and it is
quite different from the preference measure.
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6 Introduction

Weights (or criteria importances) play an important role in decision making. Symmetric aggregation
operators [13, 15, 17] usually model the unanimity (non-discriminative) decision making [5]. In-
corporating of weights into symmetric aggregation operator based decision making was discussed in
several papers. Recall here [4, 24, 25, 29, 2] among others. As a most prominent example we can take
the arithmetic mean M and the related weighted mean W.

7 Continuous t—conorms with weights

Continuous Archimedean t-conorm S : [0, 1] — [0, 1] is related to an additive generator g : [0,1] —
[0, +oo], for more details see [11]. Letw = (w4,...,wy), n € N, be a fixed weighting vector, w € [0, 1]",

n
(X1,--.,X%n) €[0,1]", S w;j = 1. The related weighted t-conorm S, : [0,1]" — [0, 1] is given by
i=1

SW(Xla"- ,Xn) = S(Xg_W1)"" 7Xf(1wn))7 (1)
n—times

—
where the “powers” x™) are given by x™) = g=1(wg(x)). Note that then, e.g., S(x*/", ... ,x¥/M) =x
for all x € [0,1].

Evidently (1) can be rewritten into

Sulre.. 30) = 975 wglw). @
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i.e., Sy is a weighted arithmetic mean [5]. For a general continuous t—conorm S, we still can apply
formula (1) to introduce a weighted t-conorm, however, we have to define properly the power x).
This can be done as follows: for any x,w € [0,1], xW=

i j—times i—times
sup | z€[0,1] | Ji,j €N, i <w,ue0,1],S(0,...0) <xz=S(0,...;0) | . (3)

Easily, we can check that for S related to g the formula (3) gives the above mentioned x(").

Definition 1. Let S be a continuous t-conorm, n € N and w = (w1,... ,W,) a weighting of vector.

The weighted mean S, : [0,1]" — [0, 1] is defined as Sy(x1, ... ,xa) = S™, ..., xi*™)), where for

x,w € [0,1], x™) is defined by (3).

The structure of a general continuous t—conorm S as given in [18, 11] (in the form with additive
generators fully describing the relevant Archimedean summands) allows to determine the weighted
aggregation operator related to S.

Theorem 2. LetS = (< ak, bk, gk >| k € X) be a continuous t-conorm, n€ A,n > 2, W= (W4,... ,Wy)
and (X1,...,%) € [0,1]". Then

Sw(X1,... ,Xp) = S(X(lWl),... ’XEIWn)) _
n
gt <_zlwigk(max(ak,xi))) , if max(x; | w; > 0) €]a, by] "
1=
MaXu (X1, Xn), else.

We will present several examples. Note only that the weighted maximum in our approach is given
by
mvex(xl, <oy Xn) = max(x; | wi > 0) = max(H (wi, X)), (5)

where H : [0,1%] — [0,1] is given by

0, ifa=0
H(a’b)_{b, ifa>0,

Recall that standard approach to weighted maximum [4, 25] is similar with only exception that H is
replace by some t—-norm T. Note that H is a non—decreasing associative operation with infinitely many
left neutral elements.

We will discuss also some properties of weighted t-conorms (continuity, idempotency). Note that
we can extend our approach also to the case of non—negative weights with sum exceeding 1 and hence
to generalize weighted t—conorm as discussed by Dubois and Prade in [4].

8 Ordinal scales

Approach proposed in the previous part can be applied also in the case of aggregation of values from
a given finite ordinal scale C. We will extend the approach of Godo and Torra [9], taking into account
arbitrary non-negative weights with sum exceeding 1. Several examples will be shown and some
properties will be discussed.
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Abstract

In this presentation we propose a synthesis of recent works concerning a qualitative approach,
based on possibility theory, to multi-stage decision under uncertainty. Our framework is aqualita-
tive possibilistic counterpart to Markov decision processes (MDP), for which we propose dynamic
programming-like algorithms. The classical MDP algorithms and their possibilistic counterparts
are then experimentally compared on a family of benchmark examples. Finally, we also explore
the case of partial observability, thus providing qualitative counterpartsto the partially observable
Markov decision processes (POMDP) framework.

Detailed abstract

For a few years, there has been a growing interest in the Artificial Intelligence community towards
the foundations and computational methods of decision making under uncertainty. This is especially
relevant for applications to planning, where a suitable sequence of decisions is to be found, starting
from a description of the initial world, of the available decisions and their effects, and of the goals to
reach. Several authors have thus proposed to integrate some parts of decision theory into the plan-
ning paradigm; but up to now, they have focussed on “classical” models for decision making, based
on Markov decision processes (MDP) (where actions are stochastic and the satisfaction of agents
expressed by a numerical, additive utility function), and its implementation, dynamic programming.
However, transition probabilities for representing the effects of actions are not always available, espe-
cially in Artificial Intelligence applications where uncertainty is often ordinal, qualitative. The same
remark applies to utilities: it is often more adequate to represent preference over states simply with an
ordering relation rather than with additive utilities. Recently, several authors have advocated this qual-
itative view of decision making and have proposed qualitative versions of decision theory, together
with suitable logical languages for expressing preferences, namely, [2], [8], [3].

The latter propose a qualitative utility theory based on possibility theory, where preferences and
uncertainty are both qualitative. [4] have extended this work to sequential, finite horizon decision
making and have proposed possibilistic counterparts of the well known Bellman’s equations [1]. This
gave rise to the definition of the Possibilistic Markov Decision Processes framework, which was ex-
tended to infinite-horizon and partial observability in [5]. In [7], experimental comparisons were led
between classical and possibilistic MDP algorithms. The present talk is based on a recent article [6]
which summarizes the [4] early work, together with the results of [7] [5].
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I will first briefly overview the Markov Decision Processes framework, and the three most well
known algorithms for solving MDPs. Then, | will review in more details [3]’s Qualitative Utility The-
ory, and its extension to multi-stage decision theory. Then, | will describe an experimental comparison
of stochastic and possibilistic MDP algorithms and finally, | will give results about the extension of
possibilistic MDPs to partially observable environments.

References

[1] R.E. Bellman. Dynamic Programming. Princeton University Press. Princeton, 1957.

[2] C. Boutilier. Toward a logic for qualitative decision theory. In P. Torasso, J. Doyle and E.
Sandewall eds. Proc. 4th Inter. Conf. on Principles of Knowledge Representation and Reasoning
(KR’94), pp. 75-86. Bonn, Germany, may 24-27 1994.

[3] D. Dubois and H. Prade. Possibility theory as a basis for qualitative decision theory. Proc. 14th
Inter. Joint Conf. on Artificial Intelligence (IJCAI’95), pp. 1925-1930. Montréal, Canada, august
20-25 1995.

[4] H. Fargier and J. Lang and R. Sabbadin. Towards qualitative approaches to multi-stage decision
making. Int. Journal of Approximate Reasoning 19:441-471, 1998.

[5] R. Sabbadin. A possibilistic model for qualitative sequential decision problems under uncer-
tainty in partially observable environments. Proc. 15th Conf. Uncertainty in Artificial Intelli-
gence (UAI’99), pp. 567-574. Stockholm, Sweden, july 30-august 1, 1999.

[6] R. Sabbadin. Possibilistic Markov Decision Processes. To appear in Int. J. Engineering Applica-
tions of Artificial Intelligence, 2000.

[7] R. Sabbadin. Empirical comparison of probabilistic and possibilistic markov decision processes
algorithms. Proc. 14th European Conf. on Art. Int. (ECAI’2000), pp. 586-590. Berlin, Germany,
august 20-25 2000.

[8] S.W. Tan and J. Pearl. Qualitative decision theory. Proc. 11th Nat. Conf. on Artificial Intelligence
(AAAI’94), pp. 928-933. Seattle, WA, july 31-august 4, 1994.

28



(S,U)-Integral-Based Aggregation Operators

ERICH PETER KLEMENT!, RADKO MESIAR?3* ENDRE Pap*

1Fuzzy Logic Laboratorium Linz-Hagenberg
Department of Algebra, Stochastics, and Knowledge-Based Mathematical Systems
Johannes Kepler University
A-4040 Linz, Austria

E-Mail: klement@flll.uni-linz.ac.at

2Department of Mathematics, Faculty of Civil Engineering
Slovak Technical University
SK-81368 Bratislava, Slovakia

3|nstitute of Information Theory and Automation
Academy of Sciences of the Czech Republic
CZ-182 08 Praha 8, Czech Republic

E-mail: mesiar@vox.svf.stuba.sk

4Institute of Mathematics
University of Novi Sad
YU-21000 Novi Sad, Yugoslavia

E-mail: pap@unsim.ns.ac.yu

For afixed n € N, an aggregation operator A: [0,1]" — [0, 1] is a non-decreasing mapping preserving
minimal and maximal elements (see, e.g., [Klir & Folger 1988, Kolesarova & Komornikova 1999]).

Several aggregation operators are closely related to some types of integrals: weighted means
correspond to the Lebesgue integral, OWA-operators are special Choquet integrals, and both the max-
min- and min-max-weighted means are related to the Sugeno integral.

To cover almost all known Lebesgue type integrals, the so-called (S,U )-integral was introduced
[Klement et al. 2000a], where S : [0,1]2 — [0,1] is a continuous t-conorm and U : [0,1]%> — [0,1]
is a left-continuous uninorm with neutral element e € 0, 1] or a left-continuous t-norm which is con-
ditionally distributive over S, i.e., for all x,y,z € [0, 1] with S(y,z) < 1 we have

U(x,S(y,2)) = S(U(x,y),U(x,2)).

For more details concerning t-norms, t-conorms and uninorms we refer to [Klement et al. 2000b,
Yager & Rybalov 1996].

In our context, the (S,U)-integral is defined with respect to an S-measure m on the finite set
X ={1,...,n}, i.e, toamappingm: 2X [0,1] such that, for all I C X, we have
m(1) = S m({i}).
*The second author was supported by the grants VEGA 1/7146/20 and 2/6087/99, and GACR 402/99/0032.
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With each such S-measure m : 2X — [0,1] we can associate an operator A : [0,1]" — [0,1] via the
(S,U)-integral, i.e. ,by

(SV)
A(X) :/ xdm
X

or, equivalently, by
n
A(X1,y...,Xp) = _Slu(xi,m({i})). @)
1=
Each operator A: [0,1]" — [0, 1] defined via (1) is left-continuous and non-decreasing, and satisfies
A(0,...,0) =0. Itis an aggregation operator whenever A(1,...,1) =1, i.e.,if m(X) >e.

Proposition 1. Let S be a continuous t-conorm, U a left-continuous t-norm or a left-continuous uni-
norm with neutral element e € ]0,1[ which is conditionally distributive over S, let m: 2X — [0, 1] be
an S-measure, and let A : [0,1]" — [0, 1] be the operator defined by (1).

(i) IfU is continuous (possibly up to the points (0,1) and (1,0)) then the operator A is continuous.

(ii) A is horizontally additive [Benvenuti et al. 2001], i.e., for each | C X and for each x € [0,1]"
we have

A(x) = S(A(x1),AlXg1));

where the vector x; coincides with x in all coordinates which belong to | and has value 0 in all
other coordinates.

(iii) A is idempotent and U-homogeneous if and only if
n
m(x) = S m({i}) =e
1=
and if, for each € € 10, 1],

él(l—s) m({i}) <e.

(iv) Ais symmetric only if m({i}) =m({j}) for all i, j € X.
Example 2. (i) Let S be a nilpotent t-conorm with normed additive generator g : [0,1] — [0,1]
and define A: [0,1]" — [0,1] by

n

Al 0) =g~ (min (3 g(m({i})-gx).1) ).

Then A is an aggregation operator only if
n
g(m{i})) =1, ()
2

and A is a weighted quasi-arithmetic mean without annihilator if

n

3 am({ip) =1 3
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(ii) Let S be a strict t-conorm with additive generator g : [0,1] — [0, c0] and define A : [0,1]" —

[0,1] by

At..30) =9 (3 a(m({) ).

