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Since their inception in 1979 the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

LINZ 2005 will be already the 2B seminar carrying on this tradition, will be devoted to the
mathematical aspects of “Fuzzy Logics and Related Structures”. As usual, the aim of the Seminar is
an intermediate and interactive exchange of surveys and recent results.
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Herbrand’s Theorem and the Skolemization of Prenex Fragments

Matthias Baaz

Institute of Discrete Mathematics and Geometry
Technical University of Vienna
1040 Vienna, Austria
terwijn@logic.at

It is well known, that Skolem functions in the usual sense are not admissible for logics, where the
evaluation of quantifiers cannot be reduced to the evaluation w.r.t. critical objects. For example, the
existence of suprema (infima) of subsets of the truth values in absence of maxima (minima) is already
an obstacle.

We show for the prenex fragment the following relation to Herbrand’s Theorem:

Theorem 1. Let £ be a logic satisfying the following properties:

Er QVP = =, PVvQ (commutativity of/)

E, (QVP)VR = =, QV (PVR) (associativity ofv)
. QVPVP = =, QVP (idempotency of)

=L PY) = o P

':L P(t) = ':L HXP(X)

=, VX(P(X) vVQY) = =, (VxP(x)) v QX

= X(P(X)VQY) = =, (3xP(x)) v QW,

Let IXP" (X) be the Skolem form &1ys ... QnynP(Y1,...,Yn). For all tuples of termdy, ..., of the
Herbrand universe of P(x)

VPR = o Que QeyaP, - V).
i=1

NogakwbdkE

We also discuss conditions, which allow the derivation of Herbrand’s Theorem from the admiss-
ability of Skolem functions and apply the results to various sublogics of t-norm based logics. Fi-
nally we discuss alternatives to the usual Skolem functions, which might admit Skolemization/De-
Skolemization, when the usual Skolem functions are not admissible

* Supported by the Austrian Research Fund (FWF grant P17503-N12).



Relations in Higher-order Fuzzy Logic I, Il

Libor Béhounek and Petr Cintula

Institute of Computer Science
Academy of Sciences of the Czech Republic
182 07 Prague 8, Czech Republic

{behounek|cintula}@cs.cas.cz

A theory of fuzzy relations is an important part of any theory intended to provide a formal framework
for fuzzy mathematics. In [2], Henkin-style higher-order fuzzy logic is introduced and proposed as a
foundational theory for fuzzy mathematics. In these two talks, we investigate the properties of fuzzy
relations within its formal framework.

We follow closely the methodology of [1]. Therefore the notions introduced here are inspired by
(and deduced from) the corresponding notions of classical mathematics. Sometimes they coincide
with already known notions in fuzzy literature. However, our approach is usually more general (we
work in arbitrary fuzzy logic), more expressive (we deal withginededproperties of fuzzy relations,
as in [4]), and the proofs are more elegant (resembling the classical proofs). The subsequent talk [3]
given by Ulrich Bodenhofer will show links between our approach and the more traditional ones.

1 Higher-order fuzzy logic
For convenience, we first reproduce basic definitions of higher-order fuzzy logic.

Definition 1 (Henkin-style second-order fuzzy logic)Let F be a fuzzy logic which exten@t_A.

The Henkin-style second-order fuzzy logic oyeiis a theory over multi-sorted first-ordef with

sorts for objects (lowercase variables) and classes (uppercase variables). Both of the sorts subsume
subsorts for n-tuples, for all & 1. Apart from the obvious necessary function symbols and axioms for
tuples (tuples equal iff their respective constituents equal), the only primitive symbol is the member-
ship predicatec between objects and classes. The axiomsfare the following:

1. The comprehension axiori¥X)A(VxX)(x € X < ¢), ¢ not containing X, which enable the (elim-
inable) introduction of comprehension terfs| ¢ } with axioms ye {x| §(x)} < ¢(y) (whered
may be allowed to contain other comprehension terms).

2. The extensionality axiofvx)A(x € X < xe€Y) — X =Y.

Convention 2 The usual precedence of connectives is assumed. The fortvlae < X — ¢) and
(3Ix)(xe X & ¢) are abbreviatedvx € X)¢$ and(3Ix € X)¢, respectively (similar notation can be used
for defined binary predicates). The formuld& ... & ¢ (n times) are abbreviatedl". Furthermore,

x ¢ X is shorthand for-(x € X), and similarly for other binary relational symbols. An alternative
notation for xe A and(x,...,Xn) € R is simply Ax and Rx. . x,, respectively.

Definition 3 (Henkin-style higher-order fuzzy logic) Henkin-style fuzzy logic of higher orders is

obtained by repeating the previous definition on each level of the type hierarchy. Obviously, defined

symbols of any type can then be shifted to all higher types as well. (Consequently, all theorems are

preserved by uniform upward type-shifts.) Types may be allowed to subsume all lower types.
Henkin-style fuzzy logi& of order n will be denoted by, the whole hierarchy by,. The types

of terms are either denoted by a superscripted parenthesized type (€. oXunderstood from the

context.
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It should be stressed that despite the name, Henkin-style higher-order fuzzy logibsa@ies
overfirst-orderfuzzy logics (see [5]).

Definition 4 (Fuzzy class operations and relations)n 7, the following elementary fuzzy set oper-
ations can be defined:

0 =q4r {x| O} empty class
V =4 {X]| 1} universal class
Ker(X) =gt {X| A(x € X)} kernel
SupX) =4 {x| O(x € X)} support
\X =gf {X| X ¢ X} complement

XNY =g {X| xe X& XY} intersection
XUY =gt {X| xe XV xeY} union
X\Y =g {X|XeX& XY} difference

Definition 5 (Fuzzy class operations and relations)-urther we define the following elementary re-
lations between fuzzy sets:

Hgt(X) =ar (3X)(x € X) height
Norm(X) =g (3X)A(X € X) normality
Crisp(X) =4t (VX)A(xe XV X ¢ X) crispness
FuzzyX) =gt —Crisp(X) fuzziness
Exte(X) =gt (VX Y)(Exy& xe X — ye X) E-extensionality
XCY =g (WX)(xe X = x€Y) inclusion
XxY =g (X)(Xxe X = x€Y) equality
XY =g (X)(XeX& XEY) compatibility

We shall freely use all elementary theorems on these notions which follow from the metatheorems
proved in [2], and thus can be checked by simple propositional calculations.

Definition 6 The union and intersection of a class of classes are the functiphs’ and N™*?,
respectively, assigning a clas§"Al to a class of classed("? and defined as follows:

A =ar {x| GA€ 2)(xe A)}
(1A =ar {X| (VA€ A)(xe A)}

Definition 7 In %,, we define the following operations:

XxY =g {{(Xy) | xeX&yeY}
Dom(R) =4t {X| (x,y) € R}
RNgR) =ar {y | (xy) €ER}
R’A =g {X| (Jy)(y € A& RyxX}
RoS=¢ {{xy) | (F2)((x,2) eR& (zy) € S)}
R =ar {(xY) | (¥,¥) €R}
ld =gt {(XY) [X=Y}

We can also define the usual properties of relations:

11



Exte(R) =gt (VX,X,Y,Y)(ExX & Eyy & Rxy— RXY') E-extensionality
ReflR) =g (VX)(RXX) reflexivity
SYMR) =4t (¥VX,Y)(Rxy— RyX symmetry
TrangR) =g (VX,Y,2)(Rxy& Ryz— Rx2 transitivity

Asyme (R) =gt (VX,Y)(Rxy& Ryx— EXxy) E-antisymmetry

Antisymmetry and other properties that classically refer to identity are defined here w.r.t. some relation
E (usually an equality) in order to avoid the crispness-0fWe adopt the convention that the index E
can be dropped if E= Id.

2 General properties of fuzzy relations

There are many theorems on relations easily provable in our theory (some of them we list below). It

should be noticed that in our setting, the properties of relations (e.qg., reflexivity) are graded. Thus the
implications in the following theorems are generally stronger than the corresponding statements about
entailment.

Theorem 8 The following properties of relations are provable fa:

ReflR) < Id CR

SymR) —~ R1CR

TrangR) <> RoRCR

Ref(R) - RCRoR

TrangR) & Trans(Q) — TrangRN Q)
RCS— (RoTCSoT)A(ToRCTo9

oL

Thus every relation 1. is reflexive to the same degree as it contains identity, 2. is symetric to the same
degree as it contains its own inverse, 4. is contained in the composition with itself at least in the degree
of its reflexivity, etc.

Theorem 9 For an arbitrary binary relation R and arbitrary classes B.we have:

ACB—R'ACR’B

Refl(R) — AC R"A

TrangR) — Congg(R"A)
ACB& Congrr(B) - R"ACB
TrandR) — R”"(R"A) CR"A
Refl(R) & Congrg(A) — R"A= A

oo wWNPE

Theorem 10 If 4 is a crisp system of classes, th&tX € 2)Congi(X) — Congg (N -4) A Congg (U A).

3 Similarities and partitions

The notion of similarity is defined as usual (in analogy with classical mathematics it could also be
called equivalence). Like all properties of fuzzy relations in our setting, it is a graded notion.

Definition 11 (Similarity) Sim(R) =4t Refl(R) & Sym(R) & Trans(R)

Similarities are closely related with fuzzy partitions, as the following theorems show. Notice the
exponents in Theorems 13-15, which are caused by the non-contractivity of fuzzy logic.

12



Definition 12 We define:

X~ =at {y|y~x}
Cover(X) =¢ UX =V
Disj(X) =¢t X || Y = X~ Y
Part X) =g Crisp(X) & Disj (X) & Cover(.X)
V/~ =ar (X | (30X = X))}
~x =ar {(y) | (3X € X)(XE X & ye X)}

Theorem 13 It is provable in7,:

1. Refl(~) — (YY) (X~ = [y~ = x~y)
2. Trang(~) & Sym(~) — (¥xy)(x~y — [¥. = [y].)
3. Sim(~) & Trans(~) — (VX,y)([X|~ = [y]~ < X~Y)

Theorem 14 It is provable in7s:

1. Crisp(V/~)

2. Refl(~) — CoverV/~)

3. Tran$(~) & Sym(~) — Disj(V/~)
4. Sim(~) & Trans’(~) — PartV/~)

Theorem 15 It is provable in7s:

1. Sym(~x)

2. Crisp(X) & Cover(X) — Refl(~x)
3. Disj(X) — Trang~x)

4. Part X) & Cover(X) — Sim(~x)

Theorem 16 Let us assume th&im(~) andPart .xX'). Then we have

PartV/~)
X=V/~x

L

4  Fuzzy orderings

The notion of fuzzy quasiordering is defined as usual, viz. as a reflexive transitive relation. A qua-
siordering is arkE-ordering iff it is E-antisymetric:

Definition 17 (Quasiordering and ordering)

QOrd(R) =g Refl(R) & Trans(R)
Orde(R) =¢r QOrd(R) & Asymg(R)

Theorem 18 Many properties of (quasi)orderings are provablefg, e.g. the following:

1. QOrd(R) — R"(R"A) ~ R"A
2. QOrd(R) — RoR~R

13



3. QOrd(R) — R"A~ N {X | AC X & Congrg(X)}

The following notions are most meaningful for (quasi)orderings. Nevertheless, the definitions can
be formulated for just any relations and most of the results hold regardless of any properties of the
relations involved. Let us fix an arbitrary relatighand denote its converse by.

Definition 19 The upper and lower cone of a class A wxtis defined as follows:

AP =4 {x]| (Vac A)(x>a)}
AV =4 {x| (Vac A)(x<a)}
The usual definition of suprema and infima as least upper bounds and greatest lower bounds can

then be formulated as follows (notice that they are fuzzy classes, since the property of being a supre-
mum is graded):

Definition 20 The class of suprema and infima of a class A wr.are defined as follows:

SupA =g A2 NARY
InfA =g AV NAVA

Example 21 |J A4 is a supremum afl w.r.t. C. Similarly, N 4 € Infc 4.

We formulate the following theorems only for suprema, omitting their dual versions.

Theorem 22 The following are theorems ¢f,:

. AC B— B”® C A” (antitony of cones)

. AC A%V (closure)

. AD = AAVA (stability)

. (ACB& xe SupA& y e SupB) — y < x (antitony of suprema)
(X€ SUPA& y € SupA) — (x<y& y < X) (uniqueness)

s wWN R

Corollary 23 1-true suprema w.r.t< are E-unique if< is antisymmetric w.r.t. E. If furthehAExy«—
x =Y, the unique element &er(SupA) can be calledhe supremum of A and denoted SypA.

Example 24 The suprema w.r.iC are ~-uniquely determined. Due to the extensionality axiom, the
element of the kernel &up- A4 is unique w.r.t. identity. Thug/ A4 = sup- 4.

Theorem 25 SupA = InfA®
Corollary 26 If there is an element dfer(Inf A) for all A € 4, then there is an elementi§ér(SupA)
for all A € 4 as well. In other words, the completenesgiof.r.t. infima entails its completeness w.r.t.

suprema.

Example 27 Due to Example 24, the power cla®§A) =g {X | X C A} is a complete lattice w.r.t.
C. Similarly, due to Example 24 and Theorem 10, the c{a6$A Extz X} is a complete lattice w.r.t.

N

14
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If-then Rules from Data Tables with Fuzzy Attributes

Radim Belohlavek and Viem Vychodil

Dept. Computer Science, Palgddniversity
77900 Olomouc, Czech Republic
{radim.belohlavek|vilem.vychodil}@upol.cz

Introduction and problem setting Tabular data describing objects and their attributes represents
a basic form of data. Recently, methods for obtaining so-called association rules (particular if-then
rules) from tabular data became popular, see [1] and also [11]. In our paper (extended abstract), we are
interested in if-then rules from data with fuzzy attributes: rows and columns of data table correspond
to objectsx € X and attributes/ € Y, respectively. Table entridgx,y) are truth degrees to which
objectx has attributey. We are interested in rules of the form A thenB” (A = B), whereA and

B are collections of attributes, with the meaning: if an object has all the attributdghedn it has

also all attributes oB. In crisp case, these rules were thoroughly investigated, see e.g. [8] and [7] for
further information and references. Our aim is basically to look at such if-then rules from the point
of view of fuzzy logic. Our motivation is the following: (1) in practice, attributes are usually fuzzy
rather than bivalent; (2) non-logical attributes (like age, etc.) can be scaled to fuzzy attributes; (3) to
investigate connections with related methods for processing of data with fuzzy attributes, particularly
with formal concept analysis, e.g. [2, 3, 12]; (4) our results can be seen as preliminary results for a
rigorous approach to mining association rules and related methods [8, 7] from the point of view of
fuzzy logic.

We discuss the following topics: a tractable definition of if-then r#les B and their semantics
(validity degree etc.); directly related mathematical structures; the notion of semantic entailment of if-
then rules; non-redundant bases of all valid rules; algorithms for generating bases. We omit examples
due to a limited scope.

Preliminaries As a structure of truth degrees we use a so-called complete residuated lattice with a
truth-stressing hedge (shortly, a hedge), i.e. an algebrdl, A, Vv, ®,—,*,0,1) such thatL, A, Vv,0,1)
is a complete lattice{L,®, 1) is a commutative monoidp and — satisfy the so-called adjointness
property, see [2,9]; ant: L — L satisfies 1=1,a" <a, (a— b)* <a* — b*, a™ = a* for each
a,b € L. Elementsa of L are called truth degrees, and— are (truth functions of) “fuzzy conjunc-
tion” and “fuzzy implication”. Hedgé is a (truth function of) logical connective “very true”, see [9,
10]. For each_, two boundary cases of hedges are (i) identity,a’e= a (a € L); (ii) globalization:
1*=1,anda* =0fora# 1.

We use usual notions like-set (i.e. a fuzzy set with truth degreesliip etc., see e.g. [2]. Given
A Be LY, we define a subsethood deg&®, B) = Ay (A(u) — B(u)), which generalizes the clas-
sical subsethood relatign. In particular, we writeA C B iff S(A,B) = 1.

Fuzzy attribute implications Fuzzy attribute implicatiofover attributes Y is an expressioA =- B,
whereA,B € LY (A andB are fuzzy sets of attributes). The intended meaning ef B is: “if it is
(very) true that an object has all attributes frégthen it has also all attributes froBf.

For anL-setM € LY of attributes, we define degree||A = B||u € L to which A= B is valid
in M: ||A= B|lw = S(AAM)* — S(B,M). If M is the fuzzy set of all attributes of an objegtthen

16



||A=-Bl|m is the truth degree to whicA = B holds forx. Fuzzy attribute implications can describe
particular dependencies. LétandY be sets of objects and attributes, respectivelg anlL -relation
betweerX andY, i.e.l isamappind: X xY — L. (X,Y, 1) is called adata table with fuzzy attributes.
(X,Y,I) represents a table which assigns to emehX and eacly € Y a truth degreé(x,y) € L to
which objectx has attributey.

For fuzzy setsA € LX andB € LY we define fuzzy seté&! € LY andB! € LX by Al(y) =
Axex(AX)* — 1(x,y)), and B (x) = Ayey (B(y) — 1(x,y)). We put B(X*,Y,1) = {(A,B) € L x
LY|Al = B, B! = A} and define(A;,B1) < (Az,By) iff Ay C A (iff By D Bp). Operators!,! form
so-called Galois connection with hedge, see {H(X*,Y,l),<) is called afuzzy concept lattica-
duced by(X,Y,I), (A,B) of B(X*,Y,l) are interpreted as concepts (clusters) hidden in datng
B are called theextentand theintentof (A, B)) Furthermore< models the subconcept-superconcept
hierarchy—conceptAs, B1) is a subconcept afAz, B,) iff each object fromA; belongs toA; (dually
for attributes).

Now we define validity of fuzzy attribute implications in data. First, for a&et_ L we define
a degreg|A = B||4, € L to whichA = B holds inM by ||A=-B||ay = Amecar ||A = B||m. Having
(X,Y,1), letly € LY (x € X) be defined by (y) = 1(x,y) for eachy € Y. That is, |y is theL-set of all
attributes ofx € X (a row corresponding tg). A degree||A = B||x v,, € L to which A= B holds in
(each row o) (X,Y,1) is defined by||A = B||x v,y = |[A = B||as, whereM = {Ix|x € X}. Denote
Int(X*,Y,1) = {BELY|(A,B) € B(X*,Y,I) for someA} the set of all intents of concepts B{X*,Y, ).
Then, we can consider the degte®=> B||jnyx- v, to whichA=> B is true in the system of all intents.
The following theorem shows basic relationships.

Theorem 1. [|[A= B||x.v,) = ||A= Bl|inx-v1) = S(B,All) for each A= B. O

Implication bases The set of all attribute implications which are true in data is huge. For instance,

it contains all trivially valid rules likeA = A. To have only a reasonably large set of interesting rules
and still not to lose anything, one can proceed via a notion of semantic entailment and consider only
a non-redundant base of all implications true in data. Léke a set of fuzzy attribute implications.

M € LY is called amodelof T if ||A = B||m = 1 for eachA = B € T. The set of all models oF is
denoted by ModT ). A degred|A=> B||r € L to whichA = B semantically followérom T is defined

by |[[A= B||t = [|A= B||moqcr)- T is calledcomplete(in (X, Y, 1)) if ||[A=B||t = [|A=BJ|xy, for
eachA =-B. If T is complete and no proper subseflois complete, theff is called anon-redundant
basis.The following assertion shows that the models of a complete set of fuzzy attribute implications
are exactly the intents of the corresponding fuzzy concept lattice.

Theorem 2. T is complete ifMod(T) = Int(X*,Y,I). O

We are interested in finding non-redundant bases. First, a non-redundant hasissminimal
set of implications which conveys, via the notion of semantic entailment, information about validity
of attribute implications inX,Y,1). In particular, attribute implications which are true (in degree 1)
in (X,Y,1) are exactly those which follow (in degree 1) from Second, non-redundant bases are
promising candidates for being the minimal complete sets of attribute implications which describe
the concept intents (and consequently, the whole fuzzy concept lattice). Namely, concept intents are
models of a non-redundant basis.

Algorithm for getting non-redundant bases Given (X,Y,1), ? C LY (a system ofL-sets of at-
tributes) is called aystem of pseudo-interd§ (X, Y, 1) if for eachP € L":
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Pe? iff P#P!and|]|Q= Q|[p=1foreachQ e P with Q+#P.
If * is globalization and i is finite, then for eack{X,Y,I) there exists a unique system of pseudo-
intents (this is not so for the other hedges in general). From now ofX J¥t|) be finite and let. be
finite and linearly ordered. We can prove the following theorem (cf. [8, 7]).

Theorem 3. Let P be a system of pseudo-intents and put TP = P!T|P ¢ P}. Then(i) T is non-
redundant basis; if is globalization then T is minimalii) if * is globalization then there is an
L -closure operator gl- such that? U Int(X*,Y,I) is the set of all fixpoints of €l. 0

The previous theorem showed that fobeing the globalization, we can get all intents and all
(pseudo) intents (of a given data table with fuzzy attributes) by computing the fixpoiaks: oT his
can be done with polynomial time delay using an extension of Ganter’s algorithm [4] as follows:

Input: data table with fuzzy attributéX,Y, 1), L finite linearly ordered with globalization.
Output: In{X*,Y,I) (set of all intents) (set of all pseudo-intents).
B:=0
if B=B!1: add B tolnt(X*,Y,1); else add B to?
while B£Y:
T={P=PI|PcP}
B:=BT (BT is the lectically smallest fixpoint aflt+ which is a successor )
if B=B!!: add B tolnt(X*,Y,1); else add B to?

Reduction to the crisp case A data table with fuzzy attributes can be transformed to a data table
with crisp attributes. An interesting question is that of the relationship between the validity of at-
tribute implications in the corresponding tables. The details follow. For a data ¢db¥el) with

fuzzy attributes we consider a data taliY x L,1’) with crisp attributes, whert € 2X*(Y*xL) and
(x,{y,a)) € I"iff a<1(x,y) foreachx € X and(y,a) € Y x L (see also [6]). FoA € 2 denote by[A] an
L-set[A] = {(y,a) € Y xL|a<A(y)}. Using some technical results concerning relationships of valid-
ity of attribute implications in(X,Y, 1) and the naturally corresponding implicationso Y x L,1"),

one can show:

Theorem 4. Suppose? is a system of pseudo-intents(&f, Y x L,1").
Then T = {[P] = [P]'"|P € P} is complete with respect to data tals,Y, ). O

Theorem 4 enables us to find a complete set of fuzzy attribute implications as follows. For an
input data tabléX,Y, 1) we compute its crisp counterpdiX,Y x L,1”), then we can use the classical
algorithm for getting pseudo-intents ¢£,Y x L,1’). Finally, we construcT; using the pseudo-intents
of (X,Y x L,I") as shown in Theorem 4 need not be non-redundant. In fa,can be considerably
greater than the minimal non-redundant basis which can be computed directly from the input data table
with fuzzy attributes. To sum up, from the user’s viewpoint, both data tdileg ) and(X,Y x L,1")
represent the same information—the concepts extracted from both data tables are in one-to-one corre-
spondence. However, the minimal basig¥{fY x L,1”) cannot be turned into a non-redundant basis
of (X,Y,1) by the[---] operator. The size of a minimal basis @£,Y x L,l’) is equal or greater to
the size of a minimal basis @K,Y, ). This feature can be surprising, but it has the following (infor-
mal) explanation: the basis @K,Y x L,l’) contains implications describing, among the dependencies
between attributes, the dependencies between truth degrees. In the lXsi¢, bf, such dependen-
cies are determined automatically by the chokeherefore, working directly in fuzzy setting is
beneficial.

Acknowledgment Research supported by grant no. B1137301 of GACQR.

18



References

oW

® N o w;

11.

12.

. Adamo J.-M.:Data Mining for Association Rules and Sequential Patterns. Sequential and Parallel Algorithms.

Springer, New York, 2001.

Bélohlavek R.: Fuzzy Relational Systems: Foundations and Principl€kiwer, Academic/Plenum Publishers, New
York, 2002.

Bélohlavek R.: Concept lattices and order in fuzzy loghain. Pure Appl. Logid 282004), 277-298.

