
 

LINZ 
2007 

 
 
 

28th Linz Seminar on 
Fuzzy Set Theory 

 

 

 

 

Fuzzy Sets, Probability, 
and Statistics 

—
Gaps and Bridges

 
 
 
 
 
 
 
 
 
 
 
 
 

Bildungszentrum St. Magdalena, Linz, Austria
February 6–10, 2007

Abstracts

Didier Dubois, Erich Peter Klement, Radko Mesiar
Editors



 



LINZ 2007
—

FUZZY SETS, PROBABILITY, AND STATISTICS –
GAPS AND BRIDGES

ABSTRACTS

Didier Dubois, Erich Peter Klement, Radko Mesiar
Editors
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Since their inception in 1979 the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

LINZ 2007, already the 28th seminar carrying on this tradition, will be devoted to the mathemat-
ical aspects of “Fuzzy Sets, Probability, and Statistics – Gaps and Bridges”. As usual, the aim of the
Seminar is an intermediate and interactive exchange of surveys and recent results.

Didier Dubois
Erich Peter Klement

Radko Mesiar
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Quasi-Concave Copulas, Asymmetry, Transformations

Elisabetta Alvoni1 and Pier Luigi Papini2
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In this paper we consider a class of copulas, called quasi-concave; we compare them with other classes
of copulas and we study conditions implying symmetry for them.

Recently, a measure of asymmetry for copulas has been introduced and the maximum degree of
asymmetry for them in this sense has been computed: see [5, 3].

Here we compute the maximum degree of asymmetry that quasi-convex copulas can have; we
prove that the supremum of

{|C(x,y)−C(y,x)|; x,y ∈ [0,1]; C is quasi-concave}

is 1/5.
Also, we show by suitable examples that such supremum is a maximum and we indicate copulas

for which the maximum is achieved.
Moreover, we show that the class of quasi-concave copulas is preserved by a class of simple

transformations, often considered in the literature.
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Maximum Possibility vs. Maximum Likelihood Decisions

Luca Bortolussi1, Massimo Borelli1, and Andrea Sgarro1,2
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Consider the following very familiar decision-theoretic situation: a list L is chosen out of a (finite)
input set X , and is communicated to an observer. Further, an input object x, sometimes called a state
of nature, is chosen inside L . The observer cannot observe directly x, but only a “corrupted version”
thereof, y say. He/she makes the following decision: decide for the objects d(y) in the list L which are
“most similar” to what he/she could observe, i.e. to y. Clearly, all this assumes that similarity measures
σ(x,y) are given between input and output objects (between the states of nature and the observables):
we shall arrange these measures into a similarity matrix Σ with rows headed to X and columns headed
to the (finite) output set Y . The entries of Σ are non-negative real numbers; to avoid trivial situations,
at least one entry is strictly positive.

In a coding-theoretic approach, as pursued in [3], the list L is called the codebook, and x and y
are the input codeword and the output word, respectively3; then the similarity matrix would describe
the noise which affects the communication channel. It is in coding theory, and more precisely in
possibilistic coding theory and its application to DNA word design [1], that the motivation for this
work4 resides.

Some cases of special matrices follow, which fit into this general frame:

– Stochastic matrix: the sum of each row is equal to 1.
– Joint probability matrix: the sum of all entries is 1.
– Possibilistic transition matrix, or simply possibility matrix: the maximum entry in each row is 1.
– Joint possibility matrix: the maximum entry in the matrix is 1.

When Σ is a stochastic matrix (then similarities are conditional probabilities), the decision-theoretic
principle above is simply maximum likelihood, while it is the bayesian principle of maximum posterior
probability in the case of joint probabilities. As for possibility matrices, whose entries are transition
possibilities (conditional possibilities), the reader is referred to [4] which deals with a coding-theoretic
frame. One may envisage also a “bayesian” possibilistic case, with matrices of joint possibilities
whose overall maximum is 1: in this case, each matrix entry is a joint possibility obtained by taking
the minimum of the “prior” possibility of the input and the conditional possibility of the output given
that input; cf. [2] where the underlying notion of interactivity is illustrated.

Assume that Σ is altered to Σ′ without changing the orderings between entries. Operationally,
nothing would change from the point of view of the decision d(y) made by the observer, whatever

3 In coding theory, when |d(y)| ≥ 2 the decoder may either try to guess a single codeword inside d(y), and by so doing
increase the probability/possibility of an undetected error, or keep d(y) as it is and declare a detected error.

4 What we need in [1] is a communication model which is as unassuming as possible, as we are interested in “negative” re-
sults of the type: no noisy channel exists which would justify such and such combinatorial DNA code construction. Since
in the sequel we shall concentrate on “singleton events” (elementary events, individual words), rather than compound
events (sets of words), we do not even have to specify how we should “aggregate” similarities to obtain similarities
between sets of input words and sets of output words. Cf. also the remarks on compound events which conclude this
extended abstract.
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the list L , whatever the input object x ∈ L , and whatever the output object observed y. We shall
say in such a case that Σ and Σ′ are equivalent; an obvious and “limit” case of equivalence is when
the two matrices are proportional. We shall investigate properties which are stable with respect to
equivalences. We stress that equivalence concerns only singletons (elementary events) and not an
algebra of sets (of compound events).

A problem arises, that of comparing the representational capacity or expressive power of these
approaches, in the sense that on may or may not find equivalent matrices. By just fitting in the suitable
proportionality constant, one can prove the following obvious facts: a criterion for a similarity matrix
to be equivalent to a possibility matrix is that the maximum similarity in each row is the same; a
sufficient but not necessary condition for a similarity matrix to be equivalent to a stochastic matrix
is that each row of the similarity matrix sums to the same number. However trivial, we shall stress
these facts in the theorem below; in particular, the theorem explains why in the sequel we shall forget
about joint probabilities or joint possibilities, and stick instead to similarities: whenever one deals
with a similarity matrix, one may well as well think that one is dealing with joint possibilities or
joint probabilities, after fitting in the suitable proportionality constant. (Exhibiting possibility matrices
which cannot be simulated by means of equivalent stochastic matrices is quite easy; in the lemma
below we state a necessary condition.)

Theorem 1. The representational capacity of similarities, joint possibilities and joint probabilities is
the same. The representational capacity of conditional probabilities and transition possibilities are
incomparable; both are strictly less than the representational capacity of similarities.

One may have “odd” similarity matrices, indeed. For example the minimum in row a might be
strictly greater than the maximum in row b, which would make the input object b totally “useless”. In
the sequel, we shall add constraints to the definition of similarity matrices, so as to get rid of “strange”
situations, and check how all this shrinks the corresponding representational capacity.

Certain input objects (codewords, states of nature) in a similarity matrix may be “redundant” in
the sense of row domination: row a is dominated by row b when ai ≤ bi. General similarity matrices
or even possibility matrices may freely have domination between their rows, while stochastic matrices
have it only in a limit case, since they verify the obvious property: if row a is dominated by row b, then
a = b. Actually, stochastic matrices verify a stronger ordinal property, which involves domination for
rows after re-ordering the row entries: in two rows of a similarity matrix there is an inversion when,
after re-ordering the rows with respect to the non-decreasing order, say, there are two positions i and
j with ai < bi, while a j > b j. Now, two rows exhibit no inversion iff a permutation of one of the two
is dominated by the other.

Lemma 1. For a similarity matrix to be equivalent to a stochastic matrix, there must be at least one
inversion in each couple of rows, apart from couples of rows which are equal up to a permutation of
their entries. This condition is also sufficient for two-row matrices.

(Proof omitted in this extended abstract.) When a matrix satisfies the condition as in the lemma,
for convenience’ sake we shall say that the matrix is regular; we stress that regularity is a topological
property which is stable with respect to matrix equivalence. The following three-line counter-example
shows that this condition is not sufficient to have stochasticity up to an equivalence. Take the three-row
similarity matrix

a a d d
b c c c
a c c d
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with a < b < c < d; the three rows are already properly ordered. In rows 1 and 2 there is an inversion
in positions (columns) 1 and 3, in rows 1 and 3 there is an inversion in positions 2 and 3, while in rows
2 and 3 there is an inversion in positions 1 and 4. However, the linear programming problem which
one has to solve (details omitted in this extended abstract) is

a < b < c < d , 2a+2d = 1 , b+3c = 1 , a+2c+d = 1 ,

whose solution set is empty: actually, the last two equations (after replacing a+d by 1/2, cf. the first
equation) give b = c = 1/4, while one should have b < c. Assuming d < 1 and adding an all-1 column
shows that one can as well start from a possibility matrix.

Theorem 2. The representational capacity of regular similarities (and so of regular joint possibili-
ties) strictly exceeds that of stochastic matrices. The representational capacity of regular transition
possibilities and that of stochastic matrices are not comparable; however, they are the same for two-
row matrices.

All this leaves open the following open problem, at least when the number of states of nature
is at least 3: find a simple criterion to ensure that a similarity matrix is equivalent to a stochastic
matrix. Unfortunately, at this point we are only able to provide a sufficient condition which ensures
the equivalence, based on a suitable “geometry” of inversions, as will be given in the final version.

Compound events. If one moves from singletons (individual words) to compound events (sets of
words), one would have to specify a suitable aggregator, which is the sum in the case of probabilities
and the maximum for possibilities, and would presumably be an “abstract” aggregator in the general
case of similarities. By the way, restricting ourselves to singletons, as we do below, makes it difficult
to re-cycle classical results on qualitative probabilities [3], which e.g. require that the intersection of
conditioning events is not void, unlike what happens when intersecting distinct singletons. Consider-
ing only singletons (elementary events, be they states of nature or codewords), is of no consequence
as far as decoding (decision making) is concerned, since this depends only on how similarities are
ordered in the similarity matrix; however, it does matter when it comes to evaluate the error that the
decoder might make, which is an additive error of the form Prob(E|x) in the case of probabilities and
a maxitive error of the form Poss(E|x) in the case of possibilities, with E made up of several5 output
objects (more general aggregators might be used to evaluate the error in the case of similarities). In
other words, our concern here is only how decisions are made, and not also how decisions should
be evaluated. If one wants a notion of equivalence such as to be significant also for error evaluation,
one should require that the ordering is preserved also for compound events. This is definitely more
assuming than above; e.g., it is quite easy to give two-rows examples where an inversion is not enough
to have equivalence in this strong sense between a possibilistic and a stochastic matrix. Take the joint
possibilities

a b b c
a a d d

with 0 < a < b < c < d = 1; there is an inversion e.g. in columns 2 and 3. ¿From the second row one
has 2a+2d = 1, and so b < d < 1/2; instead, from the first row one has a+2b+ c = 1 and so, after
subtracting b, a+b+c = Prob(a,b,c) > 1/2 > d, while max(a,b,c) = Poss(a,b,c) < d. Add an all-1
column if you want to start from a possibilistic matrix.

5 By the way, it is a moot point how to define terms of the form Poss(y|E) in the case of possibilities, let alone in the
“abstract” case of similarities.
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Many papers, starting with the pioneering one by Zadeh (1965), have been devoted – during past
years – to support the negative view maintaining that probability is inadequate to capture what is
usually treated by fuzzy theory. This view is still supported by Zadeh in recent years: in particular we
mention the paper Zadeh (2002), which contains also a number of relevant references. His thesis is
that PT – standard Probability Theory – is not fit to offer solutions for many simple problems in which
a key role is played by a “perception–based information”.

We agree with Zadeh’s position, inasmuch he specifies that by PT he means “standard probability
theory of the kind found in textbooks and taught in courses”. Actually, many traditional aspects of
probability theory are not so essential as they are usually considered; for example, the requirement
that the set of all possible “outcomes” should be endowed with a beforehand given algebraic structure
– such as a Boolean algebra or σ–algebra – or the aim at getting, for these outcomes, uniqueness
of their probability values, with the ensuing introduction of suitable relevant assumptions – such as
σ-additivity, maximum entropy, conditional independence, ... – or interpretations, such as a strict
frequentist one, which unnecessarily restricts the domain of applicability.

In the approach to probability expounded in a series of papers – for the relevant references see the
book (Coletti and Scozzafava, 2002) – the leading tool is that of coherence, a concept that goes back
to de Finetti (1949, 1970) and which allows to handle also those situations where we need to assess a
(conditional) probability P on an arbitrary set of (conditional) events.

Our starting point is a synthesis of the available information, expressed by one or more events: to
this purpose, the concept of event must be given its more general meaning, i.e. it must not be looked on
just as a possible outcome – a subset of the so–called “sample space”, as it is usually done in PT – but
expressed by a proposition. Moreover, events play a two–fold role, since we must consider not only
those events which are the direct object of study, but also those which represent the relevant “state of
information”: in fact a bunch of conditional events, together with a relevant “partial” assessment of
conditional probability, are the tools that allow to manage specific – conditional – situations and to
update degrees of belief on the basis of the evidence. The role of coherence is in fact that of ruling this
extension process; a similar theory – but only for unconditional events – is the probabilistic logic by
N.J. Nilsson (1986), which is just a re-phrasing – with different terminology – of de Finetti’s theory,
as Nilsson (1993) himself acknowledges.

Let ϕX be any property – in the sequel, to simplify notation we will write simply ϕ in place of ϕX –
related to the quantity X : notice that a property, even if expressed by a statement, does not single–out
an event, since the latter needs to be expressed by a nonambiguous proposition that can be either true
or false.

Consider now the event Eϕ = “You claim ϕ” and a coherent conditional probability P(Eϕ|Ax),
looked on as a real function µϕ(x) = P(Eϕ|Ax) defined on CX .
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Since the events Ax are incompatible, then every µϕ(x) with values in [0,1] is a coherent conditional
probability. So we can define a fuzzy subset in the following way.

Definition 1 – Given a quantity X with range CX and a related property ϕ, a fuzzy subset E∗
ϕ of CX is

the pair
E∗

ϕ = {Eϕ , µϕ},
with µϕ(x) = P(Eϕ|Ax) for every x ∈CX .

Notice that this conditional probability P(Eϕ|Ax) is directly introduced as a function on the set of
conditional events, and without assuming any given algebraic structure. Is that possible? In the usual
(Kolmorogovian) approach to conditional probability the answer is NO, since the introduction of
P(Eϕ|Ax) would require the consideration and the assessment of P(Eϕ ∧Ax) and P(Ax), assuming
positivity of the latter. But this could not be a simple task: in fact in this context the only sensible pro-
cedure is to assign directly P(Eϕ|Ax) . For example, it is possible to assign the conditional probability
that “You claim this number is small” knowing its value x, but not necessarily the probability that “The
number has the value x”; not to mention that, for many choices of the quantity X , the corresponding
probability can be zero. These problems are easily by–passed in our framework.

In fact, due to the direct assignment of P(Eϕ|Ax) as a whole, the knowledge – or the assessment
– of the “joint” and “marginal” unconditional probabilities P(Eϕ ∧ Ax) and P(Ax) is not required;
moreover, the conditioning event Ax – which must be a possible event – may have zero probability.
So, conditioning in a coherent setting gives rise to a general scenario that makes the classic Radon–
Nikodym procedure – and the relevant concept of regularity – neither necessary nor significant. This
has been repeatedly discussed elsewhere: see, e.g., Coletti and Scozzafava (2005).

So a coherent conditional probability P(Eϕ|Ax) is clearly a measure of how much You, given the
event Ax = {X = x}, are willing to claim the property ϕ , and it plays the role of the membership
function of the fuzzy subset E∗

ϕ.
Notice also that the significance of the conditional event Eϕ|Ax is reinforced by looking on it as “a

whole”, avoiding a separate consideration of the two propositions Eϕ and Ax.
A fuzzy subset E∗

ϕ is a crisp set when the only coherent assessment µϕ(x) = P(Eϕ|Ax) has range
{0,1}, i.e. when the property ϕ is such that, for every x ∈CX , one has either Eϕ∧Ax = /0 or Ax ⊆ Eϕ.

Remark 1 – Let us emphasize that in our context the concept of fuzzy event, as introduced by
Zadeh (1968), is nothing else than a proposition, i.e., an ordinary event, of the kind “You claim the
property ϕ”. So, according to the rules of conditional probability – in particular, the “disintegration”
formula, often called in the relevant literature “theorem of total probability” – we can easily compute
its probability as

P(Eϕ) = ∑
x

P(Ax)P(Eϕ|Ax) = ∑
x

P(Ax)µϕ(x) ,

which coincides with Zadeh’s definition of the probability of (what he calls) a “fuzzy” event.
Notice that this result is only a trivial consequence of probability rules and not a definition, and

it puts also under the right perspective the subjective nature of a membership function, showing once
again that our approach to probability goes beyond – both syntactically and semantically – the tradi-
tional one, denoted PT by Zadeh.

In conclusion, our theory is not a probabilistic – in the usual traditional sense – interpretation of
fuzziness, since a conditional probability is not a probability, except in the trivial case in which the
conditioning event is fixed and we let the first one vary: notice that we are proceeding the other way
round!.

For the formal definitions concerning fuzzy sets, we recall that our results are expounded in a
series of papers (Coletti and Scozzafava, 1999, 2001, 2004), where we show not only how to define
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fuzzy subsets, but we also introduce in a very natural way the counterparts of the basic continuous
T -norms and the corresponding dual T -conorms, bound to the former by coherence. In particular, all
Frank’s norms and conorms – see Frank (1979) – are captured in our framework.

Concerning problems in which a role is played by a perception–based information (to use Zadeh’s
terminology), we are not going to discuss any single example, but we refer to the model constituted by
some balls in a box, in different situations concerning their number, size, color, and any other feature
of interest, as discussed in (Coletti and Scozzafava, 2006). The radical thesis placed by Zadeh on
the table is that PT has serious limitations that cannot be overcome within the conceptual structure
of bivalent logic, and so it cannot provide tools for operating on perception–based information. Our
thesis is that we are able to manage situations of this kind, since PT is just a trivial particular case of
our general approach to probability – and, mainly, to conditional probability – through coherence, and
this approach encompasses all the tools that are necessary to deal with the kind of problems raised by
Zadeh.

Consider a box containing n balls of various sizes s1, ...,sk (k ≤ n), with respective fractions
f1, ..., fk, and an experiment consisting in drawing a ball from the box. Let EL be the event (referred
to the drawn ball) “You claim (the size is) large”. The question is: what is the probability of EL?

In our context the problem is trivial, since it amounts to the computation of the probability of the
(“fuzzy”) event EL. Introduce the random variable S , with range {s1, ...,sk}, of the sizes of the balls
in the box, and consider the conditional events EL|Si, with Si = {S = si}. So by a trivial computation
we have:

P(EL) = ∑
i

P(EL|Si)P(Si) = ∑
i

µL(si) fi ,

where µL is the membership function of the fuzzy set “large”, which is context dependent, since it
refers to the sizes of the balls in the given box. The same procedure can be obviously followed for the
properties “medium” and “small”.

To simplify the exposition, we may hallmark a “fuzzy” event by the symbol F followed by the
relevant property. Recall that in our context a fuzzy event is a ... “normal” event, i.e., a particular
proposition beginning with “You claim ...”: for example, the event EL = “You claim large” can be
simply written as

EL = F-large,

and the range of the property “large” should be clear from the context (e.g., in this case, the sizes of
the balls).

Consider now the case that the balls have different colors – with known fractions – and introduce
the corresponding random variable C , with range c1, ...,cm . We can consider the fuzzy subset of C
singled–out by the membership function

µD(cr) = P(ED|Cr) ,

where ED = F-dark and Cr = {C = cr} . Then it is clearly possible to evaluate P(ED) by the same
procedure followed above for P(EL).

If we want to refer to both properties – a ball that is large and dark – we need considering the
event EL∧ED = F-(large∧dark) , getting

P(EL∧ED) = ∑
i, j

P
(
(EL∧ED)

∣∣(Si∧C j)
)

pi j = ∑
i, j

µLD(si,c j)pi j ,

where pi j denotes the probability of a size si and a color c j: the values pi j can be computed by dis-
integration with respect to the possible compositions of the box, possibly taking into account suitable
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conditional independence assumptions. Concerning the membership µLD(si,c j), any value belonging
to the interval of coherence does the job (and also any Frank t-norm: in particular, a possible choice
is the usual “minimum”, as done by Zadeh)

Suppose now that we ignore the color of the balls and that we do not know the fractions fi of balls
having the various sizes si, i.e., the box is of unknown composition. Consider the event, referred to the
balls in the box

EM,L=“You claim that most are large”= F-(most are large).
The relevant claim may be seen as the assignment of a high probability of being claimed – referred
to a ball to be drawn – large. Clearly, the possible values of this probability are identified with the
possible values of the fractions pi of large balls, and these values constitute the range of a random
variable Π, related to the events Πi = {Π = pi}. Then we can introduce the membership function
µM(pi) = P(EM

∣∣Πi), with EM = F-high, referred to the probability of drawing a large ball.
Going back to EM,L, one of the questions posed by Zadeh is: assuming EM,L, i.e. that most balls

are large, what is the probability of drawing a large ball?
In our setting and notation, this amounts to the evaluation of the conditional probability P(EL|EM,L) .

Introducing events Hk (k = 1,2, . . . ,r) denoting the possible compositions of the box with respect to
the possible sizes of the balls, we may resort to the disintegration formula

P(EL
∣∣EM,L) = ∑

k
P(EL

∣∣Hk∧EM,L)P(Hk
∣∣EM,L) = ∑

k
P(EL

∣∣Hk)P(Hk
∣∣EM,L) ,

the latter equality coming from EL being conditionally independent of EM.L given Hk; in fact, for
any known composition of the box, the probability of drawing a large ball does not depend on the
knowledge that most balls are large.

Recalling the random variable Π introduced above, we can represent the probability P(EL
∣∣Hk)

appearing in the previous formula as

P(EL
∣∣Hk) = ∑

i
P(EL

∣∣Πi∧Hk)P(Πi
∣∣Hk) = ∑

i
P(EL

∣∣Πi)P(Πi
∣∣Hk) ,

while the probability P(Hk
∣∣EM,L) can be easily computed via Bayes’ theorem and P(EM,L

∣∣Hk) .
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Università di Perugia, Italy

coletti@dipmat.unipg.it

2 Dept. Metodi e Modelli Matematici,
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1 Introduction

Any assessment of an (unconditional) uncertainty measure on a set of events A can be seen as the
relevant degrees of belief measured by a scale “calibrated” for taking into account all the events at
the same time; in other words any event is regarded as embedded on the macrocosm consisting of
the complete family. Obviously in this macro-context it is possible that some differences among the
degrees of belief are not captured through this scale (unconditional measure). On the contrary the
difference of the degrees of belief of any two events will emerge when we consider the microcosm
consisting of just the two events, and so by using a more sensible scale.

The model apt to manage this complex system, in which different hypotheses (or information) are
taken into account simultaneously, is a conditional uncertainty measure, where we consider it in the
most general way, that is as a primitive concept.

The main feature of such an approach resides in adopting a direct introduction of the conditional
measure as a function whose domain is a set of conditional events E|H, so that it can be defined for
any pair of events E, H in A , with H 6= /0.

Therefore in this context conditioning is not just a trivial modification of the “world”. In fact, it
is essential to regard conditioning events as “variables” or, in other words, as uncertain events which
can be either true or false. This framework gives the opportunity to the decision maker (or the field
expert) to take into account at the same time all the possible scenarios (represented by the relevant
conditioning events).

Starting from probability [8] many models based on a direct definition of conditional uncertainty
measures have been given in literature (see, for instance, [6, 1–4]).
Nevertheless the discussion about the best definition of conditional model is open and is a problem of
long-standing interest in different research fields such as uncertainty reasoning, economic and decision
models.

In this work we focus on possibility and necessity measures. We recall that in this setting various
definitions of conditional possibilities have been introduced mainly by analogy with Kolmogorovian
probabilistic framework. Hence, these definitions have in common the fact that a conditional measure
is obtained as a derived concept from an “unconditional” one (see e.g. [7, 11, 14]). Starting from a
possibility measure Π(·), a T -conditional possibility (with T a triangular norm) Π(·|H) is essentially
defined for every E as a solution x of the equation Π(E ∧H) = T (x,Π(H)). Obviously, this equation
has not a unique solution for any Π(E ∧H) and Π(H). Note that while for strictly increasing t-
norms T to have a unique solution it is sufficient to discard events with zero possibility, this does not
happen for other t-norms. For example, for T = min the above equation has not a unique solution for
Π(E ∧H) = Π(H). Then, particular principles (as, e.g., minimum specificity [11]), which give rise to
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different definitions of conditional possibility, have been introduced. Essentially, this notion includes
the aforementioned definitions: it gives more freedom.

Recently in [1] (as mentioned above) a general notion of conditional possibility has been intro-
duced as a function on a suitable set of conditional events which satisfies a set of axioms. This defi-
nition removes all the critical cases and permits to consider Π(E|H) for every pair E,H, with H 6= /0

(even when Π(H) = 0).
Nevertheless the above definition is given on sets of conditional events endowed with a logical

structure, and this can make the model not flexible for the applications. In fact, in any real situation
the events of interest, and those in which the field expert or the decision maker has information,
give rise usually to an arbitrary set. For this reason we study a notion of coherence (see [4]), which
allows to see whether in fact a partial assessment is the restriction of a conditional possibility (for
T = min) and then to enlarge coherent assessments on any further conditional event. We point out a
procedure to check coherence by using a characterization theorem given in [4]. The procedure and
the relevant results are naturally generalized in this talk. The relevant theorems characterize coherent
T -conditional possibility assessments in terms of a class of possibilities satisfying suitable properties.
In [4] an independence notion for conditional possibilities is given and it is shown that it overcomes
critical situations; this suggest that an extension of independence for any t-norm can be carried out,
analogously to what has been done for strictly increasing t-norms in [13].

In this work, we give a contribution to the discussion about conditioning under a different per-
spective by studying the comparative framework underling a conditional model. In many situations
the field expert or the decision maker, due to his partial knowledge, is not able or interested to give
a numerical evaluation “even if partial”. In these situations, we are content with getting (from the
decision maker) an ordinal evaluation (i.e. a comparative degree of belief among conditional events)
comparing only some uncertain alternatives. In this case, given a numerical model of reference (in our
case possibilistic framework) it necessary to determine the conditions characterizing ordinal relations
�, which are representable by a function ϕ(·|·) (e.g. possibility, necessity measures) belonging to the
numerical reference model, i.e. for every E|H,F |K ∈ A× (A \{ /0})

E|H � F |K ⇒ ϕ(E|H)≤ ϕ(F |K)

E|H ≺ F |K ⇒ ϕ(E|H) < ϕ(F |K)
.

In [5] relations representable by a conditional possibility have been characterized and here we
deeply study this class of models. It is interesting in decision theory also since in the unconditional
case conditions on acts (in the style of Savage) - assuring a possibilistic representation - have been
given in [12] and an optimistic attitude of the decision maker has been carried out. This allows to
analyze different notions of conditional possibilities from a qualitative point of view.

In this talk we will emphasize the different conditioning operators in this qualitative framework
showing different characterizations and examples.

Moreover, we characterize ordinal relations locally representable, admitting a specific conditional
measure (possibility or necessity) ϕ(·|·) such that for every E,F,H ∈ A , with H ⊇ E ∨F we have:

(∗)
E � F ⇒ ϕ(E|H)≤ ϕ(F |H)

E ≺ F ⇒ ϕ(E|E ∨F) < ϕ(F |E ∨F)
.

This approach gives an estimation of the “goodness” and “effectiveness” of the model, by putting in
evidence the rules necessarily accepted by the user. This is particularly useful in the case that there are
many numerical models. In fact, it puts clearly in evidence the lacks of some conditioning operators
or some unexpected similarities among the conditional measures.
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This analysis puts under a new light the conditioning problem for possibility theory: for condi-
tional possibility (with T = min) it comes out that a relation is locally representable if and only if it is
representable by a strict positive unconditional measure, as shown by the following result.

Before we recall the following characteristic axiom (PO) (introduced in [10]) for possibility:

(PO) for any A,B,H ∈ A , A� B⇒ (A∨H)� (B∨H).

Theorem 1. Let � be an ordinal relation on the algebra A . Then the following statements are equiv-
alent:
(a) � is a monotone weak order satisfying axiom (PO) and such that /0≺ A, for any A ∈ (A \ /0);
(b) there exists a conditional possibility Π(·|·) : A× (A \ /0)→ [0,1] locally representing �;
(c) there exists a T-conditional possibility Π(·|·) : A × (A \ /0) → [0,1], with T a strictly monotone

triangular norm, locally representing �;
(d) there exists a strictly positive (unconditional) possibility Π(·) : A → [0,1] representing �.

Thus, the main conditioning operators are not distinguishable (it means they collapse in the same
class) in the qualitative framework under local representability.

The above characterization gives rise to a fundamental difference between this measure and prob-
ability: ordinal relations representable by a strict positive probability are also locally representable by
a conditional probability, while the vice versa is not true.

Some interesting aspects are obtained also by looking to conditional necessities: in this case we
obtain not transitive relations. This is not surprising since it happens also in other frameworks.
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1 Introduction

Statistical data are frequently associated with an underlying imprecision due, for instance, to inexac-
titude in the measuring process, vagueness of the involved concepts or a certain degree of ignorance
about the real values. In many cases, such an imprecision can be modelled by means of fuzzy sets in
a more efficient way than considering only a single value or category. Thus, these kinds of data are
jointly affected by two sources of uncertainty: fuzziness (due to imprecision, vagueness, partial igno-
rance) and randomness (due to sampling or measurement errors of stochastic nature). Fuzzy Random
Variables (FRVs) in Puri & Ralescu’s sense [17] has been introduced to model these situations, that is,
random mechanisms generating imprecisely-valued data (see, for instance, [4] for a discussion about
the integration of Fuzzy Sets and Statistics).

From a statistical point of view, the fuzzy expected value (see [17]) plays an important role as
central summary measure. The point estimation of this measure has been one of the first statistical
analysis concerning FRVs (see, for instance, [12], [13]). Later, the initial hypothesis testing procedures
began to be studied, although they imposed some theoretical/practical constraints (see, for instance,
[10], [14], [15] or [6]). The aim of these procedures were to test whether the expected value of a FRV
is a given fuzzy set (one-sample test), or whether the expected value of two or more FRVs are equal
(two-sample and J-sample tests). In order to solve these problems, the null hypothesis is expressed in
terms of suitable metrics (see [1], [10] and [11]). More recently, the constraints have been removed
and some operative and powerful bootstrap hypothesis testing were proposed (see, for instance, [8]
and [9]).