Then A is an aggregation operator if m(X) > 0, and, provided we have g(m({i})) > 0 for each
i € X, Ais a weighted quasi-arithmetic mean with annihilator 1 if (3) holds.

In particular, if S equals the probabilistic sum Sp (an additive generator thereof being given by
g(x) = —log(1—x)), ifn=2and if we put g(m({1})) = g(m({2})) = % then we get

Wi

Al xe) = 1= (1=x1)3 - (1-x2)%, (4)

and A is a symmetric aggregation operator with annihilator 1 which is continuous but not idem-
potent.

(iii) Consider the ordinal sums S = ((%,1,SL)) and U = ((%,1,Tp)) (observe that U is a t-norm),

and define A: [0,1]" — [0,1] by

( max  (min(xi,g(m({i}))))

ie{1,..., n}
if xi < 2 org(m({i})) < 3 forallieX,

max (xj,3)—1
e{l,..?(,n}(xhz) )

n
A(X1,...,Xn) = min<%+%z(2'
i=1 1

.....

S @miin-H=t
g(m({i}))>3

and it is idempotent if

In particular, if n = 2 and g(m({1})) = g(m({2})) = 2 then we get

: 1 1
max(xg,x2) ifxy<sandxz <3,

A 2.1 if X, > 3 and x, < 4,
(XlaXZ) = 20+1 . 1 1
== ifxg <5 andx2> 3,
X1+X i 1 1
AR if x1> 5 and xz > 5,

i.e., A is a continuous, idempotent, symmetric aggregation operator which is an upper ordinal
sum in the sense of [Mesiar & De Baets 2000].
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Note that the underlying t-conorm S can be read as an (S,U )-integral with respect to the S-measure
m specified by m({i}) = e for each i € X.

Observe also that, given an aggregation operator based on the (S,U )-integral, the dual aggregation
operators are related tolthe t-norm which is dual to the t-conorm S (e.g., the operator dual to (4) given
by A(x1,X2) = (X1 - X2)3 corresponds to the product t-norm Tp).

All aggregation operators mentioned here can be understood as t-conorms/t-norms with imple-
mented weights of single inputs (criteria).
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Real decision making problems do need methodologies for a better understanding rather than choice
proposals. In this sense, geometrical representation will always play a key role. Classical Dimension
Theory (Dushnik-Miller, 1941) seems to be a natural possibility in order to get some hint about under-
lying criteria, whenever basic information is given in terms of crisp preference relations being partial
order sets. Such an approach presents well known algorithmic problems (Yannakakis, 1982), partially
solved in Yafez-Montero (2000).

When dealing with valued preference relations (Zadeh, 1971) we can consider the dimension
function which evaluates the dimension for all its a-cuts, once such an a-cut is a crisp partial order
set (see Montero-Yafiez-Cutello, 1998, where such an approach was applied to max-min transitive
valued preference relations). Some alternative approaches in the literature do impose other formal
assumptions, but they are based upon underlying representation which appears to be too difficult to be
managed by decision makers.

In this paper we generalize the approach given in Montero-Yafez-Cutello (1998), by considering
a general representation for arbitrary crisp preference relations: any strict preference relation can
be represented in terms of unions and intersections of linear orders (see Gonzélez-Rios, 1997, but
also Fodor-Roubens, 1995). Meanwhile non comparability is explained by the intersection operator,
inconsistencies (i.e., symmetry and non transitivity) will be associated to the union operator.

In fact: let X be a finite set of alternatives, and let us consider ¢ = {L/L linear order on X }. Then
for every non-reflexive crisp binary relation R on X there exist a family of linear orders {Ls}st C C
such that R = Ug Ny Lg.

Hence, given X a finite set of alternatives, the generalized dimension of a crisp binary relation R
can be defined as the minimum number of different linear orders, Lg, such that R = Ug My L.

It is obvious that our generalized dimension will be the classical dimension when restricted to
partial order sets. Of course, practical implementation of generalized dimension presents analogous
criticism to searching classical dimension: its algorithmic complexity. However, a bound for this
new concept can be obtained by a combination of algorithms presented in Gonzalez-Rios (1999)
and Yéfiez-Montero (2000).

Anyway, this approach will then lead to a generalized dimension function showing the generalized
dimension for every a-cut, a € (0,1], no matter our valued preference relation p is max-min transitive
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or not. In case our valued preference is max-min transitive, there is a threshold a, between inconsis-
tency and incomparability: there will be no union operator in the above representation if and only if
o > dy. In general, other critical values can be considered in order to get a better understanding of the
complexity of our valued preference relation.

In this way, we shall find different representations for different decision maker attitudes. In fact,
different people with the same valued preference relation y, if forced to be crisp, can face different
crisp problems depending on their exigency level: if the decision maker does not take into account
low intensities (high a), alternatives are easily incomparable (no alternative is better enough than the
other according to any underlying criteria); if the decision maker is sensible to low intensities (low
a), formal cycles will be frequent; within an appropriate range, a linear order may appear, or perhaps
decision maker is just transitive, or non transitive but without formal cycles.

Acknowledgement: this research has been supported by the Government of Spain, grant number
PB98-0825, and the Del Amo bilateral programme between Complutense University and the Univer-
sity of California.

34



Inductive Inference: An Axiomatic Approach
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A predictor is asked to rank eventualities according to their plausibility, based on past cases. We
assume that she can form a ranking given any memory that consists of finitely many conceivable cases.
Mild consistency requirements on these rankings imply that they have a numerical representation via
a matrix assigning numbers to eventuality-case pairs, as follows. Given a memory, each eventuality is
ranked according to the sum of the numbers in the row, corresponding to this eventuality, over all the
columns, corresponding to cases in memory. This rule generalizes ranking by empirical frequencies,
as well as kernel methods for non-parametric estimation of density functions. Interpreting this result
for the ranking of theories or hypotheses, rather than of specific eventualities, it is shown that one
may ascribe to the predictor subjective conditional probabilities of cases given theories, such that her
rankings of theories agree with their likelihood functions
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The Scheme of Fuzzy Dominance

MARIA ROSARIA SIMONELLI

Faculty of Economics
Istituto Universitario Navale
1-80133 Naples, Italy

E-mail: simonelli@naval.uninav.it

In this paper we generalizev the duality scheme in [Castagnoli & Li Calzi, 1997] introducing the def-
inition of Spseudo-adjointT, using the semi-rings of fuzzy measures and fuzzy integrals of Choquet
and Sugeno instead of the vector spaces of measures with sign and Lebesgue integrals.

Keywords. categories, fuzzy measures, fuzzy integrals, functional analysis.
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We introduce a more general type of OWA operator called the Induced Ordered Weighted Averag-
ing (IOWA) Operator. These operators take as their argument pairs, called OWA pairs, in which one
component is used to induce an ordering over the second components which are then aggregated. A
number of different decision making situations are shown to be representable in this framework, no-
table among these are nearest neighbor methods. We then extend this technique to the Choquet integral
and introduce the idea of the induced Choquet aggregation. We then consider ordinal environments
and provide a generalization of the Sugeno integral.
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We show, in the Choquet expected utility model, that preference for diversification, that is, convex
preferences, is equivalent to a concave utility index and a convex capacity. We then introduce a weaker
notion of diversification, namely “sure diversification”. We show that this implies that the core of
the capacity is non-empty. The converse holds under concavity of the utility index, which is itself
equivalent to the notion of comonotone diversification, that we introduce. In an Anscombe-Aumann
setting, preference for diversification is equivalent to convexity of the capacity and preference for sure
diversification is equivalent to non-empty core. In the expected utility model, all these notions are
equivalent and are represented by the concavity of the utility index.

Keywords: Diversification,Choquet expected utility, Capacity, Convex preferences, Core.
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Abstract: The discrimin ordering between two vectors of evaluations of equal length amounts to
apply the minimum-based ordering, once identical components having the same rank in the two
vectors have been deleted. This short, informal, note suggests extensions of the idea underlying the
discrimin ordering, where subsets of components in the two vectors are judged to be equivalent (up
to a permutation) and can thus be ignored in the comparison.

1. Background

Letu=(uy, .., Uj, ..., Up) and v = (v, ..., Vj, ..., Vp) be two vectors having the same length
to be compared. The uj’s and vj's are assumed to belong to a linearly ordered scale, e.g. [0, 1], or a
finite subset of it, such as {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} for instance. The uj's and
the vj’s can be thought of as the values of criteria is for two distinct objects, assuming the
commensurateness of the criteria.

Then the discrimin ordering (Fargier et al., 1993 ; Dubois et al., 1996, 1997) can be
defined in the following way. Let D1(u,v) = {i, such that uj = vj}.

Thenu > V = min. u>min, \Y

discrimin JDDl(u,v) j JDDl(u,v) j*
The discrimin ordering clearly refines the minimum-based ordering and the Pareto
ordering:
u>,.vetiuyzvadu>v,;

Pareto
u>_ Vv < minj uj > minj vj.

Note that in the above definition of discrimin, only identical components having the same rank (i.e.
corresponding to the same criterion) and the same value are ignored in the comparison.

The leximin ordering, which refines the discrimin ordering, is also based on the idea of
deleting identical elements when comparing the two vectors, but once the two vectors have been
reordered in anon-decreasing order.

Thuswith classical discrimin, comparing
u=(2,.5,.3 .4, .8) ad
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v=(2,.3,.5,.6,.8)

amount to compare vectors u’ and v’ where
u' =(5.3 .4
V' =(.3,.5, .6)

sinceu; =vq=.2andug=v5=.8. Thus,u=_ v'. Westill haveu =,_, . v, since

discrimin

Vv’ and thenu < \%

leximin ©

u = VvV, butu <

2. Extending the discrimin: theidea

Classical discrimin is based on the elimination of identical singletons at the same placesin
the comparison process of the two sequences. More generally, we can work with 2 elements
subsets which are identical and pertain to the same pair of criteria.

Namely in the above example, we may consider that (.5, .3) and (.3, .5) are "equilibrating"
each other. Note that it supposes that the two corresponding criteria have the same importance.
Then we delete them, and we are led to compare

u’ =(.4)

V'’ = (.6).

Let us take another example:

u,=(5 4, .3.7.9

v,=(3,.9 5 41
then we would again delete (.5, .3) with (.3, .5) yielding:

u, =(4,.7,.9

v, =(9 41).
Note that in this example we do not simplify .4, .9 with .9, .4 since they do not pertain to the same
pair of criteria.

Moreover, simplifications can take place only onetime. Thus, if the vectors are of the form
u=(XxYy,x s andv={(y,X,Y,t) (withmin (X, y) <min (s, t) in order to have the two vectors min-
equivalent), we may either delete components of ranks 1 and 2, or of ranks 2 and 3, leading in both
cases to compare (X, S) and (y, t), and to consider the first vector as smaller in the sense of the order
2-discrimin, assoon asx < min (y, s, t).

We can now introduce the definition of the (order) 2-discrimin. Let us build aset D,(u,v) as
{ij, such that uj = Vj and Uj =V and if there are several such pairs, they have no common

components} O {k, ux = vk}. Then the 2-discrimin is just the minimum-based ordering once

components corresponding to pairsin D,(u,v) are deleted. Note that D,(u,v) is not always unique as
shown by the above example. However this does not affect the result of the comparison of the
vectors after the deletion of the componentsin D,(u,v) as it can be checked from the above formal
example, since the minimum aggregation is not sensitive to the place of the terms. The 2-discrimin
aso includes the deletion of identical components as in the ordinary discrimin, since it would be
strange to delete pairs of identical values in the comparison but not single identical values (which
may blur the comparison).

"Ifus vandv< u, wewriteu = v for x = min, discrimin or leximin.
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The 2-discrimin refines the discrimin ordering. It deletes pairs of values which play a
neutral role in the aggregation, but which may lead to tiesif these values are not ignored. Indeed in

the first exampleu = v,whileus<, .. v.

discrimin

3. Order k - discrimin

Clearly we can work with 3 elements-sets as well or more generally with k elements-sets.
The two sub-vectors should be identical up to a permutation. This means that for the corresponding
subset of criteria, any symmetrical combination of the three (or more generally k) evaluations
yields the same result for each vector. Then these components can be ignored in the comparison of
the vectors.