Bélohlavek R.: Algorithms for fuzzy concept latticd2roc. RASC 2004Nottingham, UK, 12—-13 December, 2002, pp.
200-205.

Bélohlavek R., Funioko& T., Vychodil V.: Galois connections with hedges. IFSA Congress 2005 (submitted).
Bélohlavek R., Vychodil V.: Reducing the size of fuzzy concept lattices by hedges. FUZZ-IEEE 2005 (submitted).
Ganter B., Wille R.Formal Concept Analysis. Mathematical FoundatioBpringer-Verlag, Berlin, 1999.

Guigues J.-L., Duquenne V.: Familles minimales d’implications informatives resultant d’un tableau deslbimaires.
Math. Sci. Humaine95(1986), 5-18.

Hajek P.:Metamathematics of Fuzzy Logituwer, Dordrecht, 1998.

Hajek P.: On very trug-uzzy sets and systerti4(2001), 329-333.

Hajek P., Havanek T..Mechanizing Hypothesis Formation. Mathematical Foundations for a General THgminger,
Berlin, 1978.

Pollandt S.Fuzzy BegriffeSpringer, Berlin, 1997.

19



Relations in Higher-order Fuzzy Logic Il

Ulrich Bodenhofet, Libor Béhounek, and Petr Cintula

1 Software Competence Center Hagenberg
4232 Hagenberg, Austria
ulrich.bodenhofer@scch.at
2 Institute of Computer Science, Academy of Sciences of the Czech Republic
182 07 Prague 8, Czech Republic
{behounek|cintula}@cs.cas.cz

This contribution is the third and last of a series of talks on relations in higher-order fuzzy logic. The
first two [5] have introduced the logical framework (see also [3, 4]) along with a set of basic results
that, at first glance, look very familiar. These results, however, have been developed from a much more
general basis. Their proofs have been devised independently and resemble closer to proofs known
from classical theory than to proofs of results existing in fuzzy set theory.

The purpose of this contribution is to establish links between existing results in fuzzy set the-
ory and the results contained in [5]. Moreover, we provide an interpretation to which extent this new
framework really adds value and an educated guess what its potential impact on the further develop-
ment of theory may be.

Links to Existing Concepts and Results

Graded properties of fuzzy relations

In [5, Section 1], the definitions of the five propertiésextensionality, reflexivity, symmetry, tran-
sitivity, and E-antisymmetry (cf. Def. 6) are most crucial. Looking as traditional definitions at first
glance, the expressions EXR), ReflR), SymR), TrangR), and Asym (R) are not crisp, but may

be true to some degree. An approach in this direction has already been introduced by Gottwald [12,
13] and later on picked up by Jacas and Recasens [16]. These works have in common that they are
not based on a general logical framework, but on triangular norms on the unit interval (note, however,
that Gottwald uses notations that are inspired by formal logic, similar to the terminology introduced

in [5]).

The property of extensionality, to our best knowledge, has only been considered in a crisp way
so far [14, 17, 18]. The three properties RBjl SymR), and TranéR) appear in [12, 13, 16], at least
under the restrictions stated above.

The property Asyra(R) is different from the one introduced by Gottwald [12, 13] who starts
from Zadeh's definition of antisymmetry [19], but with a general t-norm instead of the minimum. The
definition of Asyn(R) is inspired by the similarity-based approach to fuzzy orderings (see, e.g., [1,
15] and other publications) and trivially coincides with Gottwald’s definitioB i# Id. Note that the
definition of Asyni(R) appears in [16], interestingly, without any reference to the similarity-based
approach to fuzzy orderings.

In [5, Section 2], several basic results about relations in higher-order fuzzy logic are provided. The
crisp counterparts of the assertions comprised in Theorems 2 and 3 are well-known and can be found
in any textbook that contains an adequately deep introduction to fuzzy relations (e.qg. [11]). Assertions
1.-3. and 6. from Theorem 2 are also known in the graded framework (see, e.g., [13, Sections 18.4
and 18.6]). The fact that intersections and unions of extensional fuzzy sets are again extensional is
also well-known [2, 17], its graded generalization in [5, Theorem 4] constitutes a new finding.
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Similarities and partitions

In [5, Section 3], a first step towards a graded theory of equivalence relations and partitions is taken.
The degree to which a relation is a similarity, denoted &mis defined in the same way as in [13]
(again note the difference that Gottwald restricts to the unit interval equipped with a t-norm). The con-
cept of a graded fuzzy partition that is built up on this basis can be considered an entirely new concept.
The degree of disjointness D(g) is a straightforward generalization of the disjointness criterion that

is well-known from literature [7, 10,17, 18] (in our notation, being equivalent to(isj= 1). The

degree PaffX) to which a class of classes is a partition is a straightforward generalization of the
concept of ar -partition introduced in [7] (being put in a wider context in [10]).

Results like the ones from Theorem 5 are available in [13, Section 18.6, p. 466]. Moreover, crisp
counterparts of these assertions and the ones from Theorem 6 occur in literature (see [7,10,17,18]
and several others), although the graded framework gives these theorems a rather different flavor.
Theorems 7 and 8 closely resemble to some results known from literature [7, 10, 17]. In these papers,
however, slightly different ways to construct an equivalence relation from a partition are employed
than the relation~x which is only guaranteed to be a fuzzy equivalence relation in the traditional
sense (in our framework, being equivalent to &im) = 1) if Part X)) = 1 [5, Theorem 8].

Fuzzy orderings and lattice operations

Finally, in [5, Section 4], a graded concept of fuzzy orderings is introduced in line with the similarity-
based approach to fuzzy orderings [1, 15]. Gottwald [12, 13] uses the same techniques to define a
graded concept of fuzzy partial ordering, but with respect to the crisp equality and not with reference
to a fuzzy equivalence relation. Theorem 9 lists results that are well-known in the classical non-graded
theory of fuzzy quasiorderings, but new in a graded framework. Assertion 1. is a graded version of the
idempotence of the full image with respect to a fuzzy quasiordering [2]. Assertion 2. is a well-known
correspondence (see, e.g., [11]). As also known from the classical non-graded theory [2], Assertion
3. is a graded generalization of the fact that the full image of a fuzzy &lagh respect to a fuzzy
quasiorderindr is uniquely represented as the intersection oRadixtensional super-classesAf

Definitions 10 and 11 can be considered as a starting point towards a general graded theory of
fuzzy lattices. The definitions of upper and lower cones, suprema and infima, respectively, appear in
the same way as in [6, 8, 9]. Some of the assertions of Theorem 10 are similarly contained in [6].

Conclusion and Outlook

The question remains what kind of value is added by basing a theory of fuzzy relations on the fuzzy
class theory as introduced in [4, 5]. First of all, the framework discussed here is well-founded and
general. Proofs in this framework are still concise, elegant, and expressive — which is remarkable in
light of the fact that all properties of fuzzy relations are graded. Note that Gottwald states in [13, Sec-
tion 18.6, p. 465] that the development of a full-fledged graded theory of fuzzy equivalence relations
and orderings is an open issue. Although the results presented in [5] can only be considered as a good
starting point, we strongly believe that this framework has the potential to solve that open issue. The
elegance and conciseness of the approach not only allows to generate shorter proofs of many known
results in a routine manner. Overcoming the technicality and clumsiness of the classical theory of
fuzzy relations may also open the field for discovering completely new results — that is no serious
scientific statement based on clear evidence, but a strong belief it is indeed.
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Abstract. We present several possible representations of fuzzy vectors motivated by the aim to make the
operations with them practically computable. Further, we study the possibility of finding one point repre-
senting a fuzzy vector in such a way that the algebraic operations are preserved. This should generalize the
notion of Steiner centroid known for crisp convex sets. Surprisingly, it is difficult to obtain uniqueness in
the fuzzified approach.

Keywords: Convex set, support function, Steiner point, convex fuzzy set, fuzzy vector, defuzzification,
image processing, biomedical imaging, magnetic resonance, computer tomography.

1 Introduction

Fuzzy vectors are a multi-dimensional generalization of fuzzy numbers and intervals representing
vague quantities. They admit arithmetical operations (inherited from the algebra of convex sets) which
introduce a linear structure and embed the space of fuzzy vectors as a positive cone in a linear space.
For practical implementation of the algebra of fuzzy vectors, the notion of support function appears
useful. It allows to represent fuzzy vectors by functions on the unit ball (or the product of an interval
and the unit sphere). Linear operations with fuzzy vectors then correspond to pointwise operations
on the support functions which are easier to compute. The use of support functions is also useful for
optimization in the space of fuzzy vectors [2].

If we want to represent a compact convex subseR'bby a single element, usually the Steiner
centroid (Steiner point) is chosen. The function which associates with every compact convex set its
Steiner centroid is continuous (w.r.t. the Hausdorff metric) and preserves the linear structure and all
isometries. These properties uniquely characterize the Steiner centroid [7, 5]. Trying to extend the
Steiner centroid to fuzzy vectors, we find out that the above properties do not determine it uniquely.
E.qg., they are satisfied for any weighted average of the Steiner centroids of level sets.

The Steiner centroid can be considered a defuzzification method. Its properties may be useful in
medical imaging, where also the fuzzified version is desirable as a tool describing blurred images.

2 Computing in the space of fuzzy vectors via support functions

Let us outline a way of doing computations with fuzzy vectors via computations in Lebesgue vector
spacesLP. We fix ann € N. By K", we denote the set of compact convex subset®"ofvith the

* The second author is supported by the Czech Ministry of Education under project MSM 6840770012. The third author
acknowledges the support by the German Research Foundation (DFG) as part of the Collaborative Research Center
“Computational Intelligence”(SFB 531).
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usual (Minkowski) addition and multiplication by positive realsfuzzy n-vecto(fuzzy vectorfor

short) is a functioru: R" — [0,1] such that for eaclx € (0, 1], the upper level settcut) [u]q :=
{xeR":u(x) > a} is nonempty, closed, convex, and the s¢ket R" : u(x) > 0} is bounded (hence
compact) [2, 3]. We denote bg" the collection of all fuzzyn-vectors. In particular fon = 1, the

set£! consists of the so-called fuzzy numbers or fuzzy intervals. The natural extension of algebraic
operations fronR" to fuzzy vectors was introduced in [4]. lfv € £" andc € R, then there exist
unique fuzzy vectors, denoted by v, respectivelycu, such that, for alti € (0, 1],

[U+V]a = [Ua + [Va, [CUla =C[U]a. 1)

Determining analytically (using the Zadeh'’s extension principle) the results of the operations defined
by (1) amounts to finding the functions

(U+V)(X) = sup{u(y) +V(2) : y,z€ R"y+z=x} )

(cu)(x) =sup{u(y) :ye R" cy=x}. (3)

The use of formulas (1)—(3) is generally difficult. An alternative method is based on support functions.
We first formulate it for classical convex compact sets.
LetB", resp.S’, be the unit ball, resp. the unit sphereRh For anyA € K", we define itsupport
function hy S' — R, by
hd{x) = max{(a,x) :ac A}

(see e.g. [6]). Addition and multiplication by positive realsAii correspond to the same (pointwise)

operations on the support functions. These can be computed easier than the operations on convex sets.
Following Diamond and Kloeden [3], treupport functiorof a fuzzy vectou € E" is the function

Hyu: (0,1] x B" — R defined by

Hu(a,x) = sup{{(a,x) : a€ [u]g}. 4)
This notion differs from the Bobylev’s basic idea [1] which uses the fundtignB" — R defined by

Hu(X) =sup{{a,x) :ae (Ul - (5)
Alternatively, one may consider the functibly: B" — R, where

Hu(x) = sup{(a,x) :a€ [ulyx}, (6)

which has also some advantageous properties. It is cleaHthedn be uniquely recovered from any
of these representations.

It can be easily seen thét,(a,-) is exactly the support functiohy,,. Again, the linear opera-
tions on‘E" correspond the pointwise operations on the support functions. We obtain the following
characterization:

Theorem 1. A functiond: (0,1] x B" — R is the support function of a fuzzy vectoe " if and only
if it is bounded and, for eactu, z) € (0,1] x B", it satisfies the following conditions:

ce[0,1] = ¢(a,cz =c¢(a,z), (7
XY, X+Yy€B" = ¢(a,x+y) < o(a,X) +d(a,y). (8)
¢(+,2) is nonincreasing and continuous from the left (9)
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3 Steiner centroids of convex sets and fuzzy vectors

The Steiner centroicbf A € K" is defined by

S(A) :V(an) /9 ha(e)edh(e),

whereA is the Lebesgue measure & andV (B") is the volume of the unit balB". Notice that
S(A) € A

Theorem 2. Let £ X" — R" have the following properties:

(S1) Forany AB < K", S(A+B) =5(A)+5(B).
(S2) For Ae K" and any Euklidean isometryof R", we have '§TA) = 15 (A).
(S3) s is continuous.

Then §=s.

This theorem was proved by Shephard [7]fice 2 and generalized by Schneider [5].
Inspired by the latter theorem, we propose the following general definition:

Definition 1. Let us call a function:SE" — R" a Steiner centroidf it has the following properties:

(SF1) For any yw € E", Siv+w) = S(v) + S(w).

(SF2) For any Euklidean isometryof R" and any w=£", we have &v) = 1§(v), wheretv =vo1~!
(v being seen as a membership function fifrto [0, 1}).

(SF3) S is continuous.

Example 1.Let p € L2((0,1]) be a function such thejgl H(a)da = 1. Define forv ¢ E"

1
S(v) = [ s(lvia) (o) da,
wheresis the classical Steiner centroid of the level [s&f. ThenS, is a Steiner centroid.

We see that a Steiner centroid of fuzzy vectors is not defined unambiguously by the properties
(SF1)—(SF3). It is amazingly difficult to impose further propertiesSdo obtain uniqueness; it is an
open question if this is possible in some reasonable (well motivated) way. At least we have proved
that Example 1 reflects the most general case.

Remark 1.1t is desirable to represent a solid by some typical point characterizing its position. The
center of gravity seems to be the most natural choice. In contrast to it, the Steiner centroid represents
rather the center of gravity of tHeoundaryof the solid. In view of Th. 2, only the Steiner centroid
preserves the convex arithmetic. This property might be useful in image processing and biomedical
applications. Let us consider a (convex) non-symmetric solid. When it grows by a constant value on
each side of its boundary, the new shape is obtained by a Minkowski sum of the old shape and a ball
of the respective diameter. The center of gravity changes, but the Steiner centroid is preserved. Thus
Steiner centroids may be natural in processing medical images obtained by magnetic resonance or
computer tomography. The use of Steiner centroids is restricted to convex solids. In the hon-convex
case, one still might use the Steiner centroid of the convex hull.

Our fuzzification of the Steiner centroid can be considered a multi-dimensional defuzzification
technique. The above motivation becomes even more natural when we use fuzzy sets for description
of blurred images.
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1 Introduction

Substructural logics may, broadly speaking, be characterized as logics where structufallrifes
example, relevance logics [1] lack the weakening rule “frarand B, deriveA”, while Linear logic

[9] lacks also the contraction rule “fromy, derive A andA”. However, although structural rules fail

in general in these logics, it is often assumed that they hold in particular cases. Hence, in Linear
logic weakening and contraction rules hold for formulae distinguished by the unary operators ! or
?, and in relevance logics weakening holds for the premises of so-called enthymematic implications.
General programs giving structural rules for distinguished formulae have been presented by Restall
[17] in an axiomatic and algebraic framework, and Gore [10] in a Display logic framework, using
modalities In these approaches, formulae for which structural rules apply are identified (similiarly
to Linear logic) using modal operators e.g.[@8 whereA is a formula. This allows embeddings of
logics with structural rules into weaker logics with modalities e.g. of intuitionistic logic into linear
logic, and facilitates an analysis of logical consequence within the language of the logic.

t-Normbased fuzzy logics (see [11] for details) are particular casesmfaction-freesubstruc-
tural logics, whileuninormbased fuzzy logics (introduced recently in [13]) are logics where also the
weakening rule may fail. This perspective is emphasized by the presentation of many of these logics as
substructural logics in the framework lofpersequents generalization of Gentzen sequents consist-
ing of a multiset (interpreted as a disjunction) of sequents, see [2, 4, 8] for details. Indeed such logics
may be viewed as known substructural logics embedded in the hypersequent framework and extended
with an external structural rule called communication that acts on more than one component at a time.
In this work we present the basic ideas for a general methodology for adding Linear logic and S4 type
modalities to fuzzy logics in the hypersequent framework, giving here as examples Monoidal t-norm
logic MTL , Involutive t-norm logicIMTL , Uninorm logicUL, Involutive uninorm logiclUL and
Godel logicG. Additionally, calculi for logics with Delta-like connectives (see e.g. [3] for details)
may be obtained by adding a further rule fdr By providing also a general cut-elimination method,
we ensure that such calculi are analytic, and that adding modalities is conservative with respect to the
original logic. We also investigate tsemantic®f these logics, both the algebraic semantics obtained
by adding interior operators to residuated lattices, and the standard semantics where all connectives,
including modalities, are interpreted as functions on the real unit inté@yvHl We note that seman-
tically, modalities are closely related to, but not the same as, the storage operators introduced by
Montagna for t-norm based fuzzy logics in [16].
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2 Proof Theory

Below we introduce axiomatizations for a number of fuzzy logics, based on a language with binary
connectives», —, A, andV, constantsL, f andt, and defined connectives«— B =get (A — B) A
(B — A), —A=getA— fandT =ges L.

Definition 1. Uninorm logicUL consists of the following axioms and rules:

(U1) (A—B) — ((B—C)— (A—C)) (UB) A— A
(U2) (A—> (B — C)) — (B—> (A—> C)) (U9 A— (A\/ B)
(U3) (A®B) —C) < (A— (B—C)) (U10) B— (AVB)
(U4) (A— B)A(A—C)) — (A— (BAC)) (U11) (AAB) — A
(U5) (A—C)A(B—C)) — ((AVB) = C) (U12) (AAB) — B
(UB) ((A— B)At)V ((B— A) At) (U13) A (t — A)
(U7) L —A

(mp A—B A (adj) A B

B AAB

Axiomatizations for other fuzzy logics may be introduced as extensidiis efg?
(INV) =—A — A (W)A— (B—A) (ID) (AGA) < A

IUL = UL + (INV) MTL =UL+(PRL) G =MTL +(ID)
IMTL =MTL +(INV)  IUML =IUL +(ID)

A proof theoretic characterization of these logics is obtained by generalizing the notion of a Gentzen
sequent to that of Aypersequenta multiset of sequents (pairs of multisets of formulae) interpreted
disjunctively and written:

If Aj contains at most one formula foe 1,. .., nthen the hypersequentssgle-conclusionotherwise
it is multiple-conclusionLike sequent calculi, hypersequent calculi consist of axioms, logical rules
and structural rules. Axioms for all the logics defined here are as follows:

(ID)A=A (f,) f= (t,r) =t (Lr,L=A (Mr=T,A

Logical rules for connectives are the same as those in sequent calculi for substructural logics, except
that a “side-hypersequent” may also occur, denoted hef& by

(t,1 G = A (f,r) GIr =A
Grt=2A GIr = 1,A
(—,1) GIF1=AA; G|l'2,B=1Ap (—,r1) GIl'LA=B,A
G\Fl,l'g,A—> B:>A1,A2 G\F:>A—> B,A
(®,1) Gl A B=A (®,r) GFri1=AA; Gl'a=B,A;
G AGB=A G|, M= A06B,A;, A,

3 Noting that forMTL andIMTL these axiomatizations are equivalent to those given in a more restricted language in [7].
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(Ai,D)i=1,2 GIILA=A (A1) GIl'=AA GII'=B,A

GII,ALANA = A Gl = AAB,A
(v,1) GIF, A=A GII,B=A (Vi,Ni-12 GIr = A,A
GIF,AVB= A Gl = AL VA, A

Structural rules are divided into two categoriggernal rules deal with formulae within components
as in sequent calculi, and include a distinguished “cut” rule corresponding to the transitivity of deduc-
tion:

WL GIFr=A (WR Gr=A
G A=A Gr=AA

(CL) G, AA=A (CR G =AAA
GLA=A G =A,A

(CUT) G]Fl,A:> Al G’rz = A,Az
G\Fl, rz = Al,Az

External rules manipulate whole components; for example the external weakening and contraction
rules(EW) and(EC) add and remove components as follows:

(EW) G (EC) Gl = Al =A
GIl'=A GIl'=A

The crucial external structural rule from the point of view of fuzzy logics, however, is the following
communication rulevhich allows interaction between sequents:

(COM) GII',M1 = A1,%1 G|, M= A2,2)
Gy, M= A1, A0|Mq, Mo = 24,35

Definition 2. GIUL and GUL consist of the multiple-conclusion and single-conclusion versions re-
spectively of the rules given above, excluding all internal structural rules §a\l). Calculi for
other fuzzy logics are then defined as follows:

GIUML isGIUL + (CL), (CR) GMTL is GUL + (WL)
GIMTL isGIUL + (WL), (WR) GG is GMTL + (CL)

We now turn our attention to adding modalities to fuzzy logics, extending our language with the unary
connectivel. For a logicGL, GLS4 is obtained by adding the following rules, familiar from sequent
calculi for Linear logic and the modal log®4:

(O,1) Gr,A=A (O,r) GOr =C
G OA=A G|Or = 0cC

We may (as for Linear logic) add structural rules applying only to boxed formulae, e.g.

(OWL) GF =A (OCL) GIF,OADA=A (09 GOr,N=3
GIF,OA= A GIF,OA= A Gor=N=x

(OWL) and (CICL) allow the weakening and contraction of boxed formulae on the left respectively,
while (0JS) ensures that boxed formulae obey the law of excluded middle. In this framework, we are
able to embed certain logics into others. As an example, consider the embgxidinglp for all
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atomsp, (A#B)* = O(A*#B*) for all binary connectives #. It is easy to show for example thak is
derivable inGG iff = A* is derivable inGMTLS4 + (CJCL) and that=- A is derivable inGMTL iff
= A" is derivable inGUS4+ (COWL). Other embeddings of logics with single-conclusion calculi into
logics with multiple-conclusion calculi may also be given.

Axiomatizationgor fuzzy logics with modalities are given as follows:

Definition 3. LS4 is L extended with the following axioms and rule:

(Th) DA — A (—p) O(A—B) — (OA—0OB)
(Vo) O(AVB) — (OAVOB) (40) DA — O0A
(Ap) (OAADB) — O(AAB)
(neg A
OA

Corresponding axioms fdfJWL), (OCL) and (CJS) are respectively:

(IDO) DA < (DAGDA) (W) A— (OB — A) (S) DAV -0A

Theorem 1. = A is derivable inGLS4 plus arbitary structural rules fot] iff A is derivable inLS4
plus the corresponding axioms.

The crucial result for the proof theory of fuzzy logics with modalities is as follows:
Theorem 2. Cut-elimination holds folGLS4 plus arbitary structural rules fof].

This theorem is proved in a general way by imposingditions(similar to those given in [6]) on the

rules of the calculi (met by all those given above), and then giving &tBeffait style cut-elimination

proof using the invertibility of at least one of the premises in each applicatig@T). Note that as
important consequences of this result, we obtain the subformula property for all our logics, and also
that the extensions of fuzzy logics with modalities are conservative.

3 Semantics

We begin by introducing an algebraic semantics for the logics defined in the previous section, the idea
being to consider particular classes of residuated lattices where the modal operator is interpreted by
aninterior operator |.