On the other hand, in [7] (see also [3]) it has been shown that in handling real-valued random
variables and by using suitable fuzzifications, the corresponding fuzzy expected value captures not
only the “central tendency summary” but the whole information on the distribution of the original
variables. In this sense, the fuzzy expected value means a kind of [0,1]-valued characteristic function
and the above-mentioned hypothesis tests concerning the expected value of the fuzzy random variables
can be used to develop inferences about distributions of real-valued random variables.

The final aim of this paper is to review the statistical inferences about the fuzzy expected value,
from both a theoretical and an empirical point of view, and to show how to apply them in connection
with the distributions of real-valued random variables through the characterizing fuzzy representa-
tions. In Section 2, we present the main concepts concerning FRV’s. In Section 3 we illustrate the
hypothesis testing procedures to be analyzed. Finally, in Section 4, we present briefly the charac-
terizing fuzzy representation of real-valued random variables and some of the inferences about the
distributions.
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2 Preliminaries

Let Kc(Rp) be the class of the nonempty compact convex subsets of Rp endowed with the Minkowski
sum and the product by a scalar, that is, A + B = {a + b |a ∈ Ab ∈ B} and λA = {λa |a ∈ A} for all
A,B ∈ Kc(Rp) and λ ∈ R. We will consider the class of fuzzy sets

Fc(Rp) =
{

U : Rp → [0,1]
∣∣ Uα ∈ Kc(Rp) for all α ∈ [0,1]

}
where Uα is the α-level of U (i.e. Uα = {x∈Rp |U(x)≥ α}) for all α∈ (0,1] , and U0 is the closure of
the support of U . The space Fc(Rp) can be endowed with the sum and the product by a scalar based
on Zadeh’s extension principle [18], which satisfies that (U +V )α = Uα +Vα and (λU)α = λUα for
all U,V ∈ Fc(Rp), λ ∈ R and α ∈ [0,1].

The support function of a fuzzy set U ∈ Fc(Rp) is sU(u,α) = supw∈Uα
〈u,w〉 for any u ∈ Sp−1 and

α∈ [0,1], where Sp−1 is the unit sphere in Rp and 〈·, ·〉 denotes the inner product. The support function
allows to embed Fc(Rp) onto a cone of the class of the Lebesgue integrable functions L(Sp−1) by
means of the mapping s : Fc(Rp)→ L(Sp−1× [0,1]) where s(U) = sU (see [5]).

We will consider the generalized metric by Körner and Näther [11], which is defined so that

[DK(U,V )]2 =
Z

(Sp−1)2×[0,1]2

(
sU(u,α)− sV (u,α)

)(
sU(v,β)− sV (v,β)

)
dK(u,α,v,β),

for all U,V ∈ Fc(Rp), where K is a positive definite and symmetric kernel. Thus, DK coincides with
the generic L2 distance on the Banach space L(Sp−1× [0,1]).

Let (Ω,A ,P) be a probability space. A Fuzzy Random Variable in Puri & Ralescu’s sense [16]
is a mapping X : Ω → Fc(Rp) so that the α-level mappings Xα : Ω → Kc(Rp), defined so that
Xα(ω) =

(
X (ω)

)
α

for all ω ∈ Ω, are random sets (that is, Borel-measurable mappings with the Borel
σ-field generated by the topology associated with the well-known Hausdorff metric dH on K (Rp)).
Alternatively, an FRV is an Fc(Rp)-valued random element (i.e. a Borel-measurable mapping) when
the DK-metric is considered on Fc(Rp) (see [2], [11] and [5]).

If X : Ω → Fc(Rp) is a fuzzy random variable such that dH
(
{0},X0

)
∈ L1(Ω,A ,P), then the

expected value (or mean) of X is the unique E(X ) ∈ Fc(Rp) such that
(
E(X )

)
α

= Aumann’s integral
of the random set Xα for all α ∈ [0,1], that is,(

E(X )
)

α
=

{
E(X |P)

∣∣ X : Ω → Rp, X ∈ L1(Ω,A ,P), X ∈ Xα a.s. [P]
}
.

2.1 Inferences on the mean values of FRVs

Let X : Ω→ Fc(Rp) be a FRV such that dH
(
{0},X0

)
∈ L1(Ω,A ,P) and let X1, . . . ,Xn be FRVs which

are identically distributed as X . Then (see [13]),

Theorem 1. The sample fuzzy mean value X n =
1
n

(X1 + . . .+Xn) is an unbiased and consistent

estimator of the fuzzy parameter E(X ); that is, the (fuzzy) mean of the fuzzy-valued estimator X n over
the space of all random samples equals E(X ) and X n converges almost-surely to E(X )

In addition, if X ∗
1 , . . . ,X ∗

n is a bootstrap sample obtained from X1, . . . ,Xn. Then (see [7]), we have
that
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Theorem 2. In testing the null hypothesis H0 : E(X |P) = U ∈ Fc(Rp) at the nominal significance
level α ∈ [0,1], H0 should be rejected whenever[

DK
(
X n,U

)]2

Ŝ2
Kn

> zα,

where zα is the 100(1−α) fractile of the distribution of the bootstrap statistic Tn =
[
DK

(
X ∗

n ,X n
)]2/

Ŝ∗2
Kn

and with

X n =
1
n

(X1 + . . .+Xn) , Ŝ2
Kn

=
n

∑
i=1

[
DK

(
Xi,X n

)]2
/(n−1),

X ∗
n =

1
n

(X ∗
1 + . . .+X ∗

n ) , Ŝ∗2
Kn

=
n

∑
i=1

[
DK(X ∗

i ,X ∗
n
)]2

/(n−1).

Analogously, testing hypothesis can also be developed for the two (independent or paired)-sample
and multi-sample cases (see [6] and [8]).

3 Characterizing fuzzy representations of random variables

A fuzzy representation of a random variable transforms crisp data (the original random variable val-
ues) into fuzzy sets (the associated FRV values). In [7] a family of fuzzy representations that charac-
terize the distribution of the original real-valued random variable is proposed. Concretely, if we define
the generalized mapping γC : R → Fc(R) which transforms each value x ∈ R into the fuzzy number
whose α-level sets are

(
γC(x)

)
α

=
[

fL(x)− (1−α)1/hL(x), fR(x)+(1−α)1/hR(x)
]

for all α ∈ [0,1],
where fL : R → R, fR : R → R, fL(x)≤ fR(x) for all x ∈ R, and hL : R → (0,+∞), hR : R → (0,+∞)
are continuous and bijective, we have the following result:

Theorem 3. If X : Ω →R and Y : Ω →R are two random variables and fL(X), fR(X) ∈ L1(Ω,A ,P),
the two following conditions:

(C.1) Ẽ
(
γC ◦X

∣∣P
)

= Ẽ
(
γC ◦Y

∣∣P
)
.

(C.2) X and Y are identically distributed,

are equivalent.

As a consequence of Theorem 3, we have that

– the fuzzy sample mean value of the fuzzified random variable becomes an estimator of the distri-
bution;

– the one-sample test about the mean can be considered as a goodness-of-fit test for the original
random variable;

– the J-sample test becomes a test for the equality of J distributions.
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We establish a general framework for constructing copulas that can be regarded as a patchwork-like
assembly of arbitrary copulas, with non-overlapping rectangles as patches. We derive a family of
construction methods that require the choice of a single background copula. When this background
copula is the greatest copula TM, we retrieve the well-known ordinal sum construction, while in case
of the smallest copula TL, we obtain a construction method that is dual to the ordinal sum construction.
Also non-singular background copulas lead to suitable construction methods.
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1 Introduction

In recent years, we have witnessed the growth of a number of theories of uncertainty, where imprecise
(lower and upper) probabilities, or probability intervals, rather than precise (or point-valued) proba-
bilities, have a central part. Here we consider two of them, Peter Walley’s behavioural theory [8], and
Glenn Shafer and Vladimir Vovk’s game-theoretic account of probability [7]. These seem to have a
completely different interpretation, and they certainly stem from quite different schools of thought:
Walley follows the tradition of Frank Ramsey [6], Bruno de Finetti [3] and Peter Williams [10] in
trying to establish a rational model for a subject’s beliefs in terms of her behaviour. Shafer and Vovk
follow an approach that has many other influences as well, and is strongly coloured by ideas about
gambling systems and martingales. They use Cournot’s bridge to interpret lower and upper probabili-
ties (see [7, Chapter 2] for a nice historical overview), whereas on Walley’s approach, lower and upper
probabilities are defined in terms of a subject’s betting rates.

What we set out to do here, is show that in many practical situations, both approaches are very
strongly connected. This means that results, valid in one theory, can automatically be converted and
reinterpreted in terms of the other.

2 Shafer and Vovk’s game-theoretic approach to probability

In their game-theoretic approach to probability [7], Shafer and Vovk consider a game with two play-
ers, World and Skeptic, who play according to a certain protocol. They obtain the most interesting
results for a special type of protocol, called a coherent probability protocol. This section is devoted to
explaining what this means.

G1. The first player, World, can make a number of moves, where the possible next moves may depend
on the previous moves he has made, but do not in any way depend on the previous moves made
by Skeptic.

This means that we can represent his game-play by a (decision) tree. We restrict ourselves here to the
discussion of bounded protocols, where World can only make a finite and bounded number of moves,
whatever happens. But we do not exclude the possibility that at some point in the tree, World has the
choice between an infinite number of next moves.

Let us establish some terminology related to World’s decision tree. A path in the tree represents a
possible sequence of moves for World from the beginning to the end of the game. We denote the set
of all possible paths ω by Ω, the sample space of the game. A situation t is some connected segment
of a path that is initial, i.e., starts at the root of the tree. It identifies the decisions or moves World
has made up to a certain point. We denote the set of all situations by Ω♦. It includes the set Ω of
final situations, or paths. All other situations are called non-final; among them is the initial situation
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Fig. 1. A simple decision tree for World, displaying the initial situation �, other non-final situations (such as t) as grey
circles, and paths, or final situations, (such as ω) as black circles. Also depicted is a cut of �, consisting of the situations u1,
. . . , u4.

�, which represents the empty initial segment. See Figure 1 for a graphical example explaining these
notions.

World’s move space in a non-final situation t is the set Wt of those moves w that World can make
in t: Wt =

{
w : tw ∈Ω♦

}
.

If for two situations s and t, s is an (initial) segment of t, then we say that s precedes t or that t
follows s, and write s v t. If ω is a path and t v ω then we say that the path ω goes through situation
t. We write s @ t if sv t and s 6= t.

A function on Ω♦ is called a process, and a partial process whose domain includes all situations
that follow a situation t is called a t-process. Similarly, a function on Ω is called a variable, and
a partial variable on Ω whose domain includes all paths that go through a situation t is called a t-
variable. If we restrict a t-process F to the final situations that follow t, we obtain a t-variable, which
we denote by FΩ.

We now turn to the other player, Skeptic. His moves may be influenced by the previous moves
that World has made, in the following sense. In each situation t, he has a set St of moves s available
to him, called Skeptic’s move space in t.

G2. In each non-final situation t, there is a (positive or negative) gain for Skeptic associated with each
of the possible moves s in St that World can make. This gain depends only on the situation t and
the next move w that World will make.

This means that for each non-final situation t there is a gain function λt : St ×Wt → R, such that
λt(s,w) represents the change in Skeptic’s capital in situation t when he makes move s and World
makes move w.

Let us introduce some further notions and terminology related to Skeptic’s game-play. A strategy
P for Skeptic is a partial process defined on the set Ω♦ \Ω of non-final situations, such that P (t) ∈ St

is the move that Skeptic will make in each non-final situation t. With each such strategy P there cor-
responds a capital process K P , whose value in each situation t gives us Skeptic’s capital accumulated
so far, when he starts out with zero capital and plays according to the strategy P . It is given by the
recursion relation

K P (tw) = K P (t)+λt(P (t),w),
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with initial condition K P (�) = 0. Of course, when Skeptic starts out (in �) with capital α and uses
strategy P , his corresponding accumulated capital is given by the process α + K P . In the final situa-
tions, his accumulated capital is then given by the variable α+K P

Ω
.

If we start in a non-final situation t, rather than in �, then we can consider t-strategies P that
tell Skeptic how to move starting from t, and the corresponding capital process K P is then also a
t-process, that tells us how much capital Skeptic has accumulated since starting with zero capital in
situation t and using t-strategy P .

Assumptions G1 and G2 determine so-called gambling protocols. They are sufficient for us to be
able to define upper and lower prices for variables. Consider a non-final situation t and a t-variable
f . Then the upper price Et( f ) for f in t is defined as the infimum capital α that Skeptic has to start
out with in t in order that there would be some t-strategy P such that his accumulated capital α+K P

allows him, at the end of the game, to buy f , whatever moves World makes after t:

Et( f ) := inf
{

α : there is some t-strategy P such that α+K P
Ω ≥ f

}
, (1)

where α+K P
Ω
≥ f is taken to mean that α+K P (ω)≥ f (ω) for all final situations ω that go through

t. Similarly, for the lower price Et( f ) for f in t:

Et( f ) := sup
{

α : there is some t-strategy P such that α−K P
Ω ≤ f

}
,

so Et( f ) =−Et(− f ). If we start from the initial situation t = �, we simply get the upper and lower
prices for a variable f , which we also denote by E( f ) and E( f ).

A gambling protocol is called a probability protocol when besides S1 and S2, two more require-
ments are satisfied.

P1. For each non-final situation t, Skeptic’s move space St is a convex cone in some linear space:
a1s1 +a2s2 ∈ St for all non-negative real numbers a1 and a2 and all s1 and s2 in St .

P2. For each non-final situation t, Skeptic’s gain function λt has the following linearity property:
λt(a1s1 +a2s2,w) = a1λt(s1,w)+a2λt(s2,w) for all non-negative real numbers a1 and a2, all s1
and s2 in St and all w in Wt .

Finally, a probability protocol is called coherent when moreover

C. For each non-final situation t, and for each s in St there is some w in Wt such that λt(s,w)≤ 0.

It is clear what this requirement means: for each non-final situation, World has a strategy for playing
from t onwards such that Skeptic cannot (strictly) increase his capital from t onwards, whatever t-
strategy he uses.

For such coherent probability protocols, Shafer and Vovk prove a number of interesting properties
for the corresponding upper (and lower) prices. We list a number of them here. Call a cut U of a non-
final situation t any set of situations that (i) follow t, and (ii) such that for all paths ω through t [t vω],
there is a unique u ∈U such that ω goes through u [u v ω]; see also Figure 1. For any t-variable f ,
we can associate with such a cut U another special t-variable EU by EU( f )(ω) = Eu( f ), for all paths
ω through t, where u is the unique situation in U that ω goes through. For any two t-variables f1 and
f2, f1 ≤ f2 is taken to mean that f1(ω)≤ f2(ω) for all paths ω that go through t.

Proposition 1 (Properties of prices in a coherent probability protocol [7]). Consider a coherent
probability protocol, let t be a non-final situation, f , f1 and f2 t-variables, and U a cut of t. Then

1. inf{ f (ω) : ω ∈Ω, t v ω} ≤ Et( f )≤ Et( f )≤ sup{ f (ω) : ω ∈Ω, t v ω} [positivity];
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2. Et( f1 + f2)≤ Et( f1)+Et( f2) [sub-additivity];
3. Et(λ f ) = λEt( f ) for all real λ≥ 0 [non-negative homogeneity];
4. Et( f +α) = Et( f )+α for all real α [constant additivity];
5. Et(α) = α for all real α [normalisation];
6. f1 ≤ f2 implies that Et( f1)≤ Et( f2) [monotonicity];
7. Et( f ) = Et(EU( f )) [law of iterated expectation].

What is more, Shafer and Vovk use specific instances of such coherent probability protocols to prove
various limit theorems (such as the law of large numbers, the central limit theorem, the law of the
iterated logarithm), from which they can derive the well-known measure-theoretic versions. We shall
come back to this in Section 5.

3 Walley’s behavioural approach to probability

In his book on the behavioural theory of imprecise probabilities [8], Walley considers many different
types of related models. We shall restrict ourselves here to the most general and most powerful one,
which also turns out to be the easiest to explain, namely coherent sets of desirable gambles; see also
[9].

Consider a non-empty set Ω of possible alternatives ω, only one which actually obtains (or will
obtain); we assume that it is possible, at least in principle, to determine which alternative does so.
Also consider a subject who is uncertain about which possible alternative actually obtains (or will
obtain). A gamble on Ω is a real-valued function on Ω, and it is interpreted as an uncertain reward,
expressed in units of some predetermined linear utility scale: if ω actually obtains, then the reward
is f (ω), which may be positive or negative. If a subject accepts a gamble f , this means that she is
willing to engage in the transaction, where (i) first it is determined which ω obtains, and then (ii) she
receives the reward f (ω). We can try and model the subject’s beliefs about Ω by considering which
gambles she accepts.

Suppose our subject specifies some set D of gambles she accepts, called a set of desirable gambles.
Such a set is called coherent if it satisfies the following rationality requirements:

D1. if f < 0 then f 6∈D [avoiding partial loss];
D2. if f ≥ 0 then f ∈D [accepting partial gain];
D3. if f1 and f2 belong to D then their (point-wise) sum f1 + f2 also belongs to D [combination];
D4. if f belongs to D then its (point-wise) scalar product λ f also belongs to D for all non-negative

real numbers λ [scaling].

Here ‘ f < 0’ means ‘ f ≤ 0 and not f = 0’. Walley has also argued that sets of desirable gambles
should satisfy an additional axiom:

D5. D is B-conglomerable for any partition B of Ω: if IB f ∈ D for all B ∈ B , then also f ∈ B [full
conglomerability].

Full conglomerability is a very strong requirement, and it is not without controversy. If a model D
is B-conglomerable, this means that certain inconsistency problems when conditioning on elements
B of B are avoided; see [8] for more details. Conglomerability of belief models was not required
by forerunners of Walley, such as Williams [10], or de Finetti [3]. While I agree with Walley that
conglomerability is a desirable property for sets of desirable gambles, I do not believe that full con-
glomerability is always necessary: it seems that we need only require conglomerability with respect
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to those partitions that we actually intend to condition our model on. This is the path I shall follow in
Section 4.

Given a coherent set of desirable gambles, we can define conditional upper and lower previsions
as follows: for any gamble f and any non-empty subset B of Ω, with indicator IB,

P( f |B) := inf{α : IB(α− f ) ∈D}
P( f |B) := sup{α : IB( f −α) ∈D}

so P( f |B) =−P(− f |B), and P( f |B) is the infimum price α for which the subject will sell the gamble
f , i.e., accept the gamble α− f , contingent on the occurrence of B. For any event A, we define the
conditional lower probability P(A|B) := P(IA|B), i.e., the subject’s supremum rate for betting on the
event A, contingent on the occurrence of B, and similarly for P(A|B) := P(IA|B).

If B is a partition of Ω, then we define P( f |B) as the gamble that in any element ω of Ω assumes
the value P( f |B), where B is the unique element of B such that ω ∈ B.

The following properties of conditional upper and lower previsions associated with a coherent set
of desirable gambles were (essentially) proven by Walley.

Proposition 2 (Properties of conditional upper and lower previsions [8]). Consider a coherent set
of desirable gambles, let B be any non-empty subset of Ω, f , f1 and f2 gambles on Ω,. Then1

1. inf{ f (ω) : ω ∈ B} ≤ P( f |B)≤ P( f |B)≤ sup{ f (ω) : ω ∈ B} [positivity];
2. P( f1 + f2|B)≤ P( f1|B)+P( f2|B) [sub-additivity];
3. P(λ f |B) = λP( f |B) for all real λ≥ 0 [non-negative homogeneity];
4. P( f +α|B) = P( f |B)+α for all real α [constant additivity];
5. P(α|B) = α for all real α [normalisation];
6. f1 ≤ f2 implies that P( f1|B)≤ P( f2|B) [monotonicity];
7. if B is a partition of Ω that refines the partition {B,Bc} and D is B-conglomerable, then P( f |B)≤

P(P( f |B)|B) [conglomerative property].

The analogy between Propositions 1 and 2 is too striking to be coincidental. The fact that there is an
equality in Proposition 1.7, where we have only an inequality in Propositions 2.7, seems to indicate
moreover that Shafer and Vovk’s approach leads to a less general type of model.2 We now set out to
identify the exact correspondence between the two models.

4 Connecting the two approaches

In order to lay bare the connections between the game-theoretic and the behavioural approach, we
enter Shafer and Vovk’s world, and consider another player, called Subject, who has certain piece-
wise beliefs about what moves World will make.

More specifically, for each non-final situation t ∈ Ω♦ \Ω, she has beliefs about which move w
World will choose next from the set Wt of moves available to him in t. We suppose she represents

1 Here, as in Proposition 1, we assume that whatever we write down is well-defined, meaning that for instance no sums of
−∞ and +∞ appear, and that the function P(·|B) is real-valued, and nowhere infinite. Shafer and Vovk do not seem to
mention this.

2 This also shows that the claim on p. 186 in [7] to the effect that “[de Finetti, Williams and Walley] also considered the
relation between unconditional and conditional prices, but they were not working in an dynamic framework and so did
not formulate [Shafer and Vovk’s equivalent of our Proposition 1.7]”, at least needs some qualification.
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those beliefs in the form of a coherent3 set Dt of desirable gambles on Wt . These beliefs are condi-
tional, in the sense that they represent Subject’s beliefs about what World will do immediately after he
gets to situation t. We call any specification of such coherent Dt , t ∈ Ω♦ \Ω, a coherent conditional
assessment for Subject.

We can now ask ourselves what the behavioural implications of these conditional assessments
are. For instance, what do they tell us about whether or not Subject should accept certain gambles
on Ω, the set of possible paths for World? In other words, how can these beliefs about which next
move World will make in each non-final situation t be combined rationally into beliefs about World’s
complete sequence of moves?

In order to investigate this, we use Walley’s very general and powerful method of natural exten-
sion, which is just conservative coherent reasoning. We shall construct, using the pieces of information
Dt , a set of desirable gambles on Ω that is (i) coherent, and (ii) as small as possible, meaning that no
more gambles should be accepted than is actually required by coherence.

First, we collect the pieces. Consider any non-final situation t ∈ Ω♦ \Ω and any gamble ht in Dt .
Just as for variables, we can define a t-gamble as a partial gamble whose domain contains all paths ω

that go through t. Then with each ht we can associate a t-gamble, also denoted by ht , and defined by

ht(ω) := ht(ω(t)),

for all t v ω, where we denote by ω(t) the unique element of Wt such that tω(t)v ω. If we consider
the set ↑t := {ω ∈Ω : t v ω} of all paths that go through t, then I↑tht represents the gamble on Ω that
is called off unless World ends up in situation t, and which, when it is not called off, depends only on
World’s move immediately after t, and gives the same value ht(w) to all paths ω that go through tw.
The fact that Subject accepts ht on Wt contingent on World’s getting to t, translates immediately to
the fact that Subject accepts the gamble I↑tht on Ω. We thus end up with a set of gambles on Ω

D :=
[

t∈Ω♦\Ω

{
I↑tht : ht ∈Dt

}
that Subject accepts. The only thing left to do now, is to find the smallest coherent set ED of desirable
gambles that includes D (if there is such a coherent set). Here we take coherence to refer to conditions
D1–D4, together with D5’, a variation on D5 which refers to conglomerability with respect to those
partitions that we actually intend to condition on, as discussed in Section 3.

These partitions are what we call cut partitions. Consider any non-final cut U ⊆ Ω♦ \Ω of the
initial situation �. Then the set of events BU := {↑u : u ∈U} is a partition of Ω, called the U-partition.
D5’ requires that our set of desirable gambles should be cut conglomerable, i.e., conglomerable with
respect to every cut partition BU .

Because we require cut conglomerability, it follows that ED will contain the sums of gambles
∑u∈U I↑uhu for all non-final cuts U of � and all choices of hu ∈ Du, u ∈U . Because ED should be
a convex cone [by D3 and D4], any sum of such sums ∑u∈U I↑uhu over a finite number of non-final
cuts U should also belong to ED . But, since in the case of bounded protocols we are discussing here,
World can only make a bounded and finite number of moves, Ω♦ \Ω is a finite union of such non-final
cuts, and therefore the sums ∑u∈Ω♦\Ω I↑uhu should belong to ED for all choices hu ∈Du, u ∈Ω♦ \Ω.

Call therefore, for any initial situation t, a t-selection any partial process S defined on the non-final
situations s w t such that S(s) ∈ Ds. With such a t-selection, we can associate a t-process, called a

3 Since we do not envisage conditioning this model on subsets of Wt , we impose no extra conglomerability requirements
here, only the coherence conditions D1–D4.
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gamble process GS , with value

GS (s) = ∑
tvu,u@s

I↑uS(u)(s(u))

in all situations s that follow t. Alternatively, GS is given by the recursion relation GS (sw) = GS (s)+
S(s)(w) for all non-final s w t, with initial value GS (t) = 0. In particular, this leads to the t-gamble
GS

Ω
defined on all final situations ω that follow t, by letting

GS
Ω

= ∑
tvu,u∈Ω♦\Ω

I↑uS(u).

Then we have just shown that the gambles GS
Ω

should belong to ED for all non-final situations t and all
t-selections S . As before for strategy and capital processes, we call a �-selection S simply a selection,
and a �-gamble process simple a gamble process. It is now but a small step to prove the following
result.

Proposition 3. The smallest set of gambles that satisfies D1–D4 and D5’ and includes D , or in other
words, the natural extension of D , is given by

ED :=
{

g : there is some selection S such that g≥ GS
Ω

}
.

Moreover, for any non-final situation t and any t-gamble g, we have that I↑tg ∈ ED if and only if
g ≥ GS

Ω
for some t-selection S , where as before, g ≥ GS

Ω
is taken to mean that g(ω) ≥ GS

Ω
(ω) for all

final situations ω that follow t.

We now use the coherent set of desirable gambles ED to define upper (and lower) previsions condi-
tional on the cut partitions BU as indicated in Section 3. We then get, using Proposition 3, that for any
cut U of � and any situation u in U :

P( f |↑u) := inf
{

α : I↑u(α− f ) ∈ ED
}

= inf
{

α : there is some u-selection S such that α−GS
Ω
≥ f

}
. (2)

There seems to be a close correspondence between the expressions [such as (1)] for upper prices
Et( f ) associated with coherent probability protocols and those [such as (2)] for the conditional upper
previsions P( f |↑t) based on a coherent conditional assessments. This correspondence is made explicit
in the following theorem. Say that a given coherent probability protocol and given coherent conditional
assessment match whenever they lead to identical corresponding upper prices Et and conditional upper
previsions P(·|↑t) for all non-final t ∈Ω♦ \Ω.

Theorem 1 (Matching Theorem). For every coherent probability protocol there is a coherent con-
ditional assessment such that both match, and conversely, for every coherent conditional assessment
there is a coherent probability protocol such that both match.

The proof of this result is quite technical, but the underlying ideas should be clear. If we have a coher-
ent probability protocol with move spaces St and gain functions λt for Skeptic, define the conditional
assessment for Subject to be (essentially) Dt := {−λ(s, ·) : s ∈ St}. If, conversely, we have a coherent
conditional assessment for Subject consisting of the sets Dt , define the move spaces for Skeptic by
St := Dt , and his gain functions by λt(h, ·) :=−h for all h in Dt .

35



5 Interpretation

The Matching Theorem has a very interesting interpretation. In Shafer and Vovk’s approach, World
is sometimes decomposed into two players, Reality and Forecaster. It is Reality whose moves are
characterised by the above-mentioned decision tree, and it is Forecaster who determines in each non-
final situation t what Skeptic’s move space St and gain function λt is. We now go beyond Shafer and
Vovk’s model, by adding something to it.

Suppose that Forecaster has certain beliefs, in each non-final situation t, about what move Reality
will make next, and suppose she models those beliefs by specifying a coherent set Dt of desirable
gambles on Wt . In other words, we identify Forecaster with Subject.

When Forecaster specifies such a set, she is making certain behavioural commitments. In fact,
she is committing herself to accepting any gamble in Dt , and to accepting any combination of such
gambles according to the combination axioms D3, D4 and D5’. This implies that we can derive condi-
tional upper previsions P(·|↑t), with the following interpretation: in situation t, P( f |↑) is the infimum
price for which Forecaster can be made to sell the t-gamble f for on the basis of the commitments she
has made.

What Skeptic can now do, is take Forecaster up on her commitments. This means that in each sit-
uation t, he can select a gamble (or equivalently, any non-negative linear combination of gambles) ht

in Dt and offer it to Forecaster. If Reality’s next move in situation t is w ∈Wt , this means that Skeptic
can increase his capital by (the positive or negative amount) −ht(w), by exploiting Forecaster’s com-
mitments. In other words, his move space st can then be identified with the convex set of gambles Dt

and his gain function λt is then given by λt(ht , ·) =−ht . But then Theorem 1 tells us that this leads to
a coherent probability protocol, and that the corresponding upper prices Et for Skeptic coincide with
Forecaster’s conditional upper previsions P(·|↑t).

This is of particular relevance to the laws of large numbers that Shafer and Vovk derive in their
game-theoretic framework, because such laws now can be given a behavioural interpretation in terms
of Forecaster (or any Subject’s) (conditional) lower and upper previsions. To give an example, let us
consider the following game.

FINITE-HORIZON BOUNDED FIXED LOWER FORECASTING GAME

Parameters: N, B > 0, ε > 0, α > 0
Players: Reality, Forecaster, Skeptic
Protocol: Forecaster announces m ∈ [−B,B]

K0 := α

FOR n = 1, . . . ,N:
Skeptic announces λn ≥ 0
Reality announces xn ∈ [−B,B]
Kn = Kn−1 +λn(xn−m).

Winner: Skeptic wins if Kn is never negative and either KN ≥ 1 or 1
N ∑

N
n=1 xn < m− ε. Otherwise

Reality wins.

