P,
e
O
©
-
e
P,
O
<C

23" Linz Seminar on
Fuzzy Set Theory

Analytical Methods and
Fuzzy Sets

Bildungszentrum St. Magdalena, Linz, Austria
February 5 -9, 2002

Abstracts

Phil Diamond, Erich Peter Klement
Editors






LINZ 2002

ANALYTICAL METHODS AND Fuzzy SETS

ABSTRACTS

Phil Diamond, Erich Peter Klement
Editors

Printed by: Universitatsdirektion, Johannes Kepler Universitat, A-4040 Linz






Since their inception in 1979, the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work. LINZ2002 will be th& 28minar carrying on

this tradition.

LINZ2002 will deal with Fuzzy Analysis and its Applications. This very broad area, roughly
speaking, involves looking at classical analysis when elements of vagueness and imprecision are
present. It thus describes both fuzzification of established methods when important applications occur,
and placing fuzzy structures as well-defined objects in classical functional analysis. The organizers
hope that the talks will provide a comprehensive mathematical framework both for pure techniques
and practical application of analytical methods utilizing fuzzy sets.
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Monotonicity in vague environments

ULRICH BODENHOFER

Software Competence Center Hagenberg
A-4232 Hagenberg, Austria

E-mail: ulrich.bodenhofer@scch.at

Zadeh'’s famous extension principle [8, 9, 10], as a general methodology for extending crisp concepts
to fuzzy sets, has served as the basis for the inception of new disciplines like fuzzy analysis, fuzzy
algebra, fuzzy topology, and several others. Most importantly, this fundamental principle allows to
extend crisp mappings to fuzzy sets. Another well-known application—which is particularly impor-
tant in fuzzy decision analysis and fuzzy control [4, 6]—is the possibility to define ordering relations
for fuzzy sets.

This contribution is devoted to links between these two fields: we study in which way the mono-
tonicity of a mapping is preserved by its extension to fuzzy sets. However, we do not restrict to the
well-known methodology of extending crisp orderings to fuzzy sets, but we start from the more gen-
eral case that the domain under consideration is equipped with a fuzzy ordering [1, 2] induced by
some non-trivial fuzzy concept of indistinguishability. Even in such a case, it is possible to define
orderings of fuzzy sets in a way similar to the extension principle [1, 3].

First, we consider the classical case of orderings of fuzzy sets defined from crisp orderings by
means of the extension principle. We show that the monotonicity of a mapping directly transfers to
its extension. Furthermore, the same holds for the componentwise monotonicigrpbperations.

Next, we consider the general case that the universe is equipped with a fuzzy ordering induced by
a fuzzy equivalence relatioB. It is proved that the monotonicity of a mappiggis preserved by

its extension if and only ifp is extensional with respect t [5, 7]. However, it turns out that an
analogous correspondence does not necessarily hotddigr operations.
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A proximal point method for optimization in the space of fuzzy vectors
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A contemporary snapshot of fuzzy operational equations

PHIL DIAMOND

Mathematics Department
University of Queensland
Brisbane, Queensland 4072
Australia

E-mail: pmd@maths.uq.edu.au

1 Introduction

Early studies of fuzzy differential equations observed that there was a fundamentally different be-
haviour from the crisp case: the solutions spread out as time evolved [14]. This seems to be an artifact
of the Hukuhara derivative and Aumann integral of multivalued calculus, on which the fuzzy deriva-
tive is based. Ultimately, the effect stems from the fact that Minkowski addition of sets is not, in
general, invertible.

Example 1For simplicity, consider a fuzzy DE with interval values,
X/(t) = —AX(t), X(0)=X°=I[ab], )

wherea> 0, A=[1—¢,1+¢],0< € < 1andX’is the Hukuhara derivative. PMi(t) = [X (t),
and (1) becomes the system of ordinary DEs

)=l o) e -]

Writing & = v/1 — €2, the system has a solution

X
~—~
—+
S~—
Pt

X(t) = [ 0 ] :C1|: e ]e&%z{ e } o

where the constants, c; depend oma, b. Clearly, for almost alk, b, the solutionX(t) expands
without bound as increases, no matter how smalleigalthough, ifboth b— a+ ande — 0+, then

¢ — 0). This behaviour contrasts with the crisp equation of exponential d&gay= —z(t), z(0) =

2. Even a small incertitude in the parameters leads to vastly different and counterintuitive behaviour.
Much the same happens with fuzzy integral equations and would appear highly likely in any form of
fuzzy equation which involves the Hukuhara fuzzy derivative and Aumann fuzzy integral.

In a seminal paper, Hiullermeier suggested how this unsatisfactory obstacle to modelling uncer-
tainty could be overcome [11]. His insight wasitterpretthe fuzzy DEX'(t) = F(t,X(t)), X(0) =
X0 as afamily of differential inclusions

X(t) € Fp(t,x(t), x(0)=x"eX, 0<B<1,
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whereFg, Xg arep-level sets. The set of poinfsg(t,xé)), of all solutions of the3-th inclusion at time
t, was the level set of a fuzzy set which could be regarded as the solution of the fuzzy DE.

If the interval valued example above is interpreted in this way, all solutidf)sare bounded,
x(t) <x(t) <x(t), where

X'=—(1+e)x, x(0)=a; X'=—(1-¢)%, X(0)=h.
Consequently, the solution is regarded as the interval
Z(t) _ ae_(”a)t, be—(l—a)t ’

which, although retaining uncertainty, does suffer exponential decaytd @ ast — c. This is
much more satisfactory and intuitive behaviour.

This talk surveys some of the recent results using Hillermeier’s interpretation applied to classes
of fuzzy operator equations

X(t) = 0(X)(t),

whereO(-) might be a differential or integral operator, define some sort of stochastic DE or delay
DE, or even a control system. Such equations will be interpreted as families of inclugiohs
O(xg)(t), 0 < B < 1. The next section recalls some fundamental definitions relating to fuzzy sets
and inclusions. The third section considers differential operators and the fourth studies Volterra type
integral operators. The fifth section briefly surveys some work which is yet to appear and a conclusion
sums up the talk.

2 Basic Concepts

2.1 Preliminaries

Let D" denote the set of uppersemicontinuous (usc) normal fuzzy sd®8 with compact connected
support. That is, iX € D", thenX : R" — [0,1] is usc, suppX) = {€ € R": X(§) > 0} := [X]%is
compact and there exists at least §resupp(X) for whichX(§) = 1. Thepf—level setofX, 0< 3 <1,
is

X]P={€ € R":X(¢) > B}.
For brevity, level set§X|P will usually be written as<g. Clearly, fora < B, Xq 2 Xg. The level sets
are nonempty from normality, and compact by usc and compact support. The dagsidefined by

doo(X,Y) = SUp{dH (XB’YB) 0< B < 1},

whereX,Y € D", anddy is the Hausdorff metric on compact subsetsR¥ Then (D",d.) is a
complete metric space [9]. If 0 is the origin R", 0 € D" denotes the fuzzy set such th&gp= 1 if
¢ =0 and is zero otherwise.

Define&™ c D" as those fuzzy sets with convex level sets. In particular, Write€! = D = D,
If X € &N, write Xg = [Xp,Xg] -

To discuss solutions of inclusions, some function spaces are required.

13



e Cy[0,T], the space of continuous functiofs [0, T] — R", with the norm of uniform conver-
gence| f —glw = max<t<r [f(t) —9(t)].

e L1[0,T]is the space dftegrable functionérom [0, T] to R", with metric||f —g||l1 = fo | f(t) —
g(t)|dt.

e L[0,T]is the space of measurable functions fr{ihil | to R", bounded almost everywhere on
[0, T], with norm

| fllL- =ess sup|f(t)|=inf{c>0:|f(t)| <ca.e. O<t<T}.
0<t<T
e Z1(R") ={x(-) e C([0,T];R") : X(-) e L*([0, T]; R")}.

2.2 Differential and integral inclusions

Let Q ¢ Rx R" be an open subset containif@ xg) and letH : Q — X2 be a compact, convex
setvalued mapping. The differential inclusion

X(1) eHEXM),  x(0) =X, )
is said to have a solutioy(t) on [0, T] if y(-) is absolutely continuoug(0) = X andy(-) satisfies the

inclusion almost everywhere (a.e.)[® T].

The integral inclusions are of Volterra type
t
X(t) € h(t)+/ k(t,s)G(s,x(s))ds te [0,T], (3)
0

whereh : [0,T] — R" is continuous, the matrix valued functidn: {(s;t) : 0<s<t<T} —

LY .[0,T],G:[0,T] x R"— X% andG(-,x) has measurable selections. The integral is understood to
be in the sense of Aumann. A solution to (3) is a continuous functfone C[0, T] which satisfies

the inclusion a.e. ifi0, T].

Under mild conditions, (2) has solutions ¢fit], 0 <1 < T, [1, 3] and so does (3) [2]. In
both, denote the set of solutions @& 1] by 2(h;T) and the attainability set for eaahe [0,T] by
A(h; 1) ={X(1): X(-) € Z(h; 1) }. Itis known tha& (h; t) andA(h; T) are nonempty compact, connected
sets in their respective spaces [1, 2, 3]. For bdtth; 1) C R". With (2),Z(h; 1) is a subset of(R"),
and for (3) it is a subset @@, [0, T].

3 Fuzzy Differential Equations

A convenient condition which guarantees existence of solutions to (2) otnededness assumption
there exisb, T, M > 0 such that

e thesetQ=[0,T] x (xo+ (b+MT)B") C Q, whereB" is the unit ball ofR";

e H mapsQ into the ball of radiusv.
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Now, suppose thad : R x R" — " and consider the fuzzy differential equation
X =F(t,x), x(0)=X°ecen
but identify it with the family of differential inclusions
Xa(t) € F(t,xa(t)) xp(0) =x0€ X, 0<B<L (4)

Here, Q is an open subset dR™! containing(0,X?), B €1 :=[0,1] andF : Q x | — X2. The
boundedness assumption now holds if the(@ét as above anB mapsQ x | into the ball of radius
M. Denote the set of all solutions of (4) & 1] by Zg(xo,T) and the attainable set b§g(Xo,T) =
{X(1) :x(:) € Zg(%0,T)}. ThenZp(x1, T) exists and is a compact subseaf(R"), and each attainable
sectionAp(x1,T), 0 < T < T, is a compact subset &" [1]. It turns out that thedg, Zg build level
sets of fuzzy sets, which can then be regarded as solutions to the fuzzy DE.

Theorem 3.1[10] Let X° € €" and letQ be an open set in R R" containing {0} x supp(X?).
Suppose that FQ — & is usc and write [{t,X) € X2 as theB-level set for allt,x, B) € R* x [0, 1].
Let the boundedness assumption, with constanit4,br, hold for all xp € supp(XO) and the inclusion

X (t) € Fo(t,x), x(0) € supp(X°). 5)

Then the attainable setég(Xs, T), B < [0, 1], of the family of inclusions

Xa(t) € F(t,xg), x3(0) € Xg:= (X%, e [0,1], (6)

are the level sets of a fuzzy s&tX° T) € D". The solution setSg(Xs, T) of (6) are the level sets of
a fuzzy sek (X0, T) defined orizt(R").

RemarksThe proof of the theorem relies on the Negoita-Ralescu characterization of fuzzy sets [13].
The major part lies in showin@;2; X (Xg;, T) = Zg(Xg, T) for any nondecreasing sequeifize- B in

[0,1], in the function spac&t (R"). This entails a sequential compactness argument. If the condition
thatFy be bounded ofD,«) x I', wherel" C R" is open, is added to the conditions of the theorem, the
interval of existence and consequences exterjd, to).

This result opens the way for notions of periodicity and stability to be studied in the fuzzy context.
See [5] for further details.

4 Fuzzy Volterra Integral Equations

If equalities, based on the Aumann integral, are used at each level set for such equations, similar
unsatisfactory behaviour occurs as was the case for fuzzy DEs. This is unsurprising, since each fuzzy
DE is equivalent to an Aumann integral equation [9]. However, if the equations are replaced by a
family of integral inclusions, a reasonable framework for modelling is obtained.

Supposev € C"[0,T] andF : [0,T] x R" — &E" is strongly measurable (that is, each level set
mapping is measurable) and majorized byLarfunction. Consider the fuzzy equation

X(t) :V(t)+/ot k(t,S)F (s,X(s))ds 7)

15



interpreted as a family of integral inclusions
Xg () eVB+/ KL 9Fs(sx(s)ds 0<B<L (8)
0
Under mild but technical conditions on the keriké, s), the solution set&g(Vg;t) and attainability

setsAg(Vp;t) are compact and connected [2], and are the level sets of fuzzy aatsA , respectively
[6]. Correctly interpreted, the result extends to the case whénes a fuzzy valued set ové&;,[0, T].

Moreover, using integral inequalities [12], and solving equations at extreme points of the bound-
ary, exact or computational solutions can be found.

Example 2Let (a;b)s denote a symmetric fuzzy with suppdet b] and consider the fuzzy equation
X(t) = (0;t?/2)s— /Ot(t —0)(x(0);3x(0))sdo, quadt> 0,
or, equivalently for (K < 1,
x(0) € [BE2/4,(1/2- B/ - | (t—0) [(L+B)%s(0),(3—B)xs(0)] do
That is,

B4~ (3-8) [ (- 0)g(0)do
o xp

2
v

(1/2—B/A)1% — (1+B) /Ot(t — 6)xa(0) do.