Definition 4. A lattice ordered monoid with interior operat@rl-monoidfor short) is a systent =
(A,®,V,A,l,t) such that(A, ®,t) is a commutative monoidA, V,A) is a lattice, the operatiom
commutes with existing suprema, i.esuf(X) € A for X C A, then yo supX) = supy® X) for all
y € A, and | is a unary operation which satisfies the following conditions:

(1) 1(x) <x (4) L(xAy) = 1) AT(Y)
=t (5) I(xVy) = 1{I(x) VI(y))
(3) 1{1(x) =1(0) (6) II(x) ©1(y)) =1(x) ©1(y)

A residuated lattice with interior operat@rr-lattice for short) is a systemd = (A, ®, —,V,A,l,t)
such that(A, ®,V, A,1,t) is an I-l-monoid, and- is theresiduunof ©, i.e. z< x — y iff x©z <y for
all x,y,ze A.
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An I-I-monoid or |-r-lattice isboundedf it has a minimum element wrt the lattice orderintegral
if t is the top element, andlempotenif all its elements are idempotents. An I-r-latticedigalizingif
there exists an element f such tltat— f) — f = x for all x € A, andprelinearif for all X,y € A:

(x=Y) AV ((y—x) At =t and I(xVy)=1()VI(y)

— AULS4 algebras a bounded prelinear I-r-lattice.

— AnlIULS4 algebrds a dualizing ULS4 algebra.

— AnMTLS4 algebrds an integral ULS4 algebra.

— AnIMTLS4 algebrais a dualizing MTLS4 algebra.

— AnIUMLS4 algebrais an idempotent IULS4 algebra.
— A GS4 algebras an idempotent MTLS4 algebra.

Further possible conditions for the interior operator are, for akoXA:
(idi) 1(x) = 1(x) ©1(x) (W) 1(x) <t (s)t<1)V(I(x) = f)

Note that (L) = L in every ULS4 algebra, and thiix — y) <1(x) — I (y) is valid in everyl -r-lattice.

Itis straightforward to show that the logics of the previous section are sound and complete with respect
to the algebras defined above. Moreoy®elinear I-r-lattices are characterized in particular by the
following property:

Theorem 3. Every prelinear |-r-lattice is isomorphic to a subdirect product of a family of linearly
ordered I-r-lattices.

Clearly this implies that the logics are complete with respect to the appropriate class of linearly ordered
|-r-lattices. In fact we would like to prove something stronger, i.e. that the logics are complete with
respect to algebras based on thal numbers

Definition 5. A standard prelinedrr-lattice is a prelinear I-r-lattice with a lattice reduct that is a
convex subset S & (the reals). Astandard ULS4 algebiia a ULS4 algebra with a lattice reduct
that is the real interval0Q,1]. A prelinear I-r-lattice issuperstandard it is standard and | is left-
continuous, that is, if for all XC S with an upper bound in S(dupX)) = sup(l(X)).

Note that the monoid operation in a standard ULS4 algebra mustdfe@ntinuous uninorm.e.,
a left-continuous weakly increasing commutative and associative binary operation witkeJ@ijtl].
Similarly, the monoid operation in a standard MTLS4 algebra mustlbi-aontinuous t-norm

Our goal here is to prove standard and superstandard completeness for fuzzy logics with modali-
ties, i.e. we want to prove that a logic is complete with respect to the appropriate class of standard or
superstandard algebras. To this end, we investigate an alternative presentbtidattifes:

Lemma 1. (i) Let 4 be an I-I-monoid or I-r-lattice, and let & {x€ 4 :x=1(x)}. Then O is the
domain of a submonoi@® of 4 closed under the lattice operations such that for alt &, the set
O, ={0€ O:0< a} has supremum(h) € O.

(i) Let 4 be a lattice ordered commutative monoid or commutative residuated lattice, and let O
be a subset of the domain gfclosed under the monoid and lattice operations, and such that for all
ac 4, theset@={oc O:0< a} has a supremum which belongs to O. Then letting for @l 4,

I (a) = supO,), the operator | makesl a I-I-monoid (al-r-lattice respectively). Moreovekx) = x
iff x € O.
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Hencel -r-lattices can be presented as residuated lattices with a privilegedcated aropen systemn
that satisfy the conditions of Lemma 1. The use of open systems allows us to prove a completion result
which extends the well known completion results for residuated lattices:

Theorem 4. Let 4 be a linearly ordered I-I-monoid. Theft embeds into a complete linearly ordered
I-r-lattice 4 by an embedding which preserves the suprema and the residuals existity iore-
over, the construction preserves integrality and boundedness, thatdssifntegral (bounded), then
S0 isA4.

The use of open systems offers us a nice characterization of linearly oddetatlices with a left-
continuous interior operation.

Lemma 2. The following are equivalent for linearly and densely ordered I-r-lattices.

(i) The operator | is left-continuous.
(i) The open system O is densely ordered.

We now consider standard completeness for two particular fuzzy logics with modalities. First, observe
that the superstandard completenesBl®f.S4 is an easy consequence of the following theorem.

Theorem 5. Every finite or countable linearly ordered MTLS4 algebra embeds into a superstandard
MTLS4 algebra.

The proof is similar to that given in the standard completeness prodTdr by Jenei and Mon-
tagna [12]. However, some care is heeded in order to ensure that the embedding preserves the interior
operatorl and thatl can be forced to be left-continuous.

Theorem 6. MTLS4 is complete with respect to the class of superstandard MTLS4 algebras.

Our second example is the extensioILS4 with contraction for modal formulae, conditidid, ),
for which we have the following result.

Theorem 7. MTLS4 plus (OJID) is complete with respect to the class of all superstandard MTLS4
algebras whose open system entirely consists of idempotents (or alternatively, safisfying

4 Open questions and work in progress

The following problems are currently the subject of active research:

1. We intend to continue our investigations into the standard and superstandard completeness of the
fuzzy logics with modalities defined above. Consider for example the ldgi84 plus (CJID),
(EW), and the following density rule, fqp ¢ ' U{A — B,C}:

Or-(A—p)V(p—B)vC
Or - (A—B)vC

We intend to prove that this logic is sound and complete with respect to the class of standard ULS4
algebras with an open system consisting of idempotent elements below the unit of the monoid.

2. We intend to investigate a new method for constructing left-continuous t-norms.deet con-
tinuous t-norm, and 1eD be a densely ordered subsetf@fl] closed under taking suprema. The
operationo defined byxoy = 1(x) = I(y) for an interior operatot, is a left-continuous, but in
general, not continuous t-norm. It is interesting to investigate left-continuous t-norms constructed
using this method.
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3. We would like to prove the finite model property tdiTLS4 and possibly other fuzzy logics with
modalities, along the lines of the recent work by Blok and Van Alten in e.qg. [5].

4. We intend to develoKripke-style semantic®r fuzzy logics with modalities. As a starting point
we may define for everi+l-monoid M with open systen® and evaluatior in M, the following
Kripke model:

x = piff x < e(p) for each atonp;

X = A® Biff there areu,v such thau = A, vi=Bandx<u®wv.

X A— Bifforall yif y = A, thenxoy = B.

X = OAiff there isz € O such thak < zandz = A.

We plan to investigate this semantics, focussing on the linearly ordered case.

5. Given arl-r-lattice L, under suitable conditions its open system can be equipped with the structure
of anl-r-lattice, which we callZ'. We plan to investigate the relationship betweeand £'. For
example, wherr ranges over a variety, what is the variety generated by all?

6. So far we have considered only fuzzy logics that can be presented as hypersequent calculi with
standard logical rules. We would like to investigate the addition of modalities to other fuzzy log-
ics, in particular Lukasiewicz logit, and Product logia, given hypersequent calculi with non
standard logical rules in [15] and [14] respectively.
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1 Introduction

In [2], Hajek studied several types of fuzzy logics and inspired an intensive development of this field.
He started from théasic logic In its standard model (with truth values from the real intefQal)),

the conjunction & is interpreted by a continuous t-norm and the implicatidoy the corresponding
residuum. The negation is introduced as a derived conneetive; ¢ — 0, where0 denotes the false
statement. Further, he studied three extensions of the basic logi¢.ukisiewicz logids based on

the Lukasiewicz operations; its negation is involutive;¢ = ¢. This property is not possessed in
further two logics, th&odel logicand theproduct logic where the conjunction in the standard model

is interpreted by the minimum, resp. the algebraic product. The derived negation then corresponds to
a fuzzy negation which is not involutive, therefore there is no disjunction playing a role dual to that of
the conjunction. Inspired by thifijzzy logics with involutive negatiomsere defined and investigated

in [1]. In this approach, an involutive negatienis introduced as an additional unary connective, in
general different from-.

One important difference seems not to have been paid sufficient attention: In the standard model of
the product logic, the conjunction is interpreted by any strict t-norm, but without loss of generality we
may restrict attention to the product t-norm only; all other standard models are isomorphic to this one.
Nevertheless, when we introduce the involutive negation, we obtain (infinitely) many non-isomorphic
standard models based on different strict t-norms.

In this contribution we study certain equalities in the strict basic involutive IBE. with fixed
standard involutive negation interpreted by~ (x) = 1— x, and we show that the standard interpreta-
tion of the conjunction is the Hamacher proddigt, which is defined by

TOH (Xv y) = X+;¥Xy

for all (x,y) € 10,1]2.
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2 Basic logic and its extensions

For all details concerning the basic logBL() we refer to [2], and for the strict basic involutive logic
(SBL.) to [1]. Throughout the rest of this papey, is fixed to be the standard involutive negation,
and the conjunction & is interpreted by a strict t-nofimits dual t-conorm is denoted I§/(for more
details on t-norms and t-conorms see [3]).

In this paper we shall consider, for a given t-nofmthe one-place functiof": [0,1] — [0,1]
defined byT9(x) = 1 andT"(x) = T(T"%(x),x) for n € N (for a t-conormSthe functionS" is defined
in complete analogy). An additive generatoff0, 1] — [0, ] of a strict t-normT satisfyingt(0.5) =1
will be called a standardized additive generatoifofThen for the corresponding additive generator
s: [0,1] — [0, ] of the dual strict t-conornswe also ges(0.5) = 1.

We shall study the following conditions for a t-noffi a t-conormS, and a fixed numban € N,
n>1.

S'oT"=id (Cn)
V(X1,--,%) € [0, S(T"(X1),..., T"(X0)) = T"(S(X1, .-, %n)) (Dn)
SoT"=T"oS (En)
Equivalent formulations:
V(xy) €[0,1]%: (T(x,x) =y <= S(y,y) =X) (C)
V(xy) € 0,12 (T"(x) =y <= S'(y) =X) (Ch)
V(x.¥,2) €[0,1: (z=S(xy) <= T(22) =T(xX),T(y.y))) (D2)
V(xY,2) €[0,1%: (z=S(xy) <= T?(2) = (T%(x), T*(y))) (D}

V(X1,...,%) € [0,1]"Vz€ [0,1] :
(z=9(X1,..., %) = T2 =T"(x1),...,T"(X1))) (D)

Note that that the equivalence @,) and(C},) as well as the equivalence @,) and(D},) holds
in our case, i.e., for a strict t-norfi and its dualS, but not in general for arbitrary t-norms and
t-conorms.

3 Characterization of special strict t-norms

In this section we will characterize the t-norms satisfying (some of) the equalities mentioned above.

Theorem 1. Let T be a strict t-norm and S its dual t-conorm and |stlbe their standardized additive
generators. Let & N, n > 1. Then the following are equivalent:

o (Cn),

L4 (Dn)!

e the function g=sot™1: [0,0] — [0, ] satisfies gy) = ng(ny) for all y € [0, «)].

Although we are mainly interested in strict t-norms we include the following result which is valid
for continuous t-norms.
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Theorem 2. Let (T, S) be a pair of a continuous t-norm and its dual t-conorm, respectively. We ex-
press T as a unique ordinal suffay, by, Ta) )aca Of continuous Archimedean t-norms. For each A,
letty: [aq,bq] — [0, ] be the standardized additive generator of T[ag by]. Then T'S satisfy(Cp)

for all n € N if and only if

1

o -

(1)
wherea* € A such thafag,by] = [1—bg+,1—ag-].

Corollary 1. Let (T,S) be a pair of a strict t-norm and its dual t-conorm, respectively. Theg T
satisfy(Cy) for all n € N if and only if

t(x) = t(ll_x> 2)

where t is the standardized additive generator of T.

Definition 1. A t-norm T is called anearly Hamacher t-norrif it is isomorphic to the Hamacher
product 'BH such that the same isomorphism provides an isomorphism between the dual t-conorm S of
T and the dual & of the Hamacher product}f.

Lemma 1. A continuous Archimedean t-norm T is nearly Hamacher if and only if its standardized
additive generatort [0,1] — [0, ] satisfies for each x [0, 1]

1

t(x) = m

Corollary 2. Let T be a continuous Archimedean t-norm T and S its dual t-conorm. Then the follow-
ing are equivalent:

e T and S satisfyC,) foralln € N;
e T and S satisfyDy) foralln € N;
e T is a nearly Hamacher t-norm.

Observe that () as well as ([3) implies (E,).

Open Problem. Is the validity of (k) for all n € N sufficient to characterize all nearly Hamacher
t-norms?

4 Conclusion

As can be seen from Theorem 2, the equalitieg @d (0,) can be studied within a broader frame-
work of continuous t-norms. These equalities (without the assumptiotlaad S be dual) define
varieties ofSBL.., among them we have infinitely many non-isomorphic cases. The results of a deeper
investigation of these varieties from a logical point of view will be the topic of a forthcoming paper.
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Abstract. In this work we describe some properties of local MV-algebras (see [2], [7]) and we characterize
a family of local algebras that generalize Komori algebras, by embedding them into algelyassef
constantfunctions.

Let A= (A &,*,0) be an MV-algebra. For ang € A, theorder of A, in symbolsord(a), is the

smallest natural numbersuch thaha= a®---@a= 1. If no suchn exists, therord(a) = « (see
%,—/
ntimes

[2]).
An MV-algebraA is local if it satisfies one of the following equivalent conditions:

i) for anya € A, eitherord(a) < o orord(a*) < oo,

i) the set{ac A: ord(a) = o} is a proper ideal oA

iii) A has one and only one maximal ideal.
An MV-algebraA is perfectif for any a € A, ord(a) = « iff ord(a*) < . Clearly, every perfect
algebra is local. The most important example of perfect MV-algebra, is Chang’s algelCa-{1]
{nc:ne w}U{l—nc:ne w}wherec' =1—candord(c) =« andord(1—c) < c.
For any MV-algebra, theradical of A (denoted byRad(A)) is the intersection of all maximal ideals
of A. Note that Chang algebgis such thaRadC) = {nc: n € w}.
An equivalent definition operfectMV-algebra is the following: a non trivial MV-algebris perfect
iff A=RadA)URadA)*, whereRadA)* = {xec A:x" € RadA)}.
Let A be a proper MV-chain. If for some> 2,

A/RadA) =t,={0,1/n,...,(n—1)/n,1},

then we say thah is of rankn. If A/RadA) is isomorphic to an infinite subalgebra [6f 1], we say
thatA is of infinite rank. Totally ordered perfect algebras are then algebras of rank 1.

It is well known that the claskoc(MV) of local MV-algebras intersects the varidtyC) (that is the
variety generated by Chang’s algebra) just in the class of perfect MV-algebras, i.e.,:

Loc(MV)NV(C) = Perfect

Let MV be the variety of MV-algebras. Note that proper subvarietied/a¥’ generated by simple
MV-chains (i.e, subalgebras {@, 1]) intersect.oc(MV) just in their generators.

Then itis natural to ask wheteoc(MV ) meets any other variety. For simplicity we limit ourselves
to the cases when a given variety is generated by a single non simple chain of finite rank. Let us denote
by V(Sy) the variety generated by the Komori chain of rank 2. Then we set:

Loc(MV)NV(SY) = Loc(V(S)).
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By abuse of notations and terminology, for anyXetnd any MV-algebr® we say that the subalgebra
of BX of all functionsf such thatf (X) C [Slraqe) for somes € Bis a full algebra of quasi constant
B-functions and shall be denoted ByBX). Any subalgebra oK (BX) shall be called an algebra of
guasi constarB-functions. Then we have:

Proposition 1. For any MV-algebra A, Ac Loc(V(SY)) iff A is local and ARadA) ~ ., iff A is
isomorphic to an algebra of quasi constant B-functions, where B is the greatest MV-algebra &f rank
contained in an ultrapower db, 1].

Note that the existence of the greatest MV-algebra of rank]@ &j* is ensured by results in [3].

More in general we can say that as perfect MV-algebras are not totally ordered generalization of
Chang algebr& we can get non totally ordered generalizations of Komori algebras by considering
the following class of local algebras:

Loc(MV)NV(S) =Loc(V(SY))  VneN.
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1 Introduction

An MV -algebra is an algebraic structube= (A, @,*,0) of type (2,1,0) satisfying the following ax-
ioms:

(1) xey)©z=xD (Y& 2);

(2) xpy=y®X
3) xp0=x;
(4 (x) =x
(5) x®0* =0%;

(6) (X' DY) BYy= (Y BX)*BX.

Therefore, if we define the costant 1 by=10* and the operatiom by x®y = (X" @ y*)*, then from
(4), we obtain 1= 0. Moreover, setting = 1 in (6), it followsx* & x= 1. OnA two new operations
andA are defined as followsVy = (X* @y)* @y andxAy = (X* @y)* @y. The structurg¢A, v, A,0,1)
is a bounded distributive lattice. We shall writeC y iff x Ay = x. A remarkable example is thdV-
algebra having, as support, the real intef@al| and, as basiMV -algebraic operations d@, 1],

X@y=min(1,x+Yy);
X=1-x

We refer to thisMV-algebra by[0, 1]. For each positive integer, let L, be the sefO0, %, o1}
endowed with the following operations :

XPYy=min(X+Yy,1),
X*=1-X

For each positive integer, the algebra.,, is a finite totally ordered1V-algebra MV -chain) and every
non-trivial finite MV-chain is isomorphic to one of them.

Let A be anMV-algebra,x € A andn a nonegative integer. In the sequel we will denotenky
the element oA, inductively defined by ®= 0, nx= (n— 1)x® x. Analogously we will sex® = 1,
x" = x®x"1. Moreover we consider the operation more binding than any other operation, and
operation more binding thas.

Let £ be the poset, under, of subalgebras of the MV-algebj@ 1]. £ then has a unique minimal
element{0, 1}, and a unigue maximal elemef, 1.

40



L also contains atoms, that is subalgebfas [0, 1] such that ifA C A, thenA = {0, 1} or
A = A. The algebrg0, 1/2, 1} is such an atom.

Since, for a maximal idedl of an MV-algebraA, A/M € L, we have a method to refine the
structure of the maximal ideal spabtaxA Heuristically,smalleris the quotientA/M, larger is the
maximal idealM. In effect this provides a pre-order on the set of maximal ideals.

In this work we shall study these ideas for the set of maximal idedigitd type that is maximal
idealsM with A/M finite. We shall first look asuper maximaidealsM, that is, those maximal ideals
M such thatA/M is asmallas possible, namek/M = {0, 1}. Next we shall look at some classes of
big maximalidealsM, that is, those maximal ideald which if not super maximal are such thgtM
is an atom ofz.

Our study will use a class of MV-polynomials, that we will cafimmetriovhich shall permit us
to construct the appropriate MV-algebras.

The first part of this work concerns supermaximal ideals. In a boolean algebra all maximal ideals
are supermaximal (considering the boolean algebra as an MV-algebra).

Given an MV-algebra, its set of idempoterBsA), is a subalgebra which is a boolean algebra. We
shall examine extensions BfA) in A, that is subalgebra&’ of A such thaB(A) C A’ C A, that have
supermaximal ideals. We shall also study properties of the set of supermaximal ideals.

The second part of this work will take up the case of certain extensioB&9fwhich may have
big maximal ideals, and we shall study some properties of these algebras.

Both of these parts will be presented as a special case of subalgebras determined by certain sym-
metric MV-polynomials.

Definition 1 Let A be an MV-algebra. An M MaxA is called otypen, provided that AM =~ L, .

Definition 2 Let A be an MV-algebra. M MaxA is called ofiinite type if M is of type n for some
integer n.

Definition 3 Given an MV-algebra A, an M MaxA is calledsupermaximalin symbols SMax pro-
vided AM = {0, 1}.

Definition 4 Given an MV-algebra A, we shall call M MaxA,big-maximaliff A/M = S where S has
not nontrivial MV -algebras.

We shall focus on big-maximal ideals of finite type.

Not every MV-algebra has supermaximal ideals, for examfe 1], or less trivially,[0, 1]X. We
shall construct algebras which do have super maximal ideals, and some algebras where all maximal
ideals are super maximal.

We shall look at the topological aspect of the subsi@daxAcC MaxAof super maximal ideals.

We shall also look at some cases whAreontains big maximals that are not super maximal.

2 Symmetric Polynomials

By an MV-polynomial (in one variable) we mean a polynompég) built from a symbolz and the
symbols®,®,*,V, A, 0, 1. Given such a polynomigh(z), we have an evident map on any given
MV-algebraA, p(z) : A— A, by evaluationp(a), a< A.

We shall callp(z) symmetricif p(z) = p(z*). We shall callp(z) ideal-uniform if for any MV-
algebraA and every ideal C A, we havep(0) € | and if p(a), p(b) €1, thenp(a@b) € 1.

We immediately have:
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Proposition 5 If p(z) is symmetric and ideal-uniform, then for any MV-algebra A and any ideahl
we have that Sy(p, 1) = {a€ A| p(a) €1 } is a subalgebra of A.

Observe that, since every ideal in an MV-algebra is semi-prime, it suffices to check the ideal-uniform
condition only on the prime ideals.

Proposition 6 Let p(z) be symmetric and ideal-uniform. Suppose if A is a linearly ordered MV -
algebra and [9z) = 0 on A, then A= L,, for some positive integer n. Then for any MV-algebra A and
any ideal IC A, the subalgebra Sy(p,|) satisfies the following:

i) If Q is a prime ideal of Syiip,1) and | C Q, then Syrtp,1)/Q = L, or Synip,l)/Q = {0, 1}.
i) If 1 € J, then Syrtp, 1) € S(p,J).

We will apply this proposition to several different symmetric MV-polynomials.

Synip, 1) (or justSynil) if pis understood) will be called the-symmetric subalgebra over A
will be called ap-symmetric algebraf A= Syn{p, |) for somel C Awherep(z) Z0, | # A.

A simple example of a non-trivial (that is, non-constant) symmetric polynomigd (® = zA z
With above notations we get:

Lemma 7 p; is symmetric and ideal-uniform.

We shall examine some consequences of the above lemma.

Proposition 8 Let A be an MV-algebra. @) is a p;-symmetric subalgebra of A.

Proposition 9 Let A be an MV-algebra, € A be an ideal and Syfh) = Synips, |). Then,

i) | is anideal in Synil).

ii) B(A) C Synil).

iif) Sym(l) /I is a Boolean algebra.

iv) B(A/I) = Synil)/I.

v) Synil) is the largest subalgebra R of A for whiclIRs a Boolean algebra.
vi) If Ais a-complete and | is an-complete ideal, then Sy is a-complete.
vii) If J is an ideal and IC J, then Syrfl) C Syn{J).

We can view, thereforeéSynil) as a generalization of (). We shall compare some properties of
Synil) and BA).

Every ideal in a boolean algebra, if maximal, is supermaximal. On the otherAan(d, 1%, X #

0 has no supermaximal ideals since the constant fundtign= 1/2 satisfiesf A f = f. As f has finite
order it belongs to no ideal.

From Proposition 9 we have(B) C Syntl) C A for any ideall of A. Since every ideal in an
MV-algebra is contained in some prime ideal, it is evident 8at{l ) always contains supermaximal
ideals.

Let us now focus on an MV-algebrathat is p;-symmetric ovet for some ideal C A, | # A.

SetM* = {x€ A:x" € M}. Then we get:

Proposition 10 Let M eMax(A). The following are equivalent:

i) M €SMax(A).
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i) forallx € A, xe M or x* € M.
i) forallx, ye A, xoy € M implies xe M ory € M.
iv) A=MUM*.

Proposition 11 SMaxA) is a closed subspace of SAg.

Proposition 12 SMaxA) is a closed boolean subspace of S@gc

Call an MV-algebraA Boolean-mixed if A is not Boolean ané = A’ x B whereB is a Boolean
algebra andy is non-boolearMV-algebra. We shall prove that evepy-symmetric algebra is a sub-
direct subalgebra of a Boolean-mixed algebra.

Denote by:

Na the ideal ofA, generated by the elemer{tsA x* : x € A} and
Ni, the set{x € A:xAa=0, forevery ac Na}.