Then Enrique Miranda and I have proven elsewhere [1], amongst other things, that Skeptic has a
strategy that guarantees that he wins the game if he starts out with capital α ≥ exp(− Nε2

16B2 ). But this
means that for the event

∆N,ε :=

{
(x1, . . . ,xN) :

1
N

N

∑
n=1

xn < m− ε

}
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we have that E(∆N,ε)≤ exp(− Nε2

16B2 ). We are now able to import this result into the behavioural theory
of imprecise probabilities, using Theorem 1. Consider a number of bounded random variables X1, . . . ,
XN , where Xk ∈ [−B,B], whose values will be revealed successively. Assume that some Subject models
her beliefs about the values that these variables assume by specifying, on beforehand, a common lower
prevision m for each of them, meaning that she accepts to buy each Xk for any price that is at least m.4

Then coherence requires her to bet on the event that the sample mean 1
N ∑

N
n=1 Xk will be at least m− ε

at rates that are higher than 1− exp(− Nε2

16B2 ), so these rates go to one as N increases, for any ε > 0.
This is a weak law of large numbers for bounded random variables.

6 Additional Remarks

We have proven the correspondence between the two approaches only for decision trees with a
bounded horizon. For games with infinite horizon, the correspondence becomes less immediate, be-
cause Shafer and Vovk implicitly make use of coherence axioms that are stronger than D1–D4 and
D5’, leading to upper prices that are dominated by the corresponding conditional upper previsions. Ex-
act matching would be restored of course, provided we can argue that these additional requirements
are rational for any subject to comply with. This could be an interesting topic for further research.
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There are many practical representations of probability families that make them easier to handle
in applications. Among them are random sets, possibility distributions, Ferson’s p-boxes [4] and Neu-
maier’s clouds [6]. Both for theoretical and practical considerations, it is very useful to know whether
one representation can be translated into or approximated by other ones. We first briefly recall for-
malisms and existing results, before exhibiting relationships between all these representations. In this
note, which is a summary of an extended forthcoming paper, we restrict ourselves to representations
on a finite set X = {x1,x2, . . . ,xn} of n elements.

1 Formalisms

Possibility distribution A possibility distribution is a mapping π : X → [0,1] representing incom-
plete information about an ill-known parameter v. two dual measures (respectively the possibility and
necessity measures) can be defined : Π(A) = supx∈A π(x) and N(A) = 1−Π(Ac). To any normal pos-
sibility distribution (π such that π(x) = 1 for some x ∈ X) can be associated a probability family Pπ

s.t. Pπ = {P,∀A⊆ X measurable, N(A)≤ P(A)≤Π(A)}.

Random Set A random set is defined here as a probability distribution on the power set of X , namely
m : 2X → [0,1]. m(A) is the probability that all is known about v is that v ∈ A. Two dual mea-
sures (respectively the plausibility and belief measures) can be defined : Pl(A) = ∑E,E∩A 6= /0 m(E) and
Bel(A) = 1−Pl(Ac) = ∑E,E⊆A m(E). To any random set m can be associated a probability family Pm

s.t. Pm = {P|∀A⊆ X measurable, Bel(A)≤ P(A)≤ Pl(A)}.

Generalized p-box A p-box is usually defined on the real line by a pair of cumulative distributions
[F ,F ], defining the probability family P[F ,F ] = {P|F(x) ≤ F(x) ≤ F(x) ∀x ∈ ℜ}. The notion of
cumulative distribution on the real line is based on a natural ordering of numbers. In order to generalize
this notion to arbitrary finite sets, we need to define a weak order relation ≤R on this space. Given ≤R,
an R-downset is of the form {xi : xi ≤R x}, and denoted (x]R. A generalized R-cumulative distribution
is defined as the function FR : X → [0,1] s.t. FR(x) = Pr((x]R), where Pr is a probability measure on X .
We can now define a generalized p-box as a pair [FR(x),FR(x)] of generalized cumulative distributions
defining a probability family P[FR(x),FR(x)] = {P|∀x, FR(x)≤FR(x)≤FR(x)}. Generalized P-boxes can
also be represented by a set of constraints

αi ≤ P(Ai)≤ βi i = 1, . . . ,n (1)

where α1 ≤ α2 ≤ . . .≤ αn ≤ 1, β1 ≤ β2 ≤ . . .≤ βn ≤ 1 and Ai = (xi]R,∀xi ∈ X with xi ≤R x j iff i < j
(sets Ai form a sequence of nested confidence sets /0⊂ A1 ⊂ A2 ⊂ . . .⊂ An ⊂ X).
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Cloud Formally, a cloud is described by an Interval-Valued Fuzzy Set (IVF) s.t. (0,1)⊆∪x∈X F(x)⊆
[0,1], where F(x) is an interval [δ(x),π(x)]. A cloud is called thin when the two membership functions
coincide (δ = π). It is called fuzzy when the lower membership function δ is 0 everywhere. Let αi be a
sequence of α-cuts s.t. 1 = α0 > α1 > α2 > .. . > αn > αn+1 = 0 with Ai, Bi the corresponding α-cut
of fuzzy sets π and δ (Ai = {xi,π(xi) > αi+1} and Bi = {xi,δ(xi)≥ αi+1}). Then, a random variable x
is in a cloud if it satisfies the constraints

P(Bi)≤ 1−αi ≤ P(Ai) and Bi ⊆ Ai i = 1, . . . ,n. (2)

2 Generalized p-boxes

First, let us notice that a generalized upper cumulative distribution FR can be seen as a possibility dis-
tribution πR dominating a probability distribution Pr, since it is a maxitive measure s.t. maxx∈A FR(x)≥
Pr(A),∀A⊆ X . In [2], we have shown the following results

Proposition 1. A family P[FR(x),FR(x)] described by a generalized P-box can be encoded by a pair of
possibility distributions π1,π2 s.t. P[FR(x),FR(x)] = Pπ1 ∩Pπ2 with π1(x) = FR(x) and π2(x) = 1−FR(x)

Proposition 2. A family P[FR(x),FR(x)] described by a generalized P-box can be encoded by a random
set m s.t. P[FR(x),FR(x)] = Pm.

If X is the real line, this last proposition reduces to results already shown in [5].

3 Cloud

In [3], the following relationship linking clouds to possibility distributions is shown

Proposition 3. A probability family Pδ,π described by the cloud (δ,π) is equivalent to the family
Pπ∩P1−δ described by the two possibility distributions π and 1−δ.

This result already suggests that clouds and generalized p-boxes are somewhat related. To lay bare
this relationship, it is useful to introduce the following special case of clouds:

Definition 1. A cloud is said to be comonotonic if distributions π and δ are comonotonic. If it is not
the case, a cloud is called non-comonotonic.

Remark 1. Thin and fuzzy clouds are special cases of comonotonic clouds.

Figure 1 illustrates comonotonic and non-comonotonic clouds. The two following propositions
show why it is useful to make this distinction.

Proposition 4. The probability family Pδ,π induced by a comonotonic cloud is equivalent to a gener-
alized p-box and can thus be encoded through a random set.

Proof (sketch). Since comonotonicity imply that sets Ai,Bi i = 1, . . . ,n form a complete sequence of
nested sets, one can always retrieve the structure of a generalized p-box from a comonotonic cloud by
mapping constraints of the form of equation (2) into constraints of the form of equation (1).

Proposition 5. The lower probability of the probability family Pδ,π induced by a non-comonotonic
cloud is not even a 2-monotone capacity (i.e. ∃A,B⊂ X s.t. P(A∩B)+P(A∪B)≤ P(A)+P(B))
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Fig. 1. Illustration of clouds.
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Proof (sketch). For each non-comonotonic cloud, there exist two sets Bi,A j with i > j and s.t. Bi ∩
A j 6= /0, Bi * A j and A j * Bi. Using a result from Chateauneuf [1] and the fact that Pδ,π is the inter-
section of two families corresponding to belief functions, we can show that the following inequality
holds

P(A j ∩Bi)+P(A j ∪Bi) < P(A j)+P(Bi)

and this concludes the proof.

Remark 2. δ must not be trivially reduced to a single set Bn s.t. Bn∩An−1 = /0, otherwise the cloud can
still be encoded by a random set (and is thus a capacity of order ∞), even if it is no longer equivalent
to a generalized p-box.

To our knowledge, non-comonotonic clouds are the only simple models (in the finite case, we need at
most 2|X | values to fully specify a cloud) of imprecise probabilities that induce capacities that are not
2-monotone.

Let us also notice that if proposition 4 holds in the continuous case, we have a nice way to charac-
terize probability families induced by comonotonic clouds. Namely, a continuous belief function [7]
with uniform mass density, whose focal elements would be disjoint sets of the form [x(α),u(α)]∪
[v(α),y(α)] where {x : π(x) ≥ α} = [x(α),y(α)] and {x : δ(x) ≥ α} = [u(α),v(α)]. In particular, for
thin clouds, focal sets would be doubletons of the form {x(α),y(α)}.

Computing upper and lower probability bounds P(A),P(A) of non-comonotonic clouds appear not
to be so easy a task. Thus, one may wish to work with inner or outer approximations of the family
Pδ,π. The two following propositions provide such bounds, which are easy to compute.

Proposition 6. If Pδ,π is the probability family described by the cloud (δ,π) on a referential X, then,
the following bounds provide an outer approximation :

max(Nπ(A),Nδ(A))≤ P(A)≤min(Ππ(A),Πδ(A)) ∀A⊂ X (3)

Remark 3. These bounds are the ones considered by Neumaier in [6], and the fact that they are outer
approximations explain why they are poorly related to random sets or to Walley’s natural extensions.

But clouds can be approximated by random sets:
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Proposition 7. Given sets {Bi,Ai, i = 1, . . . ,n} and the corresponding confidence values αi, associ-
ated to the distributions (δ,π) of a cloud, the belief and plausibility measures of the random set s.t.
m(Ai \Bi−1) = αi−1−αi are inner approximations of Pδ,π.

Remark 4. If the cloud is comonotonic, this random set is the one corresponding to the family Pδ,π

Our results show that clouds generalize p-boxes and possibility distributions as representations
of imprecise probabilities, but are generally not a special case of random set. Even if they look more
complex to deal with than p-boxes and possibility distributions, clouds are more expressive and remain
relatively simple representations. Moreover, results presented here may allow for easier computations
in various cases. We thus think that using clouds can be potentially interesting in various applications,
but that more work is needed to fully assess this potential.

4 Open questions and problems

There remain many open questions and problems related to clouds, some of them being already em-
phasized by Neumaier. Among them are :

– Testing the mathematical and the computational tractability of clouds
– Testing clouds as descriptive models of uncertainty
– Extending existing results to more general frameworks (unbounded variables, lower/upper previ-

sions)
– Studying under which operations the cloud representation is preserved (joint distributions, fusion,

extension, . . . )
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1 Introduction

For many years, statisticians have been fascinated by the following problem: given n univariate d.f’s
F1,F2, . . . ,Fn, n≥ 2, find an n–dimensional d.f. H having Fi as its margins, and having useful properties
like a simple analytic expression, a statistical interpretation, and a given depedence structure. Many
methods and procedures for constructing such joint distributions have been introduced and studied in
the literature [5, 7]. Thanks to Sklar’s Theorem [11], this problem can be reduced into the construction
of new copulas, i.e. multivariate d.f’s whose univariate margins are uniformly distributed on [0,1]. For
more details, we refer to [6, 10].

Many families of copulas have been recently introduced in literature, but not all of them are “good”
families, in the sense that they can be useful in certain statistical applications. In [6, 8], some desirable
properties for a parametric family of bivariate copulas {Cα}α, where α belongs to an interval of the
real line, are listed and are here reproduced:

(a) interpretability, which means having a statistical interpretation;
(b) flexible and wide range of dependence, which implies that the copula Π(x,y) = xy and at least one

of the Fréchet–Hoeffding bounds W (x,y) = max(x + y− 1,0) and M(x,y) = min(x,y) belong to
the class;

(c) closed form, in the sense that every member of the family is absolutely continuous or has a simple
representation;

(d) extendibility, in the sense that the family admits a multivariate extension to the n–dimensional
case, n ≥ 3.

This note aims to present a new family of bivariate copulas sharing all the above properties. All
the presented results can be found in [2–4].

2 Characterization of the new class

Given f : [0,1]→ [0,1], we consider the function C f defined, for every x,y ∈ [0,1], by

C f (x,y) = (min(x,y)) f (max(x,y)). (1)

Obviously, every C f is symmetric, viz. C(x,y) = C(y,x) for every x and y in [0,1], and the copulas Π

and M can be represented in the form (1): it suffices to take, respectively, f (t) = t and f (t) = 1 for all
t ∈ [0,1]. Our aim is to study under which conditions on f , C f is a copula.

Theorem 1. Let f : [0,1] → [0,1] be a continuous function. Let C f be the function defined by (1).
Then C f is a copula if, and only if, the following statements hold:

(i) f (1) = 1;
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(ii) f is increasing;
(iii) the function t 7→ f (t)/t is decreasing on ]0,1].

A function f that satisfies the assumptions of Theorem 1 is called generator of a copula of type
(1). The class of all generators is convex and, because of condition (iii), it has minimal element id[0,1]
and maximal element the constant function equal to 1.

In the sequel we give some sub–families of copulas {Cα} of type (1) generated by a one–parameter
family { fα} of generators.

Example 1 (Fréchet copulas). Given the generator fα(t) := αt +(1−α) (α ∈ [0,1]), we obtain Cα =
αΠ+(1−α)M, which is a convex sum of Π and M and, therefore, is a member of the Fréchet family
of copulas (see[6, family B11]). Notice that C0 = M and C1 = Π.

Example 2 (Cuadras–Augé copulas). Given the generator fα(t) := tα (α ∈ [0,1]), Cα is defined by

Cα(x,y) =

{
xyα, if x ≤ y;
xαy, if x > y.

Then Cα describes the Cuadras–Augé family of copulas [1].

Example 3. Given the generator fα(t) := min(αt,1) (α ≥ 1), Cα is defined by

Cα(x,y) =

{
αxy, if (x,y) ∈ [0,1/α]2;
min(x,y), otherwise;

viz. Cα is the ordinal sum (〈0,1/α,Π〉).

3 Properties of this new class

For a copula C f of type (1) the following statistical interpretation holds [9].

Theorem 2. If C f is the copula given by (1) and H(x,y) = C f (F1(x),F2(y)) for univariate d.f.’s F1
and F2, then the following statements are equivalent:

(a) random variables X and Y with joint d.f. H have a representation of the form

X = max{R,W} and Y = max{S,W}

where R, S and W are independent r.v.’s;
(b) H has the form H(x,y) = FR(x)FS(y)FW (min(x,y)), where FR, FS and FW are univariate d.f.’s.

Moreover, the concordance ordering in this family (which is equivalent to the pointwise ordering
between real functions) can be expressed by means of the generators.

Proposition 1. Let C f and Cg be two copulas of type (1) generated, respectively, by f and g. Then
C f ≤Cg if, and only if, f (t)≤ g(t) for all t ∈ [0,1].

Example 4. Consider the family { fα}α≥1 given by fα(t) := 1− (1− t)α. It is easily proved by dif-
ferentation that every fα is increasing with fα(t)/t decreasing on ]0,1]. Therefore, this family gener-
ates a family of copulas Cα, that is positively ordered, viz. Cα1 ≤Cα2 for α1 ≤ α2, with C1 = Π and
C∞ = M.
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In particular, for every copula C f , C f ≥ Π and, hence, every C f is positively quadrant dependent
[10]. Moreover, every copula of type (1), except Π, has a singular component along the main diagonal
of the unit square.

Remark 1. In [3], the authors proved that a copula can be expressed in the form (1) if, and only if, it
is semilinear, viz. the mappings h : [0,x]→ [0,1], h(t) := C(t,x), and v : [0,x]→ [0,1], v(t) := C(x, t),
are linear for all x ∈ ]0,1].

4 A multivariate extension of the new class

Now, we shall consider n–dimensional extension (n ≥ 3) of the family of bivariate copulas given by
(1). Specifically, given a continuous and increasing functon f : [0,1]→ [0,1], we define the mapping
Cn

f : [0,1]n → [0,1] given by

Cn
f (u1,u2, · · · ,un) = u[1]

n

∏
i=2

f (u[i]), (2)

where u[1], · · · ,u[n] denote the components of (u1,u2, · · · ,un) ∈ [0,1]n rearranged in increasing order,
i.e. u[1] = min(u1,u2, · · · ,un) and u[n] = max(u1,u2, · · · ,un). It is easy to note that this expression
reduces to (1) in the bivariate case. The following result characterizes the copulas of type (2).

Theorem 3. Let f : [0,1]−→ [0,1] be a continuous function and let Cn
f be the function defined by (2).

Then Cn
f is an n-copula if, and only if,

(i) f (1) = 1;
(ii) f is increasing;

(iii) the function t → f (t)/t is decreasing on (0,1].

Example 5. Let α be in [0,1] and consider the function f (t) = αt + α, with α := 1−α. Then, the
n-copula Cn

f , denoted by Cα, is given, for every u1,u2, . . . ,un in [0,1], by

Cα(u1,u2, . . . ,un) = u[1]

n

∏
i=2

(αu[i] +α).

In particular, for n = 2, we obtain the family in Example 1.

Example 6. Let α be in [0,1] and consider the function f (t) = tα. Then, we have that the n–copula
defined by (2) is given by

Cα(u) = (min(u1,u2, . . . ,un))1−α
n

∏
i=1

uα
i ,

and it can be considered as a generalization of the Cuadras-Augé family of bivariate copulas (Example
2). Notice that every copula Cα is a multivariate extreme copula, viz. for every t > 0 Cα(ut

1,u
t
2, . . . ,u

t
n)=

Ct
α(u1,u2, . . . ,un) [6].

Now, we give a statistical interpretation for copulas of type (2). Let W1,W2, . . . ,Wn, Z be n + 1
independent random variables such that, for all i ∈ {1,2, . . . ,n}, Wi has d.f. f satisfying parts (i), (ii)
and (iii) in Theorem 3, and Z has d.f. g(t) = t/ f (t). Note that g(1) = 1 and g is increasing since f (t)/t
is decreasing. Consider the random variables Ui = max(Wi,Z), for all i = 1,2, . . . ,n. Then, for every
(u1,u2, . . . ,un), the d.f. of the random vector (U1,U2, . . . ,Un) is given by

P(U1 ≤ u1, . . . ,Un ≤ un) = u[1]

n

∏
i=2

f (u[i]),

and, hence, it is a copula of type (2).
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1 Introduction

A fuzzy logic is usually considered as a many-valued propositional logic in which the class of truth
values is modelled by the unit interval [0,1], and which forms an extension of the classical boolean
logic (see [5, 8]).

In these logics, a key role is played by the so called conjunctor, i.e. an operation on [0,1] that is
used to extend a boolean conjunction from {0,1} into [0,1]. Usually, conjuctors are assumed to be
triangular norms, i.e. monotone binary operation on [0,1] that are associative and commutative (see
[9]), which have been largely and fruitfully used in many engineering applications.

However, such functions have strong properties that, in some cases, could represent a limitation
to their use. As underlined in [4], for example, “if one works with binary conjunctions and there is
no need to extend them for three or more arguments, as happens e.g. in the inference pattern called
generalized modus ponens, associativity of the conjunction is an unnecessarily restrictive condition”.
On the other hand, for example, recent research has showed that non commutative logics can be
relevant also in some applications to computer science and fuzzy logic programming (see [6] and the
references therein).

Motivated by these considerations, in this note we present various classes of conjunctors and, then,
we study residual implicators associated to them.

2 Definitions

A mapping C : [0,1]2 → [0,1] is a conjunctor, also called semicopula ([3]) or t-seminorm ([15]), if it
satisfies following properties:

(C1) C(x,1) = C(1,x) for every x in [0,1];
(C2) C is increasing in each component.

In particular, a conjunctor C is an extension of the classical Boolean conjunction; in fact, C(x,y) takes
values in [0,1], and

C(0,0) = C(0,1) = C(1,0) = 0, C(1,1) = 1.

In the sequel, we are mainly interested in left–continuous conjunctors, viz. conjunctors that are
left–continuous in the both components, and, thus, jointly left–continuous ([9, Proposition 1.19]).

46



A conjunctor C is a triangular norm (briefly, t–norm) if it is an associative and commutative
operation on [0,1] ([1, 9]).

A conjunctor C is a quasi–copula if it is 1–Lipschitz, viz. it satisfies

|C(x1,y1)−C(x2,y2)| ≤ |x1− x2|+ |y1− y2|

for every x1,x2,y1,y2 in [0,1] ([7, 14]).
A conjunctor C is a copula if it is 2–increasing, viz.

C(x1,y1)+C(x2,y2)≥C(x1,y2)+C(x2,y1)

for every x1,x2,y1,y2 in [0,1], x1 ≤ x2 and y1 ≤ y2 ([13, 14]).
Every copula is a quasi–copula, but the converse is in general not true. However, if we consider

associative functions, we have the following result due to Moynihan ([9, Theorem 9.10]).

Proposition 1. For a t–norm T , T is quasi–copula if, and only if, T is a copula.

We denote by L , T , Q and C , respectively, the class of left–continuous conjunctors, t–norms,
quasi–copulas and copulas. We have that T , Q and C are proper subsets of L . Moreover C is a proper
subset of Q and, as shown, T ∩Q = T ∩C .

3 Characterizations of R–implicators

In the construction of fuzzy logic taking truth values in the interval [0,1], if the interpretation of the
conjunction is given by a conjunctor C, then the interpretation R : [0,1]2 → [0,1] of the implication
connective (if no additional logical connectives are given) is usually derived from C by means of the
adjointness condition

C(x,z)≤ y⇐⇒ z≤ R(x,y) (1)

for each x, y and z in [0,1]. In order to guarantee that this adjointness condition determines the opera-
tion R uniquely, one has to suppose that C is left–continuous (see [5, 8]). In this case, R = RC is given
by

RC(x,y) = sup{z ∈ [0,1] |C(x,z)≤ y}, (2)

which is called residual implicator of C (or C–residuum, shortly).
The characterization of the residual implicator of any left–continuous conjunctor is given here.

Theorem 1. Let C be a left–continuous conjunctor. Then the C–residuum RC satisfies the following
properties:

(R1) RC(x,y) = 1 if, and only if, x≤ y;
(R2) RC(1,y) = y for all y in [0,1];
(R3) RC is decreasing in the first component;
(R4) RC is increasing in the second component;
(R5) RC is left–continuous in its first component;
(R6) RC is right–continuous in its second component.
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We denote by R the class of all R : [0,1]2 → [0,1] satisfying (R1)–(R6), which are called simply
residual implicators. We call residuation the mapping Ψ : L → R given, for each C in L , by Ψ(C) =
RC, where RC is defined by (2). The mapping Ψ : L → R is bijective and its inverse Ψ−1, called
deresiduation, is given, for each R in R , by the mapping CR : [0,1]2 → [0,1] defined by

CR(x,y) = inf{R(x,z)≥ y | z ∈ [0,1]}.

For each C ∈ L , Ψ(C) is the C–residuum, and, for each R ∈ R we call Ψ−1(R) the deresiduum of
R (briefly, R–deresiduum).

Proposition 2. If R : [0,1]2→ [0,1] satisfies (R1)–(R6), then the R–deresiduum CR is a left–continuous
conjunctor.

Now, given A ⊆ L , we characterize the set Ψ(A).

Theorem 2. Let C be a left–continuous commutative conjunctor. Then the C–residuum RC satisfies
(R1)–(R6) and

(R7) for every x,y,z in [0,1], RC(x,z)≥ y⇐⇒ RC(y,z)≥ x.

Conversely, if R is in R and satisfies (R7), then the R–deresiduum CR is a left–continuous commutative
conjunctor.

Theorem 3. Let C be a left–continuous associative conjunctor. Then the C–residuum RC satisfies
(R1)–(R6) and

(R8) for every x,y,z,u in [0,1], RC(y,RC(x,z)) ≥ u if, and only if, there exists v in [0,1] such that
RC(x,v)≥ y and RC(v,u)≥ z.

Conversely, if R is in R and satisfies (R8), then the R–deresiduum CR is a left–continuous associative
conjunctor.

In particular, we derive the following characterization of left–continuous t–norms.

Theorem 4. Let T be a left–continuous t–norms. Then the T –residuum RT satisfies (R1)–(R8). Con-
versely, if R is in R and satisfies (R7) and (R8), then the R–deresiduum TR is a left–continuous t–norm.

Notice that, as a Corollary, we obtain the characterization of the residual implicator of a left–
continuous t–norm T given in [12], where (R7) and (R8) are replaced by the condition

RT (x,RT (y,z)) = RT (y,RT (x,z))

for each x,y,z in [0,1] (see also [10, 11]). A characterization of the residuum of a continuous t–norm
is given by [2].

Theorem 5. Let Q be a quasi–copula. Then the Q–residuum RQ satisfies (R1)–(R6) and the two
following properties:

(R9) for every ε > 0, RQ(x+ ε,y)≥ RQ(x,y− ε);
(R10) for every ε > 0, RQ(x,y)≥ RQ(x,y− ε)+ ε.

Conversely, if R is an R–implicator satisfying (R9)–(R10), then the R–deresiduum QR is a quasi–
copula.

Now, by using Proposition 1, we obtain the following result:

Theorem 6. If C is an associative copula, then the C–residuum RC satisfies (R1)–(R10). Conversely,
if R satisfies (R1)–(R10), then the R–deresiduum CR is an associative copula.

Notice that the characterization of the residual implicator of a copula C is still an open question.
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4 Induced construction methods for residual implicators

In this section, we investigate whether there exists a close relationship between some construction
methods in the class of left–continuous conjunctors and some construction methods in the class of
residual implicators.

Proposition 3. Let (]aα,eα[)α∈A be a family of non–empty, pairwise disjoint open subintervals of
[0,1] and let (Cα)α∈A be a family of left–continuous conjunctors and . Let C be the ordinal sum
C = (〈aα,eα,Cα〉)α∈A. Then the C–residuum is given by

RC(x,y) =

aα +(eα−aα) RCα

(
x−aα

eα−aα

,
y−aα

eα−aα

)
, aα < y < x≤ eα;

RTM , otherwise.
(3)

Conversely, if an R–implicator R can be expressed in the form (3), then the R–deresiduum CR is an
ordinal sum of the type C = (〈aα,eα,Cα〉)α∈A.

Proposition 4. Let C be a left continuous conjunctor and let ϕ be an increasing bijection of [0,1]. Let
Cϕ be the ϕ-transform of C given by Cϕ(x,y) = ϕ−1(C(ϕ(x),ϕ(y))). Then the residual implicator of
Cϕ is given by

RCϕ
(x,y) = (RC)ϕ(x,y) = ϕ

−1(RC(ϕ(x),ϕ(y))). (4)

Conversely, given, an R–implicator R and an increasing bijection ϕ of [0,1], consider the ϕ–transform
of R given by Rϕ(x,y) = ϕ−1(R(ϕ(x),ϕ(y))). Then the Rϕ–deresiduum is the ϕ–transform of the R–
deresiduum.

Proposition 5. Let C1 and C2 be left continuous conjunctors and let C be the pointwise maximum of
C1 and C2. Then the C–residuum RC is the pointwise minimum of RC1 and RC2 . Conversely, given two
R–implicator R1 and R2, let R be the pointwise minimum of R1 and R2. Then the R–deresiduum is the
pointwise maximum of CR1 and CR2 .

A similar result holds by replacing maximum with minimum.
Unfortunatelly, the above method cannot be generalized to any pointwise composition of two

conjunctors, which is not a lattice operation. For example, given C1 and C2 in L , we know that, for
any λ in [0,1], C = λC1 +(1−λC2) is also in L and R = λRC1 +(1−λ)RC2 is a residual implicator.
However, the deresiduum of R, in general, differs from C.

However, this fact stimulate another kind of investigation. We can consider some construction
methods directly in the class of residual implicators and then, by deresiduation, we construct new
conjunctors, as the followign result shows.

Proposition 6. Let Q1 and Q2 be in Q and let RQ1 and RQ2 be the R–implicators associated to Q1 and
Q2, respectively. Then, for every λ ∈ [0,1], R = λRQ1 +(1−λRQ2) is also an R–implicator satisfying
(R9)–(R10). Moreover, the deresiduum QR is a quasi–copula.

Example 1. Let RTP be the residual implicator of TP, TP(x,y) = xy, and let RC be the residual implicator
of the copula C given by C(x,y) =

√
TP(x,y)TM(x,y). Then consider the residual implicator

R(x,y) =
RC(x,y)+RTP(x,y)

2
.
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By deresiduation, R generates the following quasi–copula

QR(x,y) = min
(

x(
√

1+8y−1)
2

,
2xy

1+
√

x

)
.

Notice that QR is a copula.

We expect that, sometimes, this kind of operation produces a useful tool to the construction of
new copulas.
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It has been pointed out frequently and convincingly that in reasoning with vague, imprecise and uncer-
tain information one should clearly distinguish between the two orthogonal dimensions of probability
(i.e., degrees of uncertainty) and fuzziness (i.e., degrees of truth or membership), respectively. (See,
e.g., the preface of [11]). The following simple example, that we will re-examine from different per-
spectives in our talk, should serve as a reminder.

Example 1. Suppose we gamble by throwing two (ordinary, fair) dices. In any round we can thus
score any integer value ≥ 2 and ≤ 12. Clearly, the truth of an assertion like

(U) I will score more that 7 in the next round

is uncertain, but not vague. On the other hand, if, after having scored 8 in the last round, I assert the
statement

(V) I have scored a rather high value in the last round

then this assertion is vague and might be considered a paradigmatic example of a proposition to which
we may want to assign an intermediary degree of truth in the sense of formal fuzzy logic. Note that
the truth value (∈ [0,1]) thus associated with (V) does not refer to probability; at least not in the sense
in which the truth of statement (U) refers to probability.

Without intending to blur the distinction between probability and fuzziness, we will explore a
certain ‘theory of vagueness’ (in the sense of [12, 3]) that entails firm, non-trivial connections between
probabilities and degrees of truth in its underlying semantic machinery. More specifically, we refer to
the concept of a precisification space, consisting of (classical) interpretations, intended as admissible
precisifications or sharpenings of vague notions and propositions. This concept is used in the so-
called supervaluationists account of vagueness [7, 12, 14] in order to render the slogan that ‘truth is
supertruth’ (i.e., truth in all admissible precisifications) amenable to a formal treatment. However, we
depart from supervaluationism by endowing precisification spaces with probability measures that are
intended to model the respective plausibility of choosing a particular precisification. Moreover, we
extend the basic set-up of supervaluationism by considering not only propositions, but also entities
like runs of a program (i.e., traces of automata or Turing machines) as well as levels of descriptions of
elements in fuzzy sets (in the sense of [2]) as possible target objects of corresponding precisifications.