For instance, the two vectors

u,=(.3,.5 .21, .6)

v,=(.6,.3, .4,.7,.5)
can be simplified into

u,=(.21)

vV,=(4,.7).
since (0.3, 0.5, 0.6) and (0.6, 0.3, 0.5) are equivalent up to a permutation on the set of ranks (1, 2,
5). It can be done for larger sets aswell.

Let us cal the classical discrimin '1-discrimin’, and the others "2-discrimin’, '3-discrimin’,
and so on. For 3-discrimin, we have to build a set
D3(u,v) ={i,j,k, Dapermutation o defined on{i,j,kK}, uj = Va(i) and Uj = Va(j) and ug = Va(k)

and if there are several such permutations they do not overlap} U D,(u,v).

Note that 3-discrimin incorporates 2-discrimin and 1-discrimin. Again there may exist
several ways of building D,(u,v). Then the situation may become more intricate than with the 2-
discrimin as shown by the following example:

Letu=(0.3,050.8,1,0.6,0.7,0.5)
v =(0.6,0.3,0.4,0.7,0.5, 0.6, 0.7)

There exist two overlapping permutations :

(0.3, 0.5, 0.6) with (0.6, 0.7, 0.5)
and (0.6, 0.3, 0.5) with (0.5, 0.6, 0.7).
Ignoring the values involved in the first permutation, we obtain v <_ u since 0.4 < 0.5, while using
the second permutation, we get v =_ u since both vectors of remaining values lead to the same
minimum 0.3. This points out that the definition of the 3-discrimin should be further refined by
choosing the permutation, which lead to a discriminant situation if possible. Note that this
permutation should involve the minimum value of the vectors, to be of interest.

Moreover, let us consider two vectors of the form

u=(axbbys)

v=(baxat).
Simplifying (a, x, b) with (b, a, x) leads to compare (b, s) with (a, t), while simplifying the
componentsfori=1andi =4 (i.e, (a b) with (b, a)) would lead to compare (X, b, s) with (a, x, t).
This shows (consider the case where x < min(a, b, s, t) that when triples and pairs are overlapping,
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the deletion of the triples can be more efficient in the comparison (as soon as we are using the 3-
discrimin and not only the 2-discrimin).

However they cannot exist two overlapping permutations which, after ignoring their
components in the min-based comparison, would lead to opposite orderings (namely u >v and v >
u). Thisholds for the k-dicrimin as well. This can be seen by considering vectors of the form

u=(tabsxty)and

v=(bsatsxz)
where y and z are such that u =_ v. Simplifying by the first four components leads to compare
min(x, t, y) with min(s, X, z), while deleting (s, x, t) with (t, s, X) leads to the comparison of min(t,
a, b, y) with min(b, s, a z). Clearly the two comparisons cannot disagree with each other (i.e.
cannot lead to u > v and v > u respectively). This remark could be further generalized by replacing
some of the above vector components by sub-vectors. In case of several overlaps, this analysis can
be iterated.

So the generalized procedure for applying k-discrimin is to look for permutations of orders
1, 2, ..., k and to explore the different possibilities in case of overlapping permutations until a
discriminating one is found.

k discrimin and leximin

Besides, note that R-discrimin "amounts to a limited leximin on k-long subsequences. Thus
R-discrimin " provides orderings in between discrimin and leximin. However the n-discrimin
ordering may remain less discriminating than the leximin ordering as shown by the following
example.
u=(0.4,0.5,0.3,0.7,0.6)
v=(0.6,0.3,05,04,1).
Thenu<_, . V(since 0.7 <1),
while u = v (since (0.4, 0.7, 0.6) and (0.6, 0.4, 1) have the same minimum), since 5-discrimin

T 5-discrimin

and 2-discrimin are equivalent here.
4. Concluding remarks

Discrimin and more generally k-discrimin, which takes advantage of the perfect identity of
the components, are well in the spirit of discrete scales.

We may think of further generalizing the above approach in the following way. We can
simplify vectors to be compared by deleting components i and j, if for some meaningful
aggregation function f, we have f(u, u) = f (u, v), here extending the 2-discrimin. For instance, we
may simplify (0.4, 0.6) with (0.5, 0.5) because they have the same average inside vectors which are
originally min-equivalent (i.e. such as min, u,_ = min, v,). For instance, considering the two vectors
u=(0.3,0.4,0.6,0.8) and v = (0.3, 0.5, 0.5, 0.4), this may lead (together with ordinary discrimin)
to find v < u, while u =,_, . v. However, this may be delatable in a situation where u is to be
compared to v’ = (0.3, 0.5, 0.5, 0.7) since it would lead to v’ < u whileu <,_, . v’! This points out
that this may be used only for vectors which are discrimin equivalent. Moreover, the non-unicity of

the extension of Do(u,v) may also create difficulties for some functionsf.

Another extension of discrimin ordering have been recently proposed by Dubois and
Fortemps (1999) for vectors of unequal lengths leading to the general notion of delocalized
discrimin where vectors can be completed by introducing the top element of the scalg, i. e, 1 here,
in places in between components of the original vectors. In that extension, components of the two
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vectors having the same rank, e.g. uj, and vj, may have different ranks once the '1’ are added. This

clearly corresponds to an extension which differs from the above approach. We may think of
combining the two ideas.
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In multiattribute decision theory, various models have been proposed to evaluate and compare the
alternatives and to support the decision making process. For that purpose, the mathematical repre-
sentation of DM’s preferences is a key issue. This modelling tasks consists in representing a prefer-
ence relation -, given on the multiattribute space X = X1 x ... x X, by a decision rule defining the
preference x =y, for any pair of alternative (x,y), as a function of their vectors of attributes values
(X1,...,Xn) and (y1,-...,Yn) in X. Basically, one can distinguish two different approaches to define 2-:

The Aggregate then Compare approach (AC). This approach is exemplified by the works of Fish-
burn [9], Keeney and Raiffa [12]. It consists in summarizing each vector x by a quantity u(x) (the utility
of x) representing the subjective value of x for the Decision Maker. This utility is obtained by aggre-
gation of marginal utilities uj(x;), very often a weighted sum. Denoting s the aggregation operator,
the preference relation - is defined by:

XZY € QWUL(Xa); .-, Un(Xn)), W(UL(X1); -+, Un(Xn))) 2 O

where @is a comparison function. A classical choice for @is @(x,y) = x—y, leading to complete and
transitive preferences. Function  is very often a weighted sum, thus leading to the so-called “additive
utility model”. Many representation theorems for such an additive model have been proposed in the
literature on transitive conjoint measurement, see e.g. [14, 15, 21]. More generally, one can possibly
use another Choquet integral, allowing positive and negative synergies between criteria (see [10, 11],
and [18] for representation results), or in a more qualitative framework, a Sugeno integral [19, 4].

The Compare then Aggregate approach (CA). This approach consists in comparing, for any pair
(x,y) in X2 and each attribute j = 1,...,n, the attribute values x; and yj so as to decide whether X is
at least as good as y according to the j" component. This yields n preference indices ®j(x,y). These
indices are then aggregated before performing the following preference test:

XZY e WP@X,y),-.. ,@n(xy) >0
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Choosing @as: @j(x,y) = L if uj(xj) > uj(y;j), @j(x,y) = 0if uj(x;) = uj(y;), ®;j(x,y) = —1 oth-
erwise and Y(ay,...,dy) = Z?:l H(j)a; leads to the additive concordance rule. When u(j) are all
equal, we obtain a well known majority rule where x - y iff a majority of attributes is concordant with
this preference. This rule is also used in Electre-like methods [16, 20, 17] for multicriteria decision
making, when pu(j),j =1,...,n represent the weights of criteria (this implicitly defines an additive
measure of importance represented by U(A) = ¥ jeal(]j) for any subset A of attributes). The ordinal
nature of the CA approach is worthwhile noticing. It indeed amounts to constructing n preference
relations Zj, j = 1,... ,n (characterised by functions @; by x 2= y & @j(xj,y;) > 0) which are then
aggregated to form the overall preference relation 7-. Additive concordance rules generally lead to
non-transitive preference models. One can find representation results linked with particular concor-
dance rules in the literature on non-transitive conjoint measurement, see e.g. [7, 8, 2, 1, 6].

Generalised Concordance Rules. The additive concordance rules introduced above can be cast in
a more general setting. First a preference relation 2-; is supposed to exist on each attribute range
X;j. It can be derived from the marginal utility functions if any (then xj 2Z; yj < uj(xj) > uj(yj)) or
introduced as such from scratch by the decision maker. Let >; and ~; denote the strict preference
and the indifference relations derived from >~ j. The following coalition of attributes derives from the
marginal preferences:
C-(x,y) ={i € N.xj ZjVyj}

Cx(x,y) is the set of criteria where x is as least as good as y. Finally, assume an importance relation -,
exists on 2N, whereby A - B means that the group of attributes A is as least as important as the group
B. It can be derived from the importance function if any (then A - B < p(A) > u(B)) or introduced as
such from scratch by the decision maker. Such a relation is supposed to be reflexive, and monotonic:

Ai|B:>AUCb| B and Ai| BUC:>A,%J| B

This property is satisfied if 7, derives from a capacity p (A -; B< u(A) > u(B)). Importance relations
derived from additive capacities also obey the following property of preadditivity:

VA,B,CCN, (AN(BUC)=0= (B, C< AUB X AUC))

However, it is well known that preadditivity of 2~ does not imply that it is representable by an additive
capacity (see [13]). Let us now define generalized concordance rules:

Definition 1. A generalized concordance rule defines a preference relation 7~ on X from the relations
»=jonXj,Vj=1,...,nand the relation >~ on 2V as follows:

X2y Cx(xYy) Z1 C- (V%) (GCR)

This definition is a MCDM counterpart to (and a generalization of) the "lifting rule" proposed by
[3, 5] for decision under uncertainty. When - (resp. ;) derive from a capacity function p (resp. a
utility function uj), or equivalently they are weak orders (and thus always representable by capacity
and utility functions), the previous rule becomes:

XZY < UCx(xY) = K(Cx(y,X))

The additive concordance rule is recovered when | is an additive capacity.
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Our study is dedicated to the GCR decision rules defined on a finite cartesian product X. After
discussing the use of measurement scales in the AC approach, we emphasize the interest of ordinal
approaches to preference modelling, and especially the GCR rules. Using simple examples, we illus-
trate the descriptive ability of such rules and the potential interest of particular instances obtained from
non-additive capacity functions. Then we investigate preference structures which can be represented
by a rule of type GCR and propose a characterization result. Finally, we investigate the subclass of
GCR rules compatible with quasi-transitive preferences. It is shown that such rules are based on a hi-
erarchy of oligarchies of attributes. More precisely, there exists a group of attributes that unanimously
decides on the preference, indifference/incomparability between two alternatives. In case of indiffer-
ence, the decision is possibly left to another less powerful oligarchy and so on. Such structures are
illustrated by non-additive concordance rules based on possibility and necessity measures.
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The Choquet integral has been well known as a method for integration with respect to nonadditive and
fuzzy measures (for the latter it was first proposed by Ulrich Héhle, 1982). Less known is the Sipo3
integral, a variation which may be more natural due to its symmetry around zero. In mathematical
decision theory, Choquet expected utility, named after and based on the Choquet integral, has received
much attention. Remarkably and unknown to its inventors Kahneman and Tversky, prospect theory
is a natural generalization of the Sipo$ integral rather than of the Choquet integral, with the special
mathematical role of the zero outcome in the Sipos integral reflected by the special psychological role
of the zero outcome in human decision making. Whereas prospect theory is prevailing over Choquet
expected utility in empirical applications, its mathematical theory remains underdeveloped today.