2
A

Taking Laplace transforms, noting the convolution integrals, using the result quoted on integral
inequalities and simplifying,

B/2 1-p/2
so+3-p ~ P9 geriip

using partial fractions and taking the inverse transforms, the solution set consists of the fuzzy set with
B-levels the intervals, for & p <1,

B(1—cog+/3—Pt)) (2—PB)(1—cog/1+Pt))
2(3-B) ’ 2(1+B)

5 Other Topics

5.1 Variation of constants formula

Analogues of this classical result have recently been developed [7]. Basically, what is required is a
fuzzy version of the state transition matdxof a system. Recall that ¥ = Ax, ®(t) is the unique
matrix satisfyingd’(t) = Ad(t), ®(0) =1.

Now, given
X (t) = AX(t) + Bu(t), X(0) = X,

16



which can be rewritten as .
X(t) = D(t)x + / ®(t—9)Bu(s)ds
0

Suppose that the matricés B have fuzzy number entries and the initial conditiore £" is fuzzy.
Then this equation can be considered as a family of integral inclusions, provided that some meaning
can be ascribed t®(t). The family of inclusions

() € Agdg(t),  Pg(0) =1, 0<B<1,
has solutions, for matricas in the set of matriceAﬁ,
Dg(t) = {Y(t) 'Y =VY, Y(0) = I} .

TheY(t) are found in the usual way: find a basis of vector soluties(s), va(t),..., va(t) from
the eigenvalue-eigenvector problem frand form the matriXZ(t) = [vi vo ... vy]. ThenY(t) =
Z(t)Z(0)~L,

5.2 Controlling fuzzy dynamical systems

Variation of constants can be used for solving open loop control systems. A question arises as to
whether some sort of feedback control is meaningful for control systems of the form

X'(t) = AX(t) + BU(t), X(0)=X°,

whereA, B are matrices an&® an n-vector, all with fuzzy set entries ovdR, in particular with a
fuzzy scalar, linear state feedback law of the fasrtt) = K(t)X(t).

It turns out that an appropriate framework is given by set-theoretic approaches to robust control
[15]. Again using the inclusion approach, the problem can be treated at each level set as a type of
calculus of variations problem and can be solved by iterative numerical procedures. Matrix Riccati
equations are involved. For the one dimensional case, exact solutions have been found [8]. These
compare favourably with fuzzy versions of LQR control for such systems.

5.3 Miscellaneous results

A number of extensions to the above have been made, but are in a very preliminary stage of develop-
ment. Integral equations of Hammerstein type have been studied, and the Volterra results generalized
(Menshing Guo and Xiaoping Xue, personal communication). Very general operator equations in-
volving measures and impulses are also being studied (Giogit.).

It seems likely that existence theorems for stochastic differential inclusions can be used to study
a fusion of the two uncertainties: fuzzy and random. Care has to be taken to specify which stochastic
integral is to be used, but some progress has been made using the Ito integral. The results are, as one
might expect, more complicated than others discussed here.

Some very recent progress has been made in filtering of fuzzy signals, governed by a fuzzy DE
containing a white noise signal with a fuzzy covariance function. The inclusion approach is used,
drawing upon results in robust filtering. These provide linear filters upper and lower bounds for
the covariance of an otherwise unspecified white noise disturbance. By considering the extremal
equations of the system, bounds can be found for the estimator.
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6 Conclusion

Recent developments in the theory of fuzzy differential and fuzzy integral equations were surveyed.
These treat equations as families of inclusions and interpret the solution sets as level sets of a fuzzy
solution to the equation. Some applications were discussed and examples given.
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Nearness-based limits in multidimensonal case
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The concept of nearness-based limits has been introduced at the 7-th Fuzzy Days conference in
Dortmund (see [1]). Now, we are going to discuss the properties of such limits for functions having
multidimensional domain.

We recall the definition of fuzzy nearness.
Definition F : R% — [0;1] is said to be a relation of fuzzy nearness iff

1. foranyxe R xFx=1

2. foranyx,y XFy=y 7T X

3. foranya €]0; 1] and anyx there exist uniqugy > xandx_q < xsuchthak F xq =a =X 7 X_q
4. for anyx there holds lig_.., x¥y=0
5

. foranyx < s<t < zthere holdx¥z< s¥t.

If moreoverx¥y = 1 iff x=y holds, then we calff the strict fuzzy nearness.
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On set valued and fuzzy stochastic differential equations
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ABSTRACT

We define a set valued stochastic integral with respect to a 1-dimensional Brownian
motion and develop multivalued analogs to the theory of singlevalued stochastic integrals.
And we study set valued and fuzzy stochastic differential equations.

1. Introduction

The martingale property of the singlevalued stochastic integral is a basic principle for
the development of stochastic analysis. Correspondingly, it is important in multivalued
stochastic analysis to both define a set valued stochastic integral and demonstrate the mar-
tingale property. Following the seminal work of Matheron[12], more recently the study
of random sets, that is, set valued random variables, has been developed by Aubin and
Frankowska[l], Hiai and Umegaki[5], Papageorgiou[14] and many others. Set valued mar-
tingales have been studied by Li and Ogura[l2], Papageorgiou[14]. Kim and Kim[9] and
Kisielewicz[11] defined set valued stochastic integral, but did not consider the martingale
property and L?-boundedness, which are useful in applications. The theory of ordinary dif-
ferential equations has been extensively developed in conjunction with fuzzy valued analysis
(see [8]). In particular, Ban[2], Li and Ogura [12], Puri and Ralescu[15] and Stojacovic[17]
introduced the concept of fuzzy random variable, fuzzy conditional expectation and fuzzy
martingale. This paper develops a more usable definition of the set valued stochastic inte-
gral that is more applicable, and derives set valued analogs of some of the most important
properties of singlevalued stochastic integrals. And by using the definition and properties
of the set valued stochastic integral, we study the theory for set valued stochastic differ-
ential equations, stochastic inclusion problems and fuzzy stochastic differential equations.
The paper is set out as follow: Section 2 recalls some useful results on set valued random
variables, due to Hiai and Umegaki[5] and Theorem 2.6 examines an important example
of a set valued martingale. In Section 3, we define a set valued stochastic integral with
respect to 1-dimensional Brownian motion, and discuss some of its properties. Section 2
and 3 are results by Jung and Kim[7]. In Section 4 we prove the existence and uniqueness
of the solution for a set valued stochastic differential equation. In Section 5, we give fuzzy
analogs of Section 3 and 4.

2. Preliminaries

Let R be the set of all real numbers and (2, A, P) a complete probability space. Denote
by M(€;28) the family of all measurable set valued functions defined on Q with values in

20



the family of nonempty closed subsets of R.
For F' € M(€;28), we define

SP={feIP(QAR): f(w) € Flw) aaweN},p=1,2,3--

Here LP(Q2, A; R) is the space of all real valued random variables f such that [[f|p =
E[|f?] < oo, where Eg] is the expectation of a random variable g.

THEOREM 2.1. ([5]) Let Fy,F> € M(€;2") and 1 < p < oo. If ST, = Sp, # ¢, then
F1 = F2 a.s.

Let M be a set of measurable function f: Q — R. We call M decomposable with respect
to Aif f1,fo € M and A € A imply 14f; + 14cfos € M. Here 14 is the indicator function
of A.

THEOREM 2.2. ([5]) Let M be a nonempty closed subset of LP(Q2, A;R), 1 < p < 0.
Then there exists an F' € M(Q;21) such that M = SY. if and only if M is decomposable
with respect to A.

For any subset I' C LP(2, A; R), we define the decomposable closure of I" by

del’ :{g € LP(Q, A; R) : for any € > 0, there exist a finite
A-measurable partition {A4;, Az, -, A,} of Q and

fisfay-+, fn € T such that ||g =Y 14, fillp < €}

i=1

Remark 2.3. Clearly del is a closed subset of LP(2, A; R) and is decomposable with respect
to A. Hence by Theorem 2.2, for any I' C LP(Q, A; R), there exists an F' € M(Q;2%) such
that del’ = S%.. And if I is decomposable, then it holds that del’ = clI', where the closure
is taken with respect to the norm || - ||,.

Denote by K(R) the family of all nonempty closed subsets of R and K.(R) C K(R) the
totality of all such sets which are also convex and thus intervals.

For any A, B € K(R), we define

da(A, B) = max{ sup d(x, B), sup d(y7A)} |
z€A yeB

where d(x, B) = infyep |x — y|, and define |||A||| = du (A, {0}) = sup,c 4 ||

If A and B are bounded, then dg(A, B) is the Hausdorfl metric of A and B. For
A, B,C € K(R), the equality
(2.1) du(A+C,B+C)=du(A,B)

holds (see [16]).
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For a random set F' € M(£;2F), F is called LP-bounded if there is h € LP(Q, A; R) such
that |z| < h(w) for any z and w with z € F(w).

Remark 2.4. For any F € M(Q;28), it is well known that F' is LP-bounded if and only if
the function w — |||F(w)]|| is in LP(Q, A; R), i.e. |||F]|| € LP(Q2, A; R)(see [5],[9] and [11]).

Let LP(Q, A;K(R)) (resp. LP(Q, A;K.(R))) be the space of all K(R) (resp. K.(R))
valued LP-bounded random sets in M (€;2%). For F € M(Q;2%), the expectation of F is
defined by

={E[f]: f€Sk}.

We call (F'(t))i>0 a set valued process with values in R or, for short, a set-valued R-
process if F:]0,00) x Q — 28 is a set valued function such that

(1) for all t € [0,00), F'(t,w) is closed convex in R a.a.w € ,
(2) for any fixed ¢ € [0,00), F(t,-) is a random set, that is, for all Borel sets A €
B(R),{weQ:F(t,w)NA#¢} e A

A set valued R-process (F(t))¢>0 is called A;-adapted if F(t) is measurable with respect
to A; for every ¢ > 0. And a set valued R-process (F(t)):>o is called measurable if
{(t,w) €[0,00) x Q: F(t,w)N A # ¢} € B(]0,00) x A) for A € B(R).

Hiai and Umegaki[5] showed that for any F' € L?(Q2, 4; C(R)) and sub-o-field B C A,
there exists a unique G' € L?(Q), B, P; K(R)) such that

(2.2) S? = cl{E[f|B] : f € 5B}

where the closure is taken with respect to the norm in LP(2, B; R). This random set G
is called the (set valued) conditional expectation of F' given B and we denote it by E[F|B].

DEFINITION 2.5. A set valued R-process (F'(t)):>o is called an As-martingale if

(1) for any t > 0, F(t) is L'-bounded,
(2) (F(1))¢>0 is Ai-adapted,
(3) fort > s >0, E[F(t)|As] = F(s) a.s.

For any random set F' € L'(Q, A;K.(R)), F(t) = E[F|A;] defines a set valued A;-
martingale. Let LP(R) be the space of all A;-adapted real valued measurable processes
(f(t))¢>0 such that for any ¢ > 0, E[fg |f(s)|Pds] < oo.

The next result is derived from Example 4.1 and 4.3 in Li and Ogura[12].

THEOREM 2.6. Assume that (m(t))t>o is a nonnegative martingale in L*(R). Let M =
[—1,1] and define (M (t))i>0 by M(t)=m(t)M a.s.. Then (M(t))i>0 is a set valued A;-

martingale.
proof. Clearly 512\/[(3) is given by

S2e = {f € L2, A FR) 1 |f| <m(s) as.).
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Lett>s>0and g € Sg[M(t)\As]' Then g = E[f|A;] for some f € wa(t). By the properties
of the conditional expectation, we have

9] = |E[f|As]| < E[| £ As]
< E[m(t)|As] =m(s) as.

This shows that g € 5]2\4(5), so that
(2.3) Se(o)an) € Srcs)-
Now we prove the converse. Clearly (M (t)):>0 is given by M(t,w) = [-m(t,w), m(t,w)].

Let g € SJQW(S) and

2m(s,w)

msw)—g(w) if 0
Mlw) = . 1. m(s,w) #
0 if m(s,w) =0

and define a random variable h by
h(w) = (1 — 2Xs(w))m(t,w).

Since 0 < A; <1 a.s., by the convexity argument, it holds h € Sz2\4(t) clearly. And we can
calculus that

E[h|As] = E[(1 — 2Xs)m(t)|As]
= (1—2A5)m(s)

=g as.

This means that
Sites) C Sz Al

Combining this with (2.3) and using Theorem 2.1, (M (¢))¢>¢ is a set valued A;-martingale.
The proof is complete.

3. Set valued stochastic integrals

The martingale property of the singlevalued stochastic integral is very important for the
study stochastic analysis. Similarly the martingale property of the set valued stochastic
integral plays an important role in set valued and fuzzy stochastic analysis. In this section
we introduce a slightly different but more convenient definition than those previously defined
(see [9],[11]) and prove the martingale property. For a set valued R-process (F'(t))¢>0, an
LP-selection of (F(t))i>0 is a real valued process (f(t));>0 € LP(R) satisfying for every
t>0, f(t,w) € F(t,w) a.aw € 2. We denote by S,(£(t)) the set of all LP-selections of
the set valued R-process (F'(t));>o. Distinguish S,(F'(t)) from the set Sf;(t) of all selections
g € LP(Q, As; R) of a random set F'(t) for any fixed ¢ > 0.

A set valued R-process (F'(t))¢>0 is called LP-bounded if there is a process (h(t))¢>0 €
LP(R) such that |z| < h(t,w) for any t > 0, w € Q and z with z € F(t,w).
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Remark 3.1. By the same argument as Remark 2.4, we can see that a set valued R-process
(F(t))¢>0 is LP-bounded if and only if (|||F(t)||])¢>0 € LP(R).