Building partly upon previous work [5, 6, 4], we will describe three quite different topics in fuzzy
logic (taken here in Zadeh’s wide sense) and show how one may profit from bringing to bear the above
mentioned ‘extended supervaluation’ point of view in these different scenarios.

1 Playing Giles’s game over precisification spaces

In a series of important papers [8–10] Robin Giles provided an alternative semantic foundation for
Łukasiewicz logic Ł and reasoning with vague predicates in general. The main feature of Giles’s
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approach consists in separating (1) the analysis of logical connectives and quantifiers from (2) the
interpretation of (vague) atomic assertions. To this aim one models the stepwise reduction of logically
complex assertions to their atomic components (1) by way of Lorenzen-style dialogue rules [13]
that regulate idealized debates between a proponent and an opponent of an assertion. As for (2), Giles
refers to bets on the results of ‘dispersive elementary experiments’ associated to the atomic statements
that have been asserted by the dialogue participants.

As explained in [6] we modify Giles’s original setting to evaluate atomic assertions with respect
to precisification spaces, which are endowed with a probability measure µ on the set of precisification
points W ; µ is intended to model degrees of plausibility of the individual classical precisifications.
This allows us to provide a dialogue game based semantics for Łukasiewicz logic enriched with an
additional operator S that represents the modality ‘It is supertrue that . . . ’ of supervaluation. The
modal operator S behaves like � in classical S5, and yet the resulting generalization SŁ of Ł is dif-
ferent from similar modal extensions of Ł(as e.g. described in chapter 8 of [11]). We argue that SŁ
and its associated dialogue game serves as a formal model of the informal idea that logical evaluation
of vague assertions consists in an indeterministic evaluation over corresponding admissible precisifi-
cations. It remains to be seen whether similar combinations of supervaluation and other t-norm based
fuzzy logics can be achieved building on the dialogue games outlined in [1] and [5].

2 Computational complexity of vague descriptions

An approach that is closely related in spirit to the outlined generalization of supervaluation may help
to adequately address what we have called ‘the enigma of quantifying vague information’ in [4]. The
mentioned enigma consists in the fact that the intended reduction of descriptional complexity that
often motivates the shift from an exact to a vague description of a given object or of a state of a system
usually has to be payed for with a considerable increase in the computational complexity at the meta-
level of formal representations of the descriptions in question. The fact that syntactic representations
of fuzzy sets and propositions are more complex objects than crisp ones (within standard frameworks)
is straightforwardly formalized using Kolmogorov complexity. E.g., referring to the example of throw-
ing two dices, above, it should be clear that a formal description of the informational content of an
assertion like (U) requires less resources in the sense of Kolmogorov complexity, in general, than a
complete formal description of the contents of a vague statement like (V).

The question thus arises whether computational models of complexity, similar to the ones of Kol-
mogorov, Chaitin et al., can be employed to formally represent the intended decrease of descriptional
complexity in vague descriptions compared to crisp ones. We argue that probabilistic Turing machines
(or similar devices) can benefitly be applied in this context. Note that the involved probability is not re-
placing the inherent vagueness, here, but is rather used to reflect the idea that vague descriptions may
relate to precise descriptions in a way that is analogous to the relation between vague propositions
and crisp propositions outlined in Section 1: it can be seen as indeterministically choosing precisifi-
cations while respecting different pre-assigned levels of plausibilities. Again, one may interpret the
corresponding technical machinery as a concrete model of the overall idea that vagueness consists in
semantic indeterminacy.

Formally, we will show how a properly generalized version of Kolmogorov complexity allows to
quantify gradual changes in computational complexity when relaxing the level of precision in formal
description of (binary represented) objects. The results reflect the intended reduction of complexity
rather well.
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3 Fuzzy elements and gradual sets

Recently Dubois and Prade [2] introduced the notion of a ‘fuzzy element’ within fuzzy set theory. This
is intended to underline Zadeh’s distinction between fuzziness and imprecision: “A fuzzy element is
as precise as an element, just more gradual that the latter” (cited from [2]). As pointed out by Libor
Behounek [unpublished manuscript] this concept is at stark variance with the standard approach to t-
norm based fuzzy logic as developed by Hajek [11], Godo, Esteva, Montagna, and many others. Thus
it is a major challenge to integrate these new concept into a theory of vagueness that remains close to
the principles of (‘Hajek style’) deductive fuzzy logic.

We argue that, once more, the idea of interpreting vagueness as semantic indeterminacy, using
probabilistically constrained evaluations in (classical) precisifications provides a key for relating the
different approaches to fuzzy set theory that are relevant in this context. More exactly, we propose to
identify the ‘description level’ λ, i.e., the argument of the function ae representing a fuzzy element e,
with the probability of choosing a particular precisification of the co-domain S of ae. Interpreted
in this way, a fuzzy element emerges as a collection of crisp elements endowed with a probability
measure that models the respective plausibility λ of choosing the corresponding crisp element ae(λ)
as de-fuzzificated counterpart of e.
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8. R. Giles: A non-classical logic for physics. In: R. Wojcicki, G. Malinkowski (Eds.) Selected Papers on Łukasiewicz

Sentential Calculi. Polish Academy of Sciences, 1977, 13-51.
9. R. Giles: A non-classical logic for physics. Studia Logica 33, vol. 4, (1974), 399-417.

10. R. Giles: Semantics for Fuzzy Reasoning. Int. J. Man-Machine Studies 17 (1982), 401-415.
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Abstract. We present a generalization of Choquet integral in which the capacity depends on the level of
the aggregated variables (level dependent capacities). We show that as particular cases of our generalization
of Choquet integral there are the Sugeno integral, the Sipos integral and the Cumulative Prospect Theory
functional. We show also that many concepts such as Mobius transform, importance index, interaction index,
k-order capacities and OWA operators, introduced in the research about Choquet integral can be generalized
in the considered context.

In many decision problems a set of actions are evaluated with respect to a set of points of view
called criteria. For example, in evaluating a car one can consider criteria such as maximum speed,
price, acceleration, fuel consumption. In general, evaluations with respect to different criteria can
be discordant. For example, very often when a car has a good maximum speed, it has also a high
price and a high fuel consumption. Thus, in order to express a decision such as a choice among a
set of car, it is necessary to aggregate the evaluations on considered criteria. This is the domain of
multiple criteria decision analysis and in this context several methodologies have been proposed (for
an extensive state-of-art surveys see [3]). One of the simplest aggregation procedures is the weighted
sum of the evaluation of criteria. Some more complex aggregation procedures have proposed to take
into account specific aspects in evaluating importance of criteria, such as interaction between criteria.
The interaction of criteria has been considered through non-additive integrals such as Choquet integral
[1] and Sugeno integral [2] (for a comprehensive survey see [3]). In this context, the importance of
a set of criteria is not necessarily the sum of the importance of each criterion in the set. It can be
greater or smaller, due to redundancy or synergy between criteria. An example of redundancy is the
case of maximum speed and acceleration in evaluating cars: in fact a car that is speed very often
has also a good acceleration and therefore, even if these two criteria can be very important for a
person liking sport cars, the importance of them is smaller than the importance of the two criteria
considered separately. An example of synergy is the case of maximum speed and price in evaluating
cars: in fact a car that is speed, is often also a highly priced, and therefore a car with a high maximum
speed and a not so high price is very well appreciated. So, the importance of these two criteria is
greater than the importance of the two criteria considered separately. Introduction of a neutral point
and consequent positive and negative sign of the evaluations with respect to considered criteria has
been taken into account through some generalizations of the Choquet integral such as Sipos integral
and Cumulative Prospect Theory functional. For example, in evaluating a car with respect to price,
comfort and fuel consumption, for cars with low levels of price, comfort and fuel consumption, the
price is more important than the comfort, while for cars having higher levels of price, comfort and fuel
consumption, the comfort become more important than the fuel consumption. To model representation
of the preferences in these situations we propose to assign importance to criteria depending on the
level of evaluations and a consequent generalization of the Choquet integral [6]. This is a very flexible
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model to aggregate evaluations of set of criteria. Moreover this model presents as specific cases the
Sugeno integral, the Sipos integral and the Cumulative Prospect Theory functional.

In this paper the generalization of the Choquet integral proposed by us takes into account the fact
that the importance of criteria depends on the level of their evaluations. The starting point is the new
concept of Generalized Capacity µG, that is a capacity defined over the criteria set, which depends on
a parameter t ∈ [0,1]. If a continuity condition is satisfied, the generalized Choquet integral (GCI for
brevity) with respect to the generalized capacity µG is given by:

Z 1

0
µG(A(x, t), t)dt (1)

where A(x, t) = {i ∈ N : xi ≥ t}.

A first result is a Theorem that states that if an aggregation function is monotonic, idempotent
and tail independent, then it exists a Generalized Capacity so that the aggregation function can be
expressed as the GCI with respect to this capacity. From this Theorem some other results can be ob-
tained, the most important of them is the fact that the Sugeno integral too can be expressed as a GCI.
The same can be obtained also for the Sipos integral and for the Cumulative Prospect Theory. Then,
the main result of this contribution affirms that the Sugeno integral, the (classical) Choquet integral,
the Sipos integral, and the Cumulative Prospect aggregating function can be expressed as particular
case of the GCI. Moreover, also other aggregation functions, that cannot be expressed in none of the
above operators (classical Choquet, Sipos and Sugeno integral, Cumulative Prospect Theory) can be
expressed but a suitable GCI. Those are very surprising results, showing the very interesting general-
ization properties of the GCI.
As a consequence of the definition, we showed even that the usual items like the Mobius transform,
the importance index, the interaction index, the k-order capacities and the OWA operators can be
generalized in the considered context.
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1 Introduction

The linear regression problem with fuzzy data has been previously treated in the literature from
different points of view and by considering different kinds of input/output data (see, for instance,
[6], [2] for recent surveys on the topic). In this work, a generalized simple linear regression statisti-
cal/probabilistic model in which both input and output data can be fuzzy subsets of Rp will be dealt
with. Specifically, the least squares estimation problem will be addressed.

In Section 2 some notations and preliminary concepts will be presented. The considered Simple
Linear Regression Model is stated in Section 3, and the least squares estimators are also obtained in
it.

2 Preliminaries

Let Kc(Rp) be the class of the nonempty compact convex subsets of Rp and let Fc(Rp) be the class
of fuzzy sets U : Rp → [0,1] whose α-levels Uα ∈ Kc(Rp) for all α ∈ [0,1], where U0 = cl({x ∈
Rp |U(x) > 0}). Zadeh’s extension principle [8] allows us to endow the space Fc(Rp) with a sum
and a product by a scalar extending the Minkowski sum and the product by a scalar on Kc(Rp), since
(U +V )α = Uα +Vα and (λU)α = λUα for all U,V ∈ Fc(Rp), λ ∈ R and α ∈ [0,1] (with A + B =
{a+b |a ∈ A, b ∈ B} and λA = {λa |a ∈ A} for A,B ∈Kc(Rp) and λ ∈R). Since (Fc(Rp),+, ·) is not
a linear space, it is often useful to consider the Hukuhara difference U −H V , which is defined (if it
exists) as the element W ∈ Fc(Rp) so that U = V +W .

Let Sp−1 be the unit sphere in Rp and 〈·, ·〉 the inner product. The space Fc(Rp) can be embedded
onto the cone of the class of the Lebesgue integrable functions L(Sp−1 × [0,1]) by means of the
mapping s : Fc(Rp) → L(Sp−1 × [0,1]) which associates each U ∈ Fc(Rp) into its support function
s(U) = sU : Sp−1 × [0,1] → R, with sU(u,α) = supw∈Uα

〈u,w〉 for any u ∈ Sp−1 and α ∈ [0,1]. The
support function is semilinear, in the sense that, sU+V = sU + sV and sλU = λsU if λ≥ 0. Furthermore,
if U −H V exists, then sU−HV = sU − sV for all U,V ∈ Kc(Rp) (see, for instance, [3]).

The least squares method to be considered will be based on the generalized metric DK by Körner
and Näther [4] on Fc(Rp), which U,V ∈ Fc(Rp) is defined as follows:

[DK(U,V )]2 =
Z

(Sp−1)2×[0,1]2

(
sU(u,α)− sV (u,α)

)(
sU(v,β)− sV (v,β)

)
dK(u,α,v,β),

where K is a positive definite and symmetric kernel; DK coincides with a generic L2 distance w.r.t. K
on the Banach space L(Sp−1× [0,1]). Thus, if we denote by < ·, ·>K the corresponding inner product,
we have that DK(U,V ) =< sU − sV ,sU − sV >K .

A Fuzzy Random Variable (FRV) associated with a probability space (Ω,A ,P) in Puri and Ralescu’s
sense (see [7]) is a mapping X : Ω → Fc(Rp) such that the α-level mappings Xα : Ω → Kc(Rp) are
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random sets for all α ∈ [0,1]. Alternatively, an FRV is an Fc(Rp)-valued random element (i.e. a
Borel-measurable mapping) when the DK−metric is considered on Fc(Rp) (see [1] and [4]), whence
the probability distribution associated with the FRV and the independence can be formalized as usual.

Let X be a FRV such that |X0| ∈ L1(Ω,A ,P) (with |X |(ω) = sup
{
|x|

∣∣x ∈ X(ω)
}

for all ω ∈
Ω). Then, the expected value (or mean) of X is the unique E(X ) ∈ Fc(Rp) such that

(
E(X )

)
α

=
Aumman’s integral of the random set Xα for all α ∈ [0,1], that is,(

E(X )
)

α
=

{
E( f |P)

∣∣ f : Ω → Rp, f ∈ L1, f ∈ Xα a.s.[P]
}

(see [7]). If, moreover, E(|X |2)< ∞, then, the variance of X is defined as Var(X )= E
(
[DK (X ,E[X ])]2

)
(see, for instance, [5] and [4]).

Let (X ,Y ) : Ω → Fc(Rp)×Fc(Rp) be a two-dimensional fuzzy random variable, and consider
a random sample {Xi,Yi}n

i=1 obtained from (X ,Y ). X and Y will denote the sample means (that is,
X = (X1 + . . .+Xn)/n and Y = (Y1 + . . .+Yn)/n), σ̂2

X will denote the sample variance (that is, σ̂2
X =

DK(X ,X )2), and σ̂2
X ,Y will denote the sample covariance (that is, σ̂2

X ,Y = < sY − sY ,sX − sX >K).

3 Least squares estimators of a simple linear regression model between FRVs

The Simple Linear Regression Model is to be considered is Y = aX + εX , where a ∈ R and εX is a
fuzzy random variable with expected value E[εX ] = B ∈ Fc(Rp), which implies that E[Y |x̃] = ax̃+B
for any x̃ ∈ Fc(Rp).

An alternative model would be given by Y = aX + B + εX , with E[εX ] = χ{0} ∈ Fc(Rp) (where
χ· stands for the characteristic function of a classical set). However, in this case the lack of linearity
of Fc(Rp) would imply the errors to be degenerated into random variables, although the regression
function is also E[Y |x̃] = ax̃+B. Thus, in order to consider fuzzy-valued errors, the independent term
would be included in the formalization of the possible errors.

On the other hand, it should be noted that the model Y = aX + εX forces the existence of the
Hukuhara difference Y −H aX . We propose to take this fact into account in order to estimate the model
and to look for a kind of restricted Least Squares estimators. That is, we constrain the estimator of a
to the set A = {a∗ ∈ R |Yi−H a∗Xi exists for all i = 1, . . . ,n}. Thus, the least squares problem consist
of looking for â ∈ R and B̂ ∈ Fc(Rp) in order to

Minimize
1
n

n

∑
i=1

D2
K(Yi,aXi +B)

subject to
a ∈ A

Since the variance w.r.t. the DK metric satisfies the Fréchet approach (see [4]), if a ∈ A, then the
minimum of 1

n ∑
n
i=1 D2

K(Yi,aXi + B) over B ∈ Fc(Rp) is attained at B(a) = Y −H aX . Consequently,
the minimization problem reduces to

Find â ∈ R minimizing φ(a) =
1
n

n

∑
i=1

D2
K(Yi−H aXi,Y −H aX )

subject to a ∈ A.

By applying properties of the support function and the inner product in L(Sp−1× [0,1]), we have
that the objective function φ(a) can be decomposed as follows:

φ(a) =
1
n

n

∑
i=1

< sYi − sY ,sYi − sY >K +
1
n

n

∑
i=1

< saXi − saX ,saXi − saX >K
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−2
1
n

n

∑
i=1

< sYi − sY ,saXi − saX >K .

On the other hand, it is possible to check that either A = R, or there exists a0,b0 ∈ [0,+∞), so that
A = [−a0,b0]. The homogeneity property of the support function w.r.t. the product by a scalar is only
satisfied for positive constant, whence positive and negative parts of A will be treated separately. For
the sake of simplicity, the reasonings will be developed in R = R∪{−∞,∞} by denoting a0 = b0 = ∞

in case A = R.
Concerning the positive part of A, if 0 ≤ a ≤ b0, we have that

φ(a) = σ̂
2
Y +a2

σ̂
2
X −2aσ̂X ,Y .

This function is continuous, differentiable and convex, and then it is easy to find that the minimum is
attained at a1 = β

σ̂X ,Y
σ̂2

X
, whenever σ̂2

X > 0, where

β =

{
0 if σ̂X ,Y ≤ 0

min
{

1, b0

σ̂X ,Y /σ̂2
X

}
if σ̂X ,Y > 0

Analogously, if −a0 ≤ a ≤ 0, we have that

φ(a) = σ̂
2
Y +a2

σ̂
2
−X +2aσ̂−X ,Y .

It is easy to check that σ̂2
−X = σ̂2

X , due to the symmetry of the kernel K in the distance DK . However,
there is not a general relationship between σ̂−X ,Y and σ̂X ,Y . Thus, the minimum of φ(a) in this case
is attained at a2 =−α

σ̂−X ,Y
σ̂2

X
whenever σ̂2

X > 0, where

α =

{
0 if σ̂−X ,Y ≤ 0

min
{

1, a0

σ̂−X ,Y /σ̂2
X

}
if σ̂−X ,Y > 0

The global minimum should be computed by taking into account the positive and the negative part.
To simplify the computations in practice, it is possible to express the different cases that arise in terms
of the sample covariances. Specifically, we can check that the minimum of φ(a) over [−a0,b0]⊂ R is
attained at

a∗ =


β

σ̂X ,Y
σ̂2

X
−α

σ̂X ,Y
σ̂2

X
if α = 0 or β = 0

−α
σ̂−X ,Y

σ̂2
X

if
σ̂2
−X ,Y

σ̂2
X ,Y

≥ 2β−β2

2α−α2 and α ·β 6= 0

β
σ̂X ,Y
σ̂2

X
if

σ̂2
−X ,Y

σ̂2
X ,Y

≤ 2β−β2

2α−α2 and α ·β 6= 0
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1 Introduction

The core of a capacity or a game is a fundamental concept, both in decision making theory and in
cooperative game theory. In decision making, it is the set of probability measures which are coherent
with the information given by the capacity in the representation of uncertainty [8]. In game theory, it
is the set of imputations (additive games) that can be given to players so that no subcoalition of the
grand coalition has interest to form.

The properties of the core are well known, most of them have been shown by Shapley [7]. In
many cases, it happens that the core is empty. A sufficient and necessary condition for nonemptiness
is known for capacities and games, which is called balancedness. In particular, convex capacities have
a nonempty core.

Since having an empty core is not a favorable situation, either in decision making or in game
theory, it may be an alternative solution to look for more general concepts. For example, since the
core contains additive capacities or games, we may relax additivity to a weaker notion: k-additivity,
proposed by Grabisch [2]. We may call this new notion the k-additive core.

Some studies on the k-additive core have already been done by the authors, see, e.g., [3, 6]. It
happens that the structure of the k-additive core is much more complex that the one of the classical
core. In particular, the set of its vertices is not known. The aim of this paper is to provide new insights
in this direction. More details can be found in [4].

2 Background

Throughout the paper, we consider a finite universal set X , with |X | = n. We use indifferently 2X or
P (X) to denote the set of subsets of X , and the set of subsets of X containing at most k elements is
denoted by P k(X), while P k

∗ (X) := P k(X)\{ /0}.
A capacity µ : 2X → R+ is a function such that µ( /0) = 0, and µ(A) ≤ µ(B) whenever A ⊆ B

(monotonicity). A capacity is normalized if µ(X) = 1. We assume in this paper that capacities are
normalized. The set of capacities on X is denoted by F M (X). A capacity µ on X is said to be additive
if µ(A∪B) = µ(A)+ µ(B) whenever A∩B = /0, convex if µ(A∪B)+ µ(A∩B) ≥ µ(A)+ µ(B), for all
A,B⊆ X , and k-monotone for k ≥ 2 if for any family of k subsets A1, . . .Ak, it holds

µ(
k[

i=1

Ai)≥ ∑
K⊆{1,...,k}

K 6= /0

(−1)|K|+1µ(
\

j∈K

A j).

A capacity is totally monotone (belief function) if it is k-monotone for all k ≥ 2. Convexity is equiva-
lent to 2-monotonicity.
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Let µ be a capacity on X . The Möbius transform of µ is a function m : 2X → R defined by:

m(A) := ∑
B⊆A

(−1)|A\B|µ(B).

A capacity µ is said to be k-additive for some integer k ∈ {1, . . . ,n} if m(A) = 0 whenever |A|> k, and
there exists some A such that |A| = k, and m(A) 6= 0. The set of at most k-additive capacities on X is
denoted by F M k(X).

It is known from [1] that k-monotonicity is equivalent to

∑
A⊆L⊆B

m(L)≥ 0, ∀A⊆ B⊆ X , |A| ≤ k.

The core of a capacity µ is defined by:

C (µ) := {ν ∈ F M 1(X) | ν(S)≥ µ(S),∀S ⊆ X}.

A maximal chain in 2X is a sequence of subsets A0 := /0,A1, . . . ,An−1,An := X such that Ai ⊂ Ai+1,
i = 0, . . . ,n−1. The set of maximal chains of 2X is denoted by M (2X).

To each maximal chain C := { /0,A1, . . . ,An = X} in M (2X) corresponds a unique permutation σ

on X such that A1 = σ(1), A2 \A1 = σ(2), . . . , An \An−1 = σ(n). The set of all permutations over X
is denoted by S(X). Let µ be a capacity. To each permutation σ (or maximal chain C) we assign a
marginal worth vector pσ (or pC) in Rn defined by:

pC
σ(i) := µ(Ai)−µ(Ai−1).

Any marginal worth vector forms a probability distribution over X , and hence defines an additive
capacity. The following is immediate.

Proposition 1. Let µ be a capacity on X, and C a maximal chain of 2X . Then pC(A) = µ(A), ∀A∈C.

Theorem 1. The following are equivalent.

(i) µ is a convex capacity
(ii) all marginal worth vectors pσ, σ ∈S(X) belong to the core of µ

(iii) C (µ) = co({pσ}σ∈S(X))
(iv) ext(C (µ)) = {pσ}σ∈S(X),

where co(K) and ext(K) denote respectively the convex hull and the extreme points of some convex
set K.

(i) ⇒ (ii) and (i) ⇒ (iv) are due to Shapley [7], while (ii) ⇒ (i) was proved by Ichiishi [5].

3 Vertices of the k-additive core

Let µ be a capacity on X , and 1≤ k ≤ n−1. The k-additive core of µ is defined by:

C k(µ) := {ν ∈ F M k(X) | ν(S)≥ µ(S),∀S ⊆ X}.

Similarly, we introduce BC k(µ) the set of k-additive belief functions dominating µ. We put N(k) :=(n
1

)
+ · · ·+

(n
k

)
. A first fact is the following.
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Proposition 2. For any capacity µ, C k(µ) and BC k(µ) are closed convex (N(k)− 1)-dimensional
polytopes.

We denote by ≺ a total (strict) order on P k
∗ (X), � denoting the corresponding large order. For any

B ∈ P k
∗ (X), we define

A(B) := {A⊆ X | A⊇ B,∀K ⊆ A,K ∈ P k
∗ (X),K � B}

the achievable family of B. It is easy to see that {A(B)}B∈P k
∗ (X) is a partition of P (X)\{ /0}.

A total order ≺ on P k
∗ (X) is said to be compatible if for all i, j ∈ X , i≺ j implies S∪ i≺ S∪ j, for

any S ∈ P k−1(X), i, j 6∈ S. It is said to be ⊆-compatible if A⊆ B implies A≺ B. Lastly, ≺ is said to be
strongly compatible if it is compatible and ⊆-compatible, and weakly compatible if only compatible.

Proposition 3. Assume ≺ is compatible. For any B ∈ P k
∗ (X) such that A(B) 6= /0, A(B) is a Boolean

lattice with bottom element B. The top element is denoted by B̌.

⊆-compatibility is a sufficient and necessary condition for the nonemptiness of all achievable families.
Let µ be a capacity on X , m its Möbius transform, and ≺ some total order on P k

∗ (X). We define
µ≺ by its Möbius transforms as follows:

m≺(B) :=

{
∑A∈A(B) m(A), if A(B) 6= /0

0, else
(1)

for all B∈P k
∗ (X), m≺( /0) := 0. Since achievable families form a partition of 2X , m≺ satisfies ∑B⊆X m≺(X)=

1, hence µ≺(X) = 1. The following can be shown.

Proposition 4. If ≺ is compatible, then for any nonempty achievable family A(B), µ≺(B̌) = µ(B̌).

(see the analogy with Prop. 1).

Proposition 5. Let µ be a capacity on X. Then µ≺ is a belief function for any compatible order ≺ if
and only if µ is k-monotone.

The following propositions are analogous to the Shapley-Ichiishi theorem above.

Proposition 6. Let µ be a capacity on X. Then µ≺ ∈ C k(µ) for all compatible orders ≺ if and only if
µ is (k +1)-monotone.

Proposition 7. Let µ be a (k +1)-monotone capacity. Then

(i) If ≺ is strongly compatible, then µ≺ is a vertex of C k(µ).
(ii) If ≺ is compatible, then µ≺ is a vertex of BC k(µ).

However, there are many vertices that are not belief functions. Experiments conducted with the
PORTA software finding vertices and facets of polyhedra show that, for example, the set of vertices
of C 2(µ) of the following 3-monotone capacity µ with n = 3

A 1 2 3 12 13 23 123
m(A) 0 0.1 0.2 0.1 0 0.2 0.4
µ(A) 0 0.1 0.2 0.2 0.2 0.5 1

has 48 elements, whose only 3 are belief functions.
Let us examine more precisely the vertices induced by strongly compatible orders. In fact, there

are much fewer than expected, since many strongly compatible orders lead to the same µ≺ (hence the
experimental result above). We can show the following.
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Proposition 8. The number of vertices of C k(µ) given by strongly compatible orders is at most n!
k! .

We examine the case of compatible orders being not strongly compatible (let us call them weakly
compatible).

Proposition 9. Suppose µ is a (k + 1)-monotone capacity which satisfies µ({i}) > 0 for all i ∈ X.
Then no weakly compatible order can produce a vertex of C k(µ).

The following result seems to be true.

Conjecture 1. Assume k < n and µ is a (k +1)-monotone capacity such that µ({i}) > 0 for all i ∈ N.
Then µ∗ is a vertex of C k(µ) such that m∗ ≥ 0 if and only if there exists a strongly compatible order ≺
such that m∗ = m≺.
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The distinction between fuzzy logic in broad and narrow sense as well between fuzzy logic and
probability theory is stressed; building bridges is wanted. We survey one of possibilities - the logic
of the fuzzy notion on being probable. Another possibility, the theory of states on MV-algebras is not
surveyed, but the notion of a state is assumed to be known, see e.g. [16, 12]. Also the basic fuzzy
logic BL and related logics (Łukasiewicz, Gödel, product logic and their combinations) are assumed
known. We survey the existing literature and add some few new results.

Propositional logic. Let L1 be the Boolean logic or a fuzzy logic, L2 a fuzzy logic. The fuzzy
probability logic FP(L1,L2) is a fuzzy modal logic whose non-modal formulas are those of L1, atomic
modal formulas have the form Pϕ where P is a modality read “probably” and other modal formulas are
formed from atomic ones by means of the logic L2. Probabilistic Kripke models have the form (W,e,σ)
where W is a non-empty (at most countable) set of possible worlds, e evaluates in each possible world
all atomic formulas by truth values from the standard set of truth values of L1 and σ : W → [0,1]
with ∑σ(w) = 1. ‖Pϕ‖ = ∑eL1(ϕ,w)σ(w) is the probability of ϕ. The problems concerning this
logic include axiomatization, completeness, computational complexity. Several particular cases were
studied.

(1) FP(Bool,Ł), FP(Bool,ŁΠ), FP(Bool,RPL) ([10, 9]). The axioms are Boolean axioms for
non-modal formulas, axioms of the fuzzy logic in question for modal formulas and three axioms
(FP1)− (FP3) for the modality. (Deduction rules modus ponens and generalization for P.) The first
two logics have finite strong (standard) completeness, the last one has Pavelka completeness (de-
gree of provability equals degree of truth). The set Sat(FP(Bool,Ł)) of satisfiable formulas is NP-
complete, Sat(FP(Bool,ŁΠ)) is in PSPACE [11]. Also the set Taut(FP(Bool,Ł)) is co-NP complete,
Taut(FP(Bool,ŁΠ)) is PSPACE.

(2) FP(Łn,Ł), FP(Łn,ŁΠ), FP(Łn,RPL) where Łn is the logic of the standard Łukasiewicz (MV)
algebra with n elements. These logics are studied in [3]; the authors investigate double semantics, that
with probabilistic Kripke models and a more general semantics interpreting the modality P using the
notion of a state; the axiomatic systems (analogous to those of logics in (1)) are complete similarly
to the situation in (1). Analyzing [11] I can show the following uniform complexity result: the set
{(Φ,n) |Φ is FP(Łn,Ł)-satisfiable} is NP-complete. 1 Similarly for L2 being ŁΠ and the complexity
being PSPACE.