Empirical studies have revealed not only a special role of the zero outcome, but also the interest of
new conditions of fuzzy measures. Not concavity or convexity (also called superadditivity), but a mix
of these two, cavexity, seems to be the central condition in human decision making. The condition
reflects a decreased degree of sensitivity, rather than a general aversion or pessimism, towards vague
information. The vaguer the information is the closer it should be to fifty-fifty, rather than to logically
impossible.

This lecture will present theoretical foundations for fuzzy measures to reflect the conditions men-
tioned above.

48



Decision Making Based on Hybrid Probability-Possibility Measure

ENDRE PaP

Institute of Mathematics
University of Novi Sad
Y U-21000 Novi Sad, Yugoslavia

E-mail: papQunsim.ns.ac.yu

Pseudo-analysis is based on pseudo-operations which enables the extension of the classical analysis,
see [1,9, 10, 11, 12, 14, 15, 16, 17, 18]. We shall use a part of pseudo-analysis to extend the classical
von Neumann Morgenstern utility theory [13], which is based on the probability. First of all we are
using results on special pseudo-additive measures: max-measures, see [3, 5, 7, 9, 11].

A basic notion in probability theory is independence. The main issue in probabilistic independence
is the existence of special events Ay, ..., A, such that P(A1N---NAy) =L, P(Ai). Such events are
called independent events. In order to preserve the computational advantages of independence, any
operation  for which it could be established that P(A1N---NA,) = %;_; P(A;), would do. However the
Boolean structure of sets of events and the additivity of the probability measure, impose considerable
constraint on the choice of operation x. In the paper [6] was studied the possible operations * when
changing P for a pseudo-additive (decomposable) measure based on a t-conorm S. A first remark
is that it is natural to require that * be a continuous triangular norm. It turns out by [6] that the
only reasonable pseudo-additive measures admitting of an independence-like concept, are based on
conditionally distributive pairs (S,T) (see [9], condition (CD)) of conorms and t-conorms, namely:

(a) probability measures (and x = product);
(b) possibility measures ( and x is any t-norm);

(c) suitably normalized hybrid set-functions m such that there is a €]0,1[ which gives for A and B
disjoint

[ m(A)+m(B)—a ifm(A)>a,m(B)>a,
m(AUB) = { max(m(A),m(B)) otherwise,
and for separability:
a+ MALAME) ) ifm(A) > a,m(B) > a,
MANB) =4 a.T; (WA "Bl jfm(A) <a,m(B) <a,
min(m(A),m(B)) otherwise,
Remark. Cox’s well-known theorem, see [2, 19], which justifies the use of probability for treating
uncertainty, was discussed in many papers. It is clear that the family of pseudo-additive measures ex-
hibited in this paper is worth studying in Cox relaxed framework, since a natural form of conditioning
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can be defined on the basis of the triangular norm in the pair (S, T) satisfying (CD), leading to an
almost regular independence notion exhibited here.

Suppose m is a S-measure on X = {x1,X2,X3} and m; = m({x;}). Suppose we want to decompose
the ternary tree into the binary tree so that they are equivalent. Then the reduction of lottery property
enforces the following equations

S(V]_,Vz) =1, T(UaVl) = My, T(|J,V2) = Mg,

where T is the triangular norm that expresses separability for S-measures. The first condition expresses
normalization (with no truncating effect for t-conorm S allowed). If these equations have unique so-
lutions, then by iterating this construction, any distribution of a S-measure can be decomposed into a
sequence of binary lotteries. This property is basic in probability theory since it explains why proba-
bility trees can be used as a primitive notion for developing the notion of probability after Shafer [20].
Turning the S-measure into a sequence of binary trees leads to the necessity of solving the following
system of equations

o1 =T(K,V1), a2 =T (W, V2), S(v1,v2) =1 D
for given a1 and a,. Assuming that T = min we have solved (1) completely in [6] and exhibited the

analytical forms of (W, v1,V2).
We define the set ®s , of ordered pairs (a, ) in the following way

®sa={(a,p) [ (a,p) €]a,1[,a+B=1+a}

U{(a,B) | min(a,B) < a,max(a,p) =1}.

A hybrid mixture set is a quadruple (G,M,T,S) where G is a set, (S,T) is a pair of continuous
t-conorm and t-norm, respectively, which satisfy the condition (CD) and M : G2 x ®s, — G is a
function (hybrid mixture operation ) given by

M(X,y;(X,B) = S(T(G,X),T (va))

It is enough to restrict to the case (< Sm,S. >, < T1,Tp >)a. Then it is easy to verify that M satisfies
the axioms M1-M5 on @s 5, see [6].

Let (S,T) be a pair of continuous t-conorm and t-norm, respectively, of the form (< Sy,S. >
,< T1,Tp >)a. Let ug,uy be two utilities taking values in the unit interval [0,1] and let 1, u2 be two
degrees of plausibility from ®s 5. Then we define the optimistic hybrid utility function by means of
the hybrid mixture as

U (ug,uz; Ha,H2) = S(T (U, M), T (U2, H2))-

In the paper [6] it is examined in details this utility function. Although the above description of opti-
mistic hybrid utility is rather complex, it can be easily explained, including the name optimistic, see
[6]. Putting together the results of this paper, the utility of a n-ary lottery can be computed by decom-
posing the S- measure into a sequence of binary trees and applying the above computation scheme for
hybrid utility recursively from the bottom to the top of the binary tree expansion.

More details and proofs of theorems stated in this paper can be found in [6].

Open problem. Find a corresponding axiomatization for hybrid utility as was done for classical
utility theory in [13] and possibility utility theory in [5].
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Among non-additive, ordinal methods for criteria aggregation and decision under uncertainty,
some have their origin in an approach first proposed by Bellman and Zadeh in 1970. Instead of
maximising sums of degrees of satisfaction pertaining to various criteria, they proposed to
maximise the minimum of such degrees, thus leading to a calculus of fuzzy constraints, for
instance [1]. Unfortunately, rankings of solutions using such qualitative techniques are usually
rather coarse. This drawback seems to undermine the merits of qualitative techniques, whose
appeal is to obviate the need for quantifying utility functions. Worse, some of the generally not
unique maximin optimal solutions, may fail to be Pareto Optimal. Besides, other well-behaved
aggregation operations on finite ordinal scales seem to be constant on significant subsets of their
domains [4], which make these aggregations not so attactive in practice.

Thiswork starts an investigation of some limitations of finitely-scaled methods for criteria
aggregation, and a search for remedies to these limitations. Given afinite, totally ordered set (X, >)
with top 1 and bottom O, consider an aggregation function f : Xn_> X, which, by definition, is
increasing in the wide sense and such that f(1, 1 ...1) = 1 and f(0, ...0) = 0. It can be shown that
maximising f over asubset S [0 Xn of n-tuples generaly leads to a maximising set that contains

non Pareto - optimal solutions. Thisfact is rather unsurprising since using f as a ranking function

n
comes down to sorting [X| elementsinto [X| sets of equally ranked n-tuples.

Clearly it shows that the discriminating power of qualitative aggregation operations is
bound to be unacceptably weak and intuitively debatable. One way out of this difficulty may beto
use functions from Xn to a bigger finite scale Y. However , this idea is not satisfactory from a
practical point of view since the combinatorics of functions from Xn to Y become rapidly

prohibitive as Y is bigger, and are thus much higher than those of functions from Xn to X.

When f = min, the natural way to tackle the problem has been to introduce relations that
naturally refine the min-ordering, and restore the Pareto optimality of the selected maximal
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solutions. Such relations are the discrimin ordering and the leximin ordering [2, 3]. The
discrimination power of the latter is maximal, i.e. it is equal to that of the most discriminating
symmetric aggregation operations.

In this work, we try to generalise this refinement technique to more general families of

aggregation operation. We restrict to the case of symmetric functions. Consider a family {fp} p of

p
f

symmetric functionsxp - X. For any positiveinteger p, f' is supposed to be

-) extensively preferentially consistent with f p—l: OuOX,

Py o x o-1) >tP Ly oy o-1) imply FP(xg ... x p-1, W) 2 FPy1 oy o u)
-) globally strictly monotone :

ifxj>y; 0i=1p,thenf (x)>f (y) where xandy 0 X",

These conditions look natural in the scope of applications. The first condition is a weak
form of preferential independence. They are satisfied by the minimum, the maximum (but not
other order-statistics). By convention f1 is the identity function on X. Call {f1 fp...} a
qualitative aggregation structure. We use the nottion f when the number of arguments is not
emphasized. The generalisation of discrimin and leximin to such aggregation structures is as
follows:

Discri — f:Let D (x,y) ={i, Xj # yj} bethe discriminating set of components for x and y.
Thendefinex 2 discri fy < f({xj,i O D(x, y)}) 2 f({yi,i 0 D(x,y)})

Lexi—f : Letx O Xn, andlet V(x) ={x O X, Oi O{1... n}, xj =x} be the set of distinct
values in the vector x. Let ky (X) = number of times the value x appears in X. Let M(X) be the

multi-set induced by x : O x O X, the degree of “membership” of x to M(X) is kx (X). Let M(X) —
M(y) be the multi-set with membership function max(0, kx —ky ). Denoting Zy 7 X kx (x) the

cardinality of M(x). It is obvious that [M(x)| = n = [M(y)], O x, y O Xn . Hence |[M(x) — M(y)| =
IM(y) —M(X)|. Then define : x 2 Jexi-f y = F(M(x) —M(y)) 2 f(M(y) —M(x))

It can be shown that under mild conditions such as global monotonicity and extensive
preferential consistency, lexi-f and discri-f maximal solutions are indeed Pareto-optimal, and that
the corresponding ordering of solutions is quite discriminant.

Globally strictly monotone aggregation functions on X are easily proved to be idempotent
on finite scales, since if 0 = x1 <x2 < .. <xm =1 it follows that f(xj ... Xj) = Xxj. It rules out the

Archimedean t-norms and conorm-like operations on finite sets [4]. Moreover, the only associative
idempotent aggregation operations different from min and max, the a-medians (f(x, y) =
median(a, X, y)) are generally not globally strictly monotone, since they are constant on large
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subsets of X", The above extensions of leximin and discrimin orderi ngs to these operations thus do
not possess enough discrimination power; they can only be refined by directly adopting Pareto-
ordering on the ranges where these aggregation functions are constant .

The simplest non trivial example of aggregation structureisfor X ={1, 2, 3}. Adopting the
Iexi-f2 ordering does not leave many degrees of freedom: one must indicate the relative position
of 2(1, 3) and f2(2, 2). I f2(1, 3) > 2(2, 2), thisisthe leximax ordering. If f2(1, 3) < f4(2, 2), this
is the leximin ordering. If f2(1, 3) = f2(2, 2), thisiis akind of ordina average (which is less
discriminant). With three arguments, the ordering of 3-tuples is fixed by further positioning (2, 2,
2) with respect to (1, 1, 3) and (1, 3, 3) (note that (1, 3, 3) > |exj-f (1, 1, 3) in any case). The lexi-f
positions of (1, 2, 2) with respect to (1, 1, 3), (1, 2, 3) with respect to (2, 2, 2), and (2, 2, 3) with
respect to (1, 3, 3), are enforced by the position of (2, 2) with respect to (1, 3). If f2(1, 3) > f2(2,
2), then f3(1, 3, 3) > £3(2, 2, 2) and only the relative position of (2, 2, 2) and (1, 1, 3) is left open.
11 £2(2,2) > £4(1, 3), thenf3(2, 2, 2) > (L, 1, 3) and only the relative position of (2, 2, 2) and (L,
3, 3) isleft open.