Let LP(IC(R)) (resp. LP(K.(R))) be the set of all K(R) (resp. K.(R)) valued LP-bounded
As-adapted measurable set valued R-processes.
For any (F(t))e>0 € L2(K:(R)), we define

r={f " Fl)dw, : (F(E))i0 € S(r0) )

for all t > 0, where (w(t)):>0 is a real valued Brownian motion with w(0) = 0 a.s.
THEOREM 3.2. For any (F(t))i>0 € L*(K.(R)) and t > 0, there exists an I;(F) €
M(;28) such that S}t(F) = del’;.

proof. We first show that del'; C L'(Q, A;; R). Let ¢ € del';. Then for any € > 0, there
exist a finite A;-measurable partition {A1, A, -+, A,} of Q@ and {(fi(t))i>0 € S2(F'(2)) :
i=1,2,---,n} such that

n t
EH</) - ; La; /0 fi(s)dw,

N
o

Thus we have

n t
Ell6l] < B B (Y 1, [ Ao,
Lli=1 0

n t
‘qb—;ui /0 fi(s)dw,
n t
;1141./0 fl(s)dws

|

=c+ F

] |

|32

Here we have

E

/ (o), ]
‘ /0 ' fils)duw, 2]

_ iilP(Ai)E Uot |fi(s)|2ds} .

Since (E'(t))i>0 € L2(K(R)) and (f;())i>0 € S2(F(t)), there exists a constant K > 0 such
that E[fg |fi(s)|2ds]? < K and hence

n ¢
;1’4"/0 fi(s)dws

n t
Z 14, /0 fi(s)dws

< ZTL:E[IAi]E
i=1

E

] < Kﬁ:P(AD
:K}:&)) - K.
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Thus we have E[|¢|] < € + K < oo which implies ¢ € L'(Q, A;; R). Therefore del’;y C
L' (9, As; R). Now by the definition, del; is closed and decomposable with respect to A;.
So by Theorem 2.2, there exists an I;(F) € M(Q;2%) such that S}t(F) = del'y. The proof
is complete.

DEFINITION 3.3. The random set I;(F') defined by Theorem 3.2 is called a stochastic
integral of (F(t))i>0 € £2(IC (R)) with respect to a real valued Brownian motion (w¢)s>o

and we denote it by I, (F fo s)dws.

Remark 3.4. Kim and Kim[9] and Kisielewicz[11] defined a set valued integal I;(F') by

L(F)(w) = Th(w) = { [ sontn s (050 € &(F(t))} |

The set valued conditional expectation of a random set is defined by its selection represen-
tation (2.2). This means that our definition by a selection representation S}t( P = del'; is

more convenient to prove some properties of (I;(F'));>o like the martingale property.

THEOREM 3.5. Suppose that (F(t))i>0 € L*(Kc(R)). Then there exists a sequence
{(fi)e>0 11 = 1,2, } of So(F(t)) such that for each t >0, F(t,w) = c{fi(t,w) : i =
1,2,---} and

(3.1) I, (F)(w) = {/Ot Fils,)dw, () 17 = 1,2, } 0.0 € Q.

proof. For each t > 0, since I (F) € M(Q; 23) there exists a sequence {¢, :n =1,2,---} C
S, (ry such that I (F)(w) = cl{¢n(w) : n = -} a.a.w € Q(see Lemma 1.1 in [5]). Since

Shir = [ " F()dw, < (F(D)es € S:(F(0) }
- cz{i Loy /Ot F($)dws : (AT k=1,2,- - m)
k=1

is an A;-measurable partition of €

and (f;"(t))i>0 € SQ(F(t))}7

for any n = 1,2, ---, there exists {¢(¢t) : m = 1,2,---} such that ||¢, — ¢7"(t)||2 — O as

m — oo and
m t
=g [ o,
k=1 0

where {A)% : k =1,2,--- ,m} is an A;-measurable partition of Q and {(f}.(t))i>0 : k =
1,2,---,m} C Sa(F(t)). There exists a subsequence {m;} of {1,2,---} such that |¢, —
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n’ ()] = 0 a.s.. Thus for a.a.w € Q,
I(F)(w) = c{¢y? (t,w) :n 21,5 > 1}

t
=cl {/ i (s,w)dws(w) :n > 1,3k <my,j > 1}
0

C cl{/t fgl‘ci(s,w)dws(w) n>1,k<mj,j> 1}
0
Since (F'(t))i>0 € L2(K:(R)), there exists a sequence {(fi(t))i>0 : 1 =1,2,---} of S2(F ()

such that for each t > 0,F(t,w) = d{fi(t,w) : | = 1,2,---}. Put {(f'(t))>0 : ¢ =
1,2, = {(fi(t)e>0, (f1i) (£))ez0 : m,1,5 > 1,k < m;}. Then this sequence is the desired

n
one. The proof is complete.

Remark 3.6. Theorem 3.5 shows that (I¢(F')):>o is Castaing representable, i.e., there exists
a sequence {(¢'(t))i>0 : ¢ =1,2,---} of A4~ measurable processes such that

It<F><w) =dl {d)l(th) 1= ]-727 o }
for all t > 0 and a.a.w € (.
THEOREM 3.7. Let (F(t))t>0 € L2(K.(R)). Then for every t > 0, we have I;(F) €
L2(Q, Ai; Ko (R)).

proof. Since all selections of [;(F') are A;-measurable, I;(F) is an A;-measurable. To
prove I;(F)(w) is a convex set in R a.a.w € {1, it is sufficient to show that S}t(F) is

convex by Corollary 1.6 in [5]. Let ¢,¢ € S}t (F)- Then there are two A;-measurable
partitions {Al,AQ,"' ;An}a {Bl,BQ,"' ;Bm} of ) and {(bl s 1,2,"' ,TL},{’(/JJ' : j =
1,2,--- m}Cly = {f(f f(s)dws : (f(t))e>0 € S2(F(t))} such that

n
6= lai| <e
=1

and

P — ZlBj@[)j < €.
j=1

For any 0 < a <1, we have

ag+(L—a)p —aY ladi—(1—a)> lp;
=1 j=1

<ae+ (1 - a)e

=€
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and

ad dagi—(1—a)d 1p1;
i=1 j=1

(n,m)

= Z Ip, ylag: + (1 —a)y;}
(4,9)=(1,1)

where D(; ;) = A; N B;. Since {D(; jy :i=1,2,--- ,n,j =1,2,--- ,m} is an A;-measurable
partition of  and {ag; + (1 —a)y; :1<i<n,1<j<m}CTy, ap+ (1 —a)y) € dely =
S}t( r)- Hence S}t( ) 18 convex. Finally we prove that for every t > 0, the random set 1;(F)

is L?-bounded. From Theorem 3.5 there exists a sequence {(f*(t))>0 : ¢ = 1,2,---} of
S»(F(t)) such that F(t,w) = cl{fi(t,w):i=1,2,---} and

L(F)(w) =cl {/Ot fi(s,w)dws(w) :i=1,2,- } a.a.w € (.

By Theorem 2.2 in [5], we have

FILPIP) = [ IIF)@)FdPe)
2
:/sup fi(s,w)dw,(w)| dP(w)
Q i
t 2
=/ sup /w(s)dws(w) dP(w)
Q (2(t)) >0 €(F (t,w))i>o0 140
2
= sup //fswdws(w) dP(w)
(f(t))t>0€52(F(t))

= sup / f(s)dws
(f(£)t>0€ES2(F (1))

= sup [/ | f(s IdS]
(f(1)e>0€ES2(F (1))
t
/ sup |z|?ds
0 z€F(s,)
t
— | [ 1IFGIPas).

By the fact that (F(t))¢>0 € £2(K.(R)) and Remark 3.1, the right hand side is finite. Hence
by Remark 2.4, I;(F) is L?>-bounded. The proof is complete.

]

=F

Remark 3.8. In Theorem 3.7 we proved I;(F) € L?*(Q, A:; K.(R)). This implies that
SZ LF) = S}i(F). In fact, assume that Si(F) - S}t(F). Then there exists a ¢ € S}t(F)

27



such that ¢ ¢ 52 (ry> e E[|¢]] < oo but E[|4|*] = co. Since I;(F) € L*(Q, A;28), b
Remark 2.4, |||It( I € L3(, Ay; R). Thus we have

co=E[lgP'] < sup B[]

YEST, ;)

= B[ sup |af’]
vel, (F)()

= E[[[L(F)]|]"] < cc.

This is contradiction. Therefore we can write that Si( Py = del; i.e.,

St ian, =] [ 1605 (FO)s0 € SF W)}

THEOREM 3.9. For any (F(t))i>0 € L2(Kc(R)), (I:(F))t>0 is dg-continuous with prob-
ability one.

proof. Let {(f*(t))t>0 : © = 1,2,---} be a sequence given as in Theorem 3.5. Using the
equality (2.1), we have

t+h
dp (Ieyn (F) (), I (F) (w)) = ] t F(s,w)dws (w)]|]

(3.2) = sup

i

/ T s, ()

for all w € Q. Since ( fo s)dws)¢>o is continuous with probability one for all (f(t))i>0 €

L?(R), there are probability zero sets N;,i = 1,2,--- such that fo (s,w)dws(w) is con-
tinuous for all w € N¢. Put N = U;N;. Then P(N) = 0 and the right hand side of (3.2)
converges to 0 as h — 0 for all w € N¢. The proof is complete.

To prove the martingale property of a set valued stochastic integral, we use the following
condition.

CONDITION (C). The process (F(t))i>0 € L2(K.(R)) is defined by F(t) = fo(t)M a.s.,
where M = [—1,1] and (fo(t))i>0 € L?(R) satisfies that there exists a constant ¢ > 0 such
that

t
(3.3) /O fols)dws +¢ >0 as.

for all t > 0.

THEOREM 3.10. Assume that (F(t));>o satisfies Condition (C). Then (I(F))t>o is a
set valued Ai-martingale.

proof. Let (fo(t))i>0 € L?(R) be given by (6) and define a martingale (mg(t))¢>0 by

£ = /0 fo(s)dws  as.
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and let m(t) = mo(t) + c a.s.. Then, by Condition (C), (m(t))s>o is a nonnegative martin-
gale. By the definition of I;(F), we can see that

t
S?t(F)JrcM = %{/g f(8)dws +a: f(t,w) € folt,w)M

a.a. (t,w) € [0,00) x Q, a € CM}
= cl{o(t) : p(t,w) € (mo(t,w) + c)M a.a. (t,w) € [0,00) x O}
= Slmo(tr+om
= ng(t)M'

By Theorem 2.1, I;(F') + ¢cM = m(t)M a.s.. Using Theorem 2.6, (I;(F) + cM)s>o is a set
valued A;-martingale. ;From this we have

E[I(F)|As] + cM = E[L(F) + ¢M|A]
= I,(F) + cM

so that E[L(F)|As] = I,(F) ie., (It(F))e>o0 is a set valued Ag-martingale. The proof is
complete.

Remark 3.11. For any (f(t))i>0 € L*(R), we can take (f(t))¢>o0 € L*(R) satisfying (3.3) in
Condition (C) such that

| ' Fl)dwy] < / * o(s)du,.

This means that (fg f(s)dws)>o is a selection of (f(f fo(s)Mduw)i>o. So we can say that
Condition(C) is not so strong.

Let us now illustrate the results by means of a simple example.

EXAMPLE 3.12. Let (r(f))i>0 € L*(R) satisfy

E {exp (% /Ot \r(s)]2ds>] < oo

for each ¢ > 0 and define (z(t))s>0 by

2(t) = exp {/Otr(s)dws - %/Ot |r(s)|2d5} .

Clearly (z(t))s>0 is nonnegative. And by Theorem III.5.3 in Ikeda and Watanabe[6], this
is an 4;-martingale. Using It6’s formula we can see that

z(t) =1 +/0 xz(s)r(s)dws.
Define (fo(t))e>o0 by fo(t) = z(t)r(t) a.s.. Put M = [—-1,1] and F(t) = fo(t)M a.s.. Then

(fo(t))e>0 and (F(t))¢>o0 satisfy (3.3) in Condition (C) with ¢ = 1. Thus by Theorem 3.10,
(It(F))¢>0 is a set valued A;-martingale.

29



THEOREM 3.13. Let (F(t))i>0, (G(t))i>0 € L2(K:(R)) satisfy Condition(C). Then we

have
t t
E[ sup di; (/ F(s)dws,/ G(s)dws)]
0<t<T 0 0

(3.4) <4E {d% ( /0 " Ps)duw,. /0 ' G(s)dws>] .

proof. Let (M;)i>o0,(Nt)i>0 be two set valued martingales. Using Lemma 2.6 in [4] or
Theorem 4.3 in [11], it follows for ¢ > s,

Eldu (My, Ni)|As] > d (E[Mi|As](-), E[Ne| As] ()
= dp(M;, Ny).

This implies that (dg (M, Nt))e>o is a real valued submartingale. Putting M; = f(f F(s)dws

and Ny = fg G(s)dws and using the Doob maximal inequality we get the inequality(3.4).
This completes the proof.