(3) FP(G,Ł) where G stands for Gödel logic. The set of satisfiable formulas is NPcomplete - proof
by reducing to the uniform complexity result for FP(Łn,Ł) above. Problem: find an axiomatization;
axioms for the modality above do not work. (But e.g. P¬ϕ∨P¬¬ϕ is a tautology.)

(4) FP(Ł,RPL). This logic has Pavelka completeness (mentioned in [3]). No results on computa-
tional complexity yet.

1 Caution: the details of the proof have still to be elaborated.
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(5) Let us mention three logics dealing with conditional provability in our fuzzy style: FCP(Bool,ŁΠ)
[3, 8], FP(SLΠ) [4] and FPk(RPL∆) [2].

Predicate calculus. The approach from [9] will be critically surveyed and slightly simplified.
The logics can be called FP(Ł∀ and FP(RPL∀); the probabilistic semantics works with models
(M,(rQ)Q,σ) where (M,(rQ)Q) is an usual standard countable interpretation of a given predicate
language and σ is as above (with the domain M instead of a W ) and the language is expanded by a
new quantifier P: if ϕ is a formula then so is (Px)ϕ and ‖(Px)ϕ(x, ...)‖M,v = ∑a∈M ‖ϕ(a, ...)‖M,v · σ(a).
An alternative semantics replaces the σ by a p-state (state satisfying some additional conditions). Each
model in the sense of the probabilistic semantics defines a p-state whose domain is the set of all para-
metrically definable fuzzy subsets of M. The axioms for the new quantifier are

(µ1) (Px)ν ≡ ν x not free in ν

(µ2) (Px)¬ϕ ≡ ¬(Px)ϕ
(µ3) (Px)(ϕ → ψ)→ ((Px)ϕ → (Px)ψ)
(µ4) (Px)(ϕ⊕ψ)≡ ([(Px)ϕ → (Px)(ϕ&ψ)]→ (Px)ψ)
(µ5) (∀x)ϕ → (Px)ϕ
(µ6) (Px)(Py))ϕ ≡ (Py)(Px)ϕ
The logic FP(RPL∀) has strong standard Pavelka completeness with respect to the alternative

semantics; it follows that the set of (alternative) tautologies of this logic is a Π2-complete set in the
sense of the arithmetical hierarchy.

There are several open problems, among them: Axiomatizability and decidability of FP(Ł,Ł)?
(See [3] page 19.) Further, completeness (Pavelka) of FP(RPL∀) w.r.t. probabilistic models.
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1 Introduction

There are two standard ways how to understand the concept of fuzzy real numbers. The first one
goes back to Zadeh’s pioneering paper [9] in 1965 and it is still widely used, see [2] e.g. In this
concept fuzzy real numbers are represented as special functions from the set R of all real numbers
to the interval [0,1] (see Definition 2 below) and crisp real numbers are identified with characteristic
functions of corresponding singletons. Ten years later Hutton in [1] introduced another way how to
understand fuzzy real line, generalizing the representation of real numbers by Dedekind’s cuts. This
idea was further developed in many papers and the algebraic and topological structures of the fuzzy
real line were investigated by several authors, among others by Lowen (e.g. [3], [4]), Rodabaugh ( [5],
[6]) and Wang (e.g. [7], [8]). In the present paper we define the concept of limit point of a sequence of
fuzzy real numbers in the Zadeh’s sense and we prove some properties similar to that of limit points
of sequences of crisp real numbers.

As usual, in the whole paper we will denote by N and R the sets of all positive integers and all
real numbers, respectively.

Definition 1. Let f : R→ [0,1]. The kernel ker( f ) of f is given by

ker( f ) = {x ∈ R | f (x) = 1}.

The support supp( f ) of f is given by

supp( f ) = {x ∈ R | f (x) > 0}.

For each α ∈ [0,1] the α-cut [ f ]α of f is given by

[ f ]α = {x ∈ R | f (x)≥ α}.

Definition 2. By fuzzy real number we mean any function f : R→ [0,1] with bounded kernel and such
that for each α ∈ [0,1] the α-cut [ f ]α is a nonempty convex subset of R.

Notice that every fuzzy real number, as piecewise monotone function, has at most countably many
points of discontinuity. The set of all continuity points of f we denote C ( f ).

If f is a fuzzy real number and x ∈R we denote f (x−) and f (x+) the left and right limit of f at x,
respectively. Notice that both limits exist at each point. For a fuzzy real number f we denote by G( f )
the graph of f . For (x,y) ∈ R2 and ε > 0 denote Bε(x,y) = {(u,v) ∈ R2 |

√
(u− x)2 +(v− y)2 < ε}.

Definition 3. A sequence ( fn) of fuzzy numbers is bounded if there is an interval (a,b)⊂R such that
supp( fn)⊂ (a,b) for every n ∈ N.

1 Supported by the grant MSM6198898701
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Definition 4. A fuzzy number f is said to be a limit point of the sequence ( fn) of fuzzy numbers if
the set I(x,ε) = {n ∈ N | Bε(x, f (x))∩G( fn) 6= /0} is infinite for every ε > 0 and x ∈ R. Denote L( fn)
the set of all limit points of ( fn). A fuzzy number f is said to be a limit of the sequence ( fn) of fuzzy
numbers if L( fn) = { f}. In this case we write fn f .

It is easy to see that L( fn) contains all pointwise limits of subsequences of ( fn). The opposite is
not true in general.

Let F = ( fn) be a sequence of fuzzy real numbers. Denote A(F ) the set of all pairs (x,y) ∈ R2

such that for every ε > 0 the set I = {n ∈ N | Bε(x,y)∩G( fn) 6= /0} is infinite. Notice that a fuzzy real
number f is a limit point of a sequence F = ( fn) if and only if G( f )⊂ A(F ).

Lemma 1. The set A(F ) is nonempty and closed for every sequence of fuzzy real numbers F = ( fn).
All sets of the form A(F )∩ ({x}× [0,1]), x ∈ R are nonempty and closed, the set A(F )∩ (R×{1})
is closed and, if F is bounded, then it is also nonempty.

2 Results

The following theorem is in accordance with the crisp case.

Theorem 1. Every bounded sequence of fuzzy numbers has a limit point.

Although all bounded sequences of fuzzy real numbers have some limit point, the following ex-
ample shows that it is very unusual for a sequence of fuzzy real numbers to have a limit.

Example 1. Let fn = χ(0,1), n = 1,2, . . . , where χA means the characteristic function of the set A. Then
L( fn) = {χ(0,1),χ(0,1],χ[0,1),χ[0,1]}. Thus a constant sequence need not have a limit! This suggests the
idea to identify all four above functions, which differ each from the other only in points of their
discontinuity, to obtain the limit.

The following definition is similar to that in [8], although we use it for rather different class of
functions.

Definition 5. For two fuzzy real numbers f , g define f ∼ g if and only if C ( f ) = C (g) and

f (x−) = g(x−) and f (x+) = g(x+)

hold for every x ∈ R.

Remark 1. It is easy to see that ∼ is an equivalence relation on set of all fuzzy numbers. For a fuzzy
number f denote the corresponding equivalence class by [ f ] and denote by F (R) the set of all equiv-
alence classes of fuzzy real numbers. Notice that [ f ] is singleton if and only if f is either continuous
or of the form χ{x} for some x ∈ R. Also notice that the condition that f and g have the same set
of continuity points, although missing in the corresponding definition in [8], is substantial in Defini-
tion 5. Otherwise any two different real numbers x 6= y would be represented by equivalent fuzzy real
numbers χ{x} and χ{y} and, consequently, all real numbers would be represented by the same class of
equivalence. Finally, notice that the concept of limit point is compatible with the above defined equiv-
alence relation in the sense that if fn ∼ gn for all n ∈ N then {[ f ] | f ∈ L( fn)} = {[g] | g ∈ L(gn)}.
Thus Theorem 1 remains valid also in F (R) and notation L([ fn])) = {[ f ] | f ∈ L( fn)}makes a sense.
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In the structure of real numbers it holds that if x0 is a limit point of a sequence (xn) of real numbers
then there exists a subsequence (xnk) of (xn) such that x0 = lim

k→∞

xnk . The following example shows that

an analogous statement in the structure of fuzzy real numbers does not hold.

Example 2. Let (qn) be a sequence of all rational numbers in interval (0,1). For n∈N let Tn : [0,1]→
[0,1] be the function whose graph consists of two line segments connecting pairs of points (0,0),(qn,1)
and (qn,1),(1,0). Let fn : (−∞,∞) → [0,1] be the extension of Tn defining fn(x) = 0 for all x ∈
(−∞,0)∪ (1,∞) and for every n ∈ N. Then [χ(0,1)] ∈ L([ fn]) although there is no subsequence (nk)
with fnk  χ(0,1).

Now we are interested in such objects as liminf and limsup of a given sequence of fuzzy real
numbers. It is not satisfactory to order fuzzy real numbers by standard partial order of functions,
i.e. f ≤ g if and only if f (x) ≤ g(x) holds for all x ∈ R. One reason is that, if doing so, the natural
embedding of R into F (R) via the correspondence x ↪→ χ{x} was not order preserving. To keep it
order preserving, we define a partial order on the set F (R) as follows. For every [ f ] ∈ F (R) denote

D−([ f ]) = {x ∈ R | ∀y ∈ Ker( f ) x < y} and D+([ f ]) = {x ∈ R | ∀y ∈ Ker( f ) x > y},

where A means the closure of a set A. Notice that both D−([ f ]) and D+([ f ]) do not depend on the
choice of f ∈ [ f ], thus we will use also notations D−( f ) and D+( f ) in the sequel.

Definition 6. For every [ f ], [g] ∈ F (R) define [ f ]� [g] if and only if

f (x−)≥ g(x−) and f (x+)≥ g(x+) if x ∈ D−( f )

and
f (x−)≤ g(x−) and f (x+)≤ g(x+) if x ∈ D+( f ).

In this case we also write [g]� [ f ].

Remark 2. It is a routine job to check that the relation � does not depend on the choice of f ∈ [ f ]
and g ∈ [g] and it is a partial order on F (R). Notice also that [ f ] � [g] implies D−( f ) ⊂ D−(g) and
D+( f )⊃ D+(g).

As usual, we define a liminf (limsup) of a sequence ([ fn]) from F (R) as the least (greatest)
element of the set of all limits points of ([ fn]). The following theorems are again in accordance with
the crisp case.

Theorem 2. For every bounded sequence ([ fn]) in F (R) both liminf[ fn] and limsup[ fn] exist.

Theorem 3. Every bounded monotone sequence ([ fn]) in F (R) has a limit.

Remark 3. Notice that if f ∼ g then for every α ∈ [0,1] we have

inf[ f ]α = inf[g]α and sup[ f ]α = sup[g]α,

where inf[ f ]α and sup[ f ]α mean infimum and supremum of α-cut of f , respectively.
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Definition 7. Let F = ([ fn]) be a sequence in F (R) with [ f ] = liminf[ fn] and [ f ] = limsup[ fn]. For
y ∈ [0,1] denote

ψ
+(y) = |sup [ f ]y− sup [ f ]

y
| and ψ

−(y) = | inf [ f ]y− inf [ f ]
y
|.

If both ψ−(y) < ∞ and ψ+(y) < ∞ for all y ∈ (0,1), define the dispersion of F by

δ(F ) =
1
2

1Z

0

(ψ+(y)+ψ
−(y))dy

if the integral on the left side is convergent, and define δ(F ) = ∞, otherwise.

Notice that the definition is correct as δ(F ) does not depend on the choice of representatives of
[ fn], [ f ], [ f ].

Theorem 4. The following conditions are equivalent for every sequence F = ([ fn]) in F (R).

(i) F has a limit,
(ii) limsup[ fn] = liminf[ fn],

(iii) δ(F ) = 0.
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Let X be a Hausdorff space, M 1
+ be the set of all Radon probability measures on X , and let G(X) be

the set of all lower semicontinuous maps X [0,1].w

g
In 1970, Flemming Topsœ introduced the

concept of weak convergence of Radon probability measures as follows (cf. [3, 4]): A filter IF on M 1
+

converges weakly to a Radon probability measure µ0 iff for all g ∈ G(X) the following inequality
holds:

µ0(g) ≤ sup
F∈IF

(
inf
µ∈F

µ(g)
)

(1)

where µ(g) denotes the Lebesgue integral of g w.r.t. µ. Since the real unit interval [0,1] is completely
distributive, it is easily seen that this convergence notion is topological — this means that weak con-
vergence coincides with topological convergence w.r.t. the coarsest topology on M 1

+ making all maps
µ ; µ(g) lower semicontinuous (g ∈ G(X)).

Finally, let X M 1
+y w

δ be the embedding of X into M 1
+ sending every point x ∈ X to its Dirac

measure δx at x. Then the following result is well known.

Theorem. (cf. pp. 371 in [3] and Theorem 11.1 in [4])

1. M 1
+ is Hausdorff separated in the sense of the topology of weak convergence.

2. δ is a homeomorphism onto its range w.r.t. the topology of weak convergence.
3. δ(X) is a closed subset of M 1

+.
4. The convex hull of δ(X) is dense in M 1

+ w.r.t. the topology of weak convergence.

As an immediate corollary from the previous theorem we obtain the statement that in general the image
of X under δ is not dense in M 1

+ w.r.t to the topology of weak convergence. Hence we cannot extend
operations on X by the principle of continuous extension to the space M 1

+ of all Radon probability
measures on X .
The aim of this talk is to solve this problem and to introduce a many valued topology τ on M 1

+
satisfying the following conditions (cf. [1]):

– τ characterizes weak convergence of measures — i.e. a filter IF on M 1
+ converges to a Radon

probability measure µ0 in the sense of τ iff IF converges weakly to µ0 (i.e. in the sense of (1)).
– (M 1

+,τ) is Hausdorff separated.
– δ(X) is a dense subset of M 1

+ w.r.t. τ.

In this context, a simple example constitutes the real unit interval viewed as the set of all probability
measures on 2 = {0,1}. In particular, Łukasiewicz negation appears as the unique continuous exten-
sion of the classical negation on 2 w.r.t. τ. Further, the formation of image measures w.r.t. continuous
maps ϕ coincides with the unique continuous extension of ϕ. In this sense many valued topology
broadens the space of topological applications to traditional problems of probability theory.
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1 Introduction

We try to contribute to a classical discussion: “What is an integral?” Based on certain minimal sets of
axioms we introduce three concepts of functionals (called integral functionals, general and universal
integrals), which can be defined on arbitrary measurable spaces and which act on measures which are
only (finite) monotone set functions and for measurable functions whose range is contained in the unit
interval. Several special types of such functionals, including extremal ones, are characterized.

2 General integral

Throughout of this paper, let X be a fixed non-empty set, A a σ-algebra of subsets of X (in the case
of a finite set X we usually take A = 2X ), and F the class of all measurable functions f : X → [0,1].
Finally, denote by M the class of all monotone set functions m : A → [0,1] (considered, sometimes
with additional properties, in [4, 6, 11, 14, 15]) which satisfy m( /0) = 0, m(X) = 1 and m(A) ≤ m(B)
whenever A⊆ B.

Definition 21 A function I : M ×F → [0,1] is called an integral functional if it satisfies the following
conditions:
(I1) boundary conditions, i.e., for each m ∈M we have

I(m,0) = 0 and I(m,1) = 1,

(I2) monotonicity in both coordinates, i.e., for m1 ≤ m2 and f1 ≤ f2 we have

I(m1, f1)≤ I(m2, f2),

(I3) extension of the measure, i.e., for each A ∈ A and for each m ∈M we have

I(m,1A) = m(A).

Obviously, (I3) implies (I1); however we prefer to keep axiom (I1) in order to stress the boundary
conditions of integral functionals.
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Integral functionals were already discussed in [13], where the extremal integral functionals were
given:

I∗(m, f ) = max(inf f ,m({ f = 1})),
I∗(m, f ) = min(sup f ,m({ f > 0})).

Evidently, the class I of all integral functionals is a partially ordered set with smallest element I∗ and
greatest element I∗. Moreover, the class I is closed under each idempotent aggregation operator A,
i.e., if I1,I2, . . . ,In ∈ I , then also A(I1,I2, . . . ,In) given by

A(I1,I2, . . . ,In)(m, f ) = A(I1(m, f ),I2(m, f ), . . . ,In(m, f ))

is an element of I . In particular, I is a convex set.

Definition 22 An integral functional G : M ×F → [0,1] is called a general integral if it satisfies the
following additional conditions:
(I4) idempotency, i.e., for every c ∈ [0,1] we have

G(m,c) = c,

(I5) existence of a pseudo-multiplication, i.e., there exists a binary operation ⊗ : [0,1]2 → [0,1] such
that for each m ∈M , each c ∈ [0,1] and each A ∈ A

G(m,c ·1A) = c⊗m(A),

(I6) for each measurable function ϕ : X → X , and for each (m, f ) ∈M ×F we have

G(mϕ, f ) = G(m, f ◦ϕ),

where the measure mϕ ∈M is given by mϕ(A) = m(ϕ−1(A)).

Observe that one of the consequences of axiom (I6) is that for a general integral G and a Dirac
measure m{x0} (all the mass is concentrated in some point x0 ∈ X) we have G(m{x0}, f ) = f (x0) for
each f ∈ F .

Clearly, the Choquet, and the Sugeno integral are well-known examples of general integrals,
whereas the Lebesgue integral is defined for σ-additive measures m ∈M only.

Also, the class G of general integrals is convex, and it is closed under each idempotent aggregation
operator.

Observe that the axioms (I1)–(I4) imply that the pseudo-multiplication ⊗ required in axiom (I5)
is a semicopula [1, 5]:

Lemma 23 Let G be a general integral, and let ⊗ be the pseudo-multiplication related to G required
by (I5). Then ⊗ is a semicopula, i.e., a binary aggregation operator with neutral element 1.

Proof : Let ⊗ be a pseudo-multiplication related to G which exists because of (I5). Then (I2) implies
the monotonicity of ⊗, and from (I1) we derive that 0 is an annihilator of ⊗ and 1⊗1 = 1. Moreover,
due to (I3) we have 1⊗u = u for each u ∈ [0,1] (observe that, whenever card(X) > 1, for each A ∈ A
with /0⊂ A⊂ X we can find an mu ∈M such that mu(A) = u). Similarly, (I4) implies c⊗1 = c for all
c ∈ [0,1]. �

Following the ideas of inner and outer measures in classical measure theory, we obtain the follow-
ing result:
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Theorem 24 Let ⊗ be a semicopula. Then the class G⊗ of all general integrals related to ⊗ is a
convex class with smallest element G⊗ and greatest element G⊗, given by

G⊗(m, f ) = sup{t⊗m({ f ≥ t}) | t ∈ [0,1]},
G⊗(m, f ) = (sup f )⊗m({ f > 0}).

Proof : It is a matter of direct checking that G⊗,G⊗ ∈ G⊗. Moreover, the inequality G⊗ ≤ G ≤ G⊗

for all G ∈ G⊗ is an immediate consequence of (I2) and (I5). �

Recall that the drastic product TD is the weakest and the minimum TM is the strongest semicopula.
Obviously, for any two semicopulas ⊗1 and ⊗2 with ⊗1 ≤⊗2 we have G⊗1 ≤G⊗2 and G⊗1 ≤G⊗2 .

Corollary 25 The smallest general integral G∗ = GTD and the largest general integral G∗ = GTM are
given by

G∗(m, f ) = sup{TD(t,m({ f ≥ t})) | t ∈ [0,1]}
= max(essinfm f ,m({ f = 1})),

G∗(m, f ) = min(sup f ,m({ f > 0})).

Note that we have G∗ = I∗ and G∗ ≥ I∗, and the inequality in the latter case may be strict.

3 Universal integrals

For (m, f ) ∈M ×F , define the function hm, f : [0,1]→ [0,1] by

hm, f (t) = m({x | f (x)≥ t}).

Obviously, hm, f is non-increasing (and, therefore, Borel measurable) and satisfies hm, f (0) = 1. Fol-
lowing the ideas of [13] (where the name regular integral was used), we introduce another type of
integral.

Definition 31 A general integral U : M ×F → [0,1] is called universal integral whenever there exists
a monotone functional J : L([0,1])→ [0,1] such that

U(m, f ) = J(hm, f ),

where L([0,1]) is the class of all Borel measurable functions from [0,1] to [0,1].

Note that there are two other equivalent concepts of defining universal integrals [7, 13].
Again, the Choquet, and the Sugeno integral are examples of universal integrals. The class U of

universal integrals is also a convex set, and it is closed under any idempotent aggregation operator.
Now we recall two properties of the class U of universal integrals given in [13]:

(i) For each U ∈U we have
U∗ ≤ U≤ U∗,

where U∗ and U∗ are given by

U∗ = G∗,

U∗(m, f ) = min(essupm f ,m({ f > 0})).
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(ii) For each measurable space (X ,2X), each {0,1}-valued measure m ∈ M and each f ∈ F we
have U∗(m, f ) = U(m, f ) = U∗(m, f ) for all U ∈ U. Defining the function Lm : F → [0,1] by
Lm( f ) = U∗(m, f ), then Lm is a lattice polynomial on X , and it can be written as

Lm( f ) =
_

m(A)=1

^

x∈A

f (x).

Similarly as in the case of general integrals, we get the following result:

Theorem 32 Let ⊗ be a semicopula. Then the class U⊗ of all universal integrals related to ⊗ is a
convex class with smallest element U⊗ and greatest element U⊗, given by

U⊗ = G⊗,

U⊗(m, f ) = (essupm f )⊗m({ f > 0}).

Proof : As a consequence of Theorem 24, G⊗ satisfies the axioms (I1)–(I6). Moreover, we have for
each (m, f ) ∈M ×F

G⊗(m, f ) = µ
({

(x,y) ∈ ]0,1[2
∣∣ 0 < y < m({ f ≥ x})

})
,

where the monotone set function µ : B(]0,1[2)→ [0,1] is given by

µ(E) = sup{t⊗u | ]0, t[× ]0,u[⊂ E}.

Now it suffices to define J⊗ : L([0,1])→ [0,1] by

J⊗(g) = µ
({

(x,y) ∈ ]0,1[2
∣∣ 0 < y < g(x)

})
and to put U⊗(m, f ) = J⊗(hm, f ) (see [7]).

Concerning U⊗, it is a matter of straightforward checking only to verify that it satisfies (I1)–
(I6). Moreover, U⊗(m, f ) = J⊗(hm, f ), where J⊗ : L([0,1]) → [0,1] is given by J⊗(g) = (essupλg) ·
sup{g > 0}, i.e., U⊗ ∈U. For an arbitrary (m, f ) ∈M ×F define f ∗ = (essupm f ) ·1supp f . Evidently,
U⊗(m, f ) = U⊗(m, f ∗). Also, for all t ∈ [0,1] we have m({ f ≥ t)≤ m({ f ∗ ≥ t) and, thus,

U(m, f )≤ U(m, f ∗) = U⊗(m, f ∗) = U⊗(m, f )

for all U ∈U. �

Clearly, for the smallest element U∗ and the largest element U∗ we have U∗ = UTD and U∗ = UTM .
The formulas for U⊗ and U⊗ provide two construction methods for universal integrals based on

a given semicopula ⊗ as underlying pseudo-multiplication. Note that, e.g., UTM is just the Sugeno
integral. For special semicopulas we can give an additional construction method:

Let C : [0,1]2 → [0,1] be a copula [8, 12], i.e., a semicopula inducing a probability measure µC on
B(]0,1[2) via

µC([t1, t2[× [u1,u2[) = C(t2,u2)−C(t2,u1)−C(t1,u2)+C(t1,u1).

Then the functional U(C) : M ×F → [0,1] defined by

U(C)(m, f ) = µC
({

(x,y) ∈ ]0,1[2
∣∣ 0 < y < m({ f ≥ x})

})
is a universal integral related to the pseudo-multiplication C. Observe that, for the product copula Π,
U(Π) is the Choquet integral, and for the minimum TM the universal integral U(TM) coincides with the
Sugeno integral. For more details about this construction see [7].

Note that, similarly as for logical connectives in fuzzy logics, there is a general method based on
automorphisms on [0,1] for constructing new types of integrals from a given one:
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Proposition 33 Let ϕ : [0,1]→ [0,1] be an increasing bijection and I be an integral functional. Then
the functional Iϕ : M ×F → [0,1] defined by

Iϕ(m, f ) = ϕ
−1(I(ϕ◦m,ϕ◦ f ))

is an integral functional. Moreover, Iϕ is a general integral or a universal integral whenever I is a
general integral or a universal integral, respectively.

The proof of this result is obvious and, therefore, omitted. Observe only that, if a general integral
G is related to the semicopula ⊗, then Gϕ is related to the transformed semicopula ⊗ϕ given by

x⊗ϕ y = ϕ
−1(ϕ(x)⊗ϕ(y)).

Example 34 The Choquet integral Ch [3] is a universal integral related to the standard product be-
cause of Ch(m,c ·1A) = c ·m(A). For each p ∈ ]0,∞[, define the automorphism ϕp : [0,1]→ [0,1] by
ϕp(x) = xp. Then (Chϕp)p∈]0,∞[ is a parameterized family of universal integrals given by

Chϕp(m, f ) = (Ch(mp, f p))
1
p .

This family is non-increasing with respect to the parameter, and each integral Chϕp is related to the
product Π, i.e., Chϕp ∈UΠ. For the limit cases we get

Chϕ∞
= lim

p→∞
Chϕp = UΠ,

Chϕ0 = lim
p→0+

Chϕp = UΠ,

which means that Chϕ∞
and Chϕ0 are the smallest and largest universal integral related to Π, respec-

tively. Observe that Chϕ∞
is the Shilkret integral [10].

There are other approaches for the construction of universal integrals (e.g. the one presented
in [2]).

4 Conclusion

We have proposed and studied three general frameworks for integrals which can be defined on arbi-
trary measure spaces, including some construction methods and the characterization of some extremal
integrals. For instance, the greatest and smallest general and universal integrals related to some semi-
copula are identified.
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12. A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231.
13. P. Struk, Extremal fuzzy integrals, Soft Computing 10 (2006), 502–505.
14. M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis, Tokyo Institute of Technology, 1974.
15. Z. Wang and G. J. Klir, Fuzzy measure theory, Plenum Press, New York, 1992.

77



Label Semantics as a Framework for Linguistic Models in Data Mining

Jonathan Lawry

Department of Engineering Mathematics
University of Bristol, Bristol, BS8 1TR, UK

j.lawry@bris.ac.uk

1 Introduction

Technological advances and rapidly improving communications have brought about a ‘data explo-
sion’ in science, engineering, business and finance. There is currently an almost continual generation
of large, multi-dimensional databases describing complex systems. However, data alone is useless
without methods for extracting important relationships between attributes and parameters that can
help us understand and predict the behaviour of the system. For this we need algorithms that can au-
tomatically learn models from databases which are sufficiently transparent so that they can be readily
understood by domain experts while maintaining good predictive capabilities.

The label semantics framework gives a probabilistic interpretation of the uncertainty resulting
from the use of vague or imprecise linguistic descriptions in high-level models. As such it is straight-
forward to integrate with other sources of uncertainty in data, to provide a representation framework
for new learning algorithms which generate linguistic models from data mining. These relatively trans-
parent models allow for a qualitative understanding of the patterns and relationships underlying the
data, in addition to giving accurate quantitative predictions.

2 Appropriateness Measures and Mass Assignments

Label semantics proposes two fundamental and inter-related measures of the appropriateness of labels
as descriptions of an object or value. Given a finite set of labels LA from which can be generated a
set of expressions LE through recursive applications of logical connectives, the measure of appropri-
ateness of an expression θ ∈ LE as a description of instance x is denoted by µθ (x) and quantifies the
agent’s subjective belief that θ can be used to describe x based on his/her (partial) knowledge of the
current labelling conventions of the population. From an alternative perspective, when faced with an
object to describe, an agent may consider each label in LA and attempt to identify the subset of labels
that are appropriate to use. Let this set be denoted by Dx. In the face of their uncertainty regarding
labelling conventions the agent will also be uncertain as to the composition of Dx, and in label se-
mantics this is quantified by a probability mass function mx : 2LA → [0,1] on subsets of labels. The
relationship between these two measures will be described below.

Definition 1. Label Expressions
The set of label expressions of LA, LE, is defined recursively as follows:

– If L ∈ LA then L ∈ LE
– If θ,ϕ ∈ LE then ¬θ,θ∧ϕ,θ∨ϕ ∈ LE

A mass assignment mx on sets of labels then quantifies the agent’s belief that any particular subset
of labels contains all and only the labels with which it is appropriate to describe x.
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Definition 2. Mass Assignment on Labels
∀x ∈Ω a mass assignment on labels is a function mx : 2LA → [0,1] such that ∑S⊆LA mx (S) = 1

Now depending on labelling conventions there may be certain combinations of labels which cannot
all be appropriate to describe any object. For example, small and large cannot both be appropriate.
This restricts the possible values of Dx to the following set of focal elements:

Definition 3. Set of Focal Elements
Given labels LA together with associated mass assignment mx : ∀x ∈ Ω, the set of focal elements for
LA is given by F = {S ⊆ LA : ∃x ∈Ω, mx (S) > 0}

The appropriateness measure, µθ (x), and the mass mx are then related to each other on the basis that
asserting ‘x is θ’ provides direct constraints on Dx. In general we can recursively define a mapping
λ : LE → 22LA

from expressions to sets of subsets of labels, such that the assertion ‘x is θ’ directly
implies the constraint Dx ∈ λ(θ) and where λ(θ) is dependent on the logical structure of θ.

Definition 4. λ-mapping
λ : LE → 22LA

is defined recursively as follows: ∀θ, ϕ ∈ LE

– ∀Li ∈ LA λ(Li) = {T ⊆ LA : Li ∈ T}
– λ(θ∧ϕ) = λ(θ)∩λ(ϕ), λ(θ∨ϕ) = λ(θ)∪λ(ϕ), λ(¬θ) = λ(θ)c

Based on the λ mapping we then define µθ (x) as the sum of mx over those set of labels in λ(θ).