The generation of complete preorderings of tuples of elements from a finite ordered scale
in agreement with Pareto-ordering and symmetry has been considered in Moura-Pires and Prade] 5]
in the scope of fuzzy constraint satisfaction problems. A natural question is whether any such
complete preorderings of Xn can be obtained as a lexi-f ordering for some qualitative aggregation
structure {f1 fn}, and more generally, can be generated by a small number of extra constraints
on the relative positioning of a few tuples. Unfortunately the answer for lexi-f orderings is
negative. A counterexample is obtained using a 4-element scale X = {0, 1, 2, 3}. Then f2 is
characterized by the relative positionings of (0, 2) w.r.t. (1, 1), (1, 3) w.r.t. (2, 2), and (0, 3) w.r.t.
(1, 1) and (2, 2). However, using f - X2 0 X, 12(0, 3) {£%(0, 0), f4(1, 1), X2, 2), 14(3, 3)} . Neither
the discri-f nor the lexi-f extension, nor even the adding of Pareto-ordering itself can generate the
complete preorderings such that (1, 1) < (0, 3) < (2, 2). There are 12 total orderings which are
Pareto-compatible and respect symmetry in this example, and only 8 of them can be generated as a
lexi-f ordering via an aggregation structure Xn 0 X. Generating the other total orderings requires a

function X2 0O Y whereY hasb5 levels.

Another property which may simplify the study of qualitative aggregation structuresis the
following regularity : let (i, j) X2 = {0,1,2,...,n};

if £2(i, ) > 120 + 1,j — 1), thenf2(i + 1, ] + 1) > (i + 2, ).

The combinatorics of such regular aggregations functions look moderate and deserve
further exploration. However the above study has exhibited some intrinsic limitations of the
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otherwise appealing finite setting for criteria aggregation using a single finite scale, whereby
concise representations and functions having good agebraic properties turn out to lack
expressivity, even under natural lexicographic-like extensions .
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In decision making, either in the uncertainty, risk, or multicriteria framework, it may be useful to use
negative numbers for describing scores or utilities. In multicriteria decision making, a negative score
means that the value of the attribute is less than an a priori fixed level of neutrality or indifference,
making the frontier between good and bad scores (bipolar sales). In decision under uncertainty or risk,
negative utilities are interpreted as losses, while positive utilities are gains.

Cumulative prospect theory [5] is based on this distinction of gains and losses, and there an ex-
tension of the Choquet integral to negative values is introduced for representing natural behaviours.
Mathematically speaking, this extension is called the symmetric integral by Denneberg [1], an integral
introduced already by Sipo3 [6] in 1979. The main property of this integral, which we denote by the
functional Cp, p being the fuzzy measure or capacity, is:

Gu(— ) =—Gu(f)

for any act f. By contrast, the usual definition of the Choquet integral fulfills C,(—f) = —C(f),
where " is the conjugate fuzzy measure.

In multicriteria decision making on bipolar scales, the use of the symmetric and asymmetric (Cho-
quet) integrals have been studied by the author [3, 4].

The preceding discussion was held in the case where utilities and scores are on a true numerical
scale (either interval or ratio scale). It is however often the case in decision making that available
information is of qualitative nature. For example, in multicriteria decision making problems, qualita-
tive scales such as (bad, acceptable, good) are given to the decision maker in order to put scores for
each criteria. In this situation, the use of the Choquet integrals —and hence its extensions to negative
numbers— is forbidden, since a interval or a ratio scale is assumed. Then, the Sugeno integral, defined
only with minimum and maximum, appears to be the right counterpart for the ordinal case. It has been
axiomatised by Dubois et al., in the framework of decision under uncertainty [2].

The question arises now, where it is possible to define a symmetric and an asymmetric extension
of the Sugeno integral, in order to derive models similar to cumulative prospect theory in an ordinal
framework. This paper addresses this topic, and begins by the introduction of an appropriate ordinal
scale, where the notion of negative number is introduced.

We build from an ordinal scale E™ with least element ® a symmetrical scale E—, and introduce
two ordinal operators @ and @, extending maximum and minimum on E = E* UE~ so that to have

*On leave from Thomson-CSF, Corporate Research Laboratory, Domaine de Corbeville, 91404 Orsay Cedex, France.
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an algebraic structure similar to that of a ring. In fact (E, @, ®) fulfills all properties of a ring except
associativity and distributivity which lives only on E* and E~ separately.

_ With this structure, it becomes possible to define a symmetric Sugeno integral S’H, which fulfills
Su(—1)=—=38u(f). Also, taking the ordinal Mdbius transform, the expression of the symmetric Sugeno
integral w.r.t. the Mobius transform is similar to the one obtained for the Sipo§ integral.

Lastly, we focus on the multicriteria decision making framework with bipolar ordinal scale. We
show how to build a preference modelling based on the symmetric Sugeno integral.
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We consider a multicriteria sorting problem consisting in assignment of some actions to some pre-
defined and preference-ordered decision classes. The actions are described by a finite set of criteria.
The sorting task is usually performed using one of three preference models: discriminant function (as
in scoring methods, discriminant analysis, UTADIS), outranking relation (as in ELECTRE TRI) or *“if
..., then ... > decision rules that involve partial profiles on subset of criteria and dominance relation
on these profiles. A challenging problem in multicriteria sorting is the aggregation of ordinal criteria.
To handle this problem some max-min aggregation operators have been considered, with the most
general one - the fuzzy integral proposed by Sugeno (1974). We show that the decision rule model
has some advantages over the integral of Sugeno. More generally, we consider the multicriteria sorting
problem in terms of conjoint mesurement and prove a representation theorem stating an equivalence of
a very simple cancellation property ensuring monotonicity of the aggregation, a general discriminant
function and a specific outranking relation, on the one hand, and a decision rule model on the other
hand. With respect to Sugeno integral, there is a positive and a negative interpretation of our result.
Positive interpretation says that any preference model expressed in terms of the Sugeno integral can
be represented by a set of specific decision rules called single graded decision rules. Negative inter-
pretation says that not all preference models represented by a set of general(i.e. multi-grade) decision
rules can be represented also in terms of the Sugeno integral. Therefore, the decision rule model has
a larger applicability than the Sugeno integral,which is a clear advantage. In our opinion there is also
another advantage of the decision rule model, which is perhaps more important for multicriteria deci-
sion aiding: the decision rule model expresses the preference model in much more intelligible terms
than the Sugeno integral.

Moreover, we consider a more general decision rule model based on the rough sets theory being
one of emerging methodologies for extraction of knowledge from data. The advantage of the rough set
approach in comparison to competitive methodologies is the possibility of handling inconsistent data
that are often encountered in preferential information, due to hesitation of decision makers, unstable
character of their preferences, imprecise or incomplete information and the like. We propose a general
model of conjoint measurement that, using the basic concepts of the rough set approach (lower and
upper approximation), is able to represent these inconsistencies by a specific discriminant function.
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We show that these inconsitencies can also be represented in a meaningful way by “if ..., then ...
decision rules induced from rough approximations.

Finally, we use these theoretical results to open a new avenue for applications of the rough set con-
cept to decision support. We consider the classical problem of decision under risk proposing a rough
set model based on stochastic dominance. We start with the case of traditional additive probability dis-
tribution over the set of states of the world, however, the model is rich enough to handle non-additive
probability distributions and even qualitative ordinal distributions. The rough set approach gives a
representation of decision maker’s preferences in terms of "ifE, then..." decision rules induced from
rough approximations of sets of exemplary decisions. We prove that also in this case decision rule
representation is based on a set of very few and simple axioms and it is more general than the Sugeno
integral.
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Abstract

In this communication, we investigate the semiotical foundation of the logical approach to multicri-
teria preference aggregation promoted since 1969 by Bernard Roy (see [9]). We first show the denota-
tional isomorphism which exists between his concordance principle and the proceeding of balancing
reasons as promoted by C.S. Peirce. This result illustrates the split truth versus falseness denota-
tion installed by the concordance principle. Taking furthermore support on the Peircian distinction
between credibility and state of belief concerning a preferential assertion, we propose a semiotical
foundation for the numerical determination of the truth assessment knowledge carried by the family
of criteria. This approach, first makes apparent the semiotical requirements guaranteeing the coher-
ence of a family of criteria, but also allows to extend the concordance principle in order to support
pairwise overlapping criteria, incomplete performance tableaux and/or ordinal criteria weights.

In order to describe the preferences a decision maker might express concerning a given set of
decision actions, Roy (see [10, 11]) considers essentially all multiple pragmatic consequences they
involve. The elaboration of a consequence spectra follows precise methodological requirements that
are:

e an intelligibility principle: Its components must gather as directly as possible all imaginable
consequences such that the decision maker is able to understand them with respect to each of
the underlying preference dimension;

e an universality principle: The components must ideally cover all preference dimensions that
reflect fundamental and unanimous outranking judgments concerning the set of all decision
actions.

On this basis, Roy constructs a family of criteria functions allowing partial truth assessment of pair-
wise outranking situations. A global (universal) outranking assertion is thus truth or falseness war-
ranted from multiple points of view depending on the decomposition of the cloud of consequences into
separated preference dimensions.

Aggregating these partial truth assessments is then achieved via the concordance principle, where
the credibility of the corresponding universal outranking situation is computed as the sum of the
relative weight of the subset of criteria confirming truthfulness of the corresponding assertion. If a
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majority of criteria is concordant about supporting this truthfulness, the outranking situation may be
affirmed to be more or less true depending on the effective majority it obtained. The credibility of an
universal outranking situation is computed as the sum of the relative weight of the subset of criteria
confirming truthfulness of the corresponding assertion.

As a first result we show the denotational isomorphism which exists between this concordance
principle and the proceeding of balancing reasons as promoted by C.S. Peirce (see [8]). This result
formally justifies the split truth versus falseness denotation installed by the concordance principle, a
logical denotation appearing as powerful natural fuzzification of Boolean Logic (see Bisdorff [6]).
Indeed, the algebraic framework of the credibility calculus (see Bisdorff & Roubens [1, 2]), coupled
to its split logical denotation, allows us to solve selection, ranking and clustering problems (see Bis-
dorff [3, 5, 6, 7]) directly on the base of a more or less credible pairwise outranking relation without us-
ing intermediate cut techniques as is usual in the classic Electre methods (see Roy & Bouyssou [11]).

Now, to give adequate results, this concordance principle imposes necessary coherence proper-
ties on the underlying family of criteria such as: — Exhaustivity of the family of criteria, — Cohesion
between local preferences, modelled at the level of the individual criterion, and global preferences
modelled by the whole family of criteria, — Non-redundancy of the criteria. Instead of studying, as
is usual, the logical consequence of these coherence axioms on the class of representable global out-
rankings, we focus here our attention to the logical antecedent of these coherence axioms. Therefore,
we explore the relationship between the family of criteria and its semiotical interpretation in terms of
its underlying cloud of consequences.

As a second result, we reformulate the concordance principle and a new version of the coherence
axioms of the family of criteria is presented. Indeed, the elementary semiotical reference associated
with each individual criterion function allows a clear partial truth assessment. In case of mutual ex-
clusiveness and universal closure of such elementary semiotical references, universal outranking as-
sertions may be truth assessed through a weighted mean of credibilities, formally equivalent to the
proceeding of balancing reasons and, following our first result, to the classic concordance principle.

This semiotical reformulation of the concordance principle finally allows to identify possible ori-
gins for incoherence of the family of criteria and as a third result, we propose three extensions to the
classic concordance principle: — overlapping criteria, — incomplete performance tableaux, and finally
— ordinal importance weights.

An extended version of this communication has been submitted for publication ([7]).
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Abstract

We present a sorting procedure for the assignment of alternativesto graded classes. The avail-
able information is given by partial evaluations of the alternatives on ordinal scales representing
interacting points of view and a subset of prototypic alternatives whose assignment is imposed
beforehand. The partial evaluations of each aternative are embedded in a common interval scale
by means of commensurateness mappings, which in turn are aggregated by the discrete Choquet
integral. The behavioral properties of this Choquet integral are then measured through importance
and interaction indices.

Keywords: multi-attribute decision-making, ordinal data, interacting points of view, Choquet in-
tegral.

10 Introduction

In this paper we use the discrete Choquet integral as a discriminant function in ordinal multiattribute
sorting problems in the presence of interacting (dependent) points of view. The technique we present
is due to Roubens [14] and proceeds in two steps: a pre-scoring phase determines for each point of
view and for each alternative a net score (the number of times a given alternative beats all the other
alternatives minus the number of times that this alternative is beaten by the others) and is followed
by an aggregation phase that produces a global net score associated to each alternative. These global
scores are then used to assign the alternatives to graded classes.