THEOREM 3.14. Let (F(t))1>0, (G(t))i>0 € L2(K:(R)). Then it holds

E [dz (/OtF(s)dws,/OtG(s)dws>] <E [/Ot &, (F(s),G(s))ds| -

proof. By Theorem 3.5, there exist countable sequences {(f*(t))i>0 : ¢ = 1,2,---} and
{(@@ )0 : § = 1,2, } in So(F(t)) and S2(G(t)), respectively such that for any ¢ > 0,
F(taw) = Cl{fi(taw) 2= 1727 o '},G(lf,&)) = Cl{gj(taw) : .7 = 1727' : } and

1(F)(w) = / ' F(s, 0y (w) = o { / fisw)dun(w) = 1,2, }

and
1(G)(w) = /OtG<s,w>dws<w> —d {/Otgj(s,w)dws(w) = 1,2,...}

a.a.w € . Let

2
Ay = {w € () : supinf

i J

/0 (Fi(5,) — g7 (5, w) ), ()

2

> supinf }
j (2

Using Theorem 2.2 in [5] and two basic properties max(u,v) = 3(u + v) + 1|u — v| and

|lu—v| = ul g4+vl e —ul g4c —v1 4 for random variables u,v and A = {w € Qu(w)—v(w) > 0},

/0 (Fi(5,w) — g (5,0))duws ()
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we have

E {di, (/Ot F(s)dws, /Ot G(s)dws)]
:/Qdfq (/()tF(s)dws,/OtG(s)dws>dP

= | max sup inf z—yl?, sup inf z —y|? }dP
/Q {mGIt(F)(w) yeli(G)(w) | | yeI (G)(w) €l (F)(w) | |
= / 14, sup inf |z —y|*dP

Q w €L (F)(w) ¥l (G) (W)

+/ lac  sup inf |z —y[*dP
9) yEL(G)(w) Tl (F)(w)

2
dP

/0 (Fi(s) — ¢ ())do

:/1Atsupinf
Q i
2

dP

/ (Fi(s) — ¢7())ds
0

—l—/lA;: sup inf
Q it
2

dP

| ) - e
0

1/ inf
= — [ supin
2 Jq ip J
1/ .
+ = | supinf
1/ .
+ = A, supinf
2 Ja P
1 .
——/1Acsup1nf
2/ 7t i g

1
——/lAtsupinf
2 Q j )

1
+—/1Acsupinf
2 Q t j 7

2

/0 (fi(s) — ¢%(5))duw,| dP

2
dpP

/0 (Fi(s) — ¢ (),

2
dP

/ (Fi(s) — g7 ())do,
0

2
dP

/ (Fi(s) — ¢ ())do,
0

2

/0 (fi(s) — ¢/ (s))dw, | dP

2
dP

/0 (Fi(s) — ¢ () o,

/supinf
Q i 7
1 t )

45 [ swpint] [ (76s) = g'(s))
2 Q Jj *I1Jo
1
/supinf
Q i J

T3
—/supinf
Q J

1 sup inf /
2 (F(t)i>0€S2(F (1)) (9(1)i20€52(G (1)) Jo

1

2

2
dP

2
dP

| 70 = gitsau,
0

2

/ (FH(s) — ¢ ())d, dP‘

2
dP

/0 ((5) — g(s))duw,
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t 2

Sup inf f(s) = g(s))dw,| dP
2 (g(t))t>0652(0(t))(f(t))t>0€52( @) JalJo ( ( ) ( ))
1 t 2
*3 sup inf f(s) — g(s))dws| dP
2 (F(1)e>0€8a(F (1)) (9(t))i20€852(G(1) Ja|Jo (f(s) ()
t 2
— sup inf s) —g(s))dws dP‘
(9(1)t>0€82(G (1)) (F(£))i>0€S2(F (1)) (f( ) g( )>
1
2 Sup inf / / (f $))|2dsdP
2 (f(t))t20652(F(t))( Ne>0€S2(G(t)
1
3 Sup // |(f s))|2dsdP
2 (9(1))i>0€S82(G(1)) (f(¢)) t>0€52 (t))
1 G
2 Sup inf / / s s)|*dsdP
2 (F(1)i>0€S2(F (1)) (9(t))e20€852(G(t)) |f(s) = 9(s)]
B Sub) / / |£(s) — g(5)|>dsdP
(9())e>0€82(G (1)) (f(t))t>0652 F(t)
// inf \z—y[zdsdP
0 wEF(sw)yEC' s,w)
// sup inf |z —y[2dsdP
0 yEG(s,w) TEF(s,w)
+ 35 sup inf |xz—y 2
2 /Q/O {wEF(s,w)yEG(s,w)| |
— sup inf |z —y 2}dsdp‘
YyeEG(s,w) z€F(s,w) | ’
= sup inf |z — y|?dsdP
2/»/0x€st yGG(sw)| |
// inf |z — y|?dsdP
0 yEG(sw mEF(s w)
/ / sup inf |z — y|2 sup inf |z — ylz dsdP
0 lz€F(s,w) yEG (s,w) y€EG(s, w)mEF(S w)

max su inf |z — su inf |z —y|? }dsdP
/ / {xeF Ew) yeG(s,w) | uFs yGC(Is)w) TEF(5,w) | vl

_E[/ 42 (F(s),G(s))ds|.

0

The proof is complete.

Remark 3.15. Suppose that (F(t))i>0, (G(t))i>0 € L*(K.(R)) satisty Condition(C). By
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combining Theorem 3.13 and Theorem 3.14 we have the following inequality

e, [ o [ )

T 5
(3.5) <A4FE /0 d2 (F(s),G(s))ds

If we assume that G(t) = {0} for all ¢t € [0,7] and so fot G(s)dws = {0} in the equality

(3.5), then we obtain
T A
/0 mF(s)mst] |

Fritsch[3] proved that the inequality (3.6) as a necessary condition for the martingale prop-
erty of (fot F(s)dws)i>0-

t
(3.6) { sup |l F(s)dwsw] < 4B
o<t<T Jo

4. Set valued stochastic differential equations

Let R be the set of all real numbers and let (2,4, P) be a complete probability space
with a filtration (A¢)i>0. In this paper we consider the following stochastic differential
inclusion on R;

(4.1) { Zfé;f) :Gxﬁ;(t,a:(t))dt + G(t, (b)) dw,

and set valued stochastic differential equation on 2%;

19 dX(t) = F(t, X(t))dt + G(t, X (t))dwy,
2 { x0-x0
where F : [0,00] x R — LY(K.(R)) and G : [0, 0] x R — L?(K.(R)) satisfy
H(t,X(t) = U H(t,z(t)).
(2(8))e>0€82(X (1))

First we prove the existence and uniqueness of the solution of set valued differential equation
(4.2). The solution of (4.2) is defined as follows.

DEFINITION 4.1. By a solution of set stochastic differential equation (4.2), we mean a
K(R) valued fuzzy process (X (t))¢>o defined on (2, A, P) with a reference family (A;);>0
such that

(i) there exists a 1-dimensional Brownian motion (w;);>o with w(0) =0 a.s.,

(ii) (X (¢))¢>0 is Ai-adapted and continuous in ¢ a.s. i.e., with probability one, dg (X (¢ +
h),X(t)) = 0as h — 0,

(111) (X(t))tZO and (wt)tzo satisfy.

X(t) = Xo + /tF(s,X(s))ds + /tG(s,X(s))dws as.
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THEOREM 4.2. Assume that F,G : [0,00) x R — K.(R) satisfy the following condi-
tions;
(i) there exists a K > 0 such that

(4.3) d3(F(t,X),F(t,Y)) + d%(G(t,X),G(t,Y)) < Kd%4(X,Y),

(4.4) IE(E 12+ 1GE NP < K+ [IXP)

for all XY € K(R) and t € [0, 00),
(ii) (Y (t))t>0 € L2(K.(R)), there exists a process (h(t))i>0 = (h(Y (t);t))t>0 € L*(R)
such that it satisfies (3.3) in Condition (C) and

G(t,Y(t)) = h(t) M,

where M = [—1,1]. Then the set valued differential equation (4.2) has a unique solution
(X(t))e>0-

Proof. Let T > 0 be any given. Define X (t) = Xy a.s. for all ¢ € [0,7]. Then by (4.4), we
have

E <TK (14 E[[[|%]]]?]) < o0

T
A 11Gt, o) | Pt

and hence (G(¢, Xo))i>0 € L2(K.(R)). By the definition of the set valued integral, we can
define

t
/ G(s, Xo)dws
0

and thus a continuous process
t t
X1 (t) = X() + / F(S,X())dS + / G(S,Xo)d’ws
0 0
with E[|||X1(2)]]|?] < oo for all ¢ € [0,T]. Now assume that continuous processes
¢ ¢
Xl<t) = X() + / F(S,Xi_1(8>)d8 + / G(S,Xi_1(8))d’u)5, 1= 2,3 N
0 0

are defined and these satisfy supg<,<7 E[|[|[X:(t)]°[[|?] < oco. Then by (4.4),

E[Aﬂmxaxaanw]

STK(1+sm>mxmwmﬂ
0<t<T

< 00
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and hence (G(t, X, (1)))t>0 € L2(K:(R)).
This shows that

/ G5, X (5))duws
and thus, a continuous process 0
Xn+1 = Xo + /Ot F(s,X,(s))ds + /Ot G(s, Xn(s))dws
can be defined. By mathematical induction, we obtain a sequence {(X,(¢))i>0}, n =1,2,---

of stochastic processes in £2(K.(R)). By Theorem 3.13, Theorem 3.14, and the condition
(4.3), it holds

E [ sup da (Xn(t>7Xn+1(t>):|
0<t<T

<9E L;E)Td%[ (/OtF(s,Xn_l(s))ds,/OtF(s,Xn(s))ds”

v2m | s i ([ 6o Xomsave, [ 606, X )]

0<t<T

<2TE

T
/0 &, (F(S,Xn_l(s)),F(s,Xn(s)))ds]

+8E

T
/ &, (G5, Xn_1(5)), G (5, Xn(5))) ds]

< (2T +8) K/ [sup (X 1(8),Xn(s))} dt

0<s<t

t1 n—1
{(2T +8) K}”/ / / [ sup d%,(Xo,Xl(s))} dt,, - - - dtodty .

0<s<ty

by the same argument as above and (4.4), we have

E[ sup d%I(Xle(s))} < @T + KT (1 + ||laolll?)
0<t<tn

Thus we have

E { sup day (X (1), Xpy1 (1)) (1 + |||x0|||2)

] _{eT+8)KT)H
0<t<T -

(n+1)!

By Chebyshev’s inequality, we obtain

1
P ( sup dg (Xn(t), Xpni1(t)) > 2n+1>
0<t<T

S 4n+1E

s (X, (0, X <t>>}

{4(2T + 8)KT}"+!
< C(I) (n+1)!
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where C'(T') > 0 is a constant depending only on X, and T'. By the Borel-Cantelli lemma,
we see that X, (t) converges uniformly on [0, 7] with probability one. Since T was arbitrary,
lim,,_, 0 X, (t) = X (t) determines a continuous process which is clearly a solution of (4.2).

Now to prove the uniqueness of the solution, let (X (¢)):>0 and (X'(t)):>0 be any two
solutions of (4.1). Then by the similar calculations as above, we have

B [, (X0, X'0)] <2K0+T) [ B [d(X(). X)) ds

for all ¢t € [0,7"]. By Gronwall’s lemma, we obtain
Eldy (X (1), X'(t))] =0

for all ¢ € [0,T]. Hence, letting T — oo, we have X (¢) = X'(t) a.s. for all ¢ > 0. Since
(X (t))e>0 and (X'(t))¢>0 are dg-continuous in ¢ a.s., we can conclude that X (¢) = X'(¢)
for all £ > 0 a.s.. The proof is complete.

The following problem is meaningful as a viability problem but we can not solve yet.

Problem 4.3. Suppose that there exists a solution (X (t))¢>0 of (4.2). Does there exist a
solution (z(t))e>o of (4.1) such that z(t) € S% ;)7

5. Fuzzy stochastic differential equations

Let F(R) denote the family of all fuzzy sets u : R — [0, 1] such that the level set(or
a-cut) [u]* = {r € R : u(r) > a} € K(R), for 0 < o < 1, and [u]® = Uag(o,1)[u]® is
bounded. Forall 0 <a< g <1

[u]? C [u]® C [u]’.

For two fuzzy sets u,v € F(R), we denote u < v if and only if [u]* C [v]* for every « € [0, 1].
Let F.(R) denote the family of all fuzzy sets in F(R) with their level sets are contained
to K¢(R). Define a metric D on F(R) by

D(u,v) = sup dg([u]®,[v]Y).
a€0,1]

For u;,i=1,2,3,4 € F(R), by (2.1) and (2.2), we obtain
D(uy + uz,uz +uz) = D(u1, us)

and
D(uy + usz,uz +us) < D(ui,ua) + D(uz + ug).

A fuzzy random variable z is called LP-bounded if there exists a function h € LP(Q2, A; R)
such that [||[z(w)]°||| < h(w) for a.a.w € Q. Let LP(Q2; F(R)) be the set of all LP-bounded
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fuzzy random variables and LP(Q; F.(R)) be the set of all LP-bounded fuzzy random vari-
ables whose level sets belong to K.(R). For z1,2z2 € LP(Q; F(R)), they are considered to
be identical if for all a € (0, 1],

[21]Y = [22]® a.s.

The expectation of a fuzzy random variable z, denoted by E[xz] also , is a fuzzy set such
that, for a € (0, 1],

[E[2)]* = £[[2]°] = {Elg] : g € Sjye }-

Stojakovi¢[17] showed that for any x € L'(Q; F(R)) and o-field B C A, there exists a
unique fuzzy random variable ® € L' (Q, B; F(R)) such that for a € (0, 1],

[®]* = E[[z]*|B] as.