Definition 5. Appropriateness Measure

∀θ ∈ LE, ∀x ∈Ω µθ (x) = ∑
S∈λ(θ)

mx (S)

Appropriateness measures are not in general functional since mx cannot be uniquely determined
from µL(x) : L∈ LA. However, in the presence of additional assumptions the calculus can be functional
(although never truth-functional). One such assumption, based on an idea of ordering which is often
rather natural for labels defined in data models, is as follows:

Definition 6. Consonance in Label Semantics
Given non-zero appropriateness measures on basic labels µLi : i = 1, . . . ,n ordered such that µLi(x)≥
µLi+1(x) for i = 1, . . . ,n then the consonant mass assignment has the form:

mx ({L1, . . . ,Ln}) = µLn (x) , mx ( /0) = 1−µL1 (x)
mx ({L1, . . . ,Li}) = µLi (x)−µLi+1 (x) for i = 1, . . . ,n

In this context the consonant assumption is that for each x ∈ Ω an agent first identifies a total
ordering on the appropriateness of labels. They then evaluate their belief values mx about which labels
are appropriate to describe x in such a way so as to be consistent with this ordering. Given definition
5 and the consonance assumption it can be shown that appropriateness measures have the following
general properties [1], [2], [5]:

Theorem 1. Properties of Appropriateness Measures
∀θ,ϕ ∈ LE then the following properties hold:
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– If θ |= ϕ then ∀x ∈Ω µθ(x)≤ µϕ(x)
– If θ≡ ϕ then ∀x ∈Ω µθ(x) = µϕ(x)
– If θ is a tautology then ∀x ∈Ω µθ(x) = 1 and µ¬θ(x) = 0
– ∀x ∈Ω µ¬θ(x) = 1−µθ(x)
– Let LE∧,∨ ⊆ LE denote those expressions generated recursively from LA using only the connec-

tives ∧ and ∨. ∀θ,ϕ ∈ LE∧,∨, ∀x ∈Ω it holds that: µθ∧ϕ (x) = min
(
µθ (x) ,µϕ (x)

)
and µθ∨ϕ (x) =

max
(
µθ (x) ,µϕ (x)

)
.

3 Linguistic Models from Data

Consider the following formalization of a learning problem: Given attributes x1, . . . ,xk+1 with uni-
verses Ω1, . . . ,Ωk+1 suppose that xk+1 is dependent on x1, . . . ,xk according to some functional map-
ping g : Ω1 × . . .×Ωk → Ωk+1 (i.e. xk+1 = g(x1, . . . ,xk)). In the case that Ωk+1 is finite then this is
referred to as a classification problem whereas if Ωk+1 is an infinite subset of R (typically a closed
interval) then it is referred to as a prediction or regression problem. Information regarding this func-
tion is then provided by a training database containing vectors of input values together with their
associated output. Let this database be denoted by DB = {〈x1(i), . . . ,xk(i),xk+1(i)〉 : i = 1, . . . ,N}.

Label semantics can be used to infer models from DB which have a linguistic rule based structure
and which provide an approximation ĝ of the underlying function mapping g. Here we consider two
such models; mass relations and linguistic decision trees. For both approaches we use appropriateness
measures to define a set of labels describing each attribute LA j : j = 1, . . . ,k +1 with associated label
expressions LE j : j = 1, . . . ,k +1 and focal sets F j : j = 1, . . . ,k +1.

Definition 7. Mass Relations
A mass relation is a conditional function m : 2LA1 × . . .× 2LAk → [0,1] such that for Fi ∈ Fi : i =
1, . . . ,k +1

m(F1, . . . ,Fk|Fk+1) =
∑i∈DB ∏

k+1
j=1 mx j(i)(Fj)

∑i∈DB mxk+1(i)(Fk+1)

A mass relation generates a set of weighted rules of the form:

(Dx1 = F1)∧ . . .∧ (Dxk = Fk)→ (Dxk+1 = Fk+1) : w where

w = m(Fk+1|F1, . . . ,Fk) =
m(F1, . . . ,Fk|Fk+1)m(Fk+1)

∑Fk+1
m(F1, . . . ,Fk|Fk+1)m(Fk+1)

and m(Fk+1) =
1
N ∑

i∈DB
mxk+1(i)(Fk+1)

In practice it can be computationally expensive to calculate the mass relation exactly and typically
we need to use some form of approximation. One approach is to search for dependency groupings
amongst the attributes and assume conditional independence (given Fk+1) between them (see [4] for
details).

Definition 8. Linguistic Decision Trees (LDT)
A linguistic decision tree is a decision tree where the nodes are attributes from x1, . . . ,xk and the edges
are label expressions describing each attribute. More formally, supposing that the j’th node at depth
d is the attribute x jd then there is a set of label expressions L j,d ⊆ LEi forming the edges from x jd such
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that λ(
W

θ∈L j,d
θ)⊇ F jd and ∀θ,ϕ ∈ L j,d λ(θ∧ϕ)∩F jd = /0. Also a branch B from a LDT consists of

a sequence of expressions ϕ1, . . . ,ϕm where ϕd ∈ L j,d for some j ∈ N for d = 1, . . . ,m, augmented by
a conditional mass value m(Fk+1|B) for every output focal set Fk+1 ∈ Fk+1. Hence, every branch B
encodes a set of weighted linguistic rules of the form:

(x j1 is ϕ1)∧ . . .∧ (x jm is ϕm)→ (Dxk+1 = Fk+1) : m(Fk+1|B)
where x jd is a depth d attribute node.

Also the mass assignment value m(Fk+1|B) can be determined from DB according to:

m(Fk+1|B) =
∑i∈DB mxk+1(i)(Fk+1)∏

m
d=1 µϕd (x jd (i))

∑i∈DB ∏
m
d=1 µϕd (x jd (i))

The LID3 algorithm has been developed as an entropy guided algorithm for learning the structure of
an LDT from data (see [3] for details).
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The communication consists of two parts. The first one is dedicated to IF-events and it serves as
a motivation. Of course, IF-sets seems to be important from the point of view of applications and
therefore the construction of the probability theory is very important. Recall that an IF-set is a pair
A = (µA,νA) of fuzzy sets such that µA + νA ≤ 1; µA is the membership function, νA is the non-
membership function.

We present two ways. The first one ([3]) is based on the Lukasiewicz connectives A⊕B = (µa⊕
µB,νA�νB), A�B = (µa�µB,νA⊕νB), where f ⊕g = min( f +g,1), f �g = max( f +g−1,0). The
crucial notion is the additivity:

P(A)+P(B) = P(A⊕B)+P(A�B).

This theory can be embedded to the well extended MV-algebra probability theory ([4]).
Of course, recently another approach was proposed ([1]) characterized by the additivity:

P(A)+P(B) = P(A∪B)+P(A∩B).

In this case the results of MV-algebra theory can not be applied, of course, some methods of this
theory can be used.

Also the preceding facts justify a general approach considering the probability as a mapping from
an ordered set (M,⊕,�) with arbitrary operations ⊕, � to the unit interval ([2]). The results of such
general theory can be applied to a large variety of known structures, not only IF-events and MV-
algebras, but also D-posets, effect algebras and some generalizations of these systems appeared in
recent time.
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3. B. Riečan (2006). On a problem of Radko Mesiar: general form of IF-probabilities. In: Fuzzy sets and Systems, volume
152, pages 1485-1900, 2006.
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Faculty of Natural Sciences, Matej Bel University
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The Carathéodory construction of a measure is well known. Recently it was generalized for the lattice
group-valued mappings. In this contribution we consider group-valued case for mapping defined on a
space of real functions.

First some properties of outer measures are investigated including the properties of measurable
elements. Then the Choquet lemma is proved for the induced outer measure. The results are applied
for the extension of a measure defined on a family of functions.
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Abstract. The classical probability theory and statistics tries to avoid experiments whose results are vague.
However, also this type of information is useful and used in everyday life. To treat it, an extension of proba-
bility theory to events described by fuzzy sets is highly desirable. An intuitive definition has been suggested
by Zadeh [26]. Later on, an axiomatic approach has been introduced by Butnariu and Klement [3]. Inde-
pendently, measures on MV-algebras have been studied. Particularly interesting results have been obtained
by Riečan and Mundici for MV-algebras with product [23]. We show that these two approaches overlap
significantly. Further, we outline conditional probabilities in this context.

Keywords: Probability measure, fuzzy set, tribe, MV-algebra, MV-algebra with product, conditional prob-
ability.

1 Intuitive definition of probability of fuzzy events

Zadeh [26] suggested to define the probability of a fuzzy set f by the formula

µ( f ) =
Z

f dP , (1)

where P is a classical probability measure on some σ-algebra A . This is a natural extension of the
notion used for crisp sets. However, no justification for exactly this formula was given. To clarify the
meaning of the integral, the universe (=the domain of f ) must be specified and f has to be measurable
w.r.t. the σ-algebra A . This limits the structure of fuzzy sets on which probability can be defined. This
will be specified in the subsequent sections. 1

2 Tribes

An axiomatic approach imitating the classical probability theory was suggested by Höhle [10] and
developed by Butnariu and Klement [3]. As an analog of a σ-algebra, they suggest a tribe of fuzzy
sets. The original notion by Butnariu and Klement [3] is slightly modified in [22] as follows: Let X be
a non-empty set. A tribe on X is a pentuplet (T ,�, ′,0,≤), where T ⊆ [0,1]X , � is a triangular norm
(t-norm for short), ′ is a strong fuzzy negation, 0 is the constant zero function on X , ≤ is the fuzzy
inclusion, and the following conditions are satisfied:

(T1) 0 ∈ T ,
(T2) f ∈ T =⇒ f ′ ∈ T ,
(T3) f ,g ∈ T =⇒ f �g ∈ T ,
(T4) ( fn)n∈N ∈ T N, fn ↗ f =⇒ f ∈ T

? The author was supported by the project MSM 6840770038 Decision Making and Control in Manufacturing III.
1 There are many alternative approaches to measure theory on fuzzy sets, see, e.g., [25] and [24], where an extensive

bibliography can be found.
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(the symbol ↗ denotes monotone increasing convergence). Butnariu and Klement admitted only the
standard negation (α 7→ 1−α) for ′ and, instead of (T3), (T4), they assumed

(T3+) ( fn)n∈N ∈ T N =⇒
J
n∈N

fn ∈ T .

This condition is more general, but the difference is not essential. All results by Butnariu and Klement
refer to tribes which satisfy our definition, too.

In the definition of a tribe, we admit an arbitrary strong (=involutive) fuzzy negation. However, in
the sequel we restrict attention only to the standard negation. This special case simplifies the formu-
lation of results and it can be easily extended to the general case (see [22] for detailed arguments).

When there is no risk of confusion, we speak briefly of a tribe (T ,�) (as in [2]), resp. of an �-
tribe T (as in [3]). Our notation follows the pattern of [24]. We also speak of an�-tribe when we need
to refer to the t-norm �, but not to the tribe itself. In particular cases, when � is the product t-norm,
x�P y = x · y, resp. the Łukasiewicz t-norm, x�L y = max(0,x + y− 1), we speak of a product tribe,
resp. a Łukasiewicz tribe.

By ⊕P, resp. ⊕L, we denote the triangular conorm (t-conorm for short) dual to �P, resp. �L (and
similarly for other t-norms and t-conorms). In the sequel, particular attention will be paid to Frank
t-norms �F

λ
, λ ∈ [0,∞], which are defined by

x�F
λ

y = logλ

(
1+

(λx−1)(λy−1)
λ−1

)
if λ ∈ ]0,∞[ \ {1}, �F

0 = �M = min, �F
1 = �P, and �F

∞ = �L (see [9, 13] or [12, Example 2.9.3]).
They are Archimedean for λ > 0 and strict for λ ∈ ]0,∞[.

For a tribe T , we denote by B(T ) its largest Boolean sub-σ-algebra. It consists of all crisp sets
of T .

3 Probability on MV-algebras

Another approach to measures of fuzzy sets is based on MV-algebras. (For basic definitions and more
details, we refer to [6].) For an MV-algebra T , we denote by B(T ) its largest Boolean subalgebra. It
consists of all b ∈ T which are Boolean, i.e., b⊕b = b. The Boolean algebra B(T ) is also called the
Boolean skeleton of T . If T is σ-complete, then B(T ) is a σ-complete Boolean algebra.

A state2 on a σ-complete MV-algebra T is a mapping µ : T → [0,1] satisfying the following
conditions:

(S1) µ(1) = 1,
(S2) f ,g ∈ T , f �L g = 0 =⇒ µ( f ⊕L g) = µ( f )+µ(g),
(S3) ( fn)n∈N ∈ T N, fn ↗ f =⇒ µ( fn)→ µ( f ).

The state space (=the set of all states) is a convex set; its extreme points are called pure states.

Theorem 1. Let T be a σ-complete MV-algebra. Then every state µ on T is of the form (1), where
P = µ�B(T ) is an ordinary probability measure on the σ–complete Boolean algebra B(T ).

This definition and characterization of states applies also to Łukasiewicz tribes, which form a
special class of MV-algebras. In this case, the Boolean skeleton coincides with the set of all crisp sets
from the tribe, thus the two meanings of B(T ) coincide. Łukasiewicz tribes are characterized in [7]

2 Usually a state is a synonym for a probability measure. Here we use these notions in different contexts and we distinguish
them. However, we shall see that they coincide in important cases.
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as those σ-complete MV-algebras which admit a separating set of pure states, i.e., for each a,b ∈ T ,
a 6= b, there is a pure state s such that s(a) 6= s(b). Although not all σ-complete MV-algebras satisfy
this property, it is a reasonable requirement in probability theory. This has a Boolean analogy: Among
general σ-complete Boolean algebras, only σ-algebras of subsets of a set are usually considered a
good basis of a probability theory. The relation of Łukasiewicz tribes to σ-complete MV-algebras is
the same as that of σ-algebras to general σ-complete Boolean algebras.

4 Axiomatic approach to probability on tribes

There is a much general way of defining (probability) measures on (not necessarily Łukasiewicz)
tribes. Following Butnariu and Klement [3], a probability measure on a tribe (T ,�, ′,0,≤) is a func-
tional µ : T → [0,1] such that

(M1) µ(0) = 0, µ(1) = 1,
(M2) f ,g ∈ T =⇒ µ( f �g)+µ( f ⊕g) = µ( f )+µ(g), where ⊕ is the t-conorm dual to �,
(M3) ( fn)n∈N ∈ T N, fn ↗ f =⇒ µ( fn)→ µ( f ).

If, moreover, µ satisfies
(M4) ( fn)n∈N ∈ T N, fn ↘ f =⇒ µ( fn)→ µ( f ),

it is called a σ-order continuous probability measure.

Theorem 2. [19] Let �F
λ
, λ ∈ ]0,∞], be an Archimedean Frank t-norm. Let T be an �F

λ
-tribe. Every

element of T is B(T )-measurable. Every probability measure on T is a convex combination of a
measure of the form (1) and a measure

ν( f ) = P(supp f ), f ∈ T , (2)

where supp f = {x ∈ X | f (x) > 0} is the support of a fuzzy set f and P = µ � B(T ) is an ordinary
probability measure on the σ-algebra B(T ). Every σ-order continuous probability measure on T is
of the form (1).

A measure of the form (2) is called a support measure [3]. Its values depends only on the support,
it does not distinguish among positive membership degrees. This seems to be hardly motivated by
applications. This is why σ-order continuity was required and condition (M4) has been added in [22].
In [3], (M4) was omitted because in σ-algebras it follows from (M3). However, in tribes this difference
is important.

In particular, Th. 2 applies to product or Łukasiewicz tribes. Due to properties of Łukasiewicz
operations, the conjunction of (S1), (S2) is equivalent to the conjunction of (M1), (M2) (for strict
t-norms, (S2) is much weaker than (M2) and such a condition does not seem useful). Condition (S3)
is identical to (M3) and it implies also (M4) in case of a σ-complete MV-algebra. As a consequence,
the notions of state and σ-order continuous probability measure coincide for Łukasiewicz tribes. We
shall see that this happens in a much more general context.

5 Probability on MV-algebras with products

One important feature of MV-algebras (not achieved in other fuzzifications of Boolean algebras) is the
existence of partitions of unity and their joint refinements [6]. However, two partitions of unity need
not admit the coarsest joint refinement, and even if it exists, there is no canonical formula for it (see
[16] for more details). Therefore the basics of statistics (central limit theorem, etc.) were developed
in [23] only for the case when T is an MV-algebra with product, i.e., a pair (T , ·), where T is an
MV-algebra and · is a commutative and associative binary operation on T satisfying:
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(P1) 1 ·a = a,
(P2) a · (b�L c′) = (a ·b)�L (a · c)′.

For the standard MV-algebra, [0,1] with the Łukasiewicz operations, the algebraic product is the only
operation making it an MV-algebra with product [23]. More generally, a Łukasiewicz tribe forms an
MV-algebra with product iff it is equipped with the algebraic product as · ; then we call it a Łukasiewicz
tribe with product. The introduction of the product admits to compute joint refinements canonically.

Two above approaches coincide in the following important case:

Theorem 3. Let �F
λ
, λ ∈ ]0,∞[, be a strict Frank t-norm. Then �F

λ
-tribes are exactly Łukasiewicz

tribes with product (when equipped with the respective operations); states on them coincide with
σ-order continuous probability measures.

It is surprising that we obtain the same notion from two axiomatic systems where condition (S2)
(formulated for the Łukasiewicz t-norm) is much different from condition (M2) (formulated for the
product t-norm, resp. a strict Frank t-norm).

As a corollary, Łukasiewicz tribes with product are exactly product tribes.
There are also characterizations of probability measures on other tribes.

Theorem 4. [22] Let � be a (strict) t-norm of the form

α�β = h−1(h(α)�F
λ

h(β)) , (3)

where �F
λ
, λ ∈ ]0,∞[, is a strict Frank t-norm and h : [0,1]→ [0,1] is an increasing bijection which

commutes with the standard negation, i.e., h(α′) = (h(α))′ for all α. Then �-tribes are exactly Łuka-
siewicz tribes with product. Let T be an �-tribe. Every element of T is B(T )-measurable. Each
σ-order continuous probability measure on T is of the form

µ( f ) =
Z

h◦ f dP , (4)

where P = µ � B(T ) is an ordinary probability measure on the σ-algebra B(T ). Each probability
measure on T is a convex combination of a support measure of the form (2) and a measure of the
form (4).

As proved in [22], strict t-norms which are not of the form (3) admit only support measures and
no σ-order continuous probability measures.

6 Conditional probability

Conditional probability can be interpreted so that we update our probability model according to partial
results. We know that some event occurred and thus we assign a unit probability to it. An even better
interpretation may be that the negation of this event did not occur and thus it is assigned a zero
probability. The new probabilistic model respects this new information and keeps the proportions of
probabilities of possible events as much as possible.

Extending conditional probability to fuzzy events is a problem. The excluded middle law does not
hold for some choices of operations. Even if it holds, its meaning is different. The occurrence of an
event a does not guarantee that a′ cannot be observed. Therefore the new (conditional) probability
does not have to vanish at a′. This is one of the reasons why the proper definition of conditional
probability was formulated as an open problem in [23] (for the special case of an MV-algebra with
product, but other models suffer from similar difficulties).

Recent studies of conditional probability on MV-algebras were published in [11, 14, 15].
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7 Conclusions

The overlapping of MV-algebras with product and tribes (w.r.t. strict Frank t-norms) shows that two
approaches to probability on fuzzy sets converge to essentially the same notions which, moreover,
correspond to the original idea by Zadeh. This coincidence opens a new field for further investiga-
tions, because some results can be directly translated from one context to the other. Among others,
generalizations of the central limit theorem, laws of large numbers [23], and results about entropy can
be applied to product (and some other) tribes, too.

On the other hand, a lot of results were derived for tribes, e.g., decomposition theorems, extensions
of Lyapunov theorem [1], and applications to games with fuzzy coalitions [3]. These can be applied
to MV-algebras with product (at least in the case when they are Łukasiewicz tribes).
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Copulas are functions that join bivariate distribution functions to their univariate marginal distribution
functions (see also [7]). In fact, according to Sklars theorem [10], for each random vector (X ,Y ) there
is a copula CX ,Y (uniquely defined, whenever X and Y are continuous) such that the joint distribution
function FX ,Y of (X ,Y ) may be represented by

FX ,Y (x,y) = CX ,Y (FX(x),FY (y))

for all x,y ∈ R, where FX and FY are the distribution functions of the random variables X and Y ,
respectively. Applications of this fact are provided, e.g., in finance and insurance (see, e.g., [1, 3]).
Moreover, copulas have played an important role not only in probability theory and statistics, but also
in many other fields requiring the aggregation of incoming data such as multicriteria decision making,
probabilistic metric spaces and fuzzy theory (see also [4, 8, 9]).

Therefore, it has been of interest to find methods for constructing copulas by respecting some
information given. Among them are particular methods dealing with the fact that one has at his/her
disposal some knowledge about the copula along some linear, i.e., horizontal, vertical, or diagonal sec-
tion. More precisely: Copulas with given diagonal sections have been largely investigated by Fredriks
and Nelsen (see also [5]). Those with a given horizontal (or vertical) section have been studied by Kle-
ment, Kolesárová, Mesiar and Sempi (see, e.g., [6]). Recently Durante, Kolesárová, Mesiar and Sempi
have studied copulas having assigned horizontal and vertical sections (see also [2]). In the presenta-
tion we will also consider the set of copulas with a given sub–diagonal section, namely those copulas
that have the same value on the segment of straight line joining the points (x0,0) and (1,1− x0) with
x0 ∈ [0,1/2].

First, by constructing examples, we show that such a set of copulas is not empty. Then we deter-
mine the supremum and the infimum of the set considered and show that they are, in fact, copulas, a
non–trivial result in view of the known fact that the supremum and the infimum of a set of copulas
are quasi–copulas that, in general, need not be copulas. Furthermore, the maximum and the minimum
thus found correspond respectively to analogues of the diagonal copula of Fredricks and Nelsen and
of the Bertino copula. These latter copulas are respectively the maximum and minimum in the set
of diagonal copulas. Finally we show that when one lets x0 go to zero, the largest and the smallest
sub–diagonal copulas tend respectively to the diagonal and the Bertino copulas.
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1   Introduction 
Classical probability [1] is based on the theory of classical sets and, as a consequence, it is in a Boolean 

frame, (fig 1.).  Fuzzy probability [2] is based on the theory of fuzzy sets [3]. Since no algebra of fuzzy sets is a 
Boolean algebra [4], fuzzy probability is not in a Boolean frame [5]. Real probability (R-probability) is intro-
duced in this paper. R-probability is based on Real sets (R-sets). Valued realization of R-sets is based on Inter-
polative realization of Boolean algebra (IBA) [6], (fig 2. and fig 3.).  IBA is a MV realization of finite Boolean 
algebra, and as a consequence R-probability is a realization of fuzzy probability idea in a Boolean frame. 

2 Real sets (R-sets) and Interpolative Boolean algebra 
Any element of R-set has analyzed property with intensity and/or gradation just as a fuzzy set has. R-sets 

are generated by analyzed proper properties1. Algebraic - value indifferent characteristics of proper proper-
ties are: Boolean axioms and theorems. Set of proper properties of interest is Boolean algebra of proper-
ties .  pΒΑ

     Set of primary proper properties: { }1,..., ,na aΩ =  generates ( )pΒΑ Ω  finite Boolean algebra of properties. 
The basic characteristic of any primary property a∈Ω  is the fact that it can’t be represented by the Boolean 
function of the remaining primary properties. The Boolean algebraic structure of analyzed proper properties is:  

( ) , , ,p CΒΑ Ω ∩ ∪ . 

      Any element ( )pϕ∈ΒΑ Ω of finite Boolean algebra of proper properties can be uniquely represented by 
the following disjunctive canonical form: 

( )
( ) ( ).

S

S Sϕϕ σ α
∈Ρ Ω

= U  

Where: 
( ) ( )(

\

,
i j

i j
a S a S

S a Ca Sα
∈ ∈Ω

= I I )∈Ρ Ω ; is atomic property, atomic element of ( )ΩΒΑp ; 

( ) ( )(,S S Pϕσ ∈ Ω ) ; is structure of analyzed property ( )pϕ∈ΒΑ Ω .  

      Structure of any property ( )p∈ΒΑ Ωϕ  is given by the following set function:  

( ) ( )
( ) ( )( )1,

; .
0,

S
S S

Sϕ

α ϕ
σ

α ϕ
⎧ ⊂⎪= ∈⎨ ⊄⎪⎩

Ρ Ω  

      Fundamental structure’s characteristic is the principle of structural functionality2: Structure of any com-
bined property (element of Boolean algebra of analyzed properties) can be directly calculated on the basis of 
structures of its components by the following rules: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ).,

,

,

SSSS

SSS

SSS

C Ρ∈¬=

∧=

∨=

∩

∪

ϕϕ

ψϕψϕ

ψϕψϕ

σσ

σσσ

σσσ

 

                                                           
1 or Boolean properties – unary  relations 
2 Famous principle of truth functionality on value level is only the figure of value irrelevant principle of structural function-

ality and it is valid only for two-valued case.  
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Where:  ¬   unary and ∧∨,  binary classical two-valued Boolean operators.  
      Structures of primary properties are given by the following set functions:  

( ) ( )( )1,
; ,

0,i

i
a i

i

a S
S S

a S
∈⎧

= ∈Ρ Ω⎨ ∉⎩
σ a ∈Ω . 

Generalized Boolean polynomials uniquely correspond to elements of Boolean algebra of analyzed proper-
ties – generators of R-sets. R-characteristic function of any R-set is its generalized Boolean polynomial. 

Atomic R-set ( )Sα⊗  is the value realization of corresponding atomic property ( ) ( )( ΩΡ∈SS , )α  on ana-

lyzed universe of discourses . R-characteristic function Χ ( ) [ ]: 0,Sα⊗ Χ→ 1  of any atomic R-set 

( ) ( )( )S , S⊗α ∈Ρ Ω is defined by corresponding atomic generalized Boolean polynomial, [6]:  

( )( ) ( )
( )

( ) ( )( )
\

1 , ,
i

K
i

A K SK S

S x A x S xα⊗

∈ ∪∈Ρ Ω

= − ∈Ρ Ω ∈∑ ⊗ Χ  . 

Example: Atomic Boolean polynomials – atomic R-characteristic function for the case when the set of primary 
properties is  , are given in the following table: { },a bΩ =

S  ( )Sα  ( )( )S xα⊗  
∅  Ca Cb∩  ( ) ( ) ( ) ( )1 A x B x A x B x− − + ⊗  

{ }a  a Cb∩  ( ) ( ) ( )A x A x B x− ⊗  

{ }b  Ca b∩  ( ) ( ) ( )B x A x B x− ⊗  

{ },a b  a b∩  ( ) ( )A x B x⊗  

      The intensity of analyzed property ( )p∈ΒΑ Ωϕ  for any element of the universe of discourses x∈Χ is 
given by corresponding generalized Boolean polynomial, (fig 2.): 

( ) ( )
( )

( ) ( ) ( )( ), ,
S

x S S x S xϕϕ σ α⊗ ⊗

∈Ρ Ω

= ∈∑ Ρ Ω ∈Χ . 

R-characteristic function of ( )p∈ΒΑ Ωϕ  (generalized Boolean polynomial) can be represented as a scalar 
product of two vectors:  

( ) ( ) ( )x S xϕϕ σ α⊗ ⊗=
rr . 

( ) ( )[ ]ΩΡ∈= SSϕϕ σσ
r

  and ( ) ( )( ) ( )x S x Sα α⊗ ⊗⎡= ∈⎣
r r ⎤Ρ Ω ⎦  are structure vector of ϕ  and vector of atomic 

R-characteristic functions, respectively. 
       R-set, generated by any property ( )p∈ΒΑ Ωϕ , can be represented as the union of relevant atomic sets:  

( ) ( )
( )S

S Sϕϕ σ α⊗ ⊗

∈Ρ Ω

= U . 

       Structures of proper properties preserve the value irrelevant characteristics of R-sets, actually their Boo-
lean nature (Boolean axioms and theorems).  
      In generalized Boolean polynomials there figure two standard arithmetic operators + and –; and, as a third, 
a generalized product   [6]. Generalized product is any function ⊗ [ ] [ ] [ ]: 0, 1 0, 1 0, 1⊗ × →  that satisfies all 
four conditions of T-norms [7]: Commutativity, Associativity, Monotonicity and Boundary conditions  plus one 
additional: Non-negativity condition:   

( )
( )\

1 0,
i

K v
i

a K SK S

a
∈ ∪∈Ρ Ω

− ≥∑ ⊗       ( { } ( ) [ ])1,0,,,..,1 ∈ΩΡ∈=Ω v
in aSaa  

The additional axiom “non-negativity” ensures that the values of atomic Boolean polynomials are non-
negative: ( )( ) ( )( )0S x , S , x .⊗α ≥ ∈ ∈Ρ Ω Χ     

Comment: A generalized product for R-sets is just an arithmetic operator; T-norm in fuzzy sets has the role of 
set algebraic operator.  
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Example: In the case { }ba,=Ω the generalized product, according to the axioms of non-negativity can be in 
the following interval3: 

 ( ) ( )bababa ,min0,1max ≤⊗≤−+ . 
R-partition [6] is a consistent generalization of classical sets partition (fig 3.). The collection of atomic R-

sets ( ) ( ){ S S⊗α ∈Ρ Ω }  is R-partition of analyzed universe of discourses Χ , since: 

(a) atomic sets are pairwise mutually exclusive:  

( ) ( ) ( ) ( ) ( )( )( )
1
0

i
i j i j

, i jS , i j
S S ; S S x

, i j, i j

⊗
⊗ ⊗ ⊗ ⊗⎛ =⎧α = ⎧

α ∩α = α ∩α =⎜ ⎟⎨ ⎨ ≠∅ ≠ ⎩⎩ ⎝ ⎠

⎞

.

, 

and (b) they cover the universe :  Χ

( )
( )

( )( )
( )

( )1
SS

S ; S x ; x⊗ ⊗

∈∈

⎛ ⎞
α = α = ∈⎜ ⎟⎜ ⎟

⎝ ⎠
∑U
Ρ ΩΡ Ω

Χ Χ •

In the case of classical sets there is one additional constraint:  any element of universe of discourses x∈Χ  
belongs to only one classical atomic set ( ) ( )( ),S Sα ∈Ρ Ω :  

( )( ) ( )( ) ( )( )1 0, , ,i j j i i jS x S x S S S Sα α= ⇒ = ≠ ∈Ρ Ω . .   