The fuzzy measure linked to the Choquet integral can be learnt from a subset of alternatives (called
prototypes) that are assigned beforehand to the classes by the decision maker. This leads to solving
a linear constraint satisfaction problem whose unknown variables are the coefficients of the fuzzy
measure.

Once a fuzzy measure (compatible with the available information on prototypes) is found, it is
useful to interpret it through some behavioral parameters. We present the following two types of
parameters:

1. The importance indices, which make it possible to appraise the overall importance of each point
of view and each combination of points of view,

2. The interaction indices, which measure the extent to which the points of view interact (positively
or negatively).
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11 An ordinal sorting procedure

Let A be a set of g potential alternatives, which are to be assigned to disjoint classes, and let N =
{1,...,n} be a label set of points of view to satisfy. For each point of view i € N, the alternatives are
evaluated according to a sj-point ordinal performance scale; that is, a totally ordered set

Xii={g} <igh<i - <i 9;}-
We assume that each alternative x € A can be identified with its corresponding profile

n
(X1,--- ,Xn) € _><1Xi =:X,
i

where, for any i € N, x; represents the partial evaluation of x related to point of view i. In other words,
each alternative is completely determined from its partial evaluations.

Through this identification, we clearly have

n

ACX and qgrlsi.

I=
Forany x; € Xjand any y_j € X_j = X jen\ it Xj, we set
Xiy—i = (yla <o Yi—n X Yitas - 7yn) € X.

Now, consider a partition of X into m nonempty classes {Cl; }{",, which are increasingly ordered,;
that is, forany r,s € {1,... ,m}, with r > s, the elements of Cl, have a better comprehensive evaluation
than the elements of Cls.

We also set 0
clz=Jck (r=1,...,m).

t=r

The sorting problem we actually face consists in partitioning the elements of A into the classes
{Ck}{",. Since A is given, the problem amounts to identifying the classes themselves as a partition of
X.

Greco et al. [5, Theorem 2.1] proved a nice representation theorem stating the equivalence be-
tween a very simple cancellation property and a general discriminant function. As we have assumed
beforehand that each set X; is endowed with a total order »=;, we present here a slightly modified
version of their result.

Theorem 1. The following two assertions are equivalent:
1. ForallieN,te{1,...,m}, xi,xi € Xj, y_i € X_j, we have

=i and xjy_i €Clk = xly_jeCI?.

!
X

2. There exist
e functions g; : X; — R (i € N), increasing, called criteria,

65



e afunction f : R" — R, increasing in each argument, called discriminant function,
e m— 1 ordered thresholds {z }{" , satisfying

<3< < 1In
such that, for any x € X and any t € {2,...,m}, we have
flga(xa),92(X2), ... ,Gn(Xn)] 22t & X €CIE.

Theorem 1 states that, under a simple condition of monotonicity, it is possible to find a discrimi-
nant function that strictly separates the classes Cly, ... ,Cly, by thresholds. This result is very general
and imposes no particular forms to criteria and discriminant functions.

For a practical use of this result and in order to produce a meaningful result, Roubens [14] re-
stricted the family of possible discriminant functions to the class of n-place Choquet integrals and the
criteria functions to normalized scores. We now present the sorting procedure in this particular case.

11.1 Normalized scoresascriteria

In order to locate x; in the scale X; we define a mapping ord; : A — {1....,si} as

ordi(x) =r < x =g

For each point of view i € N, the order <; defined on X; can be characterized by a valuation
Ri: AxA— {0,1} defined as
1, ifxi=ivyi,

Rilxy) = {0, otherwise.

>From each of these valuations we determine a partial net score Sj : A — R as follows:

Si = Ri , —Ri \ A).
() y;[ y)=Ri(y,x)]  (xeA)

In the particular case where
n
A= X X,

i=1

then it is easy to see that
o r2ordi(x) -1 .
S.(x)_q<57i—1) (ieN).

Indeed, there are (ord;(x) — 1) q/s; alternatives y € A such that x; > yi and (s; — ord;(x)) q/si alterna-
tives y € A such that y; =i X;.

The integer Sj(x) represents the number of times that x is preferred to any other alternative minus
the number of times that any other alternative is preferred to x for point of view i.

On can easily show that the partial net scores identify the corresponding partial evaluations. That
is,

XiziYi e Si(x) = Si(y). 1)
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Thus aggregating the partial evaluations of a given alternative amounts to aggregating the corre-
sponding partial scores. This latter aggregation makes sense since, contrary to the partial evaluations,
the partial scores are commensurable, that is, each partial score can be compared with any other partial
score, even along a different point of view.

Clearly, the partial scores are defined according to the same interval scale. As positive linear
transformations are meaningful with respect to such a scale, we can normalize these scores so that
they range in the unit interval. We thus define normalized partial scores S, ..., S} as

Six)+(@—1)

=D

€[0,1] (ieN).
Throughout the paper, we will use the notation SN (x) := (SY(x),...,SN(x)).

11.2 The Choquet integral asa discriminant function

As mentioned in the beginning of this section, the partial scores of a given alternative x can be aggre-
gated by means of a Choquet integral [1], namely

(SN X) = isﬁ) () V(A — V(Ao

where v represents a fuzzy measure on N; that is, a monotone set function v : 2N — [0,1] fulfilling
v(0) = 0 and v(N) = 1. This fuzzy measure merely expresses the importance of each subset of points
of view. The parentheses used for indices represent a permutation on N such that

and A;) represents the subset {(i),...,(n)}.

We note that for additive measures (v(SUT) = v(S) + v(T) whenever SNT = 0) the Choquet
integral coincides with the usual discrete Lebesgue integral and the set function v is simply determined
by the importance of each point of view: v(1),...,v(n). In this particular case

n

G(SN(x) = ZV(i) S'(x) (xeA),
1=

which is the natural extension of the Borda score as defined in voting theory if alternatives play the

role of candidates and points of view represent voters.

If points of view cannot be considered as being independent, importance of combinations S C N,
Vv(S), has to be taken into account.

Some combinations of points of view might present a positive interaction or synergy. Although
the importance of some points of view, members of a combination S, might be low, the importance of
a pair, a triple,..., might be substantially larger and v(S) > SicsV(i).

In other situations, points of view might exhibit negative interaction or redundancy. The union of
some points of view do not have much impact on the decision and for such combinations S, v(S) <
Yies V(). In this perspective, the use of the Choquet integral is recommended.
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The Choquet integral presents standard properties for aggregation (see [3, 8]): it is continuous,
non decreasing, located between min and max.

We will now indicate an axiomatic characterization of the class of all Choquet integrals with n
arguments. This result is due to Marichal [8]. Let es denote the characteristic vector of S in {0,1}",
i.e., the vector of {0,1}" whose ith component is one if and only if i € S.

Theorem 2. The operators M, : R" — R (v being a fuzzy measure on N) are

linear w.r.t. the fuzzy measures, that is, there exist 2" functions fr : R" — R (T C N), such that

MV:TZNV(T) fT,

non decreasing in each argument,

stable for the admissible positive linear transformations, that is,
My(rx1+s,...,rxn+S) =rMy(X1,... ,Xn) +5

forallxeR",r >0,s € R,

properly weighted by v, that is,
My(es) = v(S),

if and only if M, = ¢, for all fuzzy measure v on N.

This important characterization clearly justifies the way the partial scores have been aggregated.

The first axiom is proposed to keep the aggregation model as simple as possible. The second
axiom says that increasing a partial score cannot decrease the global score. The third axiom only
demands that the aggregated value is stable with respect to any change of scale. Finally, assuming that
the partial score scale is embedded in [0, 1], the fourth axiom suggests that the weight of importance
of any subset S of criteria is defined as the global evaluation of the alternative that completely satisfies
points of view S and totally fails to satisfy the others.

The fourth axiom is fundamental. It gives an appropriate definition of the weights of subsets of
points of view, interpreting them as global evaluation of particular alternatives.

The major advantage linked to the use of the Choquet integral derives from the large number of
parameters (2" — 2) associated with a fuzzy measure but this flexibility can be also considered as a
serious drawback when assessing real values to the importance of all possible combinations. We will
come back to the important question the next section.

Let v be a fuzzy measure on N. The Mébius transform of v is a set function m : 2N — R defined
by
m(s) = TZ (—)FTy(T)  (SCN).
Cs

This transformation is invertible and thus constitutes an equivalent form of a fuzzy measure and v
can be recovered from m using

v(S) :;Sm(T) (SCN).
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This transformation can be used to redefine the Choquet integral without reordering the partial
scores:
G(SN(x) = TEN m(T) A S (x)-
C ieT
A fuzzy measure v is k-additive [3] if its M&bius transform m satisfies m(S) = 0 for S such that
|S| > k and there exists at least one subset S such that |S| = k and m(S) # 0.
Thus, k-additive fuzzy measures can be represented by at most 3 ; () coefficients.
For a k-additive fuzzy measure,
GEN) = Y m(T) AStx).
W)= 3, MO A

- ieT
ITI<k

In order to assure boundary and monotonicity conditions imposed on v, the Mébius transform of
a k-additive fuzzy measure must satisfy:

m(0) =0, m(T) =1

3,m
TI<k

m(T) >0, VSCN,Vie$s

TliETCS
ITI<k

11.3 Assessment of fuzzy measures

Assume that all the alternatives of A C X are already sorted into classes Cl1,...,Cly. In some partic-
ular cases there exist a fuzzy measure v on N and m — 1 ordered thresholds {z;}{" , satisfying

<3< < 1In
such that for any x € A, and any t € {2,...,m}, we have
GSN(X) =z < xeClZ.
Of course, if such a fuzzy measure does exist then the thresholds may be defined by

z:=min G(SNX) (t=2,....m).

xeClZ

Conversely, the knowledge of the fuzzy measure v associated to the sorting problem completely de-
termines the assignment.

In real situations, the assignment of all alternatives is not known but has to be determined. How-
ever, this assignment, or equivalently the fuzzy measure v, can be learnt from a reference set of proto-
types, which have been sorted beforehand by the decision maker.

Practically, the decision maker is asked to provide a set of prototypes P C A and the assignment
of each of these prototypes to a given class; that is, a partition of P into prototypic classes {P¢}{" ;,
where P, := PNCl; forall t € {1,...,m}. Here some prototypic classes may be empty.
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As the Choquet integral is supposed to strictly separate the classes Cl;, we must impose the fol-
lowing necessary condition

G(S" ()~ G(s" (X)) > &, (2)

for each ordered pair (x,x") € P, x P._; and each t € {2,...,m}, where € is a given strictly positive
threshold.

These separation conditions, put together with the boundary and monotonicity constraints on the
fuzzy measure, form a linear constraint satisfaction problem whose unknowns are the coefficients of
the fuzzy measure. Thus the sorting problem consists in finding a feasible solution satisfying all these
constraints. If € has been chosen too big, the problem might have no solution. To avoid this, we can
consider € as a non-negative variable to be maximized. In this case its optimal value must be strictly
positive for the problem to have a solution.

In the resolution of this problem, we use the principle of parsimony: If no solution is found for
k =1, we turn to k = 2. If no solution is still found, we turn to k = 3, and so on, until k = n. Notice
however that an empty solution set for k = n is necessarily due to an incompatibility between the
assignment of the given prototypes and the assumption that the discriminant function is a Choquet
integral.

Due to the increasing monotonicity of the Choquet integral, the number of separation constraints
(2) can be reduced significantly. For example, if X" € P,_1 is such that ¢,(SN (X)) > G,(SN(x")) then,
by transitivity, the constraint
G(SN(X) -GN (X)) > ¢
is redundant.

Now, on the basis of orders = (i € N), we can define a dominance relation D on X as follows: For
each x,y € X,
XDy < Xj=iVi VieN.

By (1), this is equivalent to
xDy < SN(x) >SN(y) VieN.