The fuzzy random variable ® is called the fuzzy conditional expectation of X given B and
denote it by E[z|B].

We call (y¢)i>0 a fuzzy stochastic process if each level set [y]¢ is a nonempty, closed
and convex set valued random variable and each y; is a fuzzy random variable. A fuzzy
stochastic process (y;)¢>o is called A;-adapted if for each t > 0, y; is A;-measurable, and
measurable if y is Bjg ) ® A-measurable. A fuzzy stochastic process (y;):>o is called
L2-bounded if there exists a process (h(t)):>0 € L*(R) such that |||[y:(w)]°]]] < h(t,w) for
a.a(t,w). Let L2(F.(R)) be the set of A;-adapted measurable £?-bounded F.(R) valued
fuzzy processes.

A fuzzy stochastic process (y:):>o is called a fuzzy martingale (respectively, submartin-
gale, supermartingale) with respect to A; if y; is L'-bounded and A;-measurable, and for
t > s E[y:|As] = ys (resp. >, <) a.s.. By the definition of fuzzy conditional expectation we
can see that (y:):>o is a fuzzy martingale if and only if ([y]f'):>0 is a set valued martingale
for any a € [0, 1].

By the same method as Theorem 4.6 in [9] we have the following result.

Theorem 5.1. Let (yi)i>0 € L?(F(R)) and (wy)i>o0 be a 1-dimensional Brownian motion.
Then for any t > 0, there exists a unique fuzzy random variable z; € L*(Q, Ay; Fo(R)) such

that for all o € (0,1], [2]*(w) = (fot[ys]o‘dws)(w) a.a. w € Q. Moreover, (z)i>0 is an
Ai-adapted measurable fuzzy stochastic process.

We call z; a stochastic integral of y, with respect to (w)¢>0 and denote it by fg Ysdws.

Theorem 5.2. Let (yi)i>0 € L2(Fe(R)) and assume that ([y:]*)i>0, « € [0,1], satisfy
Condition (C). Then (fot Ysdws)i>o0 18 a fuzzy martingale.

Proof. By Theorem 3.10 and the definition of the fuzzy conditional expectation, for all
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a €[0,1] and t > s > 0, we have

g [/ yjd“’“ A:Ha
o]
—¢ [/0 []® duw,

= /Os [yu]® dw.,

= [/ yudwu] a.s.
0
t s
E [/ Yo dwy, AS} :/ Yudwy, a.s.
0 0

and hence (f(f Yudwy)>0 is a fuzzy martingale.

As

| I |

N

This means

Theorem 5.3. Let (z¢)t>0, (yt)t>0 € L2 (FA(R)) and assume that ([2¢]%)i>0, ([y¢]*)e>0

, a € [0, 1] satisfy Condition (C). Then it holds
T T
D? / wudwu,/ Yudwy || -
0 0

t t
E { sup D? (/ xudwu,/ yudwu)] <A4F
0<t<T 0 0

Proof. Since (fg[yft]o‘dwu)tzg i =1,2, a € [0,1] are set valued martingales, by Theorem
2.6 in [4], dp( f(f [yl]®dw,, f(f [y2]*dw,) is a real valued submartingale. Hence we have for

allt>s>0
t ¢
E [D (/ :L‘udwu,/ yudwu> ‘ As]
0 0
¢ t
sup dp ( / [wu] dwy, / [yu]o‘dwu) ‘As]
a€l0,1] 0 0
¢ ¢
> sup E {dH (/ [wu]adwu,/ [yu]o‘dwu) ‘As:|
a€l0,1] 0 0
> s du ([ trardvn, [,
a€l0,1] 0 0

=D (/ xudwu,/ yudwu>
0 0

and so (D (f(f Ty dwy,, f; yudwu)) is a real valued submartingale. Using the Doob max-
£>0

imal inequality (Theorem 1.2.3 in [18]), the proof is complete.

=F
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Theorem 5.4. Let (z¢)t>0, (yt)t>0 € L2(F(R)). Then, we have

t t t
E |:D2 (/ xsdwsa/ ysdws)] <E [ Dz(xs>ys)d81| .
0 0 0

Proof. From Theorem 3.13, we have for all ¢ > 0

The proof is complete.

o [0 ([t [ )

t
=FE | sup dy < [z] dwsv/ [ys]® de)]
ozE[Ol

<FkE sup /dH xs ys]) ]

aEOl

<E /0 sup dir ([25]%, [ys]*) d ]

a€0,1]

-t
=FE / D? (z,,ys) ds].
L/o

Now we consider the following fuzzy stochastic differential equation;

(5.1)

where f : [0,00) X F.(R) = L' (F:(R)) and g : [0,00) X F(R) = L2(L*(R)).

Definition 5.5. By a solution of fuzzy stochastic differential equation (5.1), we mean a
Fe(R) valued fuzzy process (2(t));>o defined on (2, A, P) with a reference family (A¢)i>o0

such that

(i) there exists a 1-dimensional Brownian motion (w;);>¢ with w(0) =0 a.s.,
(ii) (2(t))e>0 is Ai-adapted and continuous in ¢ a.s. i.e., with probability one, D(z(t +
h),z(t)) = 0 as h — 0,

{ dz(t) = f(t,2(t))dt + g(t, 2(t))dw,
2(0) = 2o

(iii) (Z(t))tzo and (wt)tzo satisfy

(5.2)

By the same calculation as the proof of Theorem 4.2, we can prove the following theorem(see

[10] for detail).

z(t) = 2o —|—/0 f(s,z(s))ds +/0 g(s,z(s))dws a.s.
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Theorem 5.6. Assume that f,g:[0,00) X F.(R) — F.(R) satisfy the following condi-
tions;
(i) there exists a K > 0 such that

D*(f(t,z), f(t,y)) + D*(g(t,z),9(t,y)) < KD*(z,y),

ILF )PP + g 2)P1 < K@+ []][°11)

for all x,y € F.(R) and t € [0, 00),
(ii) for any a € [0,1] and (y(t))i>0 € L2*(F.(R)), there exists a process (h(t))i>o0 =
(h(a,y(t);t))e>0 € L*(R) such that it satisfies (3.8) in Condition (C) and

[9(t,y(t))]* = h(t) M,

where M = [—1,1]. Then the fuzzy stochastic differential equation (5.1) has a unique
solution (x(t))t>o.
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1 Introduction

Statistical data are products of measuring predetermined items with respect to objects which are sam-
ple points from fixed sample spaces. According to economic items each process of measurement
is confronted with several types of vagueness: Stochastical vagueness by selecting objects from the
sample space, epistemic (perceptive) vagueness since sample spaces may be specified unproperly,
or incorrect results like false responses have been reported. Last but not least, theoretical economic
concepts have to be transformed into items to enable the process of measurement, which raises the
question of adequacy due to the physical vagueness of many theoretical concepts.

As a consequence data inherit errors in measurement corresponding to the respective types of
vagueness: Random errors (stochastical vagueness), sampling errors (stochastical and epistemical
vagueness) and adequacy errors (physical vagueness). They can be defined within the terminology of
Mathematical Statistics reformulating the measurement of items as parameter estimation. However,
within the framework of Mathematical Statistics only the random errors are considered systematically.

In order to integrate different types of vagueness it has been proposed to represent outcomes
of measurements by fuzzy subsets rather than vectors of real numbers. A desirable foundation of
Mathematical Statistics with fuzzy observations needs then a suitable linkage of probability with
fuzzy set theory.

Technically we shall investigate mathematical structures on fuzzy sample spadesh are con-
tained in the space of fuzzy subsetsRst We shall point out compatible paitsl, ) of a metricd
to describe the random errors and-aalgebra¥ to extend the methods of Mathematical Statistics.
Theo—algebra¥ should be generated by the metiicSo only Borele—algebras on already known
metrizable topological spacéX, 1) are considered and compared. The discussion leads to some uni-
fied concept of fuzzy-valued random variables called fuzzy random variables. A Strong Law of Large
Numbers, a Central Limit theorem and a Glivenko-Cantelli theorem for fuzzy random variables will
be formulated simultaneously with respect to some emphasized metrics. All of them are compati-
ble with theo—algebra which underlies the notion of fuzzy random variables. This gives reasonable
legitimation to use these metrics and the induced concept of fuzzy random variables.
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2 Lp—spaces of fuzzy sets

In order to keep the line of reasoning comprehensive we shall restrict ourselVS.@®"), the
space of normal fuzzy subsets Bf with convex, compact positiva—cuts. Since every fuzzy
set fromFJ9(RX) is uniquely determined by its support function, we can build in an obvious way
Lp—subspaces oF%(R¥) with respect to the product measuré® AS™! of the Lebesgue-Borel
measure\! on [0,1] and the unit Lebesgue-Borel measar®& ~ on the euclidean unit spheg1!

in RX. The spacd:crgc’cp(Rk) (p € [1,[) consists of allA FC%C’CP(R") with support functions being
AL @ AS™" —integrable of ordep, whereasF22,. (R¥) contains the fuzzy sets frof%(RK) having
support functions which are essentially bounded with respext toAS ", It can be shown that the
fuzzy sets fronF2. (RK) are exactly those fuzzy sets frdff%(RK) with bounded support. Further-
more it turns out thaFJ9,, (R¥) is a dense subset of evegb—spacch’},ocp(Rk) with respect to the
respectiveL,—metricpp.

3 Lp—Metrics

Identifying eachA e FC%%p(R") with the )\1®)\sk_l—equivalence class of its support function, the
Ly—spaceFNS (R¥) can be embedded into theg —spacelp([0,1] x S1) generated bj! @ A% .
Then theL,—norm onL,([0,1] x S1) induces the so called,—metric pp on Fcr},%p(Rk). Some
fundamental properties of tHg,—metrics will be collected. Especially, they are complete, and they
are also separable excqpt.

4 Other metrics on theLp—subspaces oFJ%(RK)

Extending, dependent gne [1, «o], the well knownL . —metrics fromFJo(R¥) to FC’},%p(Rk) respec-
tively, we shall introduce another class of metrics. They are all complete and induce, depenglent on
the same topology oﬁcnoocp(]Rk) as the respectivie,—metric pp.

Also the so called®khorod metric on FI2(RK) will be mentioned which induces a separable and
completely metrizable topology.

5 o—algebras on spaces of fuzzy sets

We shall investigates—algebras on the sample spade®(R¥) and theLp—subspaceiFC%%p(Rk)

(p € [1,]). As a key concept @—algebra onF1%(R¥) will be suggested which covers the dif-
ferento—algebras on theap—spacesFCrgOCp(Rk) generated by the introduced metrics. So we can
define aF%(R¥)—valued random variable, callddzzy random variable, in a way which unifies
already known alternative concepts. Particularly, ltiie-metrics are compatible with the notion of
Fcno%p(Rk)—valued fuzzy random variable f@re [1, .
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6 Aumann expected value of fuzzy random variables

SinceFCrgocp(Rk)—valued fuzzy random variables can be identifiett §$0, 1] x 1) —valued random
variables forp € [1, ], limit theorems may be obtained by limit theorems for Banach-space-valued
random variables. For preparation this section provides conditions of integrability which ensures that
the Aumann expected value of sorﬁ%’cp(Rk)—valued fuzzy random variable can be identified with

the Pettis integral or even the Bochner integral.

7 Limit theorems for fuzzy random variables

Since there exists a general Glivenko/Cantelli-Theorem for separable metric random elements, only
Strong Laws of Large Numbers (SLLN) and Central Limit Theorems (CLT) for fuzzy random vari-
ables are of interest. Several versions of a SLLN with respect to some of the introduced metrics are
already known. Also different versions of CLT have been formulated. What is missing is a SLLN and
a CLT with respect to the same separable metric, which ensures a Glivenko/Cantelli-Theorem too.

Applying limit theorems for random elements in separable Banach spaces of type 2, we shall
formulate a SLLN and a CLT simultaneously with respect to daghmetricp,, for p € [2,0].

8 Concluding Remarks

Summarizing the results, fqr € [2, 0] FC”OOCp(R")—vaIued fuzzy random variables together with the
Lp—metricpy, fulfill all the required properties such that probability theory in spaces of fuzzy subsets

of R may be regarded as well-founded. Since the limit theorems need the weakest assumptions in the
case ofp = 2 we would like to recommend the usageFQfQ(Rk)—valued fuzzy random variables

and thel,—metricp,.

For practicable statistical work on basis of fuzzy observations a further investigation of distribu-
tions of fuzzy random variable is desirable. It might be useful to find standard classes and to develop
general methods of Monte-Carlo simulation.
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Embedding method is a typical method to discuss limit theorems of sequences of set valued and fuzzy
valued random variables. For the set valued case, for examples, Artstein and Vitale above mentioned
used an embedding method to prove SLLN Hiai and Umegaki used the embedding method to obtain
martingale convergence theorems in 1975. For the fuzzy valued case, Klement, Puri and Ralescu
obtained embedding theorems to prove SLLN in the sense of Extended Hausdorffednd CLT

with respect to Extended Hausdorff MetHeg, with Lipschitz condition in 1986. Puri and Ralescu also
obtained a martingales convergence theoretr.jralso with Lipschitz condition in 1991. Diamond

and Kloden pointed out that all space of fuzzy sets with compact supports can be embedded into
another Banach space in 1989 but they did not discuss isometric property with residgcttbich

is not easy to use for the proof of convergence theorems.