With above notations we get:

Proposition 13 Let A be an MV -algebra. Then following are equivalent:

i) Ais pi-symmetric.

i) A has a supermaximal ideal.

iii) A has a boolean homomorphic image.
iv) Na # A.

v) Ac BP.

Suppose then th#t is a subdirect subalgebra Af x B whereA is non boolean anB is boolean
MV -algebra respectively. ThelhasB as a homomorphic image and by the above proposifias,
p1-symmetric.

Suppose now that is p;-symmetric. Consider the ide@ila)*. We note thafNa)- C B(A). For if
X € (Na)t, thenx A (xAX*) = 0 and sk AX* = 0. Thereforex € B(A). SinceNaN (Na)* = 0, we have
the condition for a subdirect representationfofiith A/Na andA/(Na)*. We consider two different
representations.

Consider first the map — A x A/Na given byx — (X, x/Na). This map is an injective morphism,
thus if A is non-Boolean we havé as a subdirect subalgebra of a Boolean-mixed algebra. Moreover
we haveA — Ax A/Na — A given byx — (x, X/Na) — X; thereforeA is a retract of a Boolean-mixed
MV-algebra. We have,

Proposition 14 Ais a non-boolean psymmetric MV-algebra iff A is a subdirect algebra of a boolean-
mixed algebra.

Theorem 15 Suppose A is a retract of a boolean-mixed algebra. Then A-symmetric.

3 Other Symmetric Functions
Here we want to consider other symmetric functions and the type of subalgebifad pthey deter-

mine. These functions generalipg(z) and are defined as follows:
Set:
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Qo(z2) =zNZ"
P2(2) = (ZV(Z)?) A o(2)
and
p3(z) = (23\/ 27 0Z) N ((i*)3\/ (220 2) Nqo(2).
Moreover, fom=5o0rn=7,

n—-1
H -1 n_ —1 n_
Po(2) = @0(2) A A\ [26 (1 =2 V7 & (@) ) AlZ & (=7 vze ()
k=1
With above notations we get:

Theorem 16 Let A be an MV -algebra, | be an ideal of A ané4®, 3,5,7. Then we have:

1. m(2) is symmetric and ideal-uniform.

2. Synfpn,|) is a subalgebra of A.

3. lis anideal of Syitpp, ).

4. B(A) is a subalgebra of Syfpn, 1)

5. IfQisaprimeideal in Syfp,,|) and 1 C Q, then Q is supermaximal or big ideal; thus Sy 1)/Q =

{0, 1} or Synipn,1)/Q={0.,...,71 1}.

4 General Casepy, n prime number and n> 11

Letn be a prime number anu> 11. Set:
(2 =[Z'VZ o ((n-1)Z)]A[(Z)"Vzo ((n—1)2)]

n-1

; 22vz 6 @) DAz o (A2

2
et () =[20(22)F vZ 0 <”%1<z*>2>] AZ©(22)F vz (7122>]

To definegnk(z), for 3<k < “%1 we need some preliminar considerations. Dividing the prirbg
k yields a quotiently and a remaindery, in symbols

Nn=Kkdy+rp,0<rg <k Q)

tn2(2) = [z ( 2)2V26 (227 )]
o

If dy < ro, you have to apply a similar processrtandrg, obtaining
N=rgd1+r1,0<ry <ro. 2
If di < ry, you have to repeat the division algorithmrtandr; and so forth.
on=rgdp+re,0<rpg < ry. 3)

Since the finite sequences of positive intergeisds, ...,d.1) and
(ro,r1,...,rey1) are strictly increasing and decreasing respectively, them@néi € N : r; < d;}.
Denote such a minimum hy.

n=rj_1d +r;,0<r <rj_1and 0<r; <dj
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A fuzzy set [12] is a generalization of subset (at least in the naive sense). It is defined
by a membership function from a basic set to the unit interval (or a suitable lattice) and its
cuts are sets. Note that originally, the word “fuzzy” specifically refers to the introduction of
shades or grades in all-or-nothing concepts.

However what is often called a fuzzy number is understood as a generalized interval,
even if mathematicians of fuzzy sets in the past have proposed a different view of a fuzzy
real number, starting with Hutton [5]. Often, it takes the form of a decreasing mapping from
the reals to the unit interval or a suitable lattice (Grantner et al. [3]), or a probability
distribution function (Lowen[6]); variants of such a fuzzy reals were also studied by
Rodabaugh[10] and Hoehle [4]. To avoid confusion, we call a fuzzy set of numbers whose
cuts are intervals a fuzzy interval (regardless of whether their cores are reduced to a point or
not). Note that fuzzy intervals account for both imprecision and fuzziness. In contrast, we
here take it for granted that a fuzzy number should be a fuzzy object of some kind each cut of
which should be a number. This issue was a topic of (unresolved) debates in early Linz
Seminars between pure mathematicians and applied ones (see Proc. of the 1% Linz Seminar,
pp. 139-140, 1979).

Similarly there is a misunderstanding about the notion of defuzzification in
engineering papers, whereby a fuzzy set of numbers is changed into a number. Yet,
defuzzifying means removing gradedness, so that defuzzifying a fuzzy set should yield a set,
not a point. And indeed in the past the notion of mean interval of a fuzzy interval was
proposed as a natural way of extracting an interval from a fuzzy interval (Dubois & Prade
[2], where the phrase “fuzzy number” was used in the sense of a fuzzy interval). See also
recent works by Roventa and Spircu [10]. So, the defuzzification process in the engineering
area can be split into two steps: removing fuzziness (thus getting an interval), and removing
imprecision (by selecting a number in the interval). Randomly repeating this method yields a
probability distribution (often the Shapley value).

One way of approaching the intuition of a (genuine) fuzzy number is to swap these two
steps: given a fuzzy set of numbers, first remove imprecision, get a fuzzy number, and then
defuzzify it. A fuzzy number is then supposed to express fuzziness only, WITHOUT
imprecision. Mathematically, it can be modelled by a function from the unit interval to the
real line (and not the converse). Note that we do not require monotonicity of the function so
that some fuzzy numbers cannot be interpreted as a membership function (a number may
then sometimes have more than one membership degree...). Algebraic structures of numbers
(like groups) should be preserved for the most part when moving from numbers to fuzzy
numbers (while fuzzy intervals just preserve algebraic properties of intervals). This view
enables a fuzzy interval to be defined as a pair of particular (monotonic) fuzzy numbers, just
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as an interval is modelled by an ordered pair of numbers. Performing fuzzy interval analysis
in the style of interval calculations, the combination of two fuzzy boundaries of fuzzy
intervals may fail to be monotonic [1] (hence the necessity not to restrict to monotonic fuzzy
numbers).

The introduction of “genuine” fuzzy numbers (to a wider audience, if we consider that
similar considerations were more or less already discussed among pure mathematicians of
fuzzy sets) may help clarify the situation in other problems. For instance, the fuzzy
cardinality of fuzzy sets [11] has been a topic of debate and many proposals appeared in the
1980’s. It is clear that this notion has been more often than not envisaged as a fuzzy set of
integers (hence involving some imprecision). The above discussion suggests it should not be
so. Integers are defined as cardinalities of (finite) sets. Recently, Rocacher and Bosc [8]
suggested to define fuzzy integers as (precise, but gradual) cardinalities of fuzzy sets. A
fuzzy integer is then a (monotonic) mapping from the unit interval to the natural integers.
They then define fuzzy negative integers [8] and fuzzy rationals [7] as equivalence classes of
pairs of fuzzy integers, as in the classical setting. Fuzzy negative integers are no longer
monotonic, generally. This view is totally along the line discussed above. A similar
treatment applies to notions like probabilities of fuzzy events or distances between fuzzy
sets, and more generally, fuzzy extensions of scalar evaluations of sets, where sets are
mapped to numbers.

This discussion leads to introduce the notion of fuzzy element of a (fuzzy) set, a
concept that was apparently missing in the theory. Topologists tried to introduce ideas of
fuzzy points in the past, but this notion has often been controversial, and sterile in its
applications. The aim of this talk is not to produce a full-fledged mathematical development.
It seeks to informally introduce a natural notion of fuzzy number and fuzzy element, to
outline elementary formal notions related to this notion and discuss its potential at shedding
light on some yet ill-understood aspects of fuzzy set theory and its applications.
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The aim of the talk is to give a general overiew of some results of t-norms and t-norms based
logics and to remark some of their relationship. Special mention will be due to the relation between
t-norms results and completeness results of t-norm based logics and to the translation of some results
on t-norm based logic to t-norm setting. At the end we will sketch some recent results about the
most general t-norm based logic, the Monoidal t-norm based logic MTL and its involutive axiomatic
extension IMTL.

From the definition of t-norms by Menger till the results contained in the book [23] of Klement,
Mesiar and Pap there is a very long history where fuzzy sets and fuzzy systems play a very important
role. One of the first important results about t-norms is the decomposition theorem of continuous t-
norms as ordinal sum of copies of the three basic ones, i.e., Lukasiewicz, Product and Minimum. This
result was firstly obtained by Moster and Shield in the setting of semigroups or monoids and after by
Ling in the setting of probabilistic metric spaces. But here we are interested in the fuzzy set setting.

After the definition of Fuzzy Sets by Zadeh in [31] the main work in what was called Fuzzy Logic
was devoted in the seventies, to the definition of truth functions on the real unit interval corresponding
to the usual connectives of propositional logic (and, or, negation and implication basically). These
functions are also used to define the fuzzy set operations punctually and the inference in fuzzy rule
based systems. In this setting t-norms plays a central place since they are the operation showsed to
modelise conjunction operation and (with the exception of negation) to define other truth functions.

Before going into fuzzy logics in narrow sense, into the axiomatic multiple-valued systems cor-
responding to residuated logics which are standard complete with respect to interpretations over the
real unit interval with truth functions given by a t-norm, its corresponding residuated implication and
negation defined by “imply 0”, we want to survey some basic results obtained on the monoidal setting.
Holhe's paper [19] is both a deep study of commutative monoids and its residuated implication and the
first to give an axiomatic system related to them, the so-called monoidal logic. Even though this logic
is complete with respect to resiuated lattices it is not properly a Fuzzy logic in the sense that it is not
complete with respect to any algebra defined by a t-norm and its residuum over [0,1]. This logic is also
found in Ono’s study of substructural logics (by the name Full Lambek with exchange and weakening,
FLew. See [29]) and in Adillon-Veird papers (By the name Intuitionistic logic without contraction,
IPC/*. See [1]). This was the framework where t-norm based logic have been developped. An impor-
tant result is that Monoidal logic and any of its axiomatic extensions are algebraizable in the sense
of Block and Pigozzi and the equivalent semantic is the corresponding variety of algebras (residuated
lattices for monoidal logic and the corresponding subvariety for its axiomatic extensions). This means
that it is equivalent to study axiomatic extensions of Monoidal logic or to study the corresponding
variety of algebras.

In the t-norm based logic setting properly defined, the known t-norm based logics before fuzzy sets
have been defined were Lukasiewicz (infinite valued Lukasiewicz logic) dntiGwhich semantic
is given by the minimum t-norm and its residuum). See, for example [4, 12] for a general overview of
this logics. Hajek et alt. add to this two initial the study of Product logic in [17]. Afterwards, Hajek
defined BL claiming that it is the logic of continuous t-norms. The method to prove this claim was to
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prove first that the BL-algebras are subdirect product of I.0. ones and second that the I.0. BL-algebras
(BL-chains) are ordinal sums of the three basic ones like continuous t-norms (See [16, 5]). It is clear
that the result about decomposition as ordinal sums of continuous t-norms have been the guide for the
proof of standard completeness of BL. But in the logical setting we go further and Montagna et alt.
proved in [2] that any BL-chain is an ordinal sum of Wajsberg hoops. Montagna also proved in [25]
that there exist a t-norm generating the full variety of BL-algebras and Esteva, Godo and Montagna in
[10] proved that the logic of any continuous t-norm is finitely axiomatizable and gave a method to find
the axioms. Moreover in [25, 18] the authors proved that there are continuously many subvarieties of
BL-algebras while there are only denumerable subvarieties generated by a continuous t-norm and its
residuum. All these logical results give new results about t-norms and t-norms like over a chain and
over a lattice. We will give some examples of them, some interesting results that goes from logic to
t-norms place. Of course, there are many other works on particular t-norm-based logic corresponding
to continuous t-norms like, for example, [24].

Moreover from the fact that a t-norm has a residuum if and only if it is left continuous, Esteva and
Godo defined in [7] Monoidal t-norm based logic MTL claiming that it is the logic of left continuous
t-norms and their residua (as BL was the logic of continuous t-norms). The claim was proved by Jenei
and Montagna in [22] and generalized by Esteva et alt. in [8] to the involutive case (IMTL) and to weak
contractive or pseudocomplemented case (SMTL). The method given by Jenei and Montagna to prove
standard completeness is different from the one used for BL. It is clear that we can not use a similar
way because of the lack of a structural theorems about left continuous t-norm (like decomposition
theorem for continuous t-norm). This is a very important fact when we want to study subvarieties of
MTL and IMTL. Some interesting results to study left continuous t-norms can be found in Jenei’s
papers [20, 21] where Jenei gave some methods to build some families of left continuous t-norms in
the involutive case (IMTL-chains).

In the last part of the talk we will comment about the last results in the setting of MTL and IMTL
logics and varieties. There are some varieties that are fully studied and axiomatized. The main ones
are the nilpotent minimum ones NM (See [12]), the simple 4-contractive (or 4-potent), i.e. that sat-
isfies the equatiorV ~(x®) = 1 (See [14]) and the weak nilpotent minimum WNM (See [9]). Also
some study was done in some particular t-norm-based logic (See for example [28] and [30]). This va-
rieties are studied directly and the second one [14] is not t-norm based since there is no [0,1]-algebra
belonging to this variety. In the talk we will give the results about WNM that are recently obtained
and already not published. Finally we want to refer to the variety (and logic) studied following Jenei’s
method to built involutive left continuous t-norms. First we have proved in [26] that perfect IMTL
algebras correspond to disconnected rotation of semihoops (generalizing the disconected rotation de-
fined by Jenei in [0,1]). Second, in the same paper, we have proved that perfect IMTL algebras adding
a fix point corresponds to connected rotation MTL without zero divisors and third we are working in
the decomposable IMTL-chains (some genralization of ordinal sum of a perfect plus any IMTL) as
the IMTL-chains obtained by the generalization of the rotation anihilation method of Jenei (See[21]).
Moreover we have generalized in [27] the notion of perfect algebras to MTL algebras and have ob-
tained a family of varieties that we will explain in the talk jointly with completeness results. This gave
new methods to build left continuous t-norms. Finally some results about n-contractive (n-potent)
IMTL algebras will be presented

The talk will finish with some ideas about future research in the study of subvarieties of MTL,
SMTL and IMTL.

AcknowledgmentsThe author acknowledges partial support of the Spanish projesrac, TIC2001-
1577-C03-01 and MULOG, TIN2004-07933-C03-01
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In [3] the authors introduced the notion stfuctured latticedefined as a pair
(L, ®)
whereL is a complete lattice and
d={@lacL,a#1l}, @:L—]L,3a

is a family of A\-complete semilattice morphisms. Such a structuré aftows to build theforward
and thebackward powerset operatoad any function between the underlying sets of any twsets,
in such a way as to include in some sense both the situations considered in [1] and [5].

Thence, based on such a structured lattice, the notigmoafnd categoras a concrete category
of L-sets whose morphisms have "good™ powerset operators has been given in [3].

Moreover, a large category including all possible ground categorigs @b) has been consid-
ered. Such a category, denoted(by®)-Set has allL-sets as objects, while morphisms are functions
between the underlying sets¥fc L* andZ < LT that satisfy the condition

Y(x) /" Z((x)), ¥x € X

where " is a pre-order relation ob induced by®.

Now we approach the problem of giving conditions on the structured lattic®) that allow
(L, ®)-Setand the possible ground categories(bn®) to betopologicaloverSet In case when those
conditions are not satisfied we show how to get frian®), with weaker conditions, a new structured
Iattice(I:,ﬁJ) that gives topological ground categories.

Moreover we consider, under suitable conditions(bn®), the backward powerset functasn
every ground categor@ on (L, ®)

<—(|_7q)): C— CLatOp.

This functor can be used as a tool for the construction of categoristopological spaces drsets
that are topological on their grouri@ so extending results given in [4].
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1 Introduction

There is the well known distinction between FATI and FITA strategies to evaluate systems of linguistic
control rules w.r.t. arbitrary fuzzy inputs from (X).

The core idea of a FITA strategy is that it is a strategy whitidst | nfers (by reference to the
single rules) and hen Aggregates starting from the actual input informatAanContrary to that, a
FATI strategy is a strategy whichirst Aggregates (the information in all the rules into one fuzzy
relation) andT henl nfers starting from the actual input informatidn

From the two standard interpolation strategies, the usual Mamdani/Assilian approach offers a FATI
strategy, and the method of activation degrees provides a FITA strategy.

2 Some general evaluation strategies

Both these strategies use the set theoretic union as their aggregation operator. Furthermore, both of
them refer to the compositional rule of inference (CRI) as their core tool of inference.

In general, however, the interpolation operators we intend to consider depend more generally upon
some inference operator(s) as well as upon some aggregation operator.

By aninference operatowve mean here simply a mapping from the fuzzy subsets of the input
space to the fuzzy subsets of the output space.

And anaggregation operatoA, as explained e.g. in [1, 2], is a fami{y ") Of operations, each
fM ann-ary one, over some partially ordered Bewith a bottom elemerfd and a top elemert, such
that each operatiofi” is non-decreasing, maps the bottom to the bott6h0,...,0) = 0, and the top
to the top:f"(1,...,1) = 1. Such an aggregation operatvr= (f"),cy is acommutativeone iff each
operationf" is commutative. AndA is anassociativeaggregation operator iff e.g. for= k+1 one
always has"(ay,...,a,) = f2(fX(ay,...,a), f'(ak1,...,an)) and in general

f"ay,...,aq) = f'(f9ay,...,ag),..., T (ame1,...,an))

forn=75'_,;k andm= 5/ _1k.
Our aggregation operators further on are supposed to be commutative as well as associative ones.
If we now consider interpolation operatabsof FITA-type and interpolation operatots of FATI-

type then they have the abstract forms

Wp(A) = A(BL(A).....8n(A)), ®
Zp(A) =A(By,...,00)(A). @)

1 This terminology has its historical roots in the fuzzy control community. There is no relationship at all with the logical
notion of inference intended here.

2|t seems that this is a rather restrictive choice from a theoretical point of view. However, in all the usual cases these
restrictions are satisfied.
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Here we assume that each one of the “local” inference opergtigsletermined by the single input-
output pair( A, B;). Therefore we occasionally shall wrige gy instead of; only. And we have to

assume that the aggregation operafooperates on fuzzy sets, and that the aggregation ope&ator
operates on inference operators.
With this extended notation the formulas (1), (2) become

qJD(A) = A(G(Al,Bl) (A)7 ) e(An.,Bn> (A)) ) (3)
Zp(A) = A8, Oianen) (A). (4)

Some particular cases of these interpolation procedures have been discussed in [6].

3 Stability conditions for the given data

If ©p is a fuzzy inference operator of one of the types (3), (4), then the interpolation property one
likes to have realized is that one has

Op(A) =B; (5)

for all the data pairgA;, B;). In the particular case that the opera®j is given via the CRI, this is
just the problem to solve the system (5) of fuzzy relation equations.

Definition 1. In the present generalized context let us call the property (5¥trsability of the fuzzy
inference operato®.

To find D-stability conditions on this abstract level seems to be rather difficult in general. How-
ever, the restriction to fuzzy inference operators of FITA-type makes things easier.

Itis necessary to have a closer look at the aggregation opéyatqif")ncr involved in (1) which
operates or¥ (Y), of course with inclusion as partial ordering.

Definition 2. Having BC € #(Y) we say that C i\-negligible w.r.t.B iff f2(B,C) = f1(B) holds
true.

The core idea here is that in any aggregationfbthe presence of the fuzzy sBtamong the
aggregated fuzzy sets makes any presen€esuiperfluous.

Proposition 1. Consider a fuzzy inference operator of FITA-type
LIJ@ == IA(e<'A\1’Bl>7 e ’9<An’Bn>) .
It is sufficient for theD-stability of W, i.e. to have
®p(A) = By forallk=1,...,n

that one always ha8 s, g,) (Ax) = Bx and additionally that for each# k the fuzzy sél s, g,)(A) is
A-negligible w.r.t.8 s g, (Ax)-

The proof follows immediately from the corresponding definitions.
There is also a way to extend these considerations from inference operators (1) of the FITA type
to those ones of the FATI type (2).
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4 Stability conditions for modified data

The combined approximation and interpolation problem, as previously explained, sheds new light
on the standard approaches toward fuzzy control via CRI-representable functions originating from
the works of Mamdani/Assilian [5] and Sanchez [7] particularly for the case that neither the Mam-
dani/Assilian relatiorRya, determined by the membership degrees

n

Rva (x,y) = \/ Ai(X) *Bi(y), (6)

i=1

nor the Sanchez relatid® determined by the membership degrees

n

ROY) = A (AX) — Bi(y)), (7)

i=1

offer a solution for the system of fuzzy relation equations. In any case both these fuzzy relations de-
termine CRI-representable fuzzy functions which provide approximate solutions for the interpolation
problem.

In other words, the consideration of CRI-representable functions determined by (6) as well as
by (7) provides two methods for an approximate solution of the main interpolation problem. As is
well known and explained e.g. in [3], the approximating interpolation function CRI—represent%d by
always gives a lower approximation, and that one CRI-represent@&ykygives an upper approxi-
mation for normal input data.

Extending these results, in [4] the iterative combination of these methods has been discussed to
get better approximation results. For the iterations there, always the next iteration step consisted in
an application of a predetermined one of the two approximation methods to the data family with the
original input data and the real, approximating output data which resulted from the application of the
former approximation method.

Therefore let us now, in the general context given earlier in this paper, discuss the protem of
stability for a modified operatd@®7, which is determined by the kind of iteration &f, just explained.

Let us consider th®,-modifieddata setD* given as

D" = ((A,On(A)))1<i<n, 8)
and define from it the modified fuzzy inference oper&y as
Q) =0yp-. 9)

For these modifications, the problem of stability reappears. Of course, the new situation here is
only a particular case of the former. And it becomes a simpler one in the sense that the stability criteria
now refer only to the input dat; of the data se® = ((Ai, Bi))1<i<n-

Proposition 2. It is sufficient for theD*-stability of a fuzzy inference operattt;, of FITA-type that
one has

W5 (A) =Wo-(A) = Wp(A) forall 1<i<n

and that alway® s w,(a)) (Aj) is A-negligible w.r.t.8.a v, a)) (A)-
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In the last decades many formal systems of fuzzy logics were developed. Since the main differences
between fuzzy and classical logics are grounded in the propositional level, the fuzzy predicate logics
are still under-developed (compared to the propositional ones). After the monograph [6] only few new
results have been achieved (notably results on arithmetical complexity of particular logics).

In this text we want to boost the interest in fuzzy predicate logics by contributing to the model
theory of the fuzzy predicate logic. First, we generalize the completeness theorem, then we use it to
get results on conservative extension of theories and on withnessed models.

1 Introduction and completeness theorem

We concentrate on basic predicate fuzzy logic/Bind stronger predicate calculi (see the monograph
[6]). These logics have proved to be reasonably deep and well behaving as symbolic logical systems
(see also e.g. [8, 9, 4, 11]). The reader familiar with the MTL hoop logic (HMTL, see [7]) and MTL
delta logic (MTLx, see [3]) will see that our results hold true also for such logics. Although they can
be extended to even wider class of logics (see [2, 10]), we restrict ourselves to:

Convention 1 By a propositionafuzzy logic £ we understand here an axiomatic extension of either
HMTL or MTL A (a fortiori BL and its axiomatic extensions are included).