Being an intersection of complete orders, the binary relation D is a partial order, i.e., it is reflexive,
antisymmetric, and transitive. Furthermore we clearly have

XDy = G(S"(x) = G(S"(y)).
It is then useful to define, for each t € {1,... ,m}, the set of non-dominating alternatives of P;,
Ndi ;= {x € P, | #X € P\ {x} : xDX'},
and the set of non-dominated alternatives of P;,
ND; := {x € P | #X € P\ {x} : xX'Dx},

and to consider only the constraint (2) for each ordered pair (x,x’) € Nd; x ND;_; and each t €
{2,...,m}. The total number of separation constraints boils down to

m
;|th||NDt_l|.
t=

Now, suppose that there exists a k-additive fuzzy measure v* that solves the above problem. Then
any alternative x € A will be assigned to
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e the class Cl; if

: N . N . N
min G (8"(9)) < Gr (8" () < max G (8" (¥))

e one of the classes Cl; or Cl;_ if

,nax Gr (S"(y)) < G- (8" (x) < Join Gr (SN(y))-

12 Behavioral analysis of aggregation

Now that we have a sorting model for assigning alternatives to classes, an important question arises:
How can we interpret the behavior of the Choquet integral or that of its associated fuzzy measure?
Of course the meaning of the values v(T) is not always clear for the decision maker. These values do
not give immediately the global importance of the points of view, nor the degree of interaction among
them.

In fact, from a given fuzzy measure, it is possible to derive some indices or parameters that will
enable us to interpret the behavior of the fuzzy measure. These indices constitute a kind of identity
card of the fuzzy measure. In this section, we present two types of indices: importance and interaction.
Other indices, such as tolerance and dispersion, were proposed and studied by Marichal [6, 7].

12.1 Importanceindices

The overall importance of a point of view i € N into a decision problem is not solely determined by
the number v({i}), but also by all v(T) such that i € T. Indeed, we may have v({i}) = 0, suggesting
that element i is unimportant, but it may happen that for many subsets T C N, v(T U {i}) is much
greater than v(T ), suggesting that i is actually an important element in the decision.

Shapley [15] proposed in 1953 a definition of a coefficient of importance, based on a set of rea-
sonable axioms. The importance index or Shapley value of point of view i with respect to v is defined

by:

on(i)= 5 O DITE e o giyy —wem), @
TN} :

The Shapley value is a fundamental concept in game theory expressing a power index. It can be
interpreted as a weighted average value of the marginal contribution v(T U {i}) —v(T) of element i
alone in all combinations. To make this clearer, it is informative to rewrite the index as follows:

n-1
oD =1 3 (o IO U]

[T|=t

Thus, the average value of v(T U{i}) —v(T) is computed first over the subsets of same size t and then
over all the possible sizes. Consequently, the subsets containing about n/2 points of view are the less
important in the average, since they are numerous and a same point of view j is very often involved
into them.
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The use of the Shapley value in multicriteria decision making was proposed in 1992 by Muro-
fushi [10]. It is worth noting that a basic property of the Shapley value is

icp(v,{i}) =1

Note also that, when v is additive, we clearly have v(T U{i}) —v(T) = v({i}) for all i € N and all
T C N\ {i}, and hence

®v {i}) =v({i}), ieN. (4)

If v is non-additive then some points of view are dependent and (4) generally does not hold anymore.
This shows that it is sensible to search for a coefficient of overall importance for each point of view.

In terms of the Mobius representation, the Shapley value takes a very simple form [15]:
. 1
ov.{i}) = Z mm(T)- (5)
T>{i}

Now, the concept of importance index can be easily generalized to subsets of points of view. The
importance index of subset S C N with respect to v is defined by

(n—[T]—[SPHT]!
(n—1S|+1)!

@v,S) =

TEN\S

V(TUS)—v(T)].

This index, introduced by Marichal [9] as the influence index of points of view S, measures the
overall importance of subset S of points of view.

In terms of the Mobius representation, it is given by

s = 2 s

TNS#0

It was shown [9] that this expression is also the average amplitude of the range of (C, that points
of view S may control when assigning partial scores in [0, 1] to the points of view in N\ S at random.
That is,

Xj—
jes

Qv,S) = / / I|m G(x)— IimOC\,(x)} dxi, - - - dxj,,
JeS

= Jpu [ Jim 600~ fim G00] 0

jes jes
where N\ S = {i1,... ,in_s}.
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12.2 Interaction indices

Another interesting concept is that of interaction among points of view. We have seen that when the
fuzzy measure is not additive then some points of view interact. Of course, it would be interesting to
appraise the degree of interaction among any subset of points of view.

Consider first a pair {i, j} C N of points of view. It may happen that v({i}) and v({]j}) are small
and at the same time v({i, j}) is large. Clearly, the number (v, {i}) merely measures the average
contribution that point of view i brings to all possible combinations, but it gives no information on the
phenomena of interaction existing among points of view.

Clearly, if the marginal contribution of j to every combination of points of view that contains i is
greater (resp. less) than the marginal contribution of j to the same combination when i is excluded,
the expression

V(T UL, §3) = v(T ULi1)] = V(T U{j}) —v(T)]
is positive (resp. negative) forany T C N\ {i, j}. We then say that i and j positively (resp. negatively)
interact.

This latter expression is called the marginal interaction between i and j, conditioned to the pres-
ence of elements of the combination T C N\ {i, j}. Now, an interaction index for {i, j} is given by an
average value of this marginal interaction. Murofushi and Soneda [11] proposed in 1993 to calculate
this average value as for the Shapley value. Setting

(Lijv)(T) == v(T U{i, j}) —v(T U{i}) —v(T U{j}) +v(T),
the interaction index of points of view i and j related to v is then defined by

(n—[T|-2)"T|!
— 1)1

i)=Y

rafy O

(B V)(T). (6)

It should be mentioned that, historically, the interaction index (6) was first introduced in 1972 by
Owen (see Eqg. (28) in [13]) in game theory to express a degree of complementarity or competitiveness
between elements i and j.

The interaction index among a combination S of points of view was introduced by Grabisch [3] as
a natural extension of the case |S| = 2. The interaction index of S (|S| > 2) related to v, is defined by
(n—|T[—[SPHT]!

(n—1|S|+1)!

I[(v,S) =
TEN\S

(AS V) (T )7

where we have set
(DsV)(T) = ZS(—I)‘S“MV(LUT).
LC
In terms of the Md&bius representation, this index is written [3]

1
I(V’S):gsmm(-r)’ SCN. (7)

Viewed as a set function, it coincides on singletons with the Shapley value (3).
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In terms of the Choquet integral, we have [4, Proposition 4.1]

1 1
) = [ [ @asadn, o,
= [ @sG)x,
[0.1"
where N\ S = {ij,...,in—s} and

(Bs G))(X) ::LZS(—l)|S|_|L‘ lim lim G/(x).

Xi—1 xj—0
i€l jes\L

It was proved in [4, Proposition 5.1] that the transformation (7) is invertible and its inverse is
written as

m(S) = TZSB|-|-|_|S| |(V,T), SCN, (8)

where B, is the nth Bernoulli number, that is the nth element of the numerical sequence {Bp}nen

defined recursively by
Bo=1,

n

kz ("1Bk =0, neN\{0}.
=0

13 Concluding remarks

We have described a sorting procedure which aggregates interacting points of view measured on qual-
itative scales. The aggregation function that is used is the discrete Choquet integral whose parameters
are learnt form a reference set of alternatives.

The motivation of this approach is based mainly on a very general representation theorem pointing
out the use of a discriminant function, but also on an axiomatic characterization of the class of Choquet
integrals having a fixed number of arguments.

The use of some indices is proposed to appraise the overall importance of points of view as well
as the interaction existing among them.

The next step will be to measure the quality of the sorting procedure with respect to the choice of
the prototypic alternatives and their assignment. A research is now in progress along this line.
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Consider a decision process in which n criteria must be taken into account. We assume that the scores
of acts with respect to the n criteria are given directly in the commensurate satisfaction scale [0, 1]. We
assume furthermore that the decision maker preferences can be modeled by a global evaluation score
7 (x) for every act x € Q := [0,1]". The interpretation of the aggregation function # in multicriteria
decision making is often based on indices such as importance indices that measure the importance
of one criterion. For instance, for the Choquet integral, the importance index is the so-called Shapley
value. Here, we are interested in the case in which acts are persons (students, trainees,...). More
precisely, we wish to determine on which criteria acts should be improved if we want their global
evaluation to increase as much as possible.

Any index is always defined in a specific context, and should never be used outside the specific
context in which it has been defined. This holds in particular for the Shapley value. Actually, this value
is borrowed from game theory, which is not the concern of the decision maker. As a consequence, the
Shapley value may not be the appropriate importance index in some circumstances. So, we introduce
a new index of importance which represents the mean worth for acts to reach higher scores in a set of
criteria. More precisely, we wish to define the mean worth Wa () for acts to reach higher levels in
the coalition A of criteria, subject to the evaluation function #.

WA, can be seen as an operator from a functional space defined on Q to R. In order to work on a
functional space that has nice properties, we consider L2(Q):

LZ(Q):{}[:Q—HR, /Q|}[(x)|2dx<oo}.

Consequently, we aim to construct the mean worth W, as an operator from L?(Q) to R. The worth
Wa(H) is defined with the help of four axioms:

e The first axiom (referred to as Continuity (C)) states that H — Wa (%) should be continuous.
e The second axiom (referred to as Linearity (L)) states that # — Wa(#) should be linear.

e The third axiom (referred to as Step Evaluation (SE)) considers the special family of evaluation
functions that can take only values 0 and 1. For these {0,1} evaluation functions, it is interesting
for an act x to carry out a given improvement in criteria among the coalition A if and only if the
global score of x is zero and the global score after the improvement becomes 1. We deduce that
it is reasonable to define the worth W for these {0, 1} evaluation functions as being proportional
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to the number of situations in which an act goes from global score 0 to 1 by improving only its
scores in criteria among A.

e The last axiom (referred to as Normalization (N)) focuses on another special family of evalua-
tion functions. This time, the weighted sums are considered. A natural expression of W, comes
up.

We have shown the following theorem.

Theorem 1. W, satisfies (L), (C), (SE) and (N) if and only if VH € L?(Q),
Wa#) =3 2% [ [ (g xoa) = H00] dxdya
xX€Q Jya€[xa,1]

where (ya,X_a) denotes the act z € Q such that z; = y; if i € A and z; = x; otherwise, and the notation
Ya € [Xa, 1] means that for any i € A, y; € [x;,1].

The second part of this paper concerns the application of theorem 1 to the Choquet integral. In
particular, we compute the worth to reach higher levels in one attribute, and in a couple of attributes.
The expression of Wa () involves the fuzzy measure. Interestingly, this leads to quantities that are
closely related to the Shapley indexes and the interaction indexes. We finally show how Wa(#) can
be used as a new way to interpret a Choquet integral.
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Consider a set N = {1,...,n} of interacting agents whose individual opinions are denoted by {x; €
R, i € N}. The interaction structure on N, representing the degree of reciprocal influence which the
agents exert upon each other within the consensual dynamics, is expressed by the symmetric inter-
action matrix V' = [vjj, i, j € N], with interaction coefficients vi; = vj; € (0,1) for i # j and v;; = 0.
The average value of the interaction coefficients between agent i and the remaining agents is denoted
Vi = ZJGN\iVij/(n —1), withv; € (0,1).

In this paper the values of the interaction coefficients are assumed to be constant in time and
can either be given exogenously, as in the traditional models of consensual dynamics (e.g. DeGroot
74), or computed endogenously in terms of the individual opinions x; themselves. The endogenous
definition of the interaction coefficients can be done in various ways. In the soft consensus model (see
e.g. Fedrizzi et al. 99), for instance, the interaction coefficients v;j, with i # j, are defined by filtering
the square difference values (x; —xj)2 with a decreasing sigmoid function o(t) = 1/(1+eP(t=9)). As
a result, agents with similar opinions ((x; — Xj)2 < ) interact strongly, whereas agents with dissimilar
opinions ((x; — Xj)2 > a) interact weakly.