3. Real probability (R-probability)4

If a certain event is the universe of discoursesΧ , then any R-set as a subset of the universe of discourses de-
fines a random R-event.  

The atomic property ( )Sα generates on the universe of discourses an atomic R-set  ( ) ( )( ),S Sα⊗ ∈Ρ Ω  

and/or a random R-event. R-probability of atomic random R-event ( )( )P Sα⊗  is a mathematical expectation 

of the R-characteristic function value of a corresponding atomic R-set and/or of the value of a corresponding 
generalized atomic Boolean polynomial.  R-atomic probability in a continual case is given by:    

( )( ) ( )( ) ( ) ( )( ),
x X

P S S x p x dx Sα α⊗ ⊗

∈

= ∈Ρ Ω∫ , 

and in a discrete case by: 
( )( ) ( )( ) ( ) ( )( ), .

i

i i
x X

P S S x p x Sα α⊗ ⊗

∈

= ∈Ρ Ω∑  

( )p x is classic probability distribution function ( ( ) 1
x

p x dx
∈

=∫
Χ

or ( ) 1
i

i
x

p x .
∈

=∑
Χ

). 

      The sum of R-probabilities of atomic random R-events is identical to 1:  
( )( )

( )
1

S

P Sα⊗

∈Ρ Ω

=∑ .  

since collection of atomic R-events ( ) ( ){ }S Sα⊗ ∈Ρ Ω  is R-partition of universe of discourses (certain 

event) . Χ
      R-probability of any random R-event is equal to the sum of R-probabilities of atomic random R-events, 
which are included in it:   

( ) ( ) ( )( )
( )S

P S P⊗ ⊗
ϕ

∈

ϕ = σ α S∑
Ρ Ω

 

      Additivity is the principle of R-probability5 as in the case of classical probability: 

                                                           
3 For 3≥Ω ( 0,1max −+ ba )  is not low bound of feasible interval for generalized product.  
• Element of universe of discourses, in general case can be in more then one atomic R-sets, so that the sum of values of 

corresponding R-characteristic functions is identically equal to 1.   
4 R-probability is realization of fuzzy probability idea [2] in Boolean frame. 
5 This is not valid in fuzzy probability case. 

 93



( ) ( )
( )

( ) ( )( )
( )SS

P S S S P S⊗ ⊗
ϕ ϕ

∈∈

⎛ ⎞
σ α = σ α⎜ ⎟⎜ ⎟

⎝ ⎠
∑U
Ρ ΩΡ Ω

. 

      R-probability of any random R-event can be represented as the scalar product of two vectors:  
( ) ( ) ( )( ),P P BAϕϕ σ α ϕ⊗ ⊗ ⊗= ∈ Ω

rr
. 

where:  ( ) ( )( ) ( )
T

P P S Sα α⊗ ⊗⎡= ∈Ρ⎣
r

⎤Ω ⎦ is vector of atomic random R-event R-probabilities and ϕσ
r

 is 

structural vector of ( )p∈ΒΑ Ωϕ .   

      The following identities of R-probability are valid for any two ( ), p∈ΒΑ Ωϕ ψ   proper properties inde-
pendently of a chosen generalized product :  ⊗

( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( )1c

P P

P P

P P

⊗ ⊗
ϕ ψ

⊗ ⊗
ϕ ψ

⊗ ⊗

ϕ∪ψ = σ ∨ σ α

ϕ∩ψ = σ ∧σ α

ϕ = − ϕ

rr r

rr r  

As a consequence, independently of a chosen generalized product and for an arbitrary universe of discourses, 
all Boolean laws are valid, for example for any ( )ΩΒΑ∈ pϕ : 

( )( ) ( )( )
( )( ) ( ) ( )( ) ( )

0 1P C , P C ;

P P , P P

⊗ ⊗

⊗ ⊗⊗ ⊗

ϕ∩ ϕ = ϕ∪ ϕ =

.ϕ∩ϕ = ϕ ϕ∪ϕ = ϕ
 

4   Conclusions 
      In this paper we introduce Real probability (R-probability). R-probability is based on Real sets (R-sets) as 
classical probability is based on classical sets, (fig 1.). Any element of R-set has generic property by intensity 
or gradation just as a fuzzy set has. A proper property generates an R-set on the universe of discourses. Value 
irrelevant characteristics of proper properties are: Boolean axioms and laws.  A set of analyzed proper proper-
ties is Boolean algebra of properties. Every element of Boolean algebra of properties can be uniquely repre-
sented by a generalized Boolean polynomial (GBP). GBP is an R-characteristic function of a corresponding 
R-set, (fig 2). As a consequence all laws of classical set theory are preserved in R-sets and/or by R-sets the idea 
of fuzzy sets is realized in a Boolean frame, (fig 3).  In R-probability a random R-event is defined by an R-set. 
The probability of random R-event is the mathematical expectation of its R-characteristic function value.  
Since both R-sets and classical sets are in the Boolean frame, it follows that R-probability is in the Boolean 
frame just as classical probability also is.  
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Fig 1: Hasse diagram of Boolean algebra of classical sets generated by two primary sets {A, B} 

Fig 2: Hasse diagram of R-characteristic functions of Boolean algebra of R-sets generated by two pri-
mary R-sets {A, B}

Fig 3: Hasse diagram of Boolean algebra of R-sets generated by two primary R-sets 
{A, B} using min function as generalized product ⊗   
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Information theoretic model for possibility distributions is usually based on U-uncertainty. For as-
signment π = (p1, . . . , pn) we first form its descending rearrangement p↓1 ≥ p↓2 ≥ . . . and define

U(π) = ∑(p↓i − p↓i+1) log i.

This function has been justified, invariably, on the basis of its axiomatic properties. It satisfies all the
same ‘universal’ properties for possibilities as Shannon entropy would for probabilities - additivity,
subadditivity and symmetry. Term ‘universal’ is meant to refer to category theory language where the
notions of product, projection and like can be given such a formulation. Related to U-uncertainty is
a family of information distances, one of which is a complete metric on the space of all possibility
distributions (on a given domain).

Entropy for probabilities has several communication interpretations. In the first part of the paper
we introduce a notion of acceptability of a choice and propose that U-uncertainty expresses the aver-
age complexity of communicating such a choice - it gives the expected length of a minimal necessary
message.

In probabilistic modeling, entropy can be extended to recognise the situations when the output
symbols are confusable. The most useful is graph entropy proposed by Körner on communication-
theoretic grounds. Although the original definition is nonconstructive, it is equivalent to several fini-
tary presentations. It has been used firstly to resolve several questions of zero-error communications.
It was later applied to obtain tight lower bounds for sorting of partially ordered sets, both in classical
and quantum settings.

The author proposed that it be used to model imaging in probability kinematics: it is a gener-
alisation (proposed by several philosophers) to modify conditioning by allowing a nonproportional
probability transfer. Given a graph G = (V,E) and probability P on V , pi = P(vi), we first look for
the set I = {I1, . . . , Im} of maximal independent subsets of G. (Ik ⊆V is independent if it contains no
edge from E.) Let Q be a probability distribution on I ; we define plausibility of vi wrt Q

PlQ(vi) = ∑
Ik3vk

Q(Ik).

We now define graph entropy of P wrt G

H(P;G) = min
Q
−∑ pi logPlQ(vi).

Several instances of belief transfer can be described as minimal change wrt a suitable graph entropies
and their associated information divergences. It also serves to resolve successfully the so-called ‘Pri-
vate Benjamin problem’, posed by van Fraasen. We discuss these topics in the second part of the
paper.

The last part demonstrates how to carry out a similar program for possibility assignments. We
extend the notion of U-uncertainty to U(π;G), where a graph structure is present on the elements of
support of pi. Independent sets of G serve to model the (partial) indistinguishability of of the elements,

96



thus of acceptability of choices they represent. We follow by defining graph possibility distance and
analyse its properties.

One of the applications is to the question of defining conditional possibility assignment. The
author proposed earlier a solution based on the standard U-uncertainty. Other, very attractive methods
have been proposed. We show that they can be interpreted as minimal change under a suitable graph
possibility.

We close by discussing several open problems and further applications.
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1 Introduction

In many natural problems several are the random variables that play a significant role, and such vari-
ates are generally not independent. For instance, the following hydrological examples are paradig-
matic of situations that can be found in many geophysical phenomena: different combinations of
rainfall intensity and storm duration may generate storms showing quite different characteristics; the
river management may strongly depend upon the joint features of flood peak and flood volume; the
characterization of droughts requires the joint analysis of duration-magnitude-intensity, and so on.

Therefore, it is often of fundamental importance to be able to link the marginal distributions of
different variables in order to obtain a joint law describing the main features of natural events. In gen-
eral, the development of multivariate probability models (and, in particular, of multivariate Extreme
Value distributions) has been limited by mathematical difficulties in generating consistent joint laws
with ad hoc marginals. Recently, the advent of Copulas has solved many of these problems.

In this work we present some recent advances in hydrological modeling which exploit copulas.
An application to hydrological data is shown. As a global reference, both on the theoretical and the
practical side, the reader is invited to consult [1].

2 The temporal structure of storms

The standard approach to event-based rainfall representation makes a distinction between an “exterior”
and an “interior” process. The former one is a coarse representation of rainfall, which characterizes
the arrival, duration and average intensity of rainfall events at the synoptic scale. The latter one de-
scribes the detailed fluctuations of rainfall intensity at subsynoptic scales. Here we concentrate on the
“exterior” process.

The rainfall measurements analysed consist of seven years of hourly rainfall depth measurements
collected at the Scoffera station, located in the Bisagno river basin (Thyrrhenian Liguria, Northwestern
Italy). We use a non-rainy period lasting (at least) 7 hours to separate two successive storms. In turn,
a sequence of 691 storms can be identified and extracted from the data base. For each storm four
variables of interest are calculated: (1) the storm (average) intensity I (in mm/h); (2) the storm wet
duration W (in hours); (3) the storm dry duration D (in hours) defining the non-rainy period between
a storm and the following one; (4) the storm volume V = IW (in mm). The analysis of the data is
carried out studying each of the four seasons separately.

Thus, a storm observation is simply given by the three-components vector (I,W,D). The r.v.’s
I,W,D are usually taken as independent, and quite often are given distributions such as Exponen-
tial’s, Gamma’s, or Weibull’s: this considerably reduces the mathematical complexity of the model.
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However, none of these assumptions are consistent with the data analysed here. In fact, on the one
hand a heavy-tailed Generalized Pareto (GP) law well fits the observed rainfall data I,W,D. On the
other hand, a study of the pairwise degree of association between I,W,D makes it evident how these
variables are non-independent.

Given the empirical evidence that I,W,D could be non-independent, the problem is how to for-
malize this fact into a mathematical model. Here we take advantage of the opportunities offered by
Copulas. Under the (elementary) conditions of Sklar’s Theorem, the three bivariate distributions FIW ,
FID, and FWD of, respectively, the pairs (I,W ), (I,D), and (W,D) can be written in terms of suitable
2-copulas CIW , CID, and CWD:

FIW (i,w) = CIW (FI(i),FW (w)) , (1)

FID(i,d) = CID (FI(i),FD(d)) , (2)

FWD(w,d) = CWD (FW (w),FD(d)) . (3)

Actually, the theory of copulas offers even more possibilities. In fact, the joint law FIWD of the storm
vector (I,W,D) can be written as

FIWD(i,w,d) = CIWD (FI(i),FW (w),FD(d)) , (4)

where the function CIWD : [0,1]3 → [0,1] represents the 3-copula linking the marginals FI,FW ,FD :
R→ [0,1] of the three r.v.’s I,W,D. Evidently, Eq. (4) gives the trivariate distribution function FIWD.
In particular, the 3-copula CIWD could be used to link the three 2-copulas given above:

CIWD ∼ CIWD (CIW ,CID,CWD) . (5)

This approach has several advantages. On the one hand, it may be more appropriate to consider a
link between bivariate copulas (instead of univariate marginals). On the other hand, the (marginal)
stochastic dynamics of the random vectors (I,W ) and (W,D) provide the fundamental information
for deriving the statistical laws of interest. Note how standard models, involving independent r.v.’s
I,W,D, are simple particular cases of the present approach. In fact, consider the 2-copula Π2(r,s) = rs
describing pairs of independent r.v.’s. Then, it is enough to replace some of the three 2-copulas in
Eq. (5) for Π2 to obtain the desired model. Furthermore, should I,W,D be fully independent, then the
independence 3-copula Π3(r,s, t) = rst could be used directly.

Let us consider the vectors (I,W ), (I,D), and (W,D). Several families of 2-copulas were con-
sidered to fit the joint distributions FIW , FID, and FWD. Among many others tested, the 2-copulas
belonging to the Frank’s family provide a valuable fit to the available data, for all the pairs (I,W ),
(I,D), (W,D), and the four seasons. Using the values of Kendall’s τ estimated on the observed rain-
fall data, it is easy to write explicitly the distribution functions FIW ,FID,FWD via Eq.s (1)–(3). It is
important to point out that such a procedure is distribution-free, since it does not depend upon the
knowledge of the marginal laws of I,W,D: therefore, it can be carried out before providing a specific
statistical distribution for the variables considered.

A final important point concerns the structure of the 3-copula CIWD. Note that CIWD represents the
mathematical kernel for simulating a sequence of three-components vectors (I,W,D)’s, representing
the temporal dynamics of the storms. Among many possible choices, the following function is chosen:

CIWD(r,s, t) = t CIW

(
CID(r, t)

t
,
CWD(s, t)

t

)
, (6)

where r,s, t ∈ [0,1]. This 3-copula has a particularly simple and appealing structure, as explained in the
following. It is easy to check that CIWD has three two-dimensional marginals given by the 2-copulas
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CIW ,CID,CWD. Should any of the three pairs (I,W ), (I,D), and (W,D) be formed by independent
variables (with 2-copula Π2), then the expression of CIWD would further simplify. It is also quite
interesting to note how in Eq. (6) the two arguments of CIW (which rules the joint behavior of (I,W ))
are themselves 2-copulas which control, respectively, the pairwise dynamics of (I,D) and (W,D). The
parameters of CIWD are only those of its three marginal 2-copulas CIW ,CID,CWD, and hence no further
estimations are required to fit CIWD on the available measurements. In order to check whether this 3-
copula is suitable for modeling the available data, a χ2 test is performed. As a result, an empirically
acceptable agreement between the theoretical distribution FIWD given by Eq. (4) and the available
observations is found for all seasons.

3 The storm volume

Here we outline how to derive the distribution of the storm volume V = IW by using copulas: a
general solution to the problem is given, and we show how to calculate FV for any suitable 2-copula
CIW and marginals FI,FW . Most importantly, these techniques have a broad application in many areas,
as illustrated below.

Let us set up the problem in a general framework. Suppose that the distribution function FZ(z) =
P{Z ≤ z} has to be calculated, where Z = h(X ,Y ) for some suitable function h. Here the r.v.’s X ,Y
have continuous and strictly increasing marginals FX ,FY and copula CXY . Also, let (R,S) be a random
vector, where R,S have uniform marginals on [0,1] and joint distribution FRS ∼ CXY . Via the Proba-
bility Integral Transform and the invariance property of copulas, the statistical behavior of (X ,Y ), and
hence of Z, can be modeled as a function of (R,S). In fact:

P{Z ≤ z} = P{h(X ,Y )≤ z}
= P

{
h
(
F−1

X (R),F−1
Y (S)

)
≤ z

}
= P{g(R,S)≤ z} , (7)

for some suitable function g. An equivalent formulation can be given in terms of conditional proba-
bilities:

P{Z ≤ z}=
Z 1

0
P

{
g(R,S)≤ z

∣∣ S = s
}

ds, (8)

since S is uniform on [0,1]. Note that z simply plays the role of a parameter in the integral above. Now,
suppose that the inequality g(R,S) ≤ z can be re-written as R ≤ gz(S), for some suitable function gz

(see, e.g., the illustration below). Now, a general result for copulas states that

ψs(r) = P
{

R≤ r
∣∣ S = s

}
=

∂

∂s
CXY (r,s) , (9)

which exists and is non-decreasing almost everywhere in [0,1]. Note that ψs is a probability, and
therefore it belongs to [0,1]. Finally we may write

FZ(z) =
Z 1

0
P

{
R≤ gz(S)

∣∣ S = s
}

ds

=
Z 1

0
ψs(gz(s))ds. (10)

As an important result, the calculation of FZ reduces to a one-dimensional integration over [0,1], much
easier (theoretically and computationally) than the two-dimensional integration required by standard
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probabilistic techniques. In some cases the last integral can be solved explicitly, while in general a
numerical approach is needed.

As a practical application, let us consider the calculation of the distribution function FV (v) =
P{V ≤ v} of the storm volume V = h(I,W ) = IW . For fixed v > 0, we may write

P{V ≤ v} = P{IW ≤ v}
= P

{
F−1

I (R)F−1
W (S)≤ v

}
= P{R≤ gv(S)} , (11)

where the function
gv(s) = FI

(
v/F−1

W (s)
)

(12)

is monotonous and continuous on the compact subset [0,1], ranges in [0,1], and is bounded and inte-
grable w.r.t. s on the unit interval. Then, FV can be calculated via Eq. (10), simply by replacing Z for V
and CXY for CIW . Considering the rainfall measurements collected at the Scoffera station, the compar-
ison between the empirical distribution FV and the corresponding theoretical expression (as calculated
above) shows that in all cases the agreement is impressive over all the wide range considered — for
the available data V takes on values in the interval 0–500 mm.
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This year’s Linz Seminar on Fuzzy Set Theory is entitled ”Fuzzy Sets, Probabilities, and Statistics
— Gaps and Bridges”. It is remarkable that since the introduction of statistical, later on, called prob-
abilistic metric spaces, by Menger (see [5], but also [7, 8]), the investigations in these fields yielded
particular operations and important results which are related to at least two of the aspects mentioned
before — namely fuzzy sets and probabilities. Whereas the first one is inevitably connected to tri-
angular norms, an indispensable tool for modelling their conjunction in this many-valued framework
(see also [1–4]), the second field relates to copulas (see also [6]). A class of operations which are
essential, due to Sklar’s theorem [9], in the fields of joint distribution functions with given marginals
and completely bearing the dependence structure of the related underlying margins.

However, probabilistic metric spaces are also inconceivable without another class of operations,
namely triangle functions. They are particularly important in the generalization of the triangle inequal-
ity of metric spaces to probabilistic metric spaces and are as such an operation on the set of (distance)
distribution functions. Moreover, several types of triangle functions relate to triangular norms and
copulas and as such build another bridge between those two areas.

A triangle function is a binary operation on the set ∆+ of distributions functions F satisfying the
condition F(0) = 0, that is commutative, associative, and non-decreasing in each place and has ε0 as
identity. Explicitly a triangle function τ satisfies the following conditions, for all F , G and H in ∆+:

(TF1) τ(τ(F,G),H) = τ(F,τ(G,H));
(TF2) τ(F,G) = τ(G,F);
(TF3) if F ≤ G, then both τ(F,H)≤ τ(G,H) and τ(H,F)≤ τ(H,G);
(TF4) τ(ε0,F) = τ(F,ε0) = F .

Particularly, we will focus on the following various families of triangle functions:

– the pointwise induced triangle functions; and we study also the connection with aggregation op-
erators;

– the triangle functions of the type τT,L:

τT,L(F,G)(x) = sup{T (F(u),G(v)) | L(u,v) = x},

where T is a t-norm and L a binary operation on R+;
– the triangle functions of the type τT ∗,L:

τT ∗,L(F,G)(x) = inf{T ∗(F(u),G(v)) | L(u,v) = x},

where T ∗ is the t-conorm of a t-norm T ;
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– the triangle functions of the type σC,L:

σC,L(F,G)(x) :=
Z

{(u,v):L(u,v)<x}

dC(F(u),G(v));

where C is a copula belonging to a subset characterized by Frank. These triangle functions include
the classical convolution of distribution functions and have a clear probabilistic meaning.

– the triangle functions of the type ρQ,L:

ρQ,L(F,G)(x) = inf{Q(F(u),G(v)) | L(u,v) = x}

where Q is a quasi-copula and Q is defined by Q(x,y) := x+ y−Q(x,y).

The aim of the presentation is therefore not just to go back to the roots and to recall the very
basic concepts but in particular to reconceive them in light of recent results in the fields of triangular
norms, (quasi-)copulas as well as aggregation operators and as such provide new perspectives for
future investigations.
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1 Introduction

In the framework of the interpretation of fuzzy theory in terms of coherent conditional probability, as
given by Coletti & Scozzafava (see, e.g., [3, 4]), we deal with binary fuzzy relations (e.g., inclusion,
similarity, etc.). Some preliminary results have been presented in [2].

Consider the following (classic) example: if X is a numerical quantity and ϕX is the property
“small”, for You the membership function µ(x) may be put equal to 1 for values x of X less than a
given x1, while it is put equal to 0 for values greater than x2 ; then it is taken as decreasing from 1 to 0
in the interval from x1 to x2 . This choice of the membership function implies that, for You, elements
of the range CX of X less than x1 have the property ϕX , while those greater than x2 do not. So the real
problem is that You are doubtful (and then uncertain) on having or not the property ϕX those elements
of CX between x1 and x2 . Then the interest is in fact directed toward conditional events such as Eϕ|Ax,
where Ax = {X = x}, and x ranges over the interval from x1 to x2 , with

Eϕ={You claim (that X has) the property ϕX}.

In other words, we identify the values of the membership function µ(x) with suitable conditional
probabilities. Notice that this conditional probability P(Eϕ|Ax) is directly introduced as a function on
a set of conditional events (and without assuming any given algebraic structure). Is that possible? In the
usual (Kolmorogovian) approach to conditional probability the answer is NO, since the introduction
of P(Eϕ|Ax) would require the consideration (and the assessment) of P(Eϕ∧Ax) and P(Ax) (assuming
positivity of the latter).

These problems are easily by–passed in our framework based on coherent conditional probability.
For the sake of brevity, we just mention that a coherent conditional probability on an arbitrary family
C can be characterized by suitably representing it (in any finite subset F of C ) by means of a class
{Pα} of coherent unconditional probabilities giving rise to the so-called zero-layers (indexed by α ):
we refer to [4] (p.81) for this theory.

For the formal definitions concerning fuzzy sets through coherent conditional probability, see
[3]. We are able not only to define fuzzy subsets, but also to introduce in a very natural way the
counterparts of the basic continuous T -norms and the corresponding dual T -conorms, bound to the
former by coherence. In this framework, we will introduce some specific binary fuzzy relations.

2 Fuzzy Inclusion

Let F (CX) be the family of fuzzy subsets, i.e. the set of pairs {Eπ,µEπ
} where µEπ

is defined on CX

and µEπ
(·) = P(Eπ|·) is a coherent conditional probability.

Consider now any two fuzzy subsets E∗
ϕ = (Eϕ,µEϕ

) , E∗
ψ = (Eψ,µEψ

) of CX .
Thus, since the assessment P(·|·) defined on the following set of conditional events C = {Eϕ|Ax , Eψ|Ax :
Ax ∈CX} is coherent, it can be extended (preserving coherence) to any set D ⊃ C .
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So we define degree of fuzzy inclusion a function

I : F (CX)×F (CX)→ [0,1]

with
I(E∗

ϕ,E∗
ψ) = P

(
Eψ|(Eϕ∨Eψ)

)
,

obtained as any coherent extension of P(·|·) to the conditional event Eψ|(Eϕ∨Eψ).
The existence of such a function is warranted by a fundamental extension Theorem for coherent

conditional probabilities ([4]). The semantic behind this choice is the following: “the more” E∗
ϕ is

included in E∗
ψ, “the more” if You claim at least one of the two corresponding properties You are

willing to claim the property ψ.
In the case of crisp sets we obtain that fuzzy inclusion holds with degree 1: in fact, if A ⊆ B, then

P(B|A∨B) = P(B|B) = 1. However, even in the crisp case, the fact that P(E|E ∨F) = 1 does not
imply that F ⊆ E. Notice that in the crisp case we have that inclusion is reflexive, i.e. any set A is such
that A ⊆ A.

As far as fuzzy inclusion is concerned, we have that any fuzzy set E∗
ψ is included in itself with

degree I(E∗
ψ,E∗

ψ) = 1, so also fuzzy inclusion is necessarily reflexive.
An interesting property of the degree of fuzzy inclusion of E∗

ψ in E∗
ϕ (and that of inclusion of E∗

ϕ

in E∗
ψ) is given by the following inequality

I(E∗
ψ,E∗

ϕ)≥ 1− I(E∗
ϕ,E∗

ψ), (1)

an easy consequence of an elementary property of conditional probability.
To compute I(E∗

ψ,E∗
ϕ), notice that, given µϕ(·) = P(Eϕ|·) and µψ(·) = P(Eψ|·) defined on CX , we

can find also the membership function µϕ∪ψ(·) of (E∗
ψ∪E∗

ϕ) as coherent extension of the assessment P
given on {Eψ|Ax , Eϕ|Ax : Ax ∈CX} (corresponding to a t-conorm: see [3]). Then, given a conditional
probability P(·|·) on AX ×Ao

X (with AX the algebra generated by the events Ax and Ao
X = AX \{ /0}), it

gives rise to a class {Pα} of coherent (unconditional) probabilities, and so (for simplicity we refer to
a finite CX )

I(E∗
ψ,E∗

ϕ) =
∑x µϕ(x)Pα(x)

∑x µϕ∪ψ(x)Pα(x)
,

where α is the zero-layer of the event Eψ∨Eϕ (i.e., it is such that the denominator of the above fraction
is strictly greater than zero, see [4]).

A possible requirement for inclusion could be some (weak) form of transitivity (many definitions
in the relevant literature lack this property). In fact, a strong form of transitivity, based on the minimum
t-norm (and called min-transitivity), requires that for any E∗

ψ,E∗
ϕ,E∗

ν ∈ F (CX)

I(E∗
ψ,E∗

ν)≥ min
{

I(E∗
ψ,E∗

ϕ), I(E∗
ϕ,E∗

ν)
}

and different authors maintain that it is a too strong requirement: our definition of degree of fuzzy in-
clusion does not necessarily satisfy min-transitivity, while a weaker form of transitivity, Łukasiewicz-
transitivity, holds, in fact for any E∗

ϕ,E∗
ψ,E∗

ν ∈ L(CX)

I(E∗
ϕ,E∗

ψ)≥ max{I(E∗
ϕ,E∗

ν)+ I(E∗
ν ,E∗

ψ)−1,0} .

Then in our setting the degree of fuzzy inclusion can be called weakly transitive.
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3 Similarity

In [2] similarity has been introduced, on the basis of the interpretation of fuzzy sets within the theory
of coherent conditional probabilities, in the following way.

Let F (CX) be the family of fuzzy subsets E∗
π of CX . A similarity S is a mapping

S : F (CX)×F (CX)−→ [0,1]

satisfying

1. (Symmetry) S(E∗
ϕ,E∗

ψ) = S(E∗
ψ,E∗

ϕ);

2. (Reflexivity) S(E∗
ϕ,E∗

ϕ) = 1.

Then, given any two fuzzy subsets E∗
ϕ = (Eϕ,µEϕ

) , E∗
ψ = (Eψ,µEψ

) of CX , with µEϕ
(·) = P(Eϕ|·)

(and analogously for ψ), let P
(
(Eϕ ∧Eψ|Ax)

)
be a relevant coherent assessment (corresponding to

a “T -norm”) and the associate coherent assessment P
(
(Eϕ ∨ Eψ)|Ax

)
(corresponding to a dual t-

conorm). Any coherent extension of P(·|·) to the conditional event (Eϕ∧Eψ)|(Eϕ∨Eψ) is a similarity,
i.e.

S(E∗
ϕ,E∗

ψ) = P
(
(Eϕ∧Eψ)|(Eϕ∨Eψ)

)
.

The existence of such a function is warranted by the aforementioned extension Theorem for coherent
conditional probabilities.

The semantic behind this choice is the following: “the more” two fuzzy subsets are considered to
be similar, “the more” if You claim at least one of the two corresponding properties You are willing
to claim both properties.

Now we show how to compute S(E∗
ϕ,E∗

ψ): given µϕ(·) = P(Eϕ|·) and µψ(·) = P(Eψ|·), the mem-
bership functions µϕ∪ψ(·) and µϕ∩ψ(·) of the fuzzy sets (E∗

ψ ∪E∗
ϕ) and (E∗

ψ ∩E∗
ϕ) (corresponding to

a t-conorm and a dual t-norm, see [3]) arise as coherent extensions of the assessment P given on
{Eψ|Ax , Eϕ|Ax : Ax ∈CX} .
Given a conditional probability P(·|·) on AX ×Ao

X (which gives rise to a class {Pα} of coherent prob-
abilities), we have (for simplicity we refer to a finite CX )

S(E∗
ϕ,E∗

ϕ) =
∑x µϕ∩ψ(x)λα(x)
∑x µϕ∪ψ(x)λα(x)

where λα(x) = Pα(Ax), with α the zero-layer of the event Eψ∨Eϕ.
Notice that (contrary to what happens in the classic fuzzy framework) this approach to similarity

is able to take into account – through the probability values λα(x) – possible different “weights” of
the values x.

We show now how some classic similarity functions (the most used in applications and proposed
in the relevant literature, see, e.g. [1, 5]) are related to the above formula involving conditional proba-
bility.

By choosing as t-norm the minimum TM, we get

S(E∗
ϕ,E∗

ψ) =
∑x min

{
P(Eϕ|Ax),P(Eψ|Ax)

}
λα(x)

∑x max
{

P(Eϕ|Ax),P(Eψ|Ax)
}

λα(x)
.

For suitable choices of the probabilities λα(x), the classic similarity functions are obtained. For ex-
ample, taking a constant probability λα(x), we obtain

S(E∗
ϕ,E∗

ψ) =
∑x min

{
P(Eϕ|Ax),P(Eψ|Ax)

}
∑x max

{
P(Eϕ|Ax),P(Eψ|Ax)

} =
∑x min

{
µϕ(x),µψ(x)

}
∑x max

{
µϕ(x),µψ(x)

} ,
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which is a well–known similarity function.
The similarity S does not generally satisfy the T-transitivity property for some suitable t-norm (as

T = TM), however, the similarity S satisfies the T-transitivity property for T=TL (Łukasiewicz T-norm),
i.e.