We assume that the reader is familiar with the syntax and semantics of predicate fuzzy logics. We
restrict ourselves to languages without functions, the generalization is almost straightforward. We re-
call that, for eachC-algebral , anL -structure of a predicate languagle= (M, (rp)p predicate (Me)c constany
whereM # 0, for each predicat® of arity n, rp is ann-ary L-fuzzy relation onM and for each con-
stantc, m; € M. Having this, one defines for each formudlgof the given language), thteuth value
0]k, of ¢ in M determined by thec-algebral. and evaluatiorv of free variables of in M in the
usual (Tarskian) way. A StructuMd is safeif this is defined for eaclp andv.

By (M,L) = ¢ we denote the fadtd ||}, , = 1. for eachM-evaluatiorv. WhenL is known from
the context we writé/ = ¢ only. We say thé(M ,L) is amodel instead of saying thatis a L-algebra
andM is a safel-interpretation. Furthermore, we say tlikt,L ) is a model of a theor¥ if (M,L)
is a model and all axioms df areL-true inM (i.e.,(M,L) |= a for eacha € T).

Now we recall that for each propositional fuzzy logic we can define two distinct predicate logics.
The first one is described in the monograph [6]. The second one results from this logic by omitting its
last axiom (as described in [7]).

Definition 1. Let £ be a propositional fuzzy logic. The logitv— has axioms:

* The work of both authors was supported by grant A100300503 of the Grant Agency of the Academy of Sciences of the
Czech Republic
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(P) the axioms resulting from the axiomsby the substitution of the
propositional variables by the formulae bf

1) (VX)$(X) — ¢(t), where t is substitutable for x if,

1) ¢(t) — (IX)d(x), where t is substitutable for x if,

2) () (X— ) — (X — (VX)0), where x is not free i,

v
=
\
32) (VX) (¢ — X) — ((IX)d — X), where x is not free iy,

P

The deduction rules are those of the logi@and generalization fronp infer (¥x)¢. Furthermore,
we define the logi€V as an extension of vV~ by the axiom:

(V3) (W) (x Vo) — xV (¥X)¢, where x is not free iix.

The completeness theorem for Basic predicate logic was proven in [6] and the completeness theo-
rems of other predicate fuzzy logic, defined in the literature were proven in the corresponding papers.
We generalize these results in two aspects, first we prove it for each fuzzy logic (see Convention 1)
and we prove it for arbitrary predicate languages (and not only countable ones as in the literature).
Whereas the first generalization is rather trivial the second needs a new version of the proof of the
fundamental lemma (about existence of Henkin extension). We also use this lemma and the proof in
the next section. We also deal with both predicate logicand LV~

Theorem 2. Let L be a propositional fuzzy logid, be a predicate language, T a theory afich
formula. Then we have:

— Tk, ¢ iff M = ¢ for eachL-model of theory T and each-algebral .
— T kv ¢ iff M = ¢ for eachL-model of theory T and each linearly orderédalgebral .

2 Conservative extension

In classical logic, a theor¥s is called arextensiorof a theoryT; if the language of; is a sublanguage
of T, and each formula provable ify is provable inT,; T, is called aconservative extensioif,
in addition, each formula of the languageTafprovable inT, is provable inT;. A model-theoretic
theorem then says th@ is a conservative extension ®f iff for each modelM 1 of T; there exists
a modelM, of T, such that the restriction dfl, to the language of; is elementarily equivalent to
M3, i.e. for each sentengin the language of1, M = ¢ iff M2 = ¢. (This is an easy exercise of
application of compactness and completeness.)

The definitions of an extension and a conservative extension as formulated above are meaningful
for theories over fuzzy logics. Our aim is to study a natural model-theoretic characterization, analo-
gous to that for classical logic. Before we do so, we prepare few definitions.

Definition 2. Let (M1,L1) and (M2,L>) be two models interpreting the same language. Say that
(M1,L 1) elementarily equivalerib (M2, L ») if for each sentencg we have(Mq,L1) = ¢ iff (M1,L1) =
.

Definition 3. An elementary embedding of a modél,L 1) of a languagd; into a mode(M,,L )
of alanguagd , O I'1 is a pair (f,g) such that f is an injection of the domaindf; into the domain
of M2, g is an isomorphism df; and a subalgebra df ; such that for eacl 1-formula¢(xy, ..., Xn)
anda,...,a, € M1, g(||¢(ag,...,an) | M) = |o(f(ag),..., f(an)||M2t2).

Here of course byjo(ay, ... an)[| M1t we meani|o(xq, ... Xallyt, , for v(x) =a,i=1,...n.
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Definition 4. For each mode(M,L) let Alg((M,L)) be the subalgebra df whose domain is the

set{HqJH,';,,VVM),v} of truth degrees of all formulag under allM-evaluations v of variables. Clearly,

for eachd and v ||c|)||k,,7v = ||¢||§>|'?\E(L’M)). Call (M, L) exhaustive it. = Alg((M,L)) (i.e.L does not

contain any unnecessary elements).

We achieve the following characterizations analogous to the classical ones. However the proofs
are much more complicated.

Theorem 3. Let T; and T be theories. Then the following claim are equivalent:

1. T, is a conservative extension of T

2. for each exhaustive mod@¥1,L 1) of T; there exists an elementary embeddingMf,L 1) into
a model(My,L7) of To.

3. for each mode(M1,L 1) of Ty there is a mode{M3, L) of T, such that(M1,L 1) is elementarily
equivalent to the restriction ¢M», L) to the language ofT

3 Witnessed models and logics

Recall that the truth degree of a universally quantified formula is defined as the infimum of its instances
and similarly for existentially quantified formula (supremum). The infimum may be smaller than the
truth value of each instance (they do not have a minimum); dually for supremum (maximum).

Definition 5. Call a formula(3x)¢$ possibly containing free variableg.y. .,y, witnessed ifM, L) if

for each evaluationg...a, € M of yi,...,yn there is a be M such that|(Ix)$(x,ay, ... ,an)H(M’L) =
[6(b,aq,...,aq)||ML); similarly for (Vx)¢. Call (M,L) witnessed if each formula beginning by a
quantifier its witnessed itM, L ).

The notion of a witnessed model was introduced in [5]. Consider the following two axiom schemas
(cf. [2]).

(C3)  EN(P(X) — 6(y)
CY)  @E((Y) = (™)$()

Evidently, if (M, L) is witnessed then all instances(@3), (CV) are true in(M,L); but not nec-
essarily conversely.

Definition 6. Let £ be a propositional fuzzy logic. We define the logi¢” as an extension ofV by
axioms(C3), (CV).

Lemma 1. Lukasiewicz logic ¥ proves(C3) and (CV), i.e., £V = £V¥; product logic MV proves
(C3).

Remark 1.(1) The examples in [6] 5.3.6 can be used to show (8a) is unprovable irGY and(CV)
is unprovable both iGY and inlVv.
(2) To show that validity of CV), (C3) does not guarantee witnessedness it is enough take any non-
witnessed model over standard tukasiewicz, @grp) whererp(n) = Wll (for V) of rp(n) = 55
(for 3).

Theorem 4. Let £ be a propositional fuzzy logic an@d/, L ) be an exhaustive model. Th@w, L) is
a model of£ vV iff it is an elementary submodel of a withessed model.

Theorem 5 (Witnessed completeness)et £ be a propositional fuzzy logi¢, be a predicate lan-
guage, T atheory, andl a formula. Then T, ¢ iff M = ¢ for each witnessetd-model of theory
T and for eachZ-chainL.
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Let Q be a complete Heyting algebra , aXdbe an arbitrary set. Onfe of the interesting contri-
butions of sheaf theory consists in the identificationtsialued mapsX — Q with subsheaves of
the simple sheaf generated My This identification is based on the subobject classifier axiom — one
of the most important axioms in topos theory — and makes heavily use of the distributivity of finite
meets over arbitrary joins in the underlying lattiQe
In this talk we drop any distributivity condition between meets and joins and restate the previous re-
sult in the realm of complete lattices. In particular, this program implies an appropriate generalization
of the concept of sheaves and the corresponding subobject classifier axiom. Since lattice-theoretically
any complete lattice can be embedded into the lattice of selfadjoint elements of involutive, unital quan-
tales (cf. Section 1), involutive and unital quantales (see Mulvey and Pellitier 2001) seem to represent
the right level of generality for this kind of development. Thus this talk gives an introduction to the
theory ofsheaves on involutive and unital quantalesa@d establishes theassificationof certain
subobjects by characteristic morphisms. As a special case of this situation a positive solution of the
problem of identifyingQ-valued maps with certain subsheaves®iis specified.
Asiillustration of this train of thoughts the relevance of the previous results will be discussed in the spe-
cial case of the involutive quantale determined by the non-commuttiedgebra of (2,2)-matrices.
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1. Introduction

Some topological invariants, originally defined in terms of arbitrary open sets, have characterizations
in terms of subbasic open sets. In general topology as well as in the theory of locales viewed as
pointless topologies [5], the generation of an arbitrary open element is done by first constructing all
the finite infs of subbasic elements, and subsequently by forming all the sups of those finite infs.
It is the distributivity of finite infs over arbitrary sups (= frame law) which guarantees that such a
construction yields the whole topology or the whole locale.

In the theory ofL-valued topological spaces [2], a good many results are proved to hold&gor
complete lattice. Under absence of the frame law,#opologyt  LX is constructed from a subbase
o C LX in an external way:

1=(){p:0Cp,pisanL-topology onX}.

For completely regular spaces of Hutton [4] a number of results hold éocomplete or a meet-
continuous lattice. However, the subbasic characterization of complete regularity and, thus, the results
depending on it have been proved under the assumptiortadtame (cf. [7]). Thus, the question
naturally arises ([6]; also [8]) as to whether there is a subbasic characterization in a complete lattice
setting. We shall show that this is the case providésimeet-continuous.

2. Multiplicative auxiliary order on a meet-continuous lattice

There are many instances in which a complete latticarries a new binary relation which is stronger
than the lattice order. A binary relatioh on a complete lattick is called amultiplicative auxiliary
order (cf. [1]) if it satisfies the following conditions:

(1<) 0=,

(25) a <P implies a <,

(35) a<y=<d<p implies a <,
(42) a<yand B <y imply aVvp =<y,
(5z) a<pB anda <y imply a <BAYy.

Foreacton e Lwewritela={BeL:B<a}. Ana € L satisfies thexiom of approximatioif a =
V | a. The order< is calledapproximatingf each member of satisfies the axiom of approximation.
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Examples of complete lattices with multiplicative auxiliary order can be found in [1], [5], [10], and
[11].

A complete latticd is calledmeet-continuoug a A\/D = \/{aAd: € D} for everya € L and
every directed C L.

2.1. Theorem Let L be a meet-continuous lattice with a multiplicative auxiliary order Then the
setK={aecL:a=V | a}isclosed under non-empty finite infs and arbitrary s(psth formed in
L).

3. Subbasic characterizations of regularity axioms
Given a completél, '), anL-topological spacX anda, b € LX, we write
aCbedcel*:a<d<b

and
a<bea<liof <Rjof<hb

for somef € C(X,I(L)), the family of all continuous maps froX to I(L).

3.1. Definition [4]. Let (L,") be a complete lattice. Ab-topological spacé€X, 1) is called:
(1) regularif u=\{vet:v<w <u for somew e 1},

(2) completely regular if, givem € 1, there existZ C L* and{ f,:ac 4} c C(X,I(L)) such
thatu=\/ 4 anda< L, o f; < Ry o f5 < u. [Without loss of generality the family can be assumed
to consist of opem-sets. Thus, complete regularity implies regularity.]

For (L,") a complete lattice an@X,T) anL-topological space, the relatian is a multiplicative
auxiliary order ort. The spacéX, 1) is L-regular iff  is approximating irt.

3.2. Proposition ([6] or [7]). For (L,") a complete lattice andX,t) an L-topological space, the
following hold

(1) (X,1) is completely regular if and only iff & \/{v € 1:v < u} for each ue T;
(2) If L is meet-continuous, then is a multiplicative auxiliary order or.

3.3. Definition [9]. Let L be a complete lattice and let be a multiplicative auxiliary order on the
L-topologyt of anL-topological spac&. Then:

(1) Xis <-regularortis <-regularif u=\ | u for everyueT;
(2) A subbase of Tis <-regularif v=\/(1n | v) for everyv e o.

3.4. Theorem(Subbase characterization-efregularity).Let L be a complete lattice an, 1) be an
L-topological space such thatis meet-continuous.et o be a subbase of and < be a multiplicative
auxiliary order ont. Then the following are equivalent

(1) tis <-regular,
(2) ois <-regular andlyx =V | 1x.

3.5. Theorem(Subbasic characterization of regularity axionist (L,”) be a meet-continuous lattice.
Let (X,T) be an L-topological space and letc L* be a subbase of. Then the following statements
hold:
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(1) (X,1) is regularif and only if u=\/{ve1:v<w <uforsome we 1} for every ue o.

(2) (X,1) is completely regular if and only if, wheneverw, there existd c LX and {f,:ac
A4} C C(X,I(L)) such that u=\/ 4 and a< Ly’ o f; < Ry o fa < u. [Note that4 can be assumed to
be a subset of.]

4. Distributivity-free environment for regular and completely regular L-topological spaces

In the context of regularity type axioms, frames have been a lattice setting for those results whose
proofs were based on the subbasic characterizations. An easy insepection of their proofs (see [6],
[7], [9]) shows that the frame law can be eliminated, and all those results will continue to hold with
unchanged proofs in the meet-continuous setting, if the appeal to the frame-like subbasic characteri-
zation is replaced by an application of Theorem 3.5. In particular, the following statements are now
valid for L a meet-continuous lattice:

(1) (Completé regularity is inherited by initial structures; in particular by products.
(2) (Completéregularity is preserved under stratification

(3) The L-real real line, the unit L-interval, and L-cubés products of copies of the unit L-
interval) are completely regular.

A completely regular spacs is calledL-Tychonoffif X is a To-space, i.e., whenever#£ yin X,
there exists an opdnsetu such that(x) # u(y). Since already in a complete lattice setting the T
axiom is preserved under initial structures and stratification, the statements (1)—(3) continue to hold
for L-Tychonoff spaces. If we replace frames by meet-continuous lattices, we can restate a result of
[7] as follows:

4.1. Theorem(Tychonoff embedding theorem)et (L, ) be a meet-contin-uous lattice.|[#tratified
space is L-Tychonoff if and only iff it is homeomorphic to a subspacéstfaified L-Tychonoff cube.

We also note that with (1)—(3) at hand, virtually all the embbeding theorems of [7] become char-
acterization theorems when the underlying lattice is meet-continuous.
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Commutativity of (binary) operations, that is the interchangeability of their arguments
(x*y=y*x) is easily seen from the graph of the operations. The meaning of commutativity is just the
invariance of the graph with respect to a reflection to the plane defined by x=y. Similar geometrical
description for associativity is not known. That is, associativity of binary operations can not be seen
simply by “looking at” their graphs. The following three operations are commutative and associative,
their commutativity is readily seen from their graphs, but their associativity is not (see the figure

below).

Investigation of associativity is one of the major problems in algebra. For example,
semigroups, groups, rings and fields are all associative structures. In my opinion the reason of the
difficulty of investigation of associativity is that we are able to “see things” in three dimensions only.
In three dimensions the graph of an operation is defined as follows: There are two independent
variables x and y, and the value x*y is taken in the third axle. The meaning of associativity together
with commutativity is that we can freely interchange the operands of the operation, that is, any two
operands are interchangeable. We have seen above that interchangeability is just the invariance of the
graph with respect to a reflection to a plane. Consider now the graph of an associative and
commutative operation in four dimensions: There are three independent variables x, y, and z, and the
value x*y*z is taken in the fourth axle. It follows from the previous arguments that associativity and
commutativity together are equivalent to the invariance of the four-dimensional graph with respect to
three reflections to the “spaces” x=y, x=z, and y=z, respectively. That is, if we were able to “see

63



things” in four dimension, then associativity together with commutativity were easily seen from the
graph of the operation “for the first sight”.

Similar geometrical description of associativity is not known as of today.

I have reported on a surprising geometrical property of a special class of associative functions
in [8]. Namely, if we, in addition to commutativity and associativity, assume that the “border line” in
between the 0 and the positive part of the graph is the function y=1-x, (three examples are plotted
below)

then the corresponding graphs are rotation-invariant with respect to a rotation with 120 degree
(an illustration is in the following figure).
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show as well a kind of symmetry.

e

|

The mentioned geometrical property does not characterize associativity. That is, there exist
rotation-invariant functions which are not associative. The question suggests itself:
— Does there exist a geometrical characterization which does not assume the “border line”

property, and which do characterize associativity.

In this talk we shall give a geometric characterization of commutative residuated semigroups
(in particular, left-continuous t-norms) based on the notion of rotation-invariance and the notion of

nuclei of quantale structures (see [10]).

As a consequence, associativity can be “seen” even from the three-dimensional graph. This
geometrical understanding of associativity has already led to an elegant solution of a long-standing
open problem of C. Alsina, M. J. Frank and B. Schweizer concerning the convex combination of t-
norms [9]. Namely, at the end of the talk we shall present an answer to the question whether the

convex combination of two left-continuous t-norms can ever be a t-norm.
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1 Introduction

Two types of sections of triangular norms are of special interest for the characterization and description
of t-norms.

The fist type is the intersection of the graph of a t-ndfm[0,1]2 — [0, 1] with a plane which
is normal to the domaifD, 1]? of T and whose intersection with the domain is given by some linear
constraintax+ by+c =0, i.e., we consider the function|(, )c(0,112/axby+c—0; Which always can be
written as a function in one variable.

We are concentrating on the following important special cases:

(i) diagonal sectiordr: [0,1] — [0,1], i.e.,x—y = 0 given bydr (X) = T (X,X);
(i) horizontalandvertical sections Av¢: [0,1] — [0,1] withc € [0,1],i.e.,y—c=00rx—c=0,
given byhe(x) = T (x,c) andve(y) = T (c,y);
(iii) sections parallel to the opposite diagonat §max(c— 1,0), min(c,1)] — [0,1] with c € [0,2],
i.e.,Xx+Yy—c=0given bys(x) = T(x,c—X).

Note that, because of the continuity of t-norms we Have v and, for allx € [max(c — 1,0), min(c, 1)],
Se(X) = se(c—X).

The second type of sections is the intersection of the graph of the t-norm with a plane which
is parallel to its domain. For the sake of simplicity, we restrict ourselves to the case of continuous
Archimedean t-norms, although also more general t-norms can be investigated from this point of
view (see, e.g., [9]). For a continuous Archimedean t-norm and ea€h0, 1] the level function
la: [0,1] — [0,1] is given by

la(X) = sup{y € [0,1] | T(x,y) = a}.

Observe that, for each< [a,1], we haveq(X) = Rr(x,a), whereRr : [0,1]? — [0,1] is the residual
implication [8] induced byT, i.e., the level functions of coincide are just the horizontal sections of
Rr. Moreover, ift: [0,1] — [0, ] is an additive generator df then for eachx € [a, 1]

la(x) =t (t(@) —t(x)). (1)

From (1) we immediately see thitis a decreasing involution dja, 1] (compare with strong nega-
tions in fuzzy logics), implyindq olq = id[g 1;-
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In Section 2 we briefly discuss diagonal, horizontal and vertical sections, Section 3 deals with
sections parallel to the opposite diagonal, and in Section 4 level functions are considered. Finally we
shall relate these sections to different types of continuity.

2 Diagonal, horizontal and vertical sections

Several algebraic properties of a t-noifmare, in fact, properties of its diagonal sectidn: the
Archimedean property, the existence of zero divisors, the structure of the set of idempotent elements,
etc.

For each t-norn, its diagonal sectiodr is a non-decreasing function such tigt < idjgy;
and o7 (1) = 1. Clearly, if T is continuous so i$r. The converse of this is not true in general (a
counterexample is provided by thk@ause t-norm{12, Appendix B.1]).

Moreover, two different continuous t-norms with the same diagonal section are necessarily in-
comparable [12, Corollary 7.18] (this is not true for non-continuous t-norms, see [12, Example 7.19]).
Examples of incomparable continuous t-norms with the same diagonal section can be found in [12,
Example 6.1].

The diagonal sections of continuous t-norms can be completely characterized [10, 14, 20, 21]. If
8: [0,1] — [0,1] is a non-decreasing function satisfyidg < idjg 1) anddr (1) = 1 then the following
are equivalent:

() there exists a continuous t-nofMmwith &t = .
(i) dis continuous and the restricti@fo 1\ 5-1({xc[o,1]5(x)x}) IS Strictly increasing.

As shown in [2, 3], a strict t-norm is uniquely determined by its diagonal section and by its values on
some small parts of the opposite diagonal sector or of a vertical section (also the knowledge of some
vertical section and a small part of the diagonal section is sufficient). In [6] it was proved that a strict
1-Lipschitz t-normT is uniquely determined by its diagonal sectfanif (dr)'(17) = 2.
There are several open problems in the context of diagonal sections of t-norms:
Open Problem 1. Characterize the set of diagonal sections of t-norms.
Open Problem 2. Characterize the set of continuous diagonal sections of t-norms (observe that in [15]
it was shown that the functiod: [0,1] — [0, 1] given by

g if xe [0,0.5],
O(X) = ¢ 0.25 if x€]0.5,0.75],
3x—2 otherwise.

is not the diagonal section of a t-norm).
Open Problem 3. Characterize the set of diagonal sections of 1-Lipschitz t-norms.

Finally, we mention that the associativity of a binary operation is closely related to its horizontal
and vertical sections [18, Theorem 5.1.1]: given an arbitrar)X stiten a binary operatioh: X2 — X
is associative if and only if for alh,b € X we haveh, o vy = w0 h,.

3 Sections parallel to the opposite diagonal

Our attention was drawn to this type of sections of t-norms by the Open Problem 5 in [13] posed by
J. C. Fodor, looking for a characterization of continuous Archimedean t-norms satisfying

T(xy) <& (%) )
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for all (x,y) € [0,1]%. Note that this means that each sectgattains its maximal value at the poifit
Recently, in [7] this problem was solved (even for continuous t-norms). A continuous t-norm is a

solution of (2) if and only if it is an ordinal sum of continuous Archimedean t-norms solving (2). A

continuous Archimedean t-norm is a solution of (2) whenever its additive genéerd@d] — [0, o]

fulfills the following two conditions:

(i) tis convex on the se[t*l(@), 1],
(ii) for all ue [0,t~2(*Y)] we havet(u) +t(2t (12

)) >t(0).

However, there are also non-continuous solutions of (2) (see [11]).

Inspired by [4], we recall an interesting property of t-norms which is related to its sections parallel
to the opposite diagonal, the Schur concavity (which was already studied in the context of continuous
t-norms in [1]): a t-norn is said to beSchur concavé for all A,x,y € [0,1] we have

T(XY) < TAX+(L=N)y, (1—A)X+Ay). (3)

The Schur concavity ol means that each secti@ is hon-decreasing on the intervErhax(c—
1,0,5].
2
From [1] we know the following. A continuous t-norm is Schur concave if and only if it is an
ordinal sum of Schur concave continuous Archimedean t-norms. A continuous Archimedean t-norm
is Schur concave if and only if it has an additive genertitd®, 1] — [0, ] such that for ali € [0, 1]
and for all(x,y) € [0,1]2 with t(x) +t(y) < t(0) we have

t(X) +t(y) > t(AX+ (1 —=A)y) +t((L—A)X+Ay).

There are also non-continuous t-norms which are Schur concave, e.g., the nilpotent minimum [5, 17].

Evidently, the Schur concavity of a t-nofiimplies thatT satisfies (2).

An even stronger property of t-norms is the 1-Lipschitz property which, in the case of continuous
Archimedean t-norms, is equivalent with the convexity of the additive generators. Each continuous
1-Lipschitz t-norm is an ordinal sum of continuous Archimedean t-norms with convex additive gen-
erators.

In general, the implications mentioned so far cannot be reversed. However, for weakly cancellative
t-norms, i.e., continuous t-norms with strictly increasing diagonal section, we have:

Proposition 1. If a continuous t-norm T is weakly cancellative then the following are equivalent:

(i) T satisfieg?2);

(ii) T is Schur concave;
(iii) T is1-Lipschitz;
(iv) T is a copula.