In this paper, we mainly give a new embedding method for fuzzy valued random variables with
same expectation and use it to prove a SLLN for fuzzy valued martingales in the sdtseTen
we prove the CLT by using this new embedding theorem and the result on empirical process of Van
der Vaart and Wellner. We would like to point that using the result on empirical process to prove CLT
is Proske’s idea but we had some troubles on some inequalities of his proof. Here we rewritten the
proof about CLT for fuzzy valued random variables. Throughout this paper we assume that fuzzy sets
are not necessary to satisfy the Lipschitz condition.
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Binary non—decreasing operators [anb] C R with idempotent boundary points b will be simply
called(binary) aggregation operatorf2]. Without loss of generality we will suppose,b] = [0, 1].
During the study of sensitivity of aggregation operators [3] and some construction methods for ag-
gregation operators [5], compare also [8], the following two analytical properties played a crucial
role:

(i) Lipschitz property

’A(bel) - A(X27y2)‘ < ‘Xl - X2’ + ‘yl - y2‘7 VXLXZ,VLYZ € [07 1]’
(i) Kernel property

[A(X1,Y1) — A(Xz,¥2)| < max(|xa — X, [y1 —¥2|),  ¥X1,X2,Y1,¥2 € [0,1].
Evidently, both these properties are a kind of continuity, and

kernel property= 1-Lipschitz property=- continuity
but

kernel propertys 1-Lipschitz property# continuity

Denote byC, L and X the classes of all continuous, 1-Lipschitz and kernel aggregation operators,
respectively. All three classes are convex and closed under duality
Ad(x7y) = 1_A(1_X71_y)'

Moreover, the classeS and X are closed under compositiah= A(B,C). The classZ does not
possess this property. However, for ahg X andB, C € L alsoD =A(B,C) € L.

We list some other interesting properties of mentioned classes of aggregation operators:
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Q) (@) To<ALS forallAe L(T,S -theLukasiewicz—norm and—conorm, respectively)
(i) Tu<ALSyforal Ae K (Ty=min, Sy = max)

(2) () 0(1)isthe zeroelementdf € L if and only if 1 (0) is the neutral element &
(i) 0 (1) isthe neutral element & € K if and only if A =Ty (A = Sv)

(3) Any aggregation operatdx € X is idempotent, that i#A(x,x) = x for all x € [0, 1].

The classX contains all Choquet and Sugeno integral based aggregation operators, including all
weighted means and OWA operators. The class K contains also all 2—copulas (dual copulas) [9].

A simple characterization of 1-Lipschitz aggregation operators is the following one:

An aggregation operatoh € £ if and only if the functiorA : [0, 1]2 — [0, 1] satisfying for all(x,y) €
[0, 1]2 the equation )

AXY)+AXY) =X+y
is an aggregation operator.

Note that the previous equation is an analogue of the Frank functional equation [4] in the framework of
aggregation operators. By this characterization several other problems can be solved, for instance, due
to the non—continuity of uninorms, it is immediate that no uninorm can be solution to this equation,
compare [1].

Evidently, ifA € £ then alsoA ENL. ForallA € X we haveA ¢ L, Ais idempotent. HoweveA ceX
if and only if A (and hence als8) is a shift invariant aggregation operator.

A crucial role in the structure of kernel aggregation operators plays the boundary of the unit square,
B = [0,1]?\]0, 1]2. Some of them can be uniquely determined >from their values on the bouRdary
compare [7]. In general, € X then for allx € [0, 1]

A(0,x) <x<A(x1), A(0,x)+1—x>A(1-x,1),
A(x,0) <x<A(1,x), A(x,0)+1—x>A(1,1-X).

Vice versa, if the values of a kernel aggregation oper&tare known on the boundafBy, then for
all x € [0,1] ande € [0,1— x] we have

A (X, X+€) <A(X,X+E) < A" (X, X+E),
where
A.(x,x+€) = max(A(0,x+¢),A(1—¢,1)—(1-x—¢)),
A*(x,x+¢€) = min(A(x,1),A(0,g) +Xx)

are kernel aggregation operators [6]. Analogous inequalities can be writteh, far+ €,x) and
A*(x+¢,x). The operatorg\, andA* are the weakest and the strongest kernel aggregation opera-
tors respectively, coinciding witA on the boundari.
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1 Introduction

We present some recent results on t-norms which are closely related to some generalizations of the
fixed point theorems in probabilistic metric spaces, obtained in [3]. We investigate closer the countable
extension of t-norms and we introduce a new notion: the geometrically convergent (g-convergent) t-
norm, which is closely related to the fixed point property. We prove that t-noristgpe and some
subclasses of Dombi, Aczel-Alsina, Sugeno-Weber families of t-norms are geometrically convergent.
We prove also some practical criterion for the geometrically convergent t-norms.

A new approach to the fixed point theory in probabilistic metric spaces is given in Tardiff's paper
[13], where some additional growth conditions for the mappghgSx S— D" are assumed, and
T > T, whereT_ (x,y) = maxx+y—1,0). V. Radu [10] introduced a stronger growth condition for
F than in Tardiff's paper (under the conditidn> T,_), which enables him to define a metric. The
metric approach also allows an estimation of the convergence with respect to the solution.

We present a fixed point theorem for a probabilisgicontractionf : S— S where(S, F,T) is a
complete Menger spac#, satisfies Radu’s condition, afdis ag-convergent t-norm (not necessarily
T > T.). We prove in [3] a fixed point theorem for mappinfsS— S where(S 7, T) is a complete
Menger spacef satisfy a weaker condition than in [10], amdelongs to some subclasses of Dombi,
AczZel-Alsina, Sugeno-Weber families of t-norms. We present a fixed point theorem for a generalized
probabilisticC-contraction for multivalued mapping with an application in fuzzy metric space.

Notions and notations can be found in [3, 6, 9, 11].

2 Probabilistic B-contraction principles for single-valued mappings

A triangular norm (t-norm for short) is a binary operation on the unit intej@dl], i.e., a function
T :[0,1]?> — [0,1] such that it is commutative, associative, monotone Bd1) = x. t-conormS is
defined byS(x,y) =1—-T(1-x,1-Y).

Let At be the set of all distribution functiorfs such that=(0) = 0 (F is a nondecreasing, left
continuous mapping fror®, o] into [0, 1] with F () = 1).
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Definition 1. (a) A probabilistic metric space (in the sense of Serstnev) is a tf#l€, 1) whereS
is a nonempty setf : Sx S— AT is given by(p,q) — Fpq, T is a triangle function, such that the
following conditions are satisfied for gil,g,r in S:

(b) (S, F,1) is proper ift(Ha,Hp) > Haib (a,b € [0,)), where fora € [0, o] we haveHs(x) = 0
for x € [0,a) andH,(x) = 1 forx € (a,].

A Menger spacés a triple (S, F,T), where(S, ¥) is a probabilistic metric spac®, is a t-norm
and the following inequality holds

Fuv(X+Y) > T (Fuw(X), Fuv(y))
for everyu,v,w € Sand everyx > 0,y > 0.

We assume in the whole paper for the probabilistic metric spE&e5, 1) that Rangé¥ ) C D™,
whereD" ={F |F € A*,Xlim F(x)=1}.

The first fixed point theorem in probabilistic metric spaces was proved by Sehgal and Bharucha-
Reid (1972) for mapping$ : S— S where(S, F,Tu) is a Menger space, afi@, = min.

Definition 2. Let (S, F,1) be a probabilistic metric space. A mappifig S— Sis a probabilistic
g-contraction(q € (0,1)) if

for everyps, p2 € Sand every € R.

Theorem 3. Let (S, ¥, Ty ) be a complete Menger space andS— S a probabilistic g-contraction.
Then there exists a unique fixed point x of the mapping f aﬁ(rj]im fp for every pc S

Further development of the fixed point theory in a more general Menger $SageT) was
connected with investigations of the structure of the t-ndrnvery soon the problem was in some
sense completely solved. Namely, if we restrict ourselves to complete Menger 6page§), where
T is a continuous t-norm, then any probabiligicontractionf : S— Shas a fixed point if and only
if the t-norm is ofH-type.

If T is a t-normx € [0,1] then we writed” = 1 and fom e N,x{" = T (x(T”_l),x> :
Definition 4. A t-normT is of H-type if the family(x(T”>)neN is equicontinuous at the poirt= 1.

0. HadZic and M. Buditevic (1978) proved the following fixed point theorem.

Theorem 5. Let (S, F,T) be a complete Menger space, T a t-norm of H-type an8f S a proba-
bilistic g-contraction. Then there exists a unique fixed poiatX of the mapping f and¢ r!irr!o f"p

for every pe S

Since the t-normTy is of H-type, the fixed point theorem of Sehgal and Bharucha-Reid follows
from Theorem 5.

V. Radu (1994) proved the following fixed point theorem.
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Theorem 6. Any continuous t-norm T with the fixed point property is of H-type, where a t-norm T
has the fixed point property if and only if every probabilistic g-contractiols S where(S F,T)
is an arbitrary complete Menger space, has a fixed point.

A very interesting new approach to the fixed point theory in probabilistic metric spaces is given
in Tardiff's paper (1992), where some additional growth conditions for the magpin§x S— D"
are assumed, arid> T, (implies sup_4 T (x,x) = 1 and then also continuity &1, 1)).

Theorem 7. Let (S, F,T) be a complete Menger space and T a t-norm such thatTl . If for every
uvesS

/ IN(X) dFyy(X) < o
1

holds, then any probabilistic g-contraction: 5— S has a unique fixed point x and;xrllim f"p for
every pe S

E. Parau and V. Radu (2001) proved the following theorem.
Theorem 8. If (S, F,T) is a complete Menger space such that>TT,_, then a probabilistic g-
contraction f: S— S has a fixed point if and only if there existk0 and pe S such that

00

0

3 Countable extension of t-norms

We investigate closer the countable extension of t-norms ([6], for other types of extensions see [8])
and we introduce a new notion: the geometrically convergent t-norm, which is closely related to the
fixed point property.

We prove in [3] that t-norms ofl-type and some subclasses of Dombi, Aczel-Alsina, Sugeno-
Weber families of t-norms are geometrically convergent. We obtained in [3] also some practical
criterion for the geometrically convergent t-norms.

In the fixed point theory it is of interest to investigate the classes of t-ndrraad sequences
(Xn)nen from the interval0, 1] such thatn limx, =1, and

lim T X = lim T Xnyi = 1. Q)
i=n n=ei_q

N—oo.

It is of special interest for the fixed point theory in probabilistic metric spaces to investigate con-
dition (1) for a special sequen¢t— q")nen for g € (0,1).

Proposition 9. If for a t-norm T there existsge (0,1) such that
lim 'F (1—qp) = 1,then lim 'i.g (1—4d') = 1,for every ge (0,1).
i=n ~®i=n

n—oo
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Definition 10. We say that a t-norrit is geometrically convergent (brieftyconvergent, called also
g-convergent for somg € (0, 1)) if

im, T (1) =

n~>oo
for every ge (0,1).
Sincenlim(l— q")=1land E (1—(1—4g"))® < o for everys > 0 it follows that all t-norms from

- U iy U m* }U‘T” U "

AE(0,00) AE(0,00) (—1,00]

the family

areg-convergent, wher@" is the class of all t-norms dfi-type, and for other families see [6].
The following example shows that not every strict t-norngHsonvergent. LeT be the strict t-

norm with an additive generatox) =

—m. In this case the seri?glt(l — q‘) foranyqge (0,1)

is not convergent.

4 Fixed point theorems related tog-convergent t-norms

We proved a fixed point theorem for a probabilisgicontractionf : S— S where(S #,T) is a
complete Menger spacé, satisfies Radu’s condition, afdis ag-convergent t-norm (not necessarily
the conditionT > T ). The metric approach allows an estimation of the convergence with respect to
the solution.

Theorem 11. Let (S ¥,T) be a complete Menger space andS— S a probabilistic g-contraction
such that for some g S and k> 0

sup(1 - Fp (X)) < .

x>0

If t-norm T is g-convergent, then there exists a unique fixed point z of the mapping f:ar!mm A"p.

There are many corrollaries of the preceding theorem related the f&niy t-norms, see [3].
Special non-additive measures, so calledecomposable measures (see [9]), generate a probabilistic
metric space in which Theorem 11 implies a specific fixed point theorem, see [3].

5 Multivalued contraction and an application in a fuzzy metric space

T. Hicks (1983) considered another notion of probabilistic contraction mapping than probabilistic
g-contraction, which is incomparable with probabilisgicontraction.

Definition 12. Let (S, F,1) be a probabilistic metric space afid S— S. The mappingf is a proba-
bilistic C-contraction if there existe € (0,1) such that for everyp, q € Sand for everyt > 0

Fog(t) >1—t = Ffpsq(kt) >1—kt.
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If f:S— Sis a probabilisticC-contraction and’S, ¥,Tw) is a complete Menger space Hicks
proved thatf has a unique fixed point.

As a multivalued generalization of the notion of a probabili§ticontraction we introduced the
notion of a(W,C)-contraction, wher& : R, — R, for R, = [0, ).

Let 2(S) be the family of all nonempty subsets &f

Definition 13. Let (X, #,1) be a probabilistic metric space arid S— P(S). The mappingf is
called a(W,C)-contraction, wheréV : R, — R, if for every p,q € Sand everyx > 0 we have the
following implication:

Fpa(X) >1—x= forevery uc fpthere exists & fq

suchthat Ey(W(x)) > 1—W(x).