S(E∗
ϕ,E∗

ψ)≥ max{0 , S(E∗
ϕ,E∗

ν)+S(E∗
ν ,E∗

ψ−1}

for any E∗
ϕ,E∗

ψ,E∗
ν ∈ L(CX).

The relationship between the degree of fuzzy inclusion and similarity is given through the fol-
lowing equality S(E∗

ϕ,E∗
ψ) = I(E∗

ϕ,E∗
ψ) + I(E∗

ψ,E∗
ϕ)− 1 , which implies that the degree of similarity

between two fuzzy sets E∗
ϕ and E∗

ψ depends on the degrees of the fuzzy inclusion of E∗
ϕ in E∗

ψ and that
of E∗

ψ in E∗
ϕ. Thus, if the degree γ of inclusion of E∗

ϕ in E∗
ψ and that of E∗

ψ in E∗
ϕ are equal (in this case

eq. (1) implies that γ ≥ 1
2 ), it follows that “the more” E∗

ϕ is included in E∗
ψ and E∗

ψ is included in E∗
ϕ,

“the more” the two fuzzy sets Eϕ and Eψ are similar.
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In this work, using categorical techniques, I will give a mathematical definition of law of chance. I will
also show that every proof in the multiplicative fragment of linear logic can be interpreted in a law of
chance (validity). Laws of chance are defined as time and uncertainty invariants. I believe that they can
give an interesting contribution to answer the following question: why is mathematics reliable? It is
a common opinion that even a partial answer to this question could give some insight to the problem
of the foundations of mathematics. There are many examples of the reliability of the mathematical
method in different theories and fields: for instance the existence of the planet Pluto has been foreseen
only on the basis of mathematical computations. Using the validity of the proof system the reliability
of reasoning (and I believe also of computing due to the Curry-Howard isomorphism) is a consequence
of the fact that these methods are based on the laws of chance. Such laws are satisfied by many
possible outcomes that have not yet been observed. In fact proofs, in this semantics, define infinite
sets of possible observables, while the available information is only finite. My claim is therefore
that mathematics is reliable because it is able to grasp some of these invariants that remain stable
also in the presence of the high variability of outcomes due to randomness. This aspect gives us the
possibility of defining non local rules (the ones of logic and computations) used to give meaning to
local observations (the ones available to us), i.e. rules that allow us to forecast what we have not yet
observed, like in the example of the discovery of Pluto.

A filtration is a family {Fn}n∈N of subalgebras of B (Boolean algebra) s.t. Fn ⊆ Fm if n ≤ m.
{Fn}n∈N is adapted for a stochastic process {Xn}n∈N iff Xn is Fn-measurable for every n. A trajectory,
or observable, of {Xn}n∈N is a finite set of outcomes: xn(ξ) = {Xi(ξ) : i ≤ n}. It is a well known fact
that all information contained in a stochastic process is described by its filtration. For this reason I
will assume that two stochastic processes that generate the same filtration are equivalent.

Definition 1. An experiment is defined as a stochastic process X = {Xn}n∈N with a method, σX , that
associates to every trajectory xn(ξ) a measure σX

xn(ξ) defined over F0.

I will indicate with |X | the set of all observables of X . For example in the case of independent pro-
cesses, the Glivenko-Catelli theorem gives a sound method to define experiments.

Experiments X and Y can be combined giving a compound experiment, here called product ex-
periment X ×Y . The idea is that the filtration associated to X ×Y is the intersection of the two fil-
trations, i.e. F X×Y = {F X

n ∩F Y
n }n∈ N and the method σX×Y is defined using the product measure of

σX and σY . Therefore X and Y are assumed to be independent experiments. An observable of X ×Y
can be described as a pair xy where x,y are observables of X and Y respectively. For the technical
details see [7]. If x ∈ |X | then n is length of x indicated with l(x). Note that if xy ∈ |X ×Y | then
l(x) = l(y). The logical language (multiplicative fragment with exponentials of Linear Logic [1]) is:
L := P|⊥|1|φ⊥|φ⊗ψ|φOψ|?φ|!φ. To give a stochastic semantics to logic the following is assumed: to
every atomic proposition P it is associated an experiment (indicated with P); the experiment associ-
ated to φ⊥ is the same as the one associated to φ; the experiment φ×ψ is associated to φ⊗ψ and φOψ.
The connectives are defined using the associated experiment and a relation of coherence (see below)
between the observables of the experiment. In statistics, a test is a method that is used to exclude a
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measure given a set of data. An example is the use of observations to test the efficiency of a treatment
in medicine. To this aim, the observations are used to exclude the measure that describes the fact that
the difference between the two expected values of the populations has mean 0 (usually called hypoth-
esis H0). Given two observations x and x′ of the experiment P, there are only two possibilities: 1) x′

can be used to confirm the empirical distribution of x, i.e. σP
x = σP

x′ . In this case I call x′ a statistic for x
(shortly x′ STATP x), 2) x′ can be used as a test against the empirical distribution of x, i.e. σP

x 6= σP
x′ . In

this case x′ is a test against x (shortly x′ T ESTP x). Note that xSTATPx′ iff not xT ESTPx′. Using these
ideas negation can be defined as: xSTATP⊥x′ iff ¬xSTATPx′∨ x = x′ where x = x′ is required to pre-
serve the fact that STAT is a symmetric relation. To see how the duality betweenT EST and STAT , in
compound experiments, generates the connectives, let me recall two properties of product measures.
1) If µ = λ×ν and µ′ = λ′×ν′ then µ = µ′ iff λ = λ′ and ν = ν′, therefore it also holds that µ 6= µ′ iff
λ 6= λ′ or ν 6= ν′. 2) A product measure µ×ν defined over B1×B2 can induce a measure (µ×ν)1 over
B1 or a measure (µ×ν)2 over B2. Using these properties, we can see that in a compound experiment
the STAT relation generates the (positive) connective ⊗ (that behaves like an and) while the T EST
relation generates a (negative) connective O (that behaves like an or). In fact, using the above proper-
ties, we have that: xySTATP⊗Qx′y′ iff σ

P×Q
xy = σ

P×Q
x′y′ iff (σP×Q

xy )1 = (σP×Q
x′y′ )1 and (σP×Q

xy )2 = (σP×Q
x′y′ )2

iff xSTATPx′ and ySTATQy′. Summing up from the above equations we obtain the definition of the
⊗ connective: xySTATP⊗Qx′y′ iff xSTATPx′and ySTATQy′ If we define, as usual, POQ = (P⊥⊗Q⊥)⊥

then from the duality STAT/T EST we obtain the second connective (or): xySTAT(POQ)x′y′∧xy 6= x′y′

iff (xSTATPx′∧ x 6= x′) or (ySTATQy′∧ y 6= y′). In [7] it is proved that the STAT relation satisfies the
properties that define the coherent relations in the denotational semantics of linear logic. Therefore it
is possible to prove the validity theorem i.e. every proof π of a formula φ can be interpreted in a set π∗

of coherent observables (called clique), i.e. for every pairs x,x′ ∈ π∗ it holds that xSTATφx′.
What is the meaning of this result?
The claim is that proofs, in this semantics, are chance and time invariants. To prove this claim we

must first give a mathematical definition of law of chance (that will be defined as a true formula in a
suitable topos of presheaves) and then show that every proof can be interpreted in a law of chance.
Let X1, ...Xn be the set of available experiments and X = X1× ...×Xn with x ∈ |X |.

Definition 2. The category T of time is defined as follows:

– the objects of T are the sets Axi = {σX
x : σX

x (ii(Bi)) = σXi
xi
∧ l(x)≥ l(xi)}, where xi ∈ |Xi|

– there is an arrow f : Ayi → Axi iff xi,yi ∈ |Xi|, l(yi)≥ l(xi) and σXi
xi

= σXi
yi

.

where ii : Bi → B is the immersion of Bi in B = Πi≤nBi, i.e. what in measure theory is called product
algebra (see [2]), indeed a co-product. Note the following simple fact: if f : B → A is an arrow of T
then B ⊆ A. In this mathematical framework every observable xi can be seen as a time point, where
two observables xi,yi characterize the same time point iff l(xi) = l(yi) and σXi

xi
= σXi

yi
. An arrow of

the category T links two observables xi and yi where yi comes after xi and the associated statistical
measures are equal. Here time has a more complicated structure w.r.t. the usual linear order of events.
This is due to the fact that this idea of time contains that of uncertainty. In fact the description of
uncertainty will stem as a natural consequence from a mathematical construction built on the category
of time, i.e. the topos of presheaves over T , where, as we will see, uncertainty will be described in
a natural way, without any ad hoc hypothesis. Nonetheless T contains, as a special case, the usual
definition of time. To see this, let 1 = {1n}n∈ N with 1n(ξ) = 1 for all n and ξ ∈ Ξ. Then the filtration
associated has all elements equal to {Ξ, /0}, the elements n ∈ |1| have the form n = 〈1,1, ...1〉 n-times
and the statistical measure is σ1

n(Ξ) = 1. It is easy to see that 1×X = X for every experiment and if
|1| is the coherent space associated to 1 then |1|⊗ |X | ' |X |. Note that 1 is what we usually call time
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or better linear time, measured by clocks. In fact a clock is nothing but an experiment that has only
one possible observable (i.e. time passing) that surely happens (till uncertainty comes into play i.e. the
clock, as a machine, breaks). Note that linear time is the witness of provability, in fact completeness
of linear logic w.r.t. phase semantics reads: ` φ iff 1 ∈ ||φ||.
Definition 3. T−Sets is the topos of presheaves over T
It is interesting to note that T−Sets contains a categorical definition of measure. To see this, note that
T−Sets has the following object, i.e. the contravariant functor R : T op → Sets, defined as:

1. R (A) = {k : A k→ R}, i.e., the set of all functions k from A to the set R of the usual real numbers,

2. for B
f→ A, R (A)

R ( f )−→ R (B) is the function that sends every g ∈ R (A) to g restricted to B.

Useful objects of T−Sets are the constant functors ∆S (where S is a set) defined as ∆S(A) = S for every
object A and ∆S( f ) = 1S (identity map) for every arrow f . In particular, we will consider ∆B , where
B is the Boolean algebra, and ∆R, where R is the set of real numbers. Using the internal language of
T−Sets, it is possible to prove that the elements of the constant presheaf ∆R satisfy the properties of
Dedekind cuts [3], hence we will take ∆R as the set of real numbers in T−Sets. Note that ∆R can be
embedded in R . In fact, for every usual real number r ∈ R, let prq ∈ R (A) be the function that sends
A to r, i.e., for every σX

x ∈ A, prq : σX
x 7−→ r, then ι∆R

: ∆R → R is defined, for all A, r ∈ ∆R(A), as
: ι∆R

A (r) = prq. When the context is clear, we will write r for the internal representation of the real
number r, i.e., r : 1→R defined for all A as rA(1(A)) = prq. Now we have a mathematical machinery
sufficient to give the categorical definition of measure. For every A, let PA be the function that sends
L ∈ ∆B(A) = B to the function pA ∈ R (A) that maps every σX

x ∈ A to σX
x (L). It is easy to see that the

family {PA}A object of U defines a natural transformation P : ∆B → R .

Definition 4. The natural transformation P : ∆B → R is called categorical measure.

The following lemma justifies the name given to the natural transformation P.

Lemma 1. For all A, P(L) = r is true in A, i.e. (P(L) = r)A(1(A)) = trueA, iff (∀σX
x ∈ A)(σX

x (L) = r)

In the internal language of T−Sets (for suitable T ), possibilistic, probabilistic and imprecise-proba-
bilistic reasoning have a valid and complete representation (see [4–6]).

Note that a proposition in T−Sets is a time invariant. In fact α : 1 → Ω is true in A (i.e. αA(?) =
maxA) iff α remains true in every B that comes after A (i.e. every B s.t. there exists f : B → A).
Moreover α = true iff α is uncertainty invariant, in fact it remains true in every informational state
A, i.e. whatever is the (unknown) measure that governs the process. Therefore the true formulae of
T−Sets define time and uncertainty invariant properties. The next task is to interpret proofs into true
formulae of T . An atomic relation is the relation defined by a clique of an atomic formula or the
negation of an atomic formula. A b-relation is Boolean combination of atomic relations. A clique
ax @ |φ| is generic if it has the form ax = {x : xρx} for ρ a b-relation. Every generic clique a has a
natural interpretation a◦ into the internal language of T−Sets. To see this let me introduce a suitable
formula of the internal language of T−Sets. If σi : ∆|Xi|×∆Bi → ∆R is defined by σi(xi,L) = σXi

xi
(L)

then φ(x) is the formula (∀x
∆Bi )(P(x

∆Bi ) = σ(xi,x∆Bi )). If ax @ P then ax is made by all observables x
s.t. σXi

x = σ
Xi
x , therefore it is natural to interpret ax into φ(x), because φ(x) is true exactly in the Ax with

σXi
x = σ

Xi
x . We can interpret 1 in T with the (true) formula P(Ξ) = 1. If ax @ P⊥ then ax is made by

all tests against x i.e. it is made by all observables x s.t. σXi
x 6= σ

Xi
x therefore it is natural to interpret ax

into ¬φ(x), because ¬φ(x) is true exactly in the Ax with σXi
x 6= σ

Xi
x . With the same arguments every b-

clique can be represented in the corresponding combination of atomic interpretations. It is possible to
prove that every cut-free proof in the multiplicative fragment of linear logic is interpreted in a generic
clique:
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Theorem 1. If `π φ is a cut free poof then (π∗)◦ = true
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Let C be a n-dimensional copula and G : [0,∞) → (0,1] a one-dimensional survival function, i.e. a
non-increasing function such that

G(0) = 1, lim
x→∞

G(x) = 0.

We assume G to be continuous and strictly decreasing and consider the multivariate function
defined by

F(x1, ...,xn) := C
(
G(x1), ...,G(xn)

)
.

F can be seen as the joint survival function of n lifetimes (i.e., non-negative random variable)
T1, ...,Tn, i.e. T1, ...,Tn are such that

F(x1, ...,xn) = P{T1 > x1, ...,Tn > xn}.

We thus say that the pair
(
C,G

)
determines a n-dimensional survival model.

T1, ...,Tn are exchangeable, admit C as their survival copula and G as their marginal survival
function.

The same model can be alternatively characterized by the pair [B,G], where the function B :
[0,1]n → [0,1] is the ageing function, defined by

B(u1, ...,un) := exp{−G−1 (
F(− logu1, ...,− logun)

)
}

The concept of ageing function emerges in the field of reliability and, in particular, in the study
of multivariate aging properties of a vector of lifetimes; from a mathematical viewpoint, the role of B
lies in that it is a function B : [0,1]n → [0,1] (then a fuzzy set of [0,1]n, like copulas) adapt to describe
the family of the level curves of the function F .

Definition, meaning, applications, and different mathematical properties of B have been studied
in [1], [2], [3], where the special bivariate case n = 2 has been considered; most of arguments therein
can be immediately extended to the case N > 2; see also the article [4].

B is component-wise increasing; generally, B is a semicopula, but not necessarily a copula, i.e. it
satisfies all the properties of a copula, but the rectangular inequality. For general aspects of the concept
of semicopula see also [5], [6].

In terms of the pair [B,G], F can be obtained by writing

F(x1, ...,xn) = G
(
− logB

(
e−x1 , ...,e−xn

))
.

In this talk we restrict attention to survival models whose ageing functions are actually copulas.
As a main purpose, we introduce a notion of duality for pairs of such models and analyze some basic
aspects of this notion.

For a given multivariate survival model F , denote by ĈF , GF and BF the corresponding survival
copula, univariate marginal survival function and aging function, respectively.
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Two different survival models L and M , with ageing functions belonging to the family of copulas,
are dual each other if

ĈM = BL, BM = ĈL,

GL(x) = exp{−R(x)},GM(x) = exp{−R−1(x)}.

This concept of duality can reveal useful to the purpose of analyzing properties of models with a
fixed ageing function B, employing results proved in the literature about copulas.

Among the basic properties that will be presented, we will show a method to construct dual pairs
by starting from models with standard exponential marginal.

This piece of research was started years ago in collaboration with Bruno Bassan. In this occasion,
I will present recently obtained results along with the basic definitions and properties of duality, that
had been worked out at those times and never presented before.
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A mathematical concept state dates from 1936 when Birkhoff and von Neumann published their study
The logic of quantum mechanics [1]. In 1986, Mundici [4] gave fundations for probability theory on
MV –algebras and showed the advantages of such approach in quantum logic framework (see also [5,
6]). Precisely, a state on an MV–algebra L is a function s : L → [0,1] such that s(0) = 0, s(1) = 1
and, for all a,b ∈ L with a� b = 0 we have s(a) + s(b) = s(a⊕ b). MV –algebras are known to be
special residuated lattices with a proper additive operation ⊕. MV –algebras fulfill a double negation
law x∗∗ = x, too.

Recently, the notion of state has been extended to more general residuated structures L, see [2],
[3] and references thereon. Indeed, two different notions have been introduced; a mapping s : L→ [0,1]
is

(i) Riečan state if s(1) = 1 and

s((y∼� x∼)−) = s(x)+ s(y) whenever y−∼� x−∼ = 0,

(ii) Bosbach state if s(1) = 1,s(0) = 0, and, for all x,y ∈ L :

s(x)+ s(x→ y) = s(y)+ s(y→ x),
s(x)+ s(x⇒ y) = s(y)+ s(y⇒ x).

In [2] it is proved that in any good generalized residuated lattice L Bosbach states are Riečan states,
while the converse is not always true. Here generalized residuated lattice means a residuated lattice
whose product operation� needs not to be commutative, and the notion good has a non–trivial mean-
ing only in non–commutative residuated lattices. Thus, the concept of Riečan state is more general
than of Bosbach state. Crucial properties of Riečan states s are that they are (i) isotone, i.e. if x ≤ y
then s(x)≤ s(y) and (ii) s(x∼) = s(x−) = 1− s(x).

After observing that a sort of orthogonality of complement elements is required in the definition
of Riečan state s and that for any such state it holds that

s(x) = s(x∼∼) = s(x−∼) = s(x∼−) = s(x−−) for any element x ∈ L,

it is relevant to ask if Riečan states on L are just Riečan states on the generalized MV –subalgebra
MV (L) of complement elements x−∼ of L presumed, of course, that such a generalized MV -subalgebra
of L exists. We demonstrate that this, indeed, is the case. In [7], we showed that, given a (commutative)
residuated lattice L, a subset MV (L) of complement elements x∗ of L generates an MV –algebra if, and
only if L is semi–divisible. On a semi–divisible residuated lattice L Riečan states and Riečan states on
MV (L) are essentially the very same thing. The same holds for Boscach states as far as L is divisible.
The aim of this paper is to generalize these results to apply to good generalized residuated lattices (cf.
[2]), too.

? These results were obtained when the authors visited Academy of Science, Czech Republic, Dept. of Comp. Sciences in
Autumn 2006.
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1 Introduction

Risk can be defined in many ways and has a variety of common meanings. However, the common
purpose of risk analysis is to provide decision support for design and operation and, therefore, risk
analysis is always part of a decision context. The traditional approach to decision analysis in the frame-
work of expected utility theory calls for single or precise distributions of states of nature. However, we
have usually only partial information about probabilities of states of nature. Various tools for sophis-
ticated uncertainty representation generalizing the common (’classical’) concept of probability can be
found in the literature, including possibility theory, Dempster-Shafer structures, interval-valued prob-
abilities, imprecise probabilities. The corresponding decision making models have been developed in
accordance with the different types of the uncertainty representation. In contrast to standard decision
theory, these models allow to handle partial information about the stochastic behavior of the states of
nature.

The paper consists of two parts. In the first one, we explicitly take into account the construction
of the information and consider some decision problems where direct data (precise or interval-valued)
on the states are available. Moreover, imprecise models are proposed and studied here by proceeding
from certain applications (risk model of insurance). The second part of the paper studies a decision
problem in the case of a non-monotone utility function when states of nature are described by sets of
continuous probability distributions restricted by some known lower and upper distributions.

2 Individual risk model of insurance and imprecise models

Let us briefly consider the well-known individual risk model of insurance, which is widely used in ap-
plications, especially in life and health insurance. We assume that the portfolio consists of N identical
insurance policies for a given period of time t, each insurance premium is c, each policy produces a
payment with the claim amount (size) yi. Then the total premium for the time t is Π(t) = cN and the
total amount of claims is defined as R(t). The probability that aggregate claims will be less than the
premium collected is P = Pr{Π(t)≥ R(t)}. Suppose the random number k of claims for the time t has
a discrete distribution p(k|w) with a parameter (or a set of parameters) w as P = ∑

M
k=0 p(k|w). Here

M = dΠ(t)/ye= dcN/ye is the maximal number of claims which can be paid by the insurer. The next
study depends on the distribution function of the number of claims and its parameters w.

If the parameter w is unknown and we have a set of observations (claims), then w would be
regarded as a random variable with some probability density π(w|θ) and Bayesian approach could be
applied for computing the probability P.

2.1 Imprecise inference models

Imprecise beta-binomial model By binomially distributed numbers of claims with parameter w = q,
the conjugate distribution π is the beta distribution with parameters θ = (a,b). Then the posterior
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distribution is nothing else but the beta-binomial distribution with parameters a and b. Walley [5]
proposed the imprecise model which can be defined as the set of all beta-binomial distributions with
the fixed parameter s and the set of parameters 0 ≤ α ≤ 1. If we replace (a,b) by (sα,s− sα), then the
lower and upper bounds for P can be obtained by minimizing and maximizing P over all values α in
[0,1]. The corresponding expressions can be found in Walley’s paper [5].

Imprecise negative binomial model I If the number of claims has the Poisson distribution with
the parameter w = λ, then the conjugate distribution π is the gamma distribution with parameters
θ = (a,b). The probability that aggregate claims will be less than the premium collected for time t is

P =
M

∑
k=0

Γ(a+K + k)
Γ(a+K)k!

·
(

b+T
b+T + t

)a+K (
t

b+T + t

)k

,

where K is the observed claim number; T is the observation time; Γ is the gamma function.
Here imprecise probability models for inference in exponential families proposed by Quaeghebeur

and de Cooman [1] can be applied. If we replace (a,b) by (sα,s), then the lower and upper bounds
for P can be obtained by minimizing and maximizing P over all values α in [0,∞). Hence P = 0 and

P =
M

∑
k=0

Γ(K + k)
Γ(K)k!

·
(

s+T
s+T + t

)K (
t

s+T + t

)k

. (1)

The main problem of the models proposed by Quaeghebeur and de Cooman [1] is the trivial lower
bound P.

Imprecise negative binomial model II Another model for constructing a set of negative binomial
distributions as a reasonable class of priors has been proposed by Coolen and is determined by the set
of parameters (a,b) values is within the triangle (0,0), (s,0), (0,s). Here the hyperparameter s ≥ 0.
The interpretation is that all possible prior rates of occurrence of claims are represented, as the prior
allows interpretation of a/b as this rate, hence this would include all such rates in (0,∞). The lower
probability P is achieved at (a,b) = (s,0) and is determined as

P =
M

∑
k=0

Γ(s+K + k)
Γ(s+K)k!

(
T

T + t

)s+K (
t

T + t

)k

.

The upper probability P is achieved at (a,b) = (0,s) and is determined by (1). If s = 0, then P = P.

2.2 Interval-valued data

Suppose we have only interval-valued data, for instance, the number of observed claims is from 9 to
10. In other words, we write K ∈ [9,10] or K ∈ [K,K]. The similar (but not the same) type of data by
using the imprecise Dirichlet model has been investigated by Utkin [3]. However, we can not use the
imprecise Dirichlet model here and have to construct another model.

Suppose there are m expert estimates (observations) of K in the form of sets of intervals K1, ...,Km.
Here the i-th interval occurs ci times. Let C = c1 + ... + cm. Then the basic probability assignment
m(Ki) = ci/C can be defined for every Ki.

Let P(K) be a function linking the probability P and the values of K. Then we can determine
expected probabilities P# that aggregate claims will be less than the premium collected. Strat [2]
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proposed expressions for computing bounds for the expected utility by interval-valued data about
states of nature. These expressions can be successfully applied to computing the bounds of expected
probabilities P# if we assume that P(K) is the utility function and values of K are states of nature, i.e.,

P# =
m

∑
i=1

m(Ki) · min
K∈Ki

P(K), P# =
m

∑
i=1

m(Ki) ·max
K∈Ki

P(K).

Since P(K) decreases as K increases, then the above expressions can be rewritten as

P# =
1
C

m

∑
i=1

ciP(Ki), P# =
1
C

m

∑
i=1

ciP(Ki).

In sum, we have obtained the simple expressions for expected lower and upper probabilities that
aggregate claims will be less than the premium collected. This model can be simply extended by using
the approach proposed by Utkin and Augustin in [4].

It should be noted that the considered imprecise models can be also applied to a scheme of typical
warranty contracts, to market research and other applications. Moreover, new imprecise models can
be developed by investigating different distributions, for instance, the exponential-gamma model, the
Dirichlet-multinomial model, the normal model.

3 Risk analysis with non-monotone utility function

Suppose that information about random variable X , characterizing states of nature, is represented
by some lower F and upper F probability distributions and F(x) ≤ F(x) ≤ F(x), ∀x ∈ R. Then for a
function h(X) (utility function), the lower and upper expectations (expected utilities) can be computed
as (Choquet integrals)

Eh = inf
F≤F≤F

Z
R

h(x)dF(x), Eh = sup
F≤F≤F

Z
R

h(x)dF(x). (2)

If the function h is non-decreasing in R, then there hold

Eh =
Z

R
h(x)dF(x), Eh =

Z
R

h(x)dF(x).

The case of the non-increasing function h is similar. It can be seen from the above that the bounds for
expectations are completely defined by bounded distributions F and F .

Suppose now that h has one maximum at point x0, i.e., h(x) is increasing in (−∞,x0] and decreas-
ing in [x0,∞). In this case, the upper and lower expectations of h are

Eh = h(x0)
[
F(x0)−F(x0)

]
+
Z x0

−∞

h(x)dF(x)+
Z

∞

x0

h(x)dF(x),

Eh = min
α∈[0,1]

[Z F−1(α)

−∞

h(x)dF(x)+
Z

∞

F−1(α)
h(x)dF(x)

]
. (3)

Moreover, the minimum over α ∈ [0,1] in (3) is achieved at a point which is one of the solutions
to the equation h

(
F−1(α)

)
= h

(
F−1(α)

)
.

Now we consider a general form of the function h, i.e., the function has alternate points of the
local maximum at ai and minimum at bi−1, i = 1,2, ..., such that b0 < a1 < b1 < a2 < b2 < ... . The
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solution to the optimization problem for computing Eh is the function F (x) = Fi (x), x ∈ (bi−1,bi),
with jumps at points bi. The size of the i-th jump is min

(
F (bi) ,αi+1

)
−max(F (bi) ,αi). Here

Fi (x) =


F (x) , x < a′

α, a′ ≤ x ≤ a′′

F (x) , a′′ < x
,

where α is the root of the equation h
(

max
(

F−1 (α) ,bi−1

))
= h

(
min

(
F−1 (α) ,bi

))
in interval[

F (ai) ,F (ai)
]
, a′ = max

(
F−1 (α) ,bi−1

)
, a′′ = min

(
F−1 (α) ,bi

)
.

The proposed approach is a way for avoiding computationally difficult procedures for solving (2)
by means of approximate linear programming.
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Type-2 fuzzy sets—that is, fuzzy sets with fuzzy sets as truth values were introduced by Zadeh [4],
extending the notion of ordinary fuzzy sets. In [1], there is a treatment of the mathematical basics of
type-2 fuzzy sets, that is, of the algebra of these truth values. In [2], a study was begun of automor-
phisms of the algebra of truth values of type-2 fuzzy sets. Several significant problems left unresolved
are now settled, the most basic being that the automorphism group of the algebra of fuzzy truth values
is isomorphic in a natural way to the product of two copies of the automorphism group of the unit
interval with its usual ordering. This theorem has several corollaries concerning characteristic subal-
gebras and their automorphism groups. This paper is about those things: the automorphisms of the
algebra of fuzzy truth values, its subalgebras, and their automorphisms.

For any mathematical object, its group of symmetries, which for algebraic structures are called
automorphisms, is an object of interest. The study of subalgebras of the algebra of truth values of
type-2 fuzzy sets is relevant because each subalgebra is the basis of a fuzzy theory, where a fuzzy
set in this theory is a mapping of a universal set into this subalgebra. Two well known subalgebras
are (isomorphic copies of) the algebras of truth values of type-1 fuzzy sets, and of the truth values
of interval-valued fuzzy sets. But there are many others of interest, mathematically, and possibly for
applications.

The subalgebras considered are typically characteristic. That is, automorphisms of the algebra
of truth values induce automorphisms of these subalgebras. Characteristic subalgebras are of special
interest because they are “canonical”. If an algebra is characteristic, then there is no subalgebra iso-
morphic to it sitting in the containing algebra in the same way. They are quite special as subalgebras.
That the algebras of truth values of type-1 fuzzy sets and the truth value algebra of interval-valued
fuzzy sets are characteristic subalgebras is testimony to the ”correctness” of Zadeh’s generalization.

Some subalgebras of the algebra of truth values of type-2 fuzzy sets may be viewed much more
simply than as such subalgebras. Specifically, the basic operations of the algebra of truth values are
convolutions of functions, and some subalgebras may be viewed as algebras with much simpler oper-
ations, both conceptually and computationally. This is true, for example, for the subalgebra of closed
intervals, as pointed out in [1]. Another such subalgebra is the subalgebra of points: the subalgebra
of functions whose support is a single point. This subalgebra generalizes in a particular way the truth
value algebra of type-1 fuzzy sets and seems a reasonable candidate for applications. Still another is
the subalgebra of those functions whose support is a closed interval and which are constant on that
interval. This algebra generalizes the truth value algebra of interval-valued fuzzy sets in the same
spirit as points generalize that of type-1 fuzzy sets. These may be viewed as algebras whose basic
operations are particularly simple, avoiding complicated computations with convolutions.
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1 The Algebra of Fuzzy Truth Values

The algebra of truth values for fuzzy sets of type