The interaction matrix V admits the usual graph representation: each node i represents an individ-
ual agent and encodes the corresponding opinion x;, and each edge {i, j} encodes the corresponding
interaction coefficient vjj. Notice that both the interaction matrix and the associated graph are sym-
metric (i.e. the edges are undirected).

The graph representation of the set N of interacting agents is the basis for the construction of
the following Choquet measure p: 2N — [0,1]. Let S C N be a coalition of agents. The value p(S)
of the coalition S C N is defined to be proportional to the sum of the edge values contained in the
subgraph associated to S, W(S) = ¥ jycsVij/ AL, where the normalization factor is given by Al =
> {i,jycn Vij- The measure | satisfies the boundary conditions p(0) = 0 and u(N) = 1, and is monotonic
and superadditive (with null singletons).

The individual share of the value pu(S) of a coalition S C N is given by [i(S) = u(S)/|S| and
is related in an interesting way with the average edge value v(S) within the coalition S, given by
V(S) = K(S)/3ISI(IS| — 1). It follows that fi(S) = 3(|S| — 1)v(S). Notice that given two coalitions
T C SCN itis always the case that the value p(S) of the larger coalition is > than the value u(T) of
the smaller coalition, but it might not be the case that the individual share fi(S) in the larger coalition is
also > than the individual share fi(T) in the smaller coalition. In other words, the question of whether
or not it is worthwhile to form a larger coalition depends crucially on the way the average edge value
changes, even though there is an overall bias to extend the coalition given by the dependency on the
cardinality.
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The Mébius transform a of the measure p is given by ay({i}) =0, au({i, j}) = vij/A(, with null
higher order terms. The measure | is therefore of the 2-additive type.

Using the Mobius transform, one can easily compute the Shapley interaction indices I, ({i}) =
Qu({i}), lu({i, j}) = vij /AL, with null higher order terms. The Shapley power indices (first order terms)
are given by @,({i}) = 3 ¥ jeni Vij/ A

Notice that, apart from the normalization factor A(, the Shapley interaction index 1,({i, j}) co-
incides with the interaction coefficient vij while the Shapley power index @,({i}) is proportional to
vj, the average degree of interaction between agent i and the remaining agents. In the soft consensus
model, therefore, the Shapley power index @, ({i}) reflects the local degree of consensus around agent
i and is thus a natural endogenous weight for a consensual aggregation of the n opinion values. This
leads to the the Shapley aggregation operator ®y(X1,...,Xn) = SienXi Qu({i}). Naturally, two other
interesting aggregation operators to consider are the Choquet operator C, and its OWA core (defined
by the symmetrized measure).

We now turn to the consensual dynamics issue and show that it shares significant aspects of the
above discussion in terms of the Choquet measure p and the Shapley aggregation ®,.

We begin by defining the context variables x= ¥ jeN\i VijXj/ Ykeni Vik- The context variable X
represents the context opinion as seen by agent i, i.e. the weighted average opinion of the remaining
agents. Notice that the context weights correspond to a local normalization of the interaction coeffi-
cients between agent i and the remaining agents.

The context variables x have an interesting property and for that reason they play a central role
in what follows. Their Shapley average value ®y( X,..., ¥) = Yien Xx@u({i}) coincides with the
Shapley average value of the standard variables x;, that is ®,(X1,... ,Xn) = Sien Xi Qu({i}). To reach
this important result it is useful to rewrite the context variables as x= ZjeN\iVinj/(n —1)v; and the
Shapley power indices as @,({i}) = (n—1)vi/2AL.

Consider now a stochastic matrix C = [cjj, i, j € N] and the general convex linear dynamical law
X — X' =Cx, where C>0,Cl=1and 1" = (1 ... 1). We can also write X; — X} = ¥ jcn CijXj,
where cjj > 0and ¥ jep Cij = 1.

In each iteration the new opinion x; of agent i is a convex combination of his/her old opinion x; and
the old opinions xj.; of the remaining agents. The old opinions x;; are weighted with the coefficients
cij with j # i, which are the n— 1 degrees of freedom of the convex combination associated with agent
i. As a result, the weight of the old opinion x;, i.e. the coefficient c;;, is constrained to be one minus
the sum of the remaining coefficients, cjj =1 — Y jeNyi Cij-

We are interested in the following two different types of the dynamical law above. In the first case
(inhomogeneous dynamics) the free coefficients c;j, with j # i, are assumed to be proportional to the
corresponding interaction coefficients vjj, with j # i. In the second case (homogeneous dynamics),
instead, the free coefficients c;j, with j # i, are assumed to be proportional to a local normalization
of the corresponding interaction coefficients vjj, with j # i. More specifically, they are assumed to be
proportional to Vij/ ¥ ey Vik, With j # i.

In the first case the local dynamics can be substantially faster or slower depending on the local av-
erage value of the interaction coefficients: large (small) interaction coefficients, i.e. high (low) Shapley
power index, implies fast (slow) dynamics. Whereas in the second case this effect is compensated by
the local normalization of the interaction coefficients.

¢ Inhomogeneous dynamics: in this case the transition coefficients are given by
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Gij=gvij/(n—1), i#]  TjeniCij=g& Ci=1-gy; e€l0,1]
and the dynamical law can be written as
Xj — X{Z(l—SVi)Xi—FSVi_}( €€ [0,1].

For € # 0, the stochastic transition matrix C is positive and thus irreducible. It follows (Frobe-
nius theorem) that it has a simple maximal unit eigenvalue and a unique normalized positive
eigenvector Y, YT C = Y. Itis easy to check that g = 1/n, with Ty Wi = 1.

Moreover, this dynamical law leaves T x invariant (the plain average) and, given that C is
positive, it converges (see e.g. DeGroot 74) to the consensual solution x® = (W' x)1. In other
words, the opinions x; converge asymptotically to their plain average S icn WiXi = Sien Xi/N.

e Homogeneous dynamics : in this case the transition coefficients are given by
Cij =¢&Vij/(n—=1)vi, i #] YjeNiCij =€ CGi=1-—c¢ e€[0,1]
and the dynamical law can be written as
Xji — Xi=(1—¢€)Xi+€X e€[0,1].
For € # 0, the stochastic transition matrix C is positive, except for the case € = 1 in which
it is positive outside the main diagonal. In any case the matrix C is irreducible. It follows
(Frobenius theorem) that it has a simple maximal unit eigenvalue and a unique normalized
positive eigenvector ¢, $TC = ¢T. Itis easy to check that ¢; = 5 3 jenni Vij/N = @u({i}), with
2ieN ¢i =1
Moreover, this dynamical law leaves ¢ T x invariant (the Shapley average) and, given that C? is
positive (see note), it converges (see e.g. DeGroot 74) to the consensual solution x® = (¢ x)1.
In other words, the opinions x; converge asymptotically to their Shapley average Sicy §iXi =
Yien Xiqu({i}).
Note: the sole exception is the case € = 1 for n = 2. In this case, the iterations of the dynamics
simply exchange the opinions x1 and x», and thus no consensus is ever reached.

Summarizing, we have discussed two types of consensual dynamics, both of which refer signifi-
cantly to the notion of context variables. The first type produces the plain average as the asymptotic
consensual opinion and, in an extended version (time dependent interaction coefficients), corresponds
to the purely consensual component of the dynamics in the soft consensus model (see e.g. Fedrizzi et
al. 99). The second type, on the other hand, produces the Shapley average as the asymptotic consen-
sual opinion. In this way it provides a dynamical realization of the Shapley aggregation (which can be
extended in the spirit of the soft consensus model) and connects nicely with the Choquet measure and
game theoretical analysis discussed before.
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The standard requirement of monotonicity of a voting procedure states that an improvement in the
ranking of the winning alternative, ceteris paribus, in some voters’ preference orderings should not
make it non-winning. This property has an obvious counterpart in multi-criterion decision making
contexts. A concept that is apparently closely linked to monotonicity is known as the participation
axiom which requires that it should never be disadvantagous for a voter to abstain rather than to vote
according to his/her preferences. A third related concept is vulnerability to preference truncation. This
is satisfied by such procedures that make it advantageous for voters to always reveal their entire pref-
erence rankings. We discuss these requirements both in collective choice and multi-criterion choice
settings. Particular attention is paid to conditions which guarantee the monotonicity, participation and
invulnerability to the truncation paradox.
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Game theory provides useful tools to investigate many economical and human behaviours where the
notion of coalitions, equilibrium, conflict and so on play an important role.

In his attempt to extend classical binary relation to economics purposes, Yin Yang proposed an
equilibrium relation where elements take their values in the triplet —1,0, 1. Motivations for such de-
velopment arise from the lack of binary and/or valued relations to model multi-agent word with a
combination of interactive negative, neutral and positive relationships as well as the coexistence of
positive and negative relationships. Further, a bridge to classical equivalence binary or valued rela-
tions can be constructed. A such representation gives rise to the notions of coalitions sets, harmony
sets, conflict sets and bipolar partitionings. Particularly, each quantity (bipolar variable) should have
both a negative pole and a positive pole capturing the positive side and the negative side of a relation
separately as well as the coexistence of both sides in the combination.

This communication attempts to extend Yin Yang’s proposal to the case of fuzzy valued rela-
tions where the notions of reflexivity, symmetry, transitivity, ordering, closure, etc. are re-interpreted.
Particularly, positive and negative equivalence relations can be constructed. For instance, from an in-
tuitive viewpoint, negative reflexivity can be used as a measure of self-adjustability to external and
internal changes. This enables an element of a given set to be adjusted with an harmonic state. While
positive reflexivity remains similar to the reflexivity of valued fuzzy relations. For decision making
purposes, scoring procedures, usually mentioned in fuzzy literature are reviewed in the light of the
basic principles of the fuzzy equilibrium relations. Construction of strict relations that will be used for
the search of non-dominated and non-dominating alternatives is also proposed.
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We present an axiomatization of the interaction value between players
of fuzzy coalitions. It is based on three axioms :

Symmetry Axiom, Partition Axiom, Generalized Efficiency Axiom.
As a special case we get the classical interaction- and Shapley-index.

We give some details.
Let X = {1,...,n} be afinite set and let
S ={i1,...,is} C X be a (classical) coalition. We put s = |§|.
Let V;; be the real vector space of all functions f : [0,1]" — R whose partial derivatives are continuous
and exist up to order s on the diagonal {t€x : 0 <t <1} and vanish at O (here &s : X — {0,1} is the
characteristic function of S,S C X, so that £x is identified with (1,...,1)).

Moreover let M;, be the real vectorspace of all s-indexed n-dimensional matrices

AL = (i, is) )
where 1 <y, ip,...,is <nand aj, j,. .. i, € R (so that Mj can be identified with R(™)),
We can show the following result :

Let¢p:Vy — Mi,neN.

Then (¢3) is linear, continuous and satisfies the symmetry-, partition- and generalized efficiency
axiom if and only if

1
05(1) = ( | DiDy Dy f(t8x)al). @

The interpretation of the "diagonal formula™ is as follows.
For a given level of membership t € [0.1] we consider the diagonal fuzzy coalition t§x = (t,... ,t)
in which each player participates equally. Then Dj,D;, - --Dj f(t€x) is a measure of the loss of the
coalition S = {iy,...,is} if it leaves the diagonal fuzzy coalition, and ¢;(f) can be regarded as the
average loss imposed on the players of S if they want to modify a diagonal coalition.
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Today’s Theory of Fuzzy Sets has many facets. Logical, mathematical and engineering research
shaped this theory and transformed it into a powerful tool for solving down-to-earth problems in
fields as diverse as image processing, speech recognition and decision making in economics. The aim
of our presentation is to discuss several unsolved mathematical problems occurring from applications
of the Theory of Fuzzy Sets. We will mostly focus on two questions: the Jordan decomposability
and integral representation of the fuzzy measures seen in a game theoretical context and the efficient
solvability of optimization problems in the space of fuzzy vectors seen as an instrument of rational
decision making under uncertainty.
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