If $(x) =kx, x>0, ke (0,1) then a(¥,C)-contractionf : S— Sis aC-contraction. LetP(S)¢
be the family of all nonempty closed subsetsof

Theorem 14. Let(S ¥,T) be a complete Menger space such tha_, T (x,X) =1, M € P()q, f:
M — P(M)q a (W,C)-contraction, where the serigg,_, W"(s) is convergent for somes 1. If f is
weakly demicompact or

lim T (1-W3(g) =1,

i=1
then there exists at least one elemertM such that xc fx.

For some families of t-norms it can be obtained special fixed point theorems, see [3].

As a consequence of Theorem 14 we shall obtain a result on the existence of a fixed point for a
class of multivalued mappings in fuzzy metric spaces.

In [5] Kaleva and Seikkala introduced the notion of a fuzzy metric space. LIRt [0,1] x
[0,1] — [0,1] be symmetric, nondecreasing in both arguments suchL{ite®) =0, R(1,1) =1, G
the set of all nonnegative upper semicontinuous, normal convex fuzzy numbarapnempty set,
d: X x X — Gand0 be the fuzzy number defined Byu) = 1 for u= 0 andO(u) = O for u # 0. Denote
[Ad(X,¥)]a = Aa(X,Y),Pa(X,Y)] (X,y € X, a € [0,1]). The quadrupléX,d,L,R) is called auzzy metric
spaceif and only if (i)-(iii) hold, where

() d(xy) = 0 if and only ifx = y.
(i) d(x,y) =d(y,x), forall x,y € X.

(i) d(x,y)(s+u) > L(d(x,2)(s),d(z,y)(u)), for all x,y,ze X,

whenever

s< )\1(X7 2)7 u< )\1(Z7y>7 s+u< )\1(X,y)
and
d(x,y)(s+u) <R(d(x,2)(s),d(zy)(u)), for all x,y,z€ X,
whenever

s> )\l(xa Z)a uz= )\l(zay)a S+u=> Al(xvy)‘
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We shall suppose th&tis associative and satisfies the conditi(@, 0) = a, for everya € [0, 1].
This implies that the mapping(a,b) =1—-R(1—-a,1—-b) (a,b € [0,1]) is at-norm.

Every Menger spaceX, F,T) is a fuzzy metric spaceX,d,L,R) if

0, u < sup(s; Fy(s) =0} = uxy
1-Fey(u), u>uyy,

dixy)(w = {

and the functiont andR are defined by. =0 andR(a,b) =1-T(1—-a,1—-b) (abe]0,1]),i.e.,
Ris the dual t-conorm for .

The converse statement does not hold in general. But under an additional conditi@fonzy
metric spacéX,d,L,R) is a Menger space. This condition is the following: foraly € X

lim d(x,y)(u) =0.

U—o0

Then(X, #,T) is a Menger space, whefga,b) = 1— R(1—a,1—b), for everya,b € [0,1] and the
mapping¥ is defined by(x,y € X, s€ R)

Fey(s) =0, for s<A1(x,y), Fey(s)=1—-d(x,y)(s), for s> A1(x,y).

If a fuzzy metric spacéX,d,L,R) is given, then we call the above defined Menger spxcg , T)
the associated Menger space.

Theorem 15. Let (X,d,L,R) be a complete fuzzy metric space such that
l!im d(x,y)(u) = 0for all x,y € X,

Iirr(}+ R(a,a) =0and¥:R; — R, such that the series,,_; W"(u) is convergent for somes 1. Let
a—
f: X — P(X)q be such a mapping that the following implication holds:

For every xy € X and every & fx there exists & fy such that for every s 0 d(x,y)(s) < s=
1-FRv(W(s) < W(s). If fis weakly demicompact or!im R, W¥'(s) =0, then there exists & X
such that x fx.

For the proof see [3].
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1 Introduction

Aggregation is a fundamental process in decision making and in any other discipline where the fusion
of different pieces of information is of vital interest, e.g. in fuzzy querying.

Flexible (fuzzy) querying systems are usually designed not just to give results that match a query
exactly, but to give a list of possible answers ranked by their closeness to the query—which is partic-
ularly beneficial if no record in the database matches the query in an exact way [14]. The closeness
of a single value of a record to the respective value in the query is usually measured using a fuzzy
equivalence relation, that is, a reflexive, symmetric @nansitive fuzzy relation. Recently, a gen-
eralization has been proposed [5] which also allows flexible interpretation of ordinal queries (such as
“at least” and “at most”) by using fuzzy orderings [3]. In any case, if a query consists of at least two
expressions that are to be interpreted vaguely, it is necessary to combine the degrees of matching with
respect to the different fields in order to obtain an overall degree of matching. Assume that we have
a query(d,-..,0n), Where eacly; € X; is a value referring to theth field of the query. Given a data
record(Xy, ..., X%n) such thak € X; for alli = 1,...,n, the overall degree of matching is computed as

R((O1,---,Gn), (X1, -+, %)) = A(Re(G1, X1), - - -, Ra(Cns Xn)),

where eaclR; is aT-transitive binary fuzzy relation oX; which measures the degree to which the
valuex; matches the query valug.

It appears natural to require that the functiis an aggregation operator [7, 9, 13] and moreover,
it would be desirable tha&k is still T-transitive in order to have a clear interpretation of the aggregated
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fuzzy relationR. Therefore, it is necessary to study which aggregation operators are able to guarantee
thatR maintainsT -transitivity.

It turns out that the preservation dftransitivity in aggregating fuzzy relations is closely related
to the dominance of an aggregation operataovith respect to the corresponding t-noim

Let us recall some basic definitions.

Definition 1. [8] A (binary) operationA : [0,1]°> — [0,1] is called anaggregation operatoif A is
non-decreasing and the equalit®e®,0) = 0 andA(1,1) = 1 hold. Moreover, ifA is also associative,
symmetric and has 1 as neutral element, then it is called a t-norm.

Definition 2. Consider a binary fuzzy relatidR on some univers¥ and an arbitrary t-norm. Ris
calledT-transitive if and only if, for allx,y,z € X,

T(R(xY),R(Y,2)) <R(x,2). @)

For more details on fuzzy relations, especially fuzzy equivalence relations and fuzzy orderings
and their properties, we recommend either original sources as [17, 1, 12], but also [10, 11, 4, 2].

Standard aggregation of fuzzy equivalence relations (fuzzy orderings) presértiagsitivity is
done either be means @for Ty (x,y) = min(x,y). Staying in the framework of t-norms, in fact any
t-norm T* dominatingT can be applied to preservetransitivity, i.e. if Ry, R, are twoT -transitive,
binary relations on a universe, then alsdr * (R, Rz) has this property (see [10]). Recall that trivially,
for any t-normT, it holds thatT itself andTy dominateT .

As already mentioned above in several applications, other types of aggregation pre3erving
transitivity are required [6]. Especially different weights (degrees of importance) of input fuzzy
equivalences (orderingB®) andR, cannot be properly modeled by aggregation with t-norms, because
of the commutativity . Therefore, we have to consider gengrahnsitivity-preserving aggregation
operators.

Note that in the sequel we will deal with the aggregation of two giVemansitive binary fuzzy
relationsRy, R, acting on the same univer3e Our results can be easily modified for the case of the
Cartesian product of -transitive equivalence relations, as well as to the case of aggregating more than
two T-transitive fuzzy relations such that the resulting output fuzzy relation will still ieansitive.

2 T-Transitivity and Domination

Definition 3. [8] Let A, B be two aggregation operators. We say thatominateB (A > B), if and
only if, for all x,y,u,v € [0,1],

B(A(XY),A(L,V)) <A(B(xU),B(y,v)). 2)
Observe thafA > A if and only if A is bisymmetric. As already mentioned, for any t-nofm

T>TandTy >T.

Further on we will denote the class of all aggregation opera&asbich dominate a given t-norm
Twith Dy ={A|A>T}.

The following theorem generalizes the result from [10].
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Theorem 4. Let|X| > 2. An aggregation operatoh preserves the T -transitivity of fuzzy relations on
X if and only ifA € Dr.

In the following, we will focus on the characterization of the syst®n As already observed,
{T,Tm} C Dr. For any t-norniT, some interesting properties #f can be found.

Proposition 5. Consider at-norm T and the corresponding class of dominating aggregation operators
Dr. Then the following holds:

(i) ForanyA,B,C € Dr, alsoD =A(B,C) € Dy.

(i) If T is a continuous Archimedean t-norm with an additive generatofOf 1] — [0, ], then
for any pq € |0, ], also the weighted t-normy}, € Dr, with Toq(X,y) =T (x(Tp), (TQ)> and
P — (=1 (p. f(x)) (see also [13, 9]).

Recall thatDr was discussed and characterized also in [16, 15] for the casE thatcontinuous

Archimedean t-norm T with an additive generator
f:[0,1] — [0, c0].

Proposition 6. [16] Under the circumstances given abovegc Dy if and only if there is a metric-
preserving function H [0, ]? — [0, ] such that for all xy € [0,1] :

FIA(Y)) =H(f(x), £(y))-

Observe that Proposition 6 is in fact a corollary of Theorem 4. Indded, metric preserving if
and only if it is a sub-additive function of two variables, i.e.

H(x+y,u+x) <H(x,u)+H(y,Vv)

for all x,y,u,v € [0,], what is, in fact, the domination of the sum operator dver

3 Special Cases

We will now discuss three special cases of t-norms: Ty = min(xy),
Tp(x,y) = x-y (by isomorphism any strict t-norm can be covered [13])x,y) = maxx+y—1,0)
(by isomorphism, covering all nilpotent t-norms).

Proposition 7. The class of aggregation operators dominating the minimum t-n@rns given by
Dmin = {min¢ g | f,9:[0,1] — [0, 1], non-decreasing
f(1) =9(1) =1,1(0)-9(0) = 0},
wheremint g = min (f(x),9(y)).
Evidently,A € Dnin is symmetric if and only ifA(x,y) = f(min(x, y)) for some non-decreasing

function f : [0,1] — [0,1] fulfilling f(0) =0 andf(1) = 1. Note also, ifA € Dn;n, thenA = ming g,
wheref (x) = A(x,1) andg(y) = A(1,y) (for all x,y € [0, 1]).

ConcerningTp and T, , though the classe®y, and Dy, are completely characterized either by
Theorem 4 or by Proposition 6, there is no counterpart of Proposition 7 in these cases. However, it
is possible to give examples of these members of these classes, and of course, apply Proposition 5 to
obtain new members.
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Example 8. Observe thax(TE) = xP and thus for alp, q € ]0, |, the operatoPy  : [0, 1]2 — [0, 1], Py q(X,Y) =
xPydis contained inDy,. Particularly, ifp+q= 1, thenP, 4 is a weighted geometric mean (compare
also examples from [16, 15]).

However, observing that for allA > 1, the function H, : [0,0)° — [0,c0],
Ha(x,y) = (X} +¢)%, is metric preserving, also any member of the Aczel-Alsina family of t-norms
(TAAN)aelLw) (se€ [13]), is contained iy, because of Proposition 6.

Example 9. Similarly, for all p,d € ]0,0,Lpq € Dy, where
Lpg = TLpq = mMax(0, px+qy+1—p—q). In particular, ifp+q= 1, Lpgq(x,y) = px-+qy, i.e. any
weighted mean dominatdg (compare also examples from [16, 15]).

Based orH, any Yager t-nornT YA € Dy, wheneveiA > 1.

4 Conclusions

An aggregation operatdk preserved -transitivity of fuzzy relations if and only if it dominates the
corresponding t-nornT (A € Dy). Although several methods for constructing aggregation opera-
tors within a certain clas®r have been mentioned, an explicit descriptiorZaf could only been
presented for the minimum t-norfiy .
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Abstract

In this paper | present the dynamics theory which can operate with an imprecise knowledge
about system states and with qualitative information about the forces influence. Such situation is
typical for biology, economy, social and political science, where we don’t have, as rule, complete
information about the system state and where our "fair" knowledge about the dynamics laws must
be expressed in terms of "preferability”, rather than in exact definition of the forces.

This approach was successfully applied to some problems of brain activity and the lymphocyte
cells maturation.

1 Introduction

There are a few equations in theoretical physics, which in a slightly different modification cover dy-
namic problems of most physical systems. The same types of the equations appear, also, in the com-
pletely “non-physical” areas like finance (Black-Scholes equation), political science (voting theory),
ecology,etc In this paper we show how the fuzzy logic mathematical apparatus applied to common
causal principal together with some natural restriction on a system state space resolves this puzzle.

Another goal of this paper is concerned with the necessity to have dynamics theory which can
operate with an imprecise knowledge about system states and with qualitative information about the
forces influence. This situation is typical for the above mentioned non-physical sciences. There, as
a rule, we don’t have complete information about the system state and our "fair" knowledge should
be expressed in terms of "preferability”, rather than in exact definition of the forces. For example,
based on the observations and an intuitive experience, most experts will be consistent in formulation
of the forces influence in this form: “if the system is in statthen after a short time staBwill be
preferable than the others”. However the experts will be hindered and inconsistent if we ask them to
give a more precise formulation of the dynamics laws, or even if we ask them to assign probabilities
for transitions from the given state to the others.

The main assumptions for this study are the following:

i) For most practical problems a system state space can be approximated by a Riemann manifold,
but choice of the coordinates on the manifold is not unique, so the dynamics theory should be
covariant under appropriate transformations of the coordinates.