Open Problem 4. Characterize the set of of all t-norms satisfying (2).
Open Problem 5. Prove or disprove: 1-Lipschitz t-norms have only concave secfons

4 Level functions
Several properties of level functions were discussed in [9], we only mention two of them:

If, for some left-continuous t-nornT, there exists a sequend@n)ney in ]0,1] such that
limp—«0n =0 andly, (X) = 1+ a, —x holds for allx € [ay, 1], thenT is the tukasiewicz t-norm.
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Fig. 1. Several implications

If, for some left-continuous t-nornT, there exists a sequend@n)ney in ]0,1] such that
liMn_.co tn = 0, liMn_.co 5 = 0 andl,, (x) = S holds for allx € [an, 1], thenT is the product t-norm.

As shown in [16], each level function of a 1-Lipschitz Archimedean t-norm is convex. A coun-
terexample for the converse is given by the t-norm generated by the additive gehej@tbfr— [0, co]
given byt(x) = ”C% (originally introduced in [1] showing that a continuous Schur concave t-norm
need not be 1-Lipschitz).

Note that the convexity of all level functions implies the Schur concavity. Again the converse is
not true in general, as can be seen from the t-norm generated by the additive gengiagarby
t(x) = min(1— %, max(3 — 2x, 1X)).

Recall that the Schur concavity was defined by means of sections parallel to the opposite diagonal.
However, there is also an equivalent characterization in terms of level functions:

Proposition 2. A continuous Archimedean t-norm T is Schur concave if and only if forallaz1]|
with &7 (z) = a > 0 the function  +idiy 4y [0, 1] — [0, 2] is non-increasing oma, z.

Similarly, it is possible to characterize solutions of (2) by means of level functions [19]:

Proposition 3. A continuous Archimedean t-norm T satisf{gsif and only if for all ze ]0, 1] with
Or(z) = a > 0we haved(x) +x > 2z for each » [a, 1].

Observe that, similarly as the 1-Lipschitz property of a t-norm implies its continuity, the Schur

concavity implies its border continuity and (2) implies the continuity at the pdint). Figure 1
visualizes the implications mentioned in this paper.
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Definition 1 (3—© Type-2 Fuzzy Logic)
Atuple/N =gef (FrM, %, 6,9, £, =) shall be called &8O Type-2 Fuzzy Logic

— with logical languageFrm,

— with truth value lattice¥,

— with semanticss,

— with validity degree latticeD,
— with label lattice £,

— and withmodel relation}=,

=def |
ii.

iv.
V.

Vi.

Vii.

viii.

Frmis a nonempty set,

T = (T, ) is a complete chain an® = (D, ol bl), £ = (L, L1, lL]) are complete lattices
with at least two elements each, with induced partial orderg, [, respectively,

G CTRm

For every te T there existsixc FrmandVal; € & such thatval; (%) =t,

= is a ternary relation onS x £FM « D such that for everyal € 6, xe Frm, and/ € L
there exists ainique d € D such thatval |§ (x,0),

if X,y € FrmandVal, Val' € & such thatval(x) = Val'(y), then for all¢ € L and de D,

Val = (x,¢) iff Val’ = (y,4), (1)
if £,¢' € L such that/ # ¢, then there exists¢ T such that for dd’ € D,
if Valy )? (x,£) and Val )d: (%,¢') thend # d’, (2)
forall /e L,
Valy = (x1,£), (3)

. for every te T and de D, there existg}, € L such that forte T and d € D,

1, ift'=1
= (%, 0y) thend’ = {d, ift'#1landtTt’ (4)

if Valy
d/
0, if nott@t’

. forsteT,/eL,andcd e D such that

Vals |f (xs,¢) and Vaj )% (x,0),
it holds that

if sSCtthenckt d. (5)
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xi. forteT,¢,¢ €L, and cd € D such that
Val; |f (x,¢') and Val |§ (X, 0),
it holds that

Val == (x,¢' U (), (6)
xii. fort e T,/,¢' €L, and ¢d € D such that

Val; }? (x,¢") and Val }? (X, ),

it holds that

Val (== (%, /' (), @

The case thdf is not a chain, but more generally an arbitrary complete lattice is treated in [2]. It
leads to significant complications without yielding many more interesting results.
It has been shown in [2, Observation 4.1.2 and Theorem 4.1.3] that

A= (Fm % 6,9, )

is a%—® Type-2 Fuzzy Logic if and only i is isomorphic with a complete lattic&’ = (L',uU,N)
wherel’ C DT is a set ofnon-decreasing(wrt. [, &) mappings such that for evefyc L/, /(1) = 1,
and whereJ, N are the fuzzy set union and intersection, respectively, induced, by, and where
Val [= (x, /) is defined byd =get £ (Val(x)).

Hence, here we identify labefsc L with non-decreasing mappings frddl (D-fuzzy sets o)
such that/(1) = 1, and we identifyit] with the fuzzy set union L/ with the fuzzy set intersection
andLC with the superset relationfor fuzzy sets induced blgl, [ol, &, respectively. The graded model
relation Val= (x,¢) is defined byd =qer £ (Val(x)).

We consideg-fuzzy sets of formulaieom L™™.

We define thenodel ©-fuzzy setof a labelled formulgx, ¢) for every Vale & by

Mod((x, £))(Val) =der £ (Val(x))

and forx : Frm— L: i
Mod(X)(Val) =get D Mod((x,X(x))) (Val).
xXeFrm
Thesemantic consequence relatiois then defined straightforwardly fof : Frm — L and(x, ¢)
by
X IF (X, ) =get MOd(X') C Mod((x,¢))

and the respective-fuzzy set of consequences by
Cong X)(X) =gef |L|{¢[¢ € LandX I (x,0)}.

Let il =qef ([0, 1] ,min,max) be thereal unitinterval . A $/-4( Type-2 Fuzzy Logic is called simply
Type-2 Fuzzy Logic This simpler class and its applications will be studied in further publications;
here a little more variation is needed for characterization results.

It has been proved in [2, Observation 5.2.4 and Corollary 5.3.2] that cha®stadpetwo-valued
leads tduzzy logic in narrow sensdg4,3] and choosin@ to betwo-valuedeads tgossibilistic logic
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with neccessity-valued formulad1]. In this sense, &9 Type-2 Fuzzy Logic could also be called
possibilistic fuzzy logig but this name has already been used for several different logical systems.
The purpose of this talk is to demonstrate how the conceptxohsistencyandrefutation can
be investigated in this setting.
We recall the following two classical definitions of the concepts:

=

A set of logical formulae igconsistentif it has no model.

2. The concept ofefutation refers to the fact that classically, I- x holds for a logical formula
and a set of logical formula¥ if and only if XU {—x} has no model, so proving the latter means
proving the formeby refutation

It is pointed out that refutation is an essential part of some proof systemsdikantic tableaux
andresolution which are especially well suited for automated proving.

It should be clear that both concepts become significantly more complicated in the logical setting
presented here:

1. By the gradedness of the model relation, the concept of inconsistency is neccessarily graded as
well.
Furthermore, we are considerifigfuzzy setsf formulae here, so the labels have to be taken into
account as well.

2. When considering refutation wrt. the relationsiip- (x,£), itis not enough to negate the formula
x. Furthermore, a ‘dual’ labelhas to be constructed which can be attacheexto

Definition 2 (Inconsistency distribution) For this definition, assume th&rm contains a formulal
such that for allVal € G, Val(L) = 0.
Letx € LF™. Theinconsistency distributiorof X is defined by

iNc(X) =get Cong.X)(L). (8)

Definition 3 (Refutation) Assume to be given two unary mappings: D — D, vz : T — T with the
following properties, forod e Dand st e T:

(order reversion) S tiff ve(t) T v(S) ct d iff vp(d) & vey(C) 9)
(involution) Ve (ve(t)) =t Vo (Vp(d)) =d (10)

and assume further th&rm contains a unary operator symbelinterpreted byw<.
Letx € LF™and (x,¢) € £F™ be given.

/ is said toadmit refutation

—get the mapping : T — D defined for te T by

N 1 ift=1
£(t) :def{\)© (Cs(t) ft£1 (11)

isin L.

If ¢ admits refutation, ther |- (x,¢) is said to becharacterised by refutation

=gef X IF (x,£) iff £ Zinc(XU(-x,7)).
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During the talk, sufficient and neccessary criteria for a label to admit refutation, and for a relation-
ship X I (x, ¢) to be characterised by refutation, shall be given.

It will turn out that in fact the cases where one®br ® is two-valued are the only ones where
refutation can safely be applied without further preparation (as is well-known for fuzzy logic in narrow
sense and possibilistic logic) while for arbitrary Type-2 Fuzzy Logics, care has to be taken about the
range of labels which are admitted in a refutation-based derivation system.
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Abstract. The paper describes in detail the omitting types theory in two predicate fuzzy logic. The first

part of this paper studies the omitting types theory in predicate first-order fuzzy logic in narrow sense with
evaluated syntax [4] which is based on tukasiewicz MV-algebra. The second part describes this theory in
basic fuzzy predicate logic [3] which is based on linearly ordered BL-algebra. The way of presentation is
heavily influenced by the classical book on mathematical logic, especially by C.C. Chang and H.J. Keisler

1.

Keywords tukasiewicz MV-algebra, BL-algebra, predicate fuzzy logic with evaluated syntax, basic fuzzy
predicate logic, model theory, completeness in predicate fuzzy logic with evaluated syntax and in basic
fuzzy predicate logic.

The starting point of our discussion is the notation of a set of formulas in BL-logic and a fuzzy set
of formulas in fuzzy logic with evaluated syntax. The following is a precise definitions:

Definition 1. By 2| (x1,...,X,) we denote a set of evaluated formulas (a fuzzy set of formulas) from
the languagd such that each formula
A(X1, ..., %) € ZL(X1,...,X%,) has all its free variables amomng, . . ., Xn.

By ZgL(X1,...,X,) we denote a set of formulas of the langudgrich that each formula has all its
free variables amongy, . . ., Xn.

Realization and omitting of;

Definition 2. (Realization ofZ,) Let Z_ be a fuzzy set introduced above and 1étbe a structure
for the languagd. We say that, is realizedin the structurel in s degree c¢> 0 if there isn-tuple
Vi,...,Vp €V of elements such that

V(AVL/Xq,...,Yn/xn)) > CV ZL(A) (1)
holds for each evaluated formufec, 2 .

When is a fuzzy set of formulas realized in some non-zero degree by some model of a fuzzy theory
T?

Lemma 1. Let T be afuzzy theory and IEt (X, ...,%,) be as above. The following are equivalent:

— T has a model which realiz&s in a degree c> 0, c> &s.
— Every finite subset &, is realized in some model of T in a degree-d, c>d > a5.

Definition 3. (Omitting X, ) Let Z_ be a fuzzy set introduced above aftibe a structure for the
languagel. We say thak, is b-omittedif to eachn-tuplevs,...v, € V of elements there is a formula
A€, 2 suchthab<aand

V(AML/x,...,Yn/%3)) <b. 2
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We now take up the question: When is aZebmittedin some degree in some model of a fuzzy theory
T? This is a more difficult question, and we need more than the compactness theorem to answer it.

Theorem 1. Let T be a consistent fuzzy theory with the language Jalixt, . . .,X,) be a set of eval-
uated formulas which is not isolated in T. Then there exists a model of T whichxrs. .., X,)
in some non-zero degree.

Realization and omitting &g,

Definition 4. (Realization of>g|) Let2g. be a set introduced
above andl be a structure for the languageWe say thatg, is arealizedin the safel-structure
V denoted byV = Zg| (v1,...,Vn) if there isn-tuplevy,...,v, € V of elements such that for each
formulaA € 3g_

’V(A(Vl/xl, e ,Vn/xn)) =1 3

The next lemma answers the question: When is a set of formulas realized by some model of a theory
T? Its proof is a simple application of the compactness theorem.

Lemma 2. Let T be a theory and I (x1,...,X,) be as above. The following are equivalent:

— T has a model which realizes;, .
— Every finite subset &g, is realized in some model of T .

Definition 5. (Omitting g, ) Let Zg_ be a set introduced above afilbe a safd_-structure for the
languagel. We say thatl’ omitsZpg, if to eachn-tuplevy,...,v, € V of elements there is a formula
A € 2| such that

’V(A(Vl/xl,...,Vn/xn)) <1

We now take up the question: When is a gt omittedin some safé.-model of a theoryl ?

Theorem 2. (Omitting Types Theorem) Let T be a consistent theory with countable language J and
>gL(X1,...,X%n) be a set of formulas which is not isolated in T. Then there exists a countable model of
T which omitsZBL(xl, e ,Xn).
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Most applications of fuzzy logic explicitly consider linguistic expressions such as “small, very warm,
medium age, more or less high pressure” etc. This is the case especially in fuzzy control, but also in
fuzzy decision-making, classification and many other applications which are usually based on fuzzy
IF-THEN rules.

All the considered linguistic expressions fall into the class of the, so calleduating linguistic
expressionsThis class, though linguistically narrow, is rich enough and encompasses also expressions
such as “deep, very intelligent, rather narrow, medium important, very tall, extremely nice, about 100,
not too expensive” and many others. Note that we use them very often in natural language since they
serve us as an essential tool for evaluation of a performance, quality, satisfaction, etc.

Most of the proposed theories of fuzzy IF-THEN rules do not care too much about the linguistic
aspect of these expressions and their semantics is only roughly outlined without too much care about
how they are indeed understood by people. Namely, the meaning of evaluating expressions is often
characterized only by simple triangular fuzzy sets in the universe of real humbers and most care
is focused on the way how is the universe covered by them. For, the rules are used in engineering
applications, where the goal is to describe imprecisely a certain function and so, the above linguistic
expressions are, in fact, used only as auxiliary labels which help to get orientation in the given task.

However, we are convinced that a careful study of the real semantics of the evaluating expres-
sions is important and can be very helpful also in the purely technical applications because the expert
knowledge that is usually an initial source of information uses them. Applications can be expected
also in robotics — imagine a robot obeying instructions in natural language. We argue that evaluating
linguistic expressions form an essential constituent of the special agenda of fuzzy logic as discussed,
e.g., inthe books [4, 14].

Our goal in this paper is to analyze structure of the evaluating expressions and especially, provide
a formal theory of their semantics. We will demonstrate that they are inherently vague and that their
vagueness is always a manifestation of the, more or less hidden, sorites paradox. Hence, the means of
formal fuzzy logic seem to be suitable for capturing their semantics.

A further question arises, which kind of a formal logical system should be used. A lot for char-
acterization of the meaning of evaluating expressions has been done in the predicate first-order fuzzy
logic with evaluated syntax (see [14]). Let us stress that when modeling semantics of words, it is in-
dispensable to distinguish between their intension and extension of expressions (cf. [3, 7]). Because
of the simplicity of evaluating expressions, the concepts of intension and extension can be somehow
captured using the above logic. However, we want our theory to provide a potential to be included in
a theory of a wider part of natural language semantics. Therefore, we prefer the méaawydfpe
theory[13]. Besides other advantages, it enables us to formulate explicitly behavior of the evaluating
expressions in various contexts (in predicate logic, this is only implicit) and has a potential for further
development including the generalized (fuzzy) quantifiers.

A concept of great significance in our theory is thafwfzy equalityfuzzy equivalence; fuzzy
similarity). This is an imprecise equality using which we may characterize various degrees of simi-
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larity between objects. Note that the role of such relations in modeling of the linguistic semantics has
been raised already in [11] where a related concept of the, so daltiskernibility relationhas been
employed.

We will give reasons and develop a formal theory in which the semantal efaluating expres-

sions can beainiquelycharacterized using the fuzzy equality. This makes the theory transparent and
elegant. Let us remark that the theory of evaluating linguistic expressions has been also supported by
the psycholinguistic investigation [8].
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1 Introduction

Substructural logics are originally defined as logics which lack some of structural rules if we formulate
them in Gentzen’s sequent systems. Now, substructural logics are regarded as logics of residuated
structures, as the recent development of algebraic study of substructural logics shows (see [12]).

In the following, we will focus on either extensions of the substructural |&¢jig or on those of
FLew. The logicFL e is formalized in a sequent system obtained from the sequent s\istdon intu-
itionistic logic by deleting bothveakening ruleandcontraction ruleand adding rules fdiusion It is
sometimes called intuitionistic | inear logic (without exponentials). Also, the IBhig, is the sequent
system obtained frorRL ¢ by adding weakening rules. The lodit. ¢ is introduced and its syntactic
and algebraic properties are studied in Ono-Komori [13]. We notdHihg} is equivalent tanonoidal
logic introduced by U. Whle, which is characterized semantically by the class of@hmutative,
integral residuated latticesTherefore, fuzzy logics can be regarded as a particular class of substruc-
tural logics. Here, byuzzy logicsve mean extensions oféjek’s basic logidBL, or sometimes those
of Esteva-Godo’s monoidal t-norm loghdTL .

Our purpose of the present paper is to select several topics of substructural logics which are rele-
vant to fuzzy logics, and to give a brief survey of them from both proof-theoretic and algebraic point
of view. For general information on fuzzy logics and many-valued logics, see [5] and [2].

2 Sequent systems for substructural logics

Let FL¢ be the sequent system obtained frodnby deleting contraction rule and weakening rules:

r .
%:ee (contractior)
=06 : . M= R ;
ar =6 (left-weakening =a (right-weakening

and then adding the following rules féusion

l=a A= o,B,r==0
Taisq5 =) Terag >
MNA=aoa-B a-B,r==9
It is convenient to introduce also two constants 1 and 0. The constant 1 will behave as the unit for
fusion, and 0 is used for defining the negatiam of a formulaa by a — 0. We assume the following
initial sequents and rules for them:

=1 0=
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Ir=e
1r==0

: r .
(1 weakening F=0 (0 weakening
We can introduce also constants for the b@and the bottoml by taking the following initial se-

quents:
M=T 1,r=y

The logicFL ey is defined by the sequent system obtained fielp by adding the above left
and right weakening rules. Clearly, iL ¢y both 1- and 0-weakening rules become redundant, and
moreover 1 and 0 become provably equivalenttand L, respectively. By abuse of language, we
identify these logics with corresponding sequent systems.

In the same way as the above, we can introduce a sequent SyBleg{CFL ¢,,) which is obtained
form the sequent systebK for classical logic by deleting both contraction and wekening rules (only
contraction rules, respectively). The former is equal to linear Idgfd.L by J.-Y. Girard and the
latter is studied by V. Grishin in 70s. They are defined also by adding the law of double negation
——0 = d as an initial sequent tbL ¢ andFL ¢y, respectively.

We note here that 0 must be distinguished framin FL. To show this, let us define a new
negation~ a by a — 1, and consider the logic obtained frdfh by adding~~ a = a as an initial
sequent. Then, left-weakening rule is derivable in it and in fact, the logic is equival@fitg,, not
to CFLe.

It will be necessary here to give a precise definitiorextension®f FL ¢, or logics overFLe. A
set of formulalL is a logic overFL if

1. every formula provable iRL ¢ belongs td_,

2. if botha anda — B are inL thenfis also inL,

3. if botha andf are inL thena A is also inL,

4. if aisinL then every substitution instanceafs also inL .

3 Cut elimination theorem and its consequences

We have the following.
Theorem 1. Cut elimination theorem holds for any BE ¢, FL ey, CFL e and CFL gy,

In the usual proof of cut elimination theorem oKk andLJ, we need to replace cut rules byix
rules On the other hand, this is not necessary for the above four systems, and thus the proof becomes
much easier than that f&K or LJ, since they lack contraction rules (see [13, 11] for the detail).

We say that a logit. hasCraig’s interpolation propertyif for all formulasa and, if a — B is
provable inL then there exists a formuiasuch that

1. botha — yandy— (3 are provable ir,
2. any propositional variable yappears in botk andf3.

Also, we say that a logit has thadisjuntion propertyif for all formulasa andp, if a v 3 is provable

in L then eitherx or B is provable inL. By using the standard proof-theoretic argument, we can show
the following results as consequences of cut elimination theorem. The disjunction property of these
logics comes from the fact that none of them have right-contraction rule (see [11] for the details).
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Theorem 2. All of logics FL¢, FLew, CFLe and CFL ¢, are decidable, and also have both Craig’s
interpolation property and the disjunction property.

Proof-theoretic methods are quite powerful in deriving various logical properties, once a given
logic is formulated in a sequent system for which cut elimination theorem holds. But this means
at the same time that they can be applied only to a limited class of logics. For instance, we have
difficulties of formulating fuzzy logics in sequent systems in general, though hypersequent systems
can be introduced in particular case. Thus, semantical approach will be more appropriate to fuzzy
logics in studying their logical properties.

4 Algebraic structures for FL¢

We introduce here algebraic structures for extensiofd@f A commutative residuated latti¢€RL)
is an algebra of the forntP; v, A, -, 1, —,) such that

1. (P;V,A) is alattice,
2. (P;-,1) is a commutative monoid,
3. xy<z<=x<y—zforallxyzeP.

For general information on residuated lattices, see e.g. [6]. ByLaralgebrawe mean a CRIP
with an @rbitrary) element 0= P. A CRL P is integral if the unit 1 is at the same time the greatest
element ofP. An integral CRL is called afrL oy-algebraif 0 is moreover the least element. Thus,
FL ew-algebras are nothing blioundedCRLs having 0 as the least element. From the syntactical
point of view, the integrality corresponds feft-weakening rulend the asumption that 0 is equal to
the least corresponds tight-weakening rule

Suppose that a given algeli?avith the greatest element 1 satisfies the above first two conditions
and is complete as a lattice. Théhsatisfies also the above third conditidhd law of residuatiohiff
the monoid operationis aleft-continuoug-norm.

A sequentiy,...,0m = B is valid in anFLe-algebraP if v(a1)---v(am) < v(B) holds for every
assignmenv on P. Then by the standard argument, we can show that for any se§ueist provable
in FLe (FLey) iffitis valid in all FLc-algebraskL ey-algebras, respectively). The completeness result
of this kind holds always between every logic o¥r, and a corresponding variety Bt c-algebras.

Since the logidVITL is obtained fronFL ¢y by adding the prelinearity axiofo — ) vV (B — a)
as an axiom, none of extensiondTL has the disjunction property. Let us introduce here a property,
calledHalldén completenessvhich is weaker than the disjunction property. We say that a lbg&c
Hallden complete, if for all formulaa andp which have no variables in commongifv 3 is provable
in L then eithem or 3 is provable inL.

H. Kihara has showed recently that a characterization of Ealldomplete superintuitionistic
logics given by A. Wraiski [14] holds also for logics ovéfl . That is, the following holds.

Theorem 3. The following three conditions are mutually equivalent for any lagaverFL g.

1. L is Hallden complete,
2. L cannot be represented as the intersection of two incomparable logics,
3. L is characterized by a single well-connectelde,-algebra.

Here, arFL ¢y -algebraP is well-connectedf for all x,y € P if xvVy =1 then eithex =1 ory=1.
It is clear that every linearly-orderdel ¢y-algebra is well-connected. As a corollary, we have the
following.
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Theorem 4. All of basic logicBL, tukasiewicz logic £, @del logic G and product logicll are
Halldén complete, while the logidtG which is the intersection of {] and G, is not Hallden com-
plete.

For each logid. overFL ¢, we introduce a relatior , called thededucibility relationof L by

a1,...,0m L B <= v(a;) > 1 for eachi impliesv(p) > 1 holds for every assignmemton
everyFL ¢-algebraP which validated. .

Each deducibility relation is a consequence relation in the sense of abstract algebraic logic. We can
show thealgebraizationof the deducibility relation and also the followingcal deduction theorem
(see [4]).

Theorem 5. LetL be any logic oveFLe. Forall I',a andB, ok B iff TH. (aA1)"— B for
some n> 0.

We note that while the provability iRL ¢ is decidable as shown in Theorem 2, the deducibility in
FLe is undecidable.

5 Finite model property and finite embeddability property

A useful semantical method of showing the decidability of a Idgics to prove thefinite model
property(FMP), i.e. to prove thdt is characterized by a classfaiite algebras. In other wordk, has
the FMP iff the variety/ (L ) of FL ¢-algebras determined Hyis generated by its finite members. By
Harrop’s resultL is decidable if it is finitely axiomatizable and has the FMP. In the study of modal
logic, to show the FMP is the most powerful and successful method in proving the decidability. On
the other hand, it is not easy to show the FMP of a given substructural logic. For instance, whether
FLe andFL ¢y have the FMP or not remained open until the middle of 90s while their decidability is
shown already in 80s as an easy consequence of cut elimination. Strangely enough, cut elimination
results are used in showing the FMP in proofs by Lafont [9] and Okada-Terui [10], who have solved
problems affirmatively.

Then, Blok-van Alten [1] introduced a purely algebraic method of proving the FMP. We say that
a classK of FL ¢-algebras has thinite embeddability propert¢FEP), if every finitepartial algebra
of some member oK can be embedded into some finite membeKofrhe FEP induces a stronger
consequence than the FMP. In fact, if a cl&skas the FEP then every universal sentence that fails
in K will fail in a finite member ofK. Therefore, ifK is moreover finitely axiomatizable then the
universal theory is decidable. In [1], the following is shown.

Theorem 6. The variety Flg, of all FL¢y~algebras has the FEP, while the variety £af all FL ¢
algebras doesn't.

Let us apply their proof to subvarieties Bl satisfying equations for the prelinearity —
y) V (y — X) = 1, the pseudo-complementatign —x = 1 and the involution-—x = x. Then, we can
show the FEP not only of each of these three varieties but also of a variety satisfying any combination
of these three equations (in Kowalski-Ono in an unpublished note, 2001). Thus, we have the following.

Theorem 7. Every extension ofL ¢, Obtained by adding any combination of the prelinearity ax-
iom, the pseudo-complementation axieife A —a) and the involution axiom (i.e. the law of double
negation) is decidable.
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6 Almost maximal logics — logics just below classical logic

It is easy to see that among consistent logics &\ey, classical logicCL is the greatest logic. Then
what logics (ovelFL ¢y) Will come just belowCL ? To see this, let us say that a logicoverFL gy is
almost maximaif L is strictly weaker thatCL and moreover there exists no consistent logics except
CL that are strictly stronger thdn Among logics over intuitionistic logic there exists a single almost
maximal logicH 3 which is characterized by the 3-valued Heyting algebra. Also, Y. Komori [7] gave a
complete list of almost maximal logics over t that are countably many. Another interesting example
of almost maximal logics is product logit [3].

Let us calla™ — a1, the n-potentaxiom. The 1-potent axiom is no other than the axiom of
contraction. M. Ueda (2000) with T. Kowalski showed the following [8].

Theorem 8. There exist exactly six almost maximal logics oMarL with the 2-potent axiom, and
there exist uncountably many almost maximal logics ®&L with the 3-potent axiom.

In contrast with this, Y. Katou (2001) proved the following.

Theorem 9. Almost maximal logics oveBL consist ofH3, I and almost maximal logics over t.
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Introduction

The notion of a linear space is one of the central notions in mathematics and its applications. There-
fore, generalization of the linear space to a weaker structure, such as commutative monoid or semir-
ing, is of certain interest. From the application point of view, these spaces may be suitable for solving
semi-linear equations and systems of semi-linear equations with fuzzy coefficients.

Main Definitions

We will use semirings, BL-algebras ([3]) and dual BL-algebras ([5]) as underlying structures. Gener-
ally, a semiring is a set with two associative operatienand- which fulfil the distributive laws. For
our purposes, we will require some additional properties.

Definition 1
A semiring R = (R +,-,0r, 1Rr) is an algebraic structure ([1, 2]) such that:

(i) (R +,0r) is a commutative monoid.

(ii) (R,-,1R) is a monoid.
(iii) r-(S+t) =r-s+r-t holds for allt,s;t € R
(iv) Or-r =r-0r = ORr holds for allt € R,

A semiring is calleccommutativef (R, -, 1gr) is a commutative monoid.

A typical example of a commutative semiring is a Bebf non-negative integers with addition
and multiplication. Below, we will use semirings which can be taken as reducts of BL-algebras or
MV-algebras (see [1, 4]).

The following definition of a semimodule is taken from J. S. Golan [2].

Definition 2

Let R = (R +,-,0r, 1r) be a semiring. A left R -semimodule is a commutative monoid 4 = (A, +n,0a)
for which there is defined an external multiplication R x A — A denoted by ra, which for allr,r' € R
and a,a € A satisfies the following equalities:

@) (r-ra=r(r'a),

(ii) r(a+ad) =ra+ara’,
(iii) (r+r')a=ra+ar'a
(iv) lra=a,

(v) Ora=r0p = 0a.

The definition of aight & -semimodule is analogous, where the external multiplication is defined
as a functiomdA x R— A. An R -bisemimodulés a both right and lefif -semimodule, i.e. it satisfies
the equality(ra)r’ =r(ar’).
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Definition 3
Let semiring R be a reduct of a BL-algebra L or dual BL-algebra Ly. Then a semimodule over L
(Ly) is called a semilinear space.

The following are examples of semimodules and semilinear spaces over respective algebras and
their reducts.

Example 1
1. Let L = (L,V,A,*,—,0,1) be a BL-algebra on L, L = (L,V,*,0,1) its semiring reduct. Let us
consider the set of all n-dimensional vectors A= L", n > 1, and define

(al,...,an)+(b1,...,bn):(al\/bl,...an\/bn),
P-(a1,...,an) = (P*au,..., P¥an)

where p € L. The neutral element in A is the vector (0,...,0).
2. Let L= (L,V,A,®,5,0,1) be a dual BL-algebraonL, LA (L, A, ®,1,0) its semiring reduct. Let
us take the set of all n-dimensional vectors A= L", n > 1, and define

(ag,...,80) + (by,...,bn) = (@1 Aby,...an Aby),
p-(ag,...,an) = (pdag,...,pdan)

where p € L. The neutral element in A is the vector (1,...,1).

Linear Dependence and Independence

Let A be some left semi-linear space over a BL-algebirar a dual BL-algebraly. By a linear
combination of vectoray, . .., a, € Awe mean the following expression

a1+ +0padn

whereqy,...,0, € Rare scalars called also coefficients. This linear combination uniquely determines
a certain vector frorm\.

Definition 4
By the definition, a single vector a is linearly independent. Vectors ag,...,an, N > 2, are linearly
independent if none of them can be represented by a linear combination of the others.

Otherwise, we say that vectors @y, . . ., an are linearly dependent.

An infinite set of vectors is linear independent if any finite subset of it is linear independent.

Definition 5
A linear independent set of generators of a semi-linear space A is called a basis of A.

The following theorem describes coefficients of a linear combination of veaiors.,a, € L"
which expresses a vectbiprovided that the latter is expressible by at least one of such combinations.

Theorem 1
Let A= L" be the semi-linear space of n-dimensional vectors over L' where L is a BL-algebra.
Let vector b € L" be represented by a linear combination of vectors &y, ...,a8m € L". Then b can be

represented by the linear combination of @y, . .. ,8m with coefficients

n
/\aj—>bj i=1..,m 1)
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It is worth noticing that if a vectob € L" can be represented by a linear combination of vectors
a,...,am € L" then the representation is not necessarily unique.

Corollary 1
Let A= L" be the semi-linear space of n-dimensional vectors over L" where L is a BL-algebra. Then
the zero vector 0 = (0,...,0) € L" is representable by the linear combination of arbitrary vectors

a,...,am € L" with the respective coefficients
n
j=1

By the criterion, suggested below, it is possible to investigate whether the given system of vectors
is linear independent.

Theorem 2
Let A= L" be the semi-linear space of n-dimensional vectors over L' where L is a BL-algebra.
Vectors as, . ..,am € L", m> 2, are linearly independent if and only if

(V| e{l,...,m})(ﬂi e{l,...,n}) (a“ f \r; ajj * (/r]\ajkaa,k)). (3)

j=Lj#l k=1

Corollary 2
Let A= L" be the semi-linear space of n-dimensional vectors over L' and L be a linearly ordered
BL-algebra. Vectors &y, . ..,am € L" are linearly independent if and only if

M e{1,....m}H)(Fie{1,...,n}) (a“ > \r; aji * (/n\ajk—>a|k>). 4)

j=1j# k=1

Let us remind that in the case of a linear space, we distinguish linearly dependent and linearly
independent vectors by analyzing coefficients of their linear combinations leading to zero vectors. As
we will see below, this characterization is unhelpful in the case of semi-linear spaces where we care
about the expressibility property. To exemplify this claim, let us take the redUaf tukasiewicz
algebra orf0, 1] and fora € (0,1) consider the following set of linearly independent vectors ftdm

a = (a,0,0,...,0)
a2:(03a707"'a0) (5)

It is easy to see that the linear combination
—aayV---V-aa, =0

with non-zero coefficientsa gives the zero vector.

On the other hand, the vectoas,...,a,, a1 + ap are linearly dependent, and again, their linear
combination with all coefficients equal tea gives the zero vector. Therefore, independently on the
fact whether the vectors are linearly dependent or not (in the sense of our definition), their linear
combination with non-zero coefficients may égual to the zero vectoNote that this may happen if
at least one of the coefficients given by (2) is non-zero.
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Motivation

Definition 1. An algebraic theory[9] (in clone form)in a ground categoryC is an ordered triple
T = (T,n,c) specified by the following data and axioms:

D1

D2.
D3.

Al.

A2.

AS.

T:|C| — |C] is an object function o".

n assigns to each A |C| a C morphismna: A— T (A).

© assigns to each pair af morphisms, £t A— T(B),g:B— T(C), a C morphismg f : A—
T(C).

¢ is associative, i.e. foreach:fA— T (B),g:B—T(C),h:C— T (D),

ho(gof)=(hog)of
n furnishes identities, i.e. for each: A — T (B),
I’]B<>f =f

o is compatible with the compositienof ¢ morphisms, i.e. given fA— B, g: B — T (C), and
setting £ : A— T (B) by
fA =InNgo f

then it is the case that
goff=gof

Remark 1.[9]. The following hold:

1.
2.

n furnishes two-sided identities in (A2).

T induces a new categonyr, theKleisli category of T, with |Gr| = |C|, the morphisms arg
morphisms of the fornf : A— T (B), the composition is, and the identities are the components
of n.

. EachC morphismf : A — B lifts to a ¢ morphismT (f) : T (A) — T (B) by T (f) = fAoidra).

Infact, T : C — Cis a functor and is a natural transformation froid to T. In the sequel, we
also writef;” =T (f) = onidT(A), since in many applications this lifting is acting as an image
operator between powersets.

Example 1.[9]. Each semigrous induces an algebraic theofly= (T,n,) in Setas follows:T :
|Set — |Set by A— T (A), whereT (A) is the family of all finite, ordered, grouping-symbol-free
strings of variables fromd\ taking values irS, na : A — T (A) by insertion of variablea — a; and
givenf:A—T(B),g:B— T(C),wesegof:A—T(C)bygof =g*of,whereg’: T (B) — T (C)
by the concatenatioby... by — g(b1) ...g(by).
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Example 2.[9]. Traditional powersets collectively form an algebraic thedr (T,n,<) in C = Set

as follows:T : [Set — |Sef by T (X) =0 (x); nx : X — 0O (X) by n(x) = {x}; and givenf : X —
0(Y),9:Y—=0(2), putge f : X =0 (Z) by (go f) (X) = Uye 1(x 9(Y)- The image powerset operator
f~:0(X) —0O(Y) of afunctionf : X — Y is generated a§" cidr () : 0 (X) — O (Y) (see Remark
1.2(3))—i.e.f~ = f;7 =T (f), from which image operator the Adjoint Functor Theorem (AFT) for
the partially-ordered case then gives the all-important pre-image opératdr (X) — O (Y). Since

T generates the image powerset operator of a function via the constriction= onidT(A), we
say thatT generates the traditional “powerset theory” or that the traditional “powerset theory” is
algebraicly generated. In the sequel, the languampalgebraic theory generates a “powerset theory”
or a “powerset theory” is algebraicly generatemieans that the lifting of” morphismsf by = =
T(f)= onidT(A) in Remark 1.2(3) coincides with the image operator of that “powerset theory”.

Question 1.Are there conditions under which the powersets occuring in fuzzy sets form an algebraic
theory inSetin the fixed-basis case or an algebraic theorgatx C in the variable-basis case, and
are these conditiions both necessary and sufficient?

2 Fixed-Basis Powersets

Definition 2. Acomplete quasi-monoidal lattice (cqm(), <,®) is a complete latticéL, <) equipped
with atensor product® : L x L — L isotone in both variables and with idempotent; and the cate-
gory Cgmlcomprises all cgml’s together with mappings preserving arbittgry, and T [7], [16].

If additionally ® is associative and distributes across arbitrayyfrom both sides (implyind. is a
two-sided zero), thefL, <,®) is aquantale[10], [19]. Finally, (L, <,®) is astrictly two-sided (sts)
quantale if it is a quantale for which is a two-sided identity [7].

Lemma 1. (characterization lemma)Let (L, <,®) € |Cqml| and letT = (T,n,¢) be given by the
following data:

D1. T:|Set — |Set by T(X) = L*.
D2. VX € |Set, n determines)x : X — LX given by

Nx (X) = X(x
D3. Vf: X —=LY,g:Y—L%inSetputgof: X — L% by

[(geH)(¥] @) =V [(f(x) V@ (@Y) (@]

yey
ThenT is an algebraic theory irsetif and only if (L, <, ®) is a sts-quantale.

Remark 2.(doubling theories). Since® is generally not commutative, it follows that the tensor prod-
ucts appearing in the definition of the clone composition in (D3) of the Characterization Lemma are
ordered according to our choice. Restated, the clone composition

[(ge )X (@ =V [(f(x) M@ (9(¥) (2]

yeyY

could also be chosen as



This yields an alternative clone composition and therefore an alternative tliedrgt us denote
the theory presented in the Characterization 5.1.1py= (T,n,<1) and the alternative theory by
T, = (T,n,<2). We have then the following corollary:

Corollary 1. The following are equivalent:

1. Ty = (T,n,o1) is an algebraic theory irset.
2. (L,<,®) is a sts-quantale.
3. T2 =(T,n,¢y) is an algebraic theory irbet

Theorem 1. (algebraic generation of fixed-basis “powerset theorigd’et(L, <, ®) be a sts-quantale.
Then the algbraic theorie$; and T, each lift f: X — Y in Setto the same Tf) : LX — LY via
onidT(A) (Remark 1.2(3); and furtherf = f;> =T (f) = f_~ (the standard Zadeh image opera-
tor).

Remark 3.This theorem shows that two different algebraic theorieSéhcan “generate” the same
“powerset” theory inSetfor lattice-valued mathematics, and in particular, they generate the standard
image operator of Zadeh. It should be noted that a special case of sufficiency of the Characterization
Lemma—wherL is a locale withgx = A—appears in [9] along with the corresponding special case of
the above theorem.

3 Variable-Basis Powersets

Finding necessary and sufficient conditions under which the powersets in lattice-valued mathematics
form an algebraic theory in a variable-basis ground category of the forrSetx C—C a subcate-

gory of Logml = Cgml°P—is more delicate than for the fixed-basis case. The previous section may
be viewed as a special case of this section by se@irg{L} (with the identity morphism), where

L € |[Logml]|.

We fix some notation. Recaletx C has: object$X, L), with X € |Set andL € |C|; morphisms
(f,0) : (X,L) = (Y,M), with f : X — Y in Setand@:L — M in C, i.e.¢°?: L — M a concrete
morphism inC°P ¢ Cgml; and the product composition and identities.

Initially, we shall give necessary and sufficient conditiongGoa Logml for “right-adjoint” the-
oriesT () and “left-adjoint” theoriesT () (both defined below) to be algebraicsetx C; and we
also give sufficient conditions o@ C Logml for “adjoint” theoriesT (x) (also defined below) to be
algebraic inSetx C. Then, analogous to the fixed-basis case, we shall “double” each of these theories
to obtain four theorie$ 1 > (F) andT1 > (), for each of which there are necessary and sufficient con-
ditions onC C Logml making that theory algebraic iBetx C, as well as two theorie$q » (x), for
each of which there are sufficient conditions@r Logml making that theory algebraic thetx C.

With regard to variable-basis “powerset theories”—underlying lattisesunderlying sets both
change from powerset to powerset, together with morphisms &eir C and any possible (forward)
image operators between powersetse are surprised to find that the left-adjoint theorlas ()
generate the “powerset theory” first presented in [11] and extensively studied in [12], [13], [14],
[15]. On the other hand, the right-adjoint theories; () algebraicly generate mewvariable-basis
“powerset theory” irSetx C with anewimage operator for variable-basis fuzzy sets.
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3.1 Necessary and sufficient conditions for algebraic theories;b (-) and T1 2 () in Setx C

Definition 3. Let®: L — M in Logml. Then we defing” = (¢°?) " : L > Min Set ¢ = (¢°P)" : L —
M in Set where

o'@= A b @@= b
a< ¢P(b) ¢P(b)<a
Note thatg®P : L « M is in Cgmi—this impliesg™ is isotone and
)

—and notey™ is denotedy’ in [16]. Also note thatg' is isotone and preserves; note that if ¢
preserves arbitrary/—equivalentlyg’P preserves arbitrary\, then

@' P

and note thatp” is denotedq) in [14], [15]. Observe that giverp: L — M andy: M — N, we have
(Wop) =y log'and(Po@)” =Y o@ . Finally, given aset X{¢) : LX — MX and (g™} : LX — MX
by (¢°) () = ¢ caand(¢’) (a) = ¢'oa.

Definition 4. LetQuant® [Quant” (), Quant® ()] denote the following data:

Q1. Each object oQuant* [Quant® (F), Quant* ()] is a stsa-quantale.
Q2. Given two objects,IM in Quant® [Quant(i-), Quant ()], : L — M is a morphism iQuant”
[Quant(F), Quant ()] if the following hold:
(@) @:L — M is amorphism irLogml.
(b) 3¢* : L — M in Cgml (this mapping need not be uniquey [: L — M isinCgml,¢': L — M
is in Cgml].

Proposition 1. Each ofQuant®, Quant(F), Quant () with the composition and identities bbgml
becomes a subcategorylodgml.

Example 3.Quant”, Quant (-), Quant(-) are non-trivial with respect to morphisms: there are mor-
phisms in these categories in addition to identities and isomorphisms.

1. LetL={Ll,a,T}andM = {1, T}, and let¢°”: L — M be given byg®? (L) = L, ¢°P(T)=TT.
Then bothg ™, ¢ preserve each of arbitraky, arbitraryA, andT.

(@) LetL be equipped witt® equal to the binary meet. Then bagh, ¢ : L — M are inCqml.
(b) LetL be equipped witli equal to the binary join. Then botpr, @' : L — M are inCqml.

2. LetM ={Ll,a,T}andletL = {1,ab,c, T} be the locale representing the product topology of
the Sierpinski topology with itself— is meet-irreducible (i.e. prime) ar@, b, c, T} is the four-
point diamond with. <a<b< T, 1 <a<c<T,andb,cunrelated. Now leg°’P: L — M be
given by@°P (L) = L1, ¢°P(T) =T, ¢P(a) =c.

(a) LetL,M be equipped witt® equal to the binary meet. Then : L — M is in Cgml.
(b) LetL,M be equipped witl equal to the binary join. Theg': L — M is in Cgml.

3. LetM be as in the previous example, andldie the dual of thé& of the previous example. Let
be as given in the previous example.

(@) LetL,M be equipped witt® equal to the binary meet. Thgh : L — M is in Cqml.
(b) LetL,M be equipped witle equal to the binary join. Theg : L — M is in Caml.
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4. LetL=M =1=[0,1] and let¢°?: L — M as follows:[0, 1/4] maps homeomorphically {6,1/2]
with 0— 0 and ¥4 — 1/2; [1/4,3/4] maps to{1/2}; and[3/4,1] maps homeomorphically to
[1/2,1] with 3/4+— 1/2 and 1— 1.

(a) LetL,M be equipped witt® equal to the binary meet. Then : L — M is in Cgml.
(b) LetL,M be equipped witl equal to the binary join. Theg' : L — M is in Cgml.
These examples are actually typical of two entire classes of examples.

5. LetX,Y be sets, lef : X — Y be a surjective function, I&{ be a complete lattice, put= NX, M =
NY, @°P: L « M by ¢°P = f;;". Now letL,M be equipped witt® equal to the binary join. Then
@' =fy :L— MisinCqgml.

Lemma 2. (characterization of right-adjoint theories LetC C Logml and letT () = (T,n,¢) be
the structure given by the following data:

D1. T:|Setx C| — [Setx C| by T(X,L) = (L*,L).
D2. V(X,L) € |Setx C|, n determines)x ) : (X,L) — (L*,L) given by
Nex.L) = (Nx,id)

wherenx (X) = Xy, idL:L—LinC
D3. V(f,@) : (X,L) — (MY,M),V(g,W) : (Y,M) — (N%,N) in Setx C, put(g, )< (f,@) : (X,L) —

(N%,N) by

(9. W)o(f,@) = (gof o)
where
Po = oy
and

(9o 1@ =V [W () ) @ () (2]

yeY
ThenT (k) = (T,n,¢) is an algebraic theory iBetx C if and only if
C C Quant(+)

Lemma 3. (characterization of left-adjoint theories Let C C Logml and letT (<) = (T,n,¢) be
the structure given by the following data:

D1. T:|Setx C| — [Setx C| by T(X,L) = (L*,L).
D2. V(X,L) € |Setx C|, n determines)x 1, : (X,L) — (L*,L) given by
Nex.L) = (Nx,idc)
where
Nx (X) = X{x> id :L—LinC
D3. V(f,@) : (X,L) — (MY,M),V(g,) : (Y,M) — (N%,N) in Setx C, put(g, )< (f,@) : (X,L) —
(N%,N) by
(G W) o(f.0) = (gof,00W)
where
QoY = Qo
and



ThenT (H) = (T,n,¢) is an algebraic theory iBetx C if and only if
C C Quant ()

Lemma 4. (existence of adjoint-like theories).etC C Logml and letT (x) = (T,n,<) be the struc-
ture given by the following data:

D1. T:|Setx C| — [Setx C| by T(X,L) = (L*,L).
D2. V(X,L) € |Setx C|, n determines)x ) : (X,L) — (L*,L) given by

Nex.L) = (Nx,idc)

where
Nx (X) = Xgx> idL:L—LinC
D3. V(f,¢) : (X,L) — (MY,M),¥(g,¥) : (Y,M) — (NZ,N) in Setx C, put(g,p)o (f,¢) : (X,L) —
(N%,N) by
(ng)o(f7(p) = (g<> f,(POLIJ)
where
QpoP=@oy
and

[(geH)(¥] @ =V W (F()(y) @ () (2)]

yeyY
providing a functionp* : L — M exists and assuming tha)* chooses a unique such morphism.

ThenT = (T,n,o) is an algebraic theory i8etx C if C C Quant®.

Remark 4.(doubling theories). Since® is generally not commutative, it follows that the tensor prod-
ucts appearing in the definition of the clone compositions in (D3) of Lemmas 6.1.5.1, 6.1.5.2, 6.1.5.3
are ordered according to our choice. As in Remark 5.1.2, different clone compositions could be chosen
by reversing these tensor products; e.g., in the case of Lemma 6.1.5.1,

(g 1@ =V [W (1) ) ® () @)
yeY

could also be chosen as

(9o X1 @ =V [(@w) @ 2w (T () ()]

yey

This yields for each of (), T (), T (x) an alternative clone composition and therefore an alterna-
tive theory. Let us denote the theory presented in Lemma 6.1.5T4 By) = (T,n,<1) and the alter-
native theory byT, (F) = (T,n,<2), the theory presented in Lemma 6.1.5.2by(-H) = (T,n,<1)

and the alternative theory by, (d) = (T,n,¢2), and the theory presented in Lemma 6.1.5.3 by
T1(x) = (T,n,o1) and the alternative theory By (x) = (T,n,<2). We have then the following corol-
lary:

Corollary 2. The following statements hold:

I. The following statements are equivalent:
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(@) T1(F) [T1(H)]is an algebraic theory irSetx C.
(b) C C Quant () [Quant(-)].
(¢) T2(F) [T2(H)]is an algebraic theory irSetx C.