60



ii) A system behavior is described in terms of "possibility” [1] that the system is in the neighborhood
Uy of a given statex at a given timet. This possibility can be represented as a function of
the domain and the timem(U,t). This representation should be consistent with a common
logic in a sense that at least for small domains the possibility that the system is in the domain
U =U;JUz; U1 U2 = 0 must be equal to the possibility that the system is in the dotdain
or itis in the domairlJ,:

m(U,t) =

SM(Uy,t);m(Uz,1)),
whereS(my; my) denotes the logical connective.

iii) The dynamics laws have "causal recursion” form such as: Possibility that a system is in some
neighborhood of the statex-at the timet is determined by the possibility that: the system was
in a neighborhood of a statg at timet — & andthe transfer to th&-neighborhood during the
time intervald was possiblegr it was in a neighborhood of a poirg at timet — & andtransfer
to thex - neighborhood during the timewas possiblegr ... so on, for all possible states at the
timet —o.

iiii) The dynamics is local, i.e. a system state cannot be changed significantly for a short time period.

In spite of the generality of the forms of the above mentioned assumptions, they dramatically reduce
the possible types of the dynamics equations and lead to a deep relation between permissable form of
the membership functiom(Uy,t) and representations of the logical connectiveandand

2 Fuzzy Dynamics

Denoting byPs (Ux,Uy;,t) the possibility of the transition from the neighborhddg of the pointx;
to the neighborhootly of the pointx during the timed, we can write the dynamics laii) in the
symbolic form:

m(Ux,t) = 1)

Salx; (- T (Ps (Ux; Uy, t) sm(Uy;, t = 9)) 5 ...),

whereT (P; m) denotes the logical connectigad Note, that the possibility of transitid? (Uy, Uy, t)
is determined by the forces acting on the system.

In order to find the dynamics equations we have to repreSamd T connectives and go to the
limit Ux — x (that is the membership function ai®JT - connectivesan be determined for small
neighborhoodg)y only).

Admissible representations of ti&and T connectives depend on the limiting properties of the
functionm(Uy, t) in the limitUy — x. Generally, there are two cases:

a)
Jim mUst) = pix,t) # 0.
b)
uliTxm(UX’t) =0.
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As these cases lead to substantially different descriptions of the system dynamics, they will be con-
sidered separatelyCase a) - dynamics of a fuzzy State Gradhe functionu(x,t) can be interpreted

aspossibilitythat a system state isat the timet. For definiteness we will call this function “State
Grade”.

Consider now the relatioii) in the caséJ; — x; U — x and, therefolJ = U; U, — x. In this
limit for continuousp(x,t) we have:

S =R
Together with such general properties like monotonicity, commutativity and with usual boundary
condition [2] this leads immediately to:
S(Ha, M) = max(p; ko). 2
For the connectivand however, we can take an arbitraiynorm
In the case) the possibility of transition fronuy, to Ux becomes a function of the statgesx and
the time:Ps (x; — X,t). Itis convenient to choose this function in the form:
PB(XiaX>t) = G(V1 X?t))v
X—Xj

wherev = ~5* andG(v; x,t) is the possibility that the system has the “velociyt the pointx at the
timet. Then, the symbolic expression (1) becomes an equation:

H(X,t) ~
supT (G(v,x — vd,t — &); u(X — vd,t — d)).
\'

It can be shown (see [3]-[5] for details) that in the lidit-> O this equation leads to the Liouville-type

equation:
OH dp

o
a~  2apox
The “Hamiltonian” -H is determined as:
H=(V(x,p.t)-p),
with V(x,p,t) is obtained from the system:
oG(V;x,t)
T - pr
T(G(V;x,t); 1) = H(Xt).
Equation (3) is equivalent to the Hamiltonian system for its characteristics:
dx(t) _oH
dt  odp’
dp(t)  oH
dt — ox’ ®)
>From equations (3)-(5) it follows that the state grade remains constant on the charactetistics

M(X(t),t) - H(X(O)70)7

3)

(4)

for anyt.

Equations (4)-(5) describes a system evolution in an extetieleay state space’Wwhich consists
of the two components:
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a) the “physical’ componentx

B) the “information” component p

As the equation (5) is similar to the equation for the physical moment, we cap ¢#ile moment of
possibility The direction of this momerg/|p| = Om(x,t)/|Om(x,t)| is the direction >from a given
state to the locally most preferable one.

It is important, that the HamiltoniaH (x, p,t) can be obtained directly from the “linguistic” de-
scription of the “forces” influence. The Hamiltoni&hcan be more general than the common Hamil-
tonians in physics, in particular, it may be a set-valued map, i.e. the system (4)-(5) describes both
differential equation and differential inclusion. The particular cB88; u) = min(G; u) has been con-
sidered in [3],[4]. Case b): dynamics of a fuzzy State Denbityaccordance with the requirement -

i) the functionm(U,t) should depend on invariant measurdJobnly. The simplest such measure is
pdU, wheredU is “volume” of U in a given coordinate system and multiplgmakes the product
pdU invariant under the admissible transformations of the coordinates.

In the casd) this leads to the asymptotic:

mUxt))
ULTX g(p(x,t)dUy) = (6)

where the functiorgy(...) is continuous (but not necessary differentiable) near zero functiog(@e-

0. We assume also thatis a smooth function ok andt. As in physics the multiplier likg is called

- density, we will callp(x,t) as State Density Generally speaking, the functiancould depend
explicitly on pointx, but, as we will see later, such dependence must be omitted in order to hold
homogeneity of the representations of the logical connectivesidandfor the whole state space.

Consider small domaindy = Uy, ¢ JUx_¢ With the volumes:
dUy = dUy_¢ +dUy ¢, (7)
Possibility, that the system is W, is equal to:
9(p(x,t)dUx) = 8

S(9(p(x —&,t)dUx¢); g(P(X +€)dUxre)).
Using (7), one has for the smoqiix,t) and smalk:

P(X —&)dUy_ge +p(X+&)dUy ¢
+o(edU).
Thus, for the connectiv®@Rwe have for the small and closi&J;, dUo:
S(g(p(x1)dU1);9(p(x2)dUz)) ~ ©)

g(p(x1)dUy + p(x2)dUy).
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In order to find out for an admissible form of the possibility of transition, let us assume now that
at the timet — & the system was in the domalily with the possibility 1 and with the possibility O
elsewhere. It is obvious, that the possibility that at the tintlee system will be in a domaidy is
equal to the possibility that the system transferrdditiéromUg. That is in such situation the transition
possibility - Ps(Ux,Uy,,t) should be equal ts(Uy,t). Becausen(Uy,t) has of the asymptotic (6) we
have:

Ps(Ux,Ux,) =~ 9(MsdUx), (10)

wherel 5 depend or{xo; x;t), but doesn’t depend cuhJ.

In order to find admissible representation of the conne@mné consider decomposition of the
transition fromUy, to Uy during the timed = &; + &, on the transitions frory, to u; during the time

01 and from uy to Uy during dz, or >from Uy, to u, and from u, to Uy, or ... so on, for all possible
intermediate domains (see Figure 1).

B (Um) P 11\ P, (uiUy)

u;

0

Py(Ux;Ux)

t-& t-8, t

Figure 1: Decomposition of the transition possibility in the clhase
In according with (10) we have:
Peisl = Paisl (Uxou) =9 (Fialdu;) 5

sz - sz(ui,ux) =g (rgzdux) .

Then, for possibility of the “two-fold” transition frorty, to u; during the timed; and >from u; to Uy
during the timed,; one obtains:

T (Pi517 PI52) =9 (F (rgldu’rlézdux)) ’
with some unknown functiok. It follows from the figure and (9) that:

Ps (Uxo,u,) = S(...,T (Piél,Péz) ,) -

—9 (z F (rgldu,rgzdux)> :
|
As Ps = g(IsdUy) this implies that:
MsdU =S F (5, du, My dUy) =
I
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- (z f(Fs,du) r‘62> dUy.
|
In order that the last sum will converge for any partitigiy } , we have:
f (M5, du) = const I's du.
Without loss of generality we can pabnst= 1. So
F (M5, du; M dUy) =5 Ty dydUy.

Thus, the logical connectivendfor the casé) has to be defined as:

T(Py(M1dUy); Po(I2dUy)) = g(F1dUslM2dUp). (12)

If the functiong is invertible we can write:
S(my;me) = g(g ™ (my) + g7 (my)), (12)
T(P;P) =g(g (P g (), (13)

so in the cas®) the logical connectivesr andand, at least infinitesimally, should be considered as
the pseudo-arithmetic sum and product [6],[7].

Therefore, in the given case the symbolic expression (1) leads to an equation:

g(p(x,t)dx) = (14)

g ((/I‘ (x,x,t;8) p (X',t = d) dx’) dx> ,

Decomposing (14) with respect &ddeads to the equation (see [5] for details):

%‘f +V (x,t)-Op={D(xt)2+U (x)} p, (15)

with

500

U (x,t) = lim 1 (/ Ms(x—u,x,t)d"u— 1> ,

1
V (x,t) :éTOS/r5(X_U’X’t)Udnu’

1
D(x,t) = lim —/I‘ x —u,xt)|u*d"u.
(xt) = lim = [ s )lu
If the manifold consists d¥ single-connected domains, this equation is transformed to:

0 .
0 VS (x,1) Dipy = (16)

{D(K,’ij (x,t) 010} +UX (x,t)} Pk
where indexes, Kk = 1, ..., M describe the different single-connected domains.

The coefficients in these equations have the following mearihg,t) describe the diffusion,
V (x,t) - the flows andJ (x.t) - the external fields. Fov; = 0 and complex valueg equation (16)
corresponds to the Schreodinger equation andfp= 0 and quaternion valueglit corresponds to
the Dirac equation. For real valugdve have generalized Fokker-Plank equation.
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3 Concluding Remarks

Equations (4)-(5) and (16) cover most dynamics equations successfully used in physics up to the
present time. At the resent time the same types of the equations have been successfully applied to the
“non-physical problems” in finance, political science, ecology, bioledy,

It is interesting that there are “biological reasons” to use the above-mentioned representations
of the logical connectives. It is well known [8] that the elementary operations of a nerve cell are
accumulation and amplification of signals that correspond to the pseudo-arithmetic operations. In
order to be able to use thmax S-nornthe neuron must be able to compare signals. Genetically
a neuron is able to compare several specific signals. In the process of elaboration of conditional
reflexes, living creatures develop the ability make a comparison among many other signals. It was
shown also that a single neuron could be taught to compare arbitrary signals [9]. Thus, comparison
may become a basic neuron operation. For a certain kind of neuron a mechanism that could carry out
maxoperations was proposed in [10].

Application of this approach to some problems of brain activity and the lymphocyte cells matura-
tion were considered in [11] and [4].
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The aim of this talk is to present a natural interpretation of fuzzy partitions, which are naturally one-
to-one correspondent to fuzzy equivalence relations.

In[1, 2, 3] we presented a new and natural interpretation of fuzzy sets, fuzzy relations, and fuzzy
mappings in a cumulative Heyting valued model for intuitionistic set thoery. By the interpretation we
can get most of the standard defining equations of basic notions and operations of fuzzy sets and fuzzy
relations, consider notions such as operations of fuzzy subsets of different universes, fuzzy relations
and mappings between fuzzy subsets, and make the meaning of Zadeh'’s extension principle clear.

Let H be a complete Heyting algebra axd be the cumulativéd-valued model. Thédeyting
value||¢ | and thecheck se& are defined as usual. Foyv € VM, uandv aresimilar iff |ju=v| = 1.
EveryAeV" is called arH-fuzzy setand for a crisp seX every subset o in V" is called arH-fuzzy
subset of X Themembership function of A oniX the mappingia: X —H; x— || X € A||. There s
a natural correspondence betweétiiuzzy subsets oK and mappings fronX to H, which preserves
order and basic set operationsRIfs anH-fuzzy subset oK x Y, Ris called arH-fuzzy relation from
X toY, and itis called amd-fuzzy relation on Xn caseX =Y.

Theorem 1. An H-fuzzy relation R on X is an equivalence relation in the model iff for,glbe X,
HROX) =1, Pr(XY) = UR(YX), and [r(Xy) A Hr(Y2) < Hr{X2) hold.

For anH-fuzzy equivalence relatioR on X and for everyx € X, let [X] be the equivalence class
of X (in the model) andPr = {[X];x € X}. Obviously[X] is anH-fuzzy subset oK for eachx € X and
Pr is the set of all equivalence classes with respe& to

Definition 2. A family P of H-fuzzy subsets oK is called arH-fuzzy partition of Xf
(a) for everyA € P there exists am € X such thapa(x) = 1,

(b) for eachx € X there is a uniqué € P such thapa(x) = 1, and

(c) forall A;B € P andx,y € X, ya(X) A pa(y) A ps(X) < pUs(Y).

For anH-fuzzy partitionP of X, the correspondinbl-fuzzy equivalence relatioRr on X can also
be naturally defined, that is, for evexyy € X, |[XRey|| = ||[FA € P(X € AAY € A)|| holds. For two
families P, Q of H-fuzzy setsP andQ areequivalentif for every A € P there exists a uniquB € Q
such thatA andB are similar, and vice versa.

Theorem 3. Let X be a crisp set.

(1) If R is an H-fuzzy equivalence relation on X ané-Hx is the family of all equivalence classes
with respect to R, then P is an H-fuzzy partition of X, and R apdie similar.

(2) If P is an H-fuzzy partition of X and R Rp is the corresponding H-fuzzy equivalence relation
on X, then P is equivalent tazPthe family of all equivalence classes with respect to R.
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Hence there is a natural correspondence betwk&rrzzy equivalence relations ohandH-fuzzy
partition families ofX. The definition oH-fuzzy partition seems to be different from any of preceding
definitions of fuzzy partition in the literature.
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