[I. The conditionC C Quant* is sufficient for each of the following statements:

(@) T1(x) is an algebraic theory irsetx C.
(b) T2(x) is an algebraic theory irsetx C.

3.2 Algebraic generation of “powerset theories” in Sek C from left-adjoint theories

Theorem 2. Let C C Quant (). Then the algebraic theori€k; (4) and T, () in Setx C both lift
(f.9) : (X,L) — (Y,M) to the same Tf, ) : (LX,L) — (MY,M) and

(f,07 ) = (F.Om,0 =T(f.0) = (@) fr = (f,0)7

where(f, @) is the image operator introduced in [11] and further studied in [12], [13], [14], [15].
Hence each of 1 (H) and T2 () algebraicly generates this “powerset theory” etx C.

Remark 5.Because of this theorem, the "powerset theory” of [11], [12], [13], [14], [15] is called a
left-adjoint “powerset theory”, and it is algebraicly generated by two different algebraic theories if
C C Quant ().

Remark 6.Letting (f,®)", be the preimage operator of a left-adjoint “powerset theory”, the proof that
(f,@7 - (f,@7 requires only that the lattices be cqml’s and it additionally preserve arbitrary

A\; indeed, given cqml’s, the adjunction is logically equivalentptbeing inLogml such thatgP
preserve arbitran\—see [14], [15]. Thus, the powerset theories constructed in the above theorem
account for a significant part of left-adjoint “powerset theories”, but not for all of them; i.e. there are
significant left-adjoint “powerset theories” Betx C which do not arise from left-adjoint algebraic
theories constructed in the previous Section even though they behave like powerset theories alge-
braicly generated from such algebraic theories. Restated, foiGachogml, there is an appropriate
preimage operator making-Top andC-FTop topological ovelSetx C: some of these preimage op-
erators come from algebraicly generated left-adjoint powerset theories, but most do not; however, the
syntax of all these preimage operators is the same, nafhgpy’, (b) = ¢°Pobo f.

3.3 Algebraic generation of new “powerset theories” in Sek C from right-adjoint theories

This subsection creates new variable-basis “powerset theorieSetin C—dubbedright-adjoint
“powerset theories” from right-adjoint algebraic theoriesSetx C. The significance of these new
“powerset theories” will be developed in future work.

Theorem 3. Let C C Quant (). Then the algebraic theori€E; (-) and T, () in Setx C both lift
(f,9) : (X,L) — (Y,M) to the same Tf, @) : (L*,L) — (MY,M) and

(f,0m,m =T (f,0 = (@) o fl = (f, 07

The image operator induced by these algebraic theories is new and leads to the following defini-
tion.
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Definition 5. (right-adjoint forward/image operatorp Let (f,@) : (X,L) — (Y,M) € Setx Logml.
Then(f,@) : LX — MY is defined by

(Lo =(¢)ot

ie.vae LX, Wye Y, [(F,o) @](y) = ¢ [(f” @) W)].

Lemma 5. If C c Quant (i) and (f,@) : (X,L) — (Y,M) € Setx C, then(f,@)"" : LX — MY pre-
serves arbitraryy/.

Proposition 2. Let C C Quant () and (f,) : (X,L) — (Y,M) € Setx C. Then3! (f, @)~ : LX «—
MY such that( f, @) - (f, @) .

Remark 7.The previous proposition says that there is a new preimage operator to go with our new im-
age operator. A rigorous definition of redundacy of powerset operators can be given, and if
C C Quant (), then the right-adjoint powerset operators are not redundant, i.e. they really are new.
In future work we shall try to characterize when the new preimage operator preserves axpiirzaty
binary® and thereby serve to make new topological categories®&ex C.

Remark 8.1t is an open question as to how the work summarized in this abstract relates to recent work
on powerset operators in [2], [3], [4].

Acknowledgement.The author is indebted to Profs. Ubhle and P. Eklund for encouraging this
author to investigate possible links between algebraic theories and powerset operator foundations of
lattice-valued topology.
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1 Introduction

We present a natural interpretation of fuzzy equivalence relations as a part of the natural interpretation
of fuzzy set theory in a cumulative Heyting valued model for intuitionistic set theory.

With the natural interpretation we can deduce most of the standard equations or inequalities of
the basic concepts of fuzzy sets or fuzzy relations ([3]), and we can make clear the meaning of the
extension principle by Zadeh ([5]). We can also consider notions such as operations of fuzzy subsets
of different universes, fuzzy relations and mappings between fuzzy subsets ([1]).

Here we present a natural interpretation of fuzzy equivalence relations and fuzzy partitions. In the
model equivalence relations together with quotient sets and corresponding partitions can be treated
in a similar way as in the usual set theory. We can naturally consider fuzzy equivalence relations and
corresponding fuzzy partitions, which are mutually one-to-one correspondent (up to similarity).

This paper is an improved version of our previous works [2] [4], in which some technical errors
were found recently. By modifying the definition of partition in the model and checking the arguments,
we have overcome the defects and verified the main results again. We assume the reader is familiar
with the basic notions appeared in either one of our previous papers [1] [3] [5].

2 Equivalence relations in the Heyting valued model

Let H be a complete Heyting algebra with standard operations and constabésthe class of all
crisp sets, an@®n be the class of all ordinals.

Definition 1 The H-valued model ¥is constructed as follows.
For every ordinala, V! is defined by induction:

Vi =0, Ve = JW' (if aisalimit ordinal),
B<a
Vi ={u=(Ju,Eu; u : Du—H, DuCV{, EueH,
lu[(x) < EUAEX (Vx€ Du)}.
ThenV' = [ J Vg

aeOn

Definition 2 Letuve VM andd,w, ¢ (a) be formulas of V.
For atomic formulae,

IBull=Eu,  Juev]=\/ (vy)Allu=yll),
yeDv

flu=vll= A (ux)—|xev|)A A (vy)— lly € ul|) NEUAEV.
xeDu yeDv
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For compound formulae,

1o AW =[Io[ AN llovwl=llofv vl
16— Wil = ol = llwll, (=[] ==[l®ll,
I¥xd(ll = A (Eu—[1000]). 3] = \/ (EurlloX)])).

uevH uevH

A sentencep of VH isvalid in V7 (F ¢) if ||¢|| = 1. We sayu is asubset of v in ¥ (uC v) if
luCv| =||¥x(xeu—xev)| =1 If uC vandvC u, we sayu andv aresimilar (u ~ v). For every
crisp setxin V, thecheck sek € V! is defined recursively bypx = {y;y € x}, EX=1, X:y+— 1.

Basic notions such as pair, ordered pair, and cartesian product etc. are naturally defie8on
all axioms of intuitionistic set theory are valid Yfi'.

A relation in VM is a subset of a cartesian producMi. ForR u,v € V", Ris arelation from u
to vin VM if Ris a subset ofi x vin VM. The identity relation, compositions of relations, and inverse
relations are naturally defined.

Definition 3  For u,R € V", R is anequivalence relation on if R is a reflexive, symmetric, and
transitive relation, that is, the followings hold.

(D) [[(vx e u)(xRY|| = 1.
(2) [[¥xvy(xRy— YRY| = 1.
(3) ||YxvyWz(xRyAyRz— xR2 = 1.

Let Rbe an equivalence relation orin V*. For everyx € V", define theequivalence clas] by:
DX =D(u), E[X=Ex [x:y~— [xRy].

Then for allx,y € V", |xRy| = [[3z(ze XNy < [[[x] = [¥]]-
For an equivalence relatidRon u, define thequotient set Q= u/R by:

DQ = {[x];x€ Du}, EQ=Eu, Q:[x— |xecul.
Then for allx,y € V¥, [|xRy|| = || 3p € Q(X € pAYy € p)].

Definition 4 LetuP € V". P is apartition ofu if the followings hold.

(1) [VpeP(Ex(xe p))| =1.

(2) [VpeP(pCu)l|=1.

(3) [[vxeudpeP(xep)||=1

(4) [Vp.aeP(Ix(xe png) — p=0)|| =1

If Ris an equivalence relation anandQ = u/Ris its quotient set, the® becomes a partition of

Conversely for a partitio® of u, defineR=Rp € V" by:
DR=Dux Du, ER=EUAEP, R:(xy)— ||[GpeP(xe pAye p)|.

ThenR becomes an equivalence relationwgrand is called thequivalence relation induced from P
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Theorem1l LetuR Q,PcV".

(1) If Ris an equivalence relation on u and Q is its quotient set, then the equivalence relation induced
from Q is similar to R.

(2) If Pis a partition of u and R is the equivalence relation induced from P, then the quotientet u

is similar to P.

Therefore there is a natural one-to-one correspondence (up to similarity) between equivalence
relations oru and partitions ot for everyu € V".

3 Fuzzy equivalence relations and fuzzy partitions

We briefly recall the most basic notions of the natural interpretation of fuzzy sets and fuzzy relations
(Cf. [1] [3] [3]). 5

Let X be a crisp set. Every setVft' is called arH-fuzzy setand every subset of in V" is called
anH-fuzzy subset of XFor everyH-fuzzy setA, themembership function of A on X the mapping
Ha: X —H; x— || X € A||. An H-fuzzy setA is callednormal on Xif pa(x) = 1 for somex € X.

Let X,Y be crisp sets. IRis anH-fuzzy subset oK x Y, Ris called arH-fuzzy relation from X
to Y. In caseX =Y, Rbecomes a relation o, and it is called ar -fuzzy relation on X

Theorem 2 Let R be an H-fuzzy relation on X. Then R is an equivalence relation iff foryalt & X
the followings hold.

(1) pr{xx) =1.
(2) HR(XY) = HR(YX).
(3) Hr(XY) AHR(YZ) < HR(X2).

Let Rbe anH-fuzzy equivalence relation oX. For eachx € X, the equivalence clas¥ is defined
by:
DX ={yye X}, EX =1, [X :yr— [IXRy|.

Obviously[X] is anH-fuzzy subset oK for everyx € X. For allx,y € X,
Hr(xy) = [[Fu(ue NI = [[[X = W, and[X] = [¥] iff ur(xy) = 1.

Definition 5 Let P be a family of H-fuzzy subsets of Xis an H-fuzzy partition family ofX if it
satisfies the following three conditions.

(1) Every Ac P is normal on X
(2) For every xc X there is a unique & P such that 4(x) = 1.
(3) ForallA,\Be Pandallxye X, pa(x)Apaly) Aps(X) < us(y).

Let R be anH-fuzzy equivalence relation o and? = Pr = {[X];x € X}. Then? becomes an
H-fuzzy partition family ofX, and is calledhe H-fuzzy partition family induced from R

Proposition 1 Let®P be an H-fuzzy partition family of X and B < P .

(1) [A=B]| =|3u(ue AnB)|.
(2) Forallx,y e X, Ha(X)AHa(y) Abs(X) A —Hg(y) = 0.
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Conversely for amd-fuzzy partition family® of X, defineR= Ry € V" by:

DR={(); x,y € X}, ER=1, R: (%) — \/ (Ha(¥) APa(Y)).
AcP

ThenR becomes ahi-fuzzy equivalence relation oX, and is called thél-fuzzy equivalence relation
induced frontp.

Two families® andQ of H-fuzzy sets are said to mmilar if for every A € P there is a unique
B € Q similar toA, and vice versa.

Theorem 3 Let X be a crisp set.

(1) If Ris an H-fuzzy equivalence relation on X @he= Pr is the H-fuzzy partition family induced
from R, then the H-fuzzy equivalence relation induced fRomisimilar to R.

(2) If Pis an H-fuzzy partition family of X and R Ry is the H-fuzzy equivalence relation induced
from P, then the H-fuzzy partition family induced from R is similafto

Therefore there is a natural correspondence betweéizzy equivalence relations ot andH-
fuzzy partition families o#X.
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The object of this study is to look at categorical approaches to many valued logic, both proposi-
tional and predicate, to see how different logical properties result from different parts of the situation.
In particular, the relationship between t@ategorical Fabricl introduced at Linz in 2004 and the
Fuzzy Logics studied by &ek and others in [2, 1, 3] comes from restricting the kind of structures
used for truth values. We see how the structure of the various kinds of algebras shows up in the cat-
egorical logic. Since categorical logic gives one form for axioms (coming from identity morphisms)
and many rules arising from structures in the category (products, coproducts, terminal objects, initial
objects, tensors, right adjoints and the like) this gives a form of logic similar to natural deduction or a
sequent calculus rather than the systems with few rules and several axioms previously proposed.

The form of categorical logic | have been working with recently provides a semantic setting in
which types are not determined by their individuals, so a predicate logic based on variables and con-
stants needs to be replaced with a predicate logic using predicates as properties with types. Quantifica-
tion (following Lawvere [8]) becomes the action of right and left adjoints to the functor which allows
us to transport a predicate of one type back along a morphism in the base category of types. Inference
rules for quantification come from the adjointness property. Substitution, change of type, and quantifi-
cation are actions taken along morphisms. This gives a logic with no variables. Rules which usually
are stated with constraints on substitutability and freeness of variables are instead stated in terms of
predicates transported using inverse image functors.

Since the semantics of fuzzy sets is usually done in a fabric 8e¢ where the terminal is
a generator, we can use properties of global sections to get a form of the rule of generalization.
Since the full understanding of fuzzy sets comes from looking at fuzzy points with less than full
membership it behooves us to consider semantics at all levels, and not just at the level of full truth.
This is particularly true in systems like those oblie in [6,5, 4] or Stout [9, 10] where the logic
is internalized through a form of subobject representation. The resulting semantics is similar to the
Kripke-Joyal-Beth semantics for topos logic given in Lambek and Scott [7, p.164].

The categorical setting gives a predicate logic without variables and constants. The language in
the more traditional sense comes from a structure built on a particular freely generated cartesian
category. Formulas involving n-ary predicates, variables, and constants have a clear meaning in that
more restricted context. Interpretation of the language of a fuzzy theory in other categorical fabrics
is given by application of a product preserving functor. Completeness results to date have addressed
how well the predicate logic induced by various kinds of algebras has captured semantics in terms of
this kind of interpretation.

Another interpretation of completeness results comes from possible worlds semantics for modal
logic. A fabric gives a family of possible worlds and the transition maps allowing for transworld
identity and accessibility. A completeness result then gives a model for the necessary truths in a
theory, those which hold in all accessible worlds. In some sense they also give a preferred world, the
natural home for a particular kind of fuzzy reasoning.
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1 Introduction

It is a well-known fact that MV-algebras are intervals of abeliagroups. The probably most intutive

way to see this is to associate with an MV-algebra the corresponding effect algebra, a structure which
is based on a partial addition. Also BL-algebras may be identified with certain partial structures,
which in turn generate representifigroups. We shall review these facts, and we shall see that even
the structure of certain MTL-algebras (which are not BL-algebras) may be enlightened in this way.

2 MV-algebras, effect algebras, and-groups

There is a one-to-one correspondence between MV-algebras, which are the Lindenbaum algebras of
theories of Lukasiewicz logic, and lattice-ordered effect algebras fulfilling the Riesz decomposition
property (see e.g. [DvPu]). Namely, lét; <,®,~,0,1) be an MV-algebra; defina+b=a®b
if ais the smallest elememtsuch thatx@ b =a@ b, and ifb is the smallest elementsuch that
ady=adhb; else leta+ b undefined. TherfL; <,+,0,1) is the corresponding effect algebra. That
is, (E1)(L; <,0,1) is a bounded poset, (E2) is an associative, commutative, and cancellative binary
operation w.r.t. which 0 is a neutral element, and (&B3)b iff a+ x = b for somex. ThatL is lattice-
ordered simply means théE; <) is a lattice; thaL fulfils the Riesz decomposition property means
that for anya, b,c,d such thata+ b = c+d there aree;,e;,e3,€4 such ! thate; + e, = a, es+ e, =
b,ee+es=c, ea+es=d.

Apart from technical difficulties caused by the fact that the addition is only partially defined, it is
a clear advantage of effect algebras that represe#itgrgups are easily constructible. Namely, we
may associate with any effect algelita <,+,0,1) the groupG (L) freely generated by the elements
of L and subject to the conditiorss+ b = ¢ whenever this equation holds among elemenksc in
L. Assuming then thafl; <,+,0,1) has the Riesz decomposition property, the canoncial embedding
L — G(L) isinjective, andj (L) may be partially ordered in a way thats isomorphic tog(L)[0,1] =
{a€ G(L): 0<a<1}, where the partial operation a(L)[0, 1] is the group addition restricted to
those pairs of elements the sum of which is below 1 [Rav]. We note that this construction works
without assuming a lattice order and moreover ev! en in the non-commutative case [DvVe].

3 BL-algebras, weak effect algebras, and po-groups

There is a similar correspondence between BL-algebras, the Lindenbaum algebras of theories of Ba-
sic fuzzy logic [Haj1], and a certain generalization of effect algebras [Vetl]. Let a BL-algebea

given. For what follows, it is advantageous to invert the partial ordérarid to change the notation
accordingly: Call(L; <,®,©,0,1) a dual BL-algebra ifL; <g ,®s, —s,0s., 15 ) IS a BL-algebra,
wherea<bif b<g a, a®b=acg b, acb=b—y a, 0=1;, and 1= 0;_. We now may restrict

the total addition® to a partial one just like in the case of MV-algebras. Ther<, +,0,1) is a weak
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effect algebra [Vetl]. That is, the axioms (E1) and! (E2) hold as well as the following ones: (E3) if
a < b, then there is largest < a such thata+ x = b for somex; (E4) if a+ c andb+ c are defined,
thena<biff a+c<b+c.

Obviously, every effect algebra is a weak effect algebra: (E3’) is a weakened form of (E3); and
(E4) is implied by (E3) and cancellativity ef. Furthermore, the above construction defines a one-
to-one correspondence between BL-algebras and a certain subclass of the weak effect algebras. To
characterize this subclass algebraically is difficult. Among the properties that are fulfilled, we mention
only one [Vet2]: the Riesz decomposition property, defined as above.

Now, although weak effect algebras are even much more difficult to handle than effect algebras,
we again have the advantage that a representing po-group can easily be constru¢tee: 1et0, 1)
be a weak effect algebra. Ldty; <,+,0) be the structure resulting fromby removing the 1 element
and by replacing the partial ordet by a new onea < b if a+ x = b for somex. Then we have
thatLg is a generalized effect algebra [HePu]; generalized effect algebras may be considered as effect
algebras with the largest element removed. Becaus® impliesa < b, we actually may say that the
weak effect algebré is a generalized effect algebra whose partial order is extended and to which a
largest element 1 is added.

WhenL fulfils the Riesz decomposition property, then so does the generalized effect dlgebra
It follows that there is an abelian po-grogjiLo) into whichLg can be isomorphically embedded; the
construction works exactly as in the case of effect algebras.

If L even arises from some BL-algebra, these facts are in nice accordance with the well-known
structure theorem for BL-algebras (see e.g. [AgMo]). Namelly,iff totally orderedL is the disjoint
union of convex setk,,1 € |, such that <X b iff a< banda,b e L, for somel ora= 0. It follows
that G(Lo) is the direct sum of totally ordered abelian groups and finally ltHatthe ordinal sum of
intervals of the positive cone of totally ordered abelian groups.

4 MTL-algebras, weak effect algebras, and po-groups

We have seen that in order to represent a BL-algebra by means of an abelian po-group, we take the
corresponding weak effect algebra and then generate from it a representing po-group. Now, weak
effect algebras corresponding to BL-algebras fulfil several special properties among which only one
was used to make sure that the po-group exists: the Riesz decomposition property. So we wonder if
not a larger class of algebras than only BL-algebras may undergo an analysis via po-groups.

What we have in mind are naturally those algebras which generalize BL-algebras and which have
been resisting a detailed analysis until today: the MTL-algebras, the algebras corresponding to the
equally named logic. Only special cases were clarified, and what we offer here is to bring some of
them on a common line. We cdlL; <,4,0,1) a dual MTL-algebra if (M1)L;<,0,1) is a bounded
lattice, (M2)(L; @, 0) is a commutative semigroup with neutral element 0, (M8) is monotone for
all fixed a, (M4) for all a, b, there is a smallestsuch that® x> b, (M5) (acb)A(bca) =0.

From a (dual) MTL-algebr&, we may form a partial algebid; <,+,0,1) just like in the case of
BL-algebras. The original addition is reobtaineddy b = max{a +b’: & <a,b/ < b}. However,
we must say that under no additional assumptions, not much can be proved about this algebra; we
were not even able to verify that is in general associative.

On the other hand, we may selectively consider those algebras for which analogous constructions
to those mentioned above, are possible. Let us fdrgn=<,+,0) as abovelLo = L\{1} anda < b if
a+ x = b for somex. Let us assume that this is a generalized effect algebra. This does not seem to
be a restrictive condition; we do not know counterexamples. We are then interested in the case that
(Lo; =,4+,0) is embeddable into the positive cone of some po-group. Unfortunatley, there is basically
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only one algebraic condition known which implies the group embeddability: the Riesz decomposition
property. Assuming this condition, however, is rather restrictive; we still would cover certain non-BL
MTL-algebras, but not as many as desired.

What remains is to proceed in the opposite direction: exploring MTL-algebras arising from po-
groups not by searching hopelessly algebraic properties making such an analysis possible, but by
studying the po-groups themselves. In this way, we might still not get all MTL-algebras, but at least
a satisfactorily wide class of them. We restrict ourselves to totally ordered abelian groups, whose
structure is perfectly known (cf. e.g. [Fuc]), and to the following construction.

Let (R;+,0) be a subgroup dfR; +,0) and call a subsétof R (temporarily) a domain oRiif | is
either|[0,a] for somea € R* or R" or [a,0] for someac R~ or R~ orR. | is understood to be endowed
with the partial operatior-, which is the restriction of the group additionlto

Now let R and P be two subgroups ofR;+,0). Let | be a domain oR such that C R*; and
for everyr € 1, let I, be a domain of such that the following condition are fulfilled. (i) C R,
and if| has a greatest elememt thenl, is bounded from above; (ii) far,s € | such thar <'s, and
acl,belssuchthad < b, thereis & € Is_, such that > b—a, (iii) forany r €1, letC;t = {a+b:
acls, bely, s+t=r,a+b>supl } andsimilarlyC; = {a+b: acls,bel, s+t=r,a+b<infl,};
then (sums of sets being understood elementv@ge) I; C CJ,; andCg + Iy C Cg,, if s+t exists.

Let nowlo = {(r,a): r €l,ac I}; let < be the lexicographical order; and define the partial
addition+ componentwise whenever this is (for both components) possible. Moreover, extend
the following way. For somac I, leta™ = (aVinfl,) Asupl;; for (r,a), (s,b) € Lo, let(r,a) & (s,b) =
(r+s,(a+b)~) if r +sexists and else- (supl,supl;). LettingL = LoU{1}, where 1 is a new greatest
element,L; <,®,0,1) becomes a dual MTL-algebra.

We give two examples. (i) Consider= N x R*. This leads to an example ofaiek [Haj2] of a
left-continuous, non-continuous t-norm. (i) Let= {(a,b): a=0be R" ora= %,b =0ora=
1,b € R™}. This corresponds to Jenei’s rotated product t-norm [Jen].

Our construction allows generalizations into several directions. First of all, the number of sub-
groups ofR from which our universe is formed from, may certainly be chosen greater than 2. Second,
what is called a domain here can be defined more flexible; the possibility could be allowed that the
addition is further restricted. To illustrate this, consider the real unit interval, endowed with the ad-
dition only in case the result is 1; when extendingas above, we are led to what corresponds to
the annihilated minimum t-norm (see e.g. [Jen]). Finally, we treat here only totally ordered abelian
groups, and then use this total order for the constructed MTL-algebra. We could actually also start
from any abelian po-group and then extend the given order to a total one. — Whereas the first two aims
seem to be easily achievable, the third one is probably difficult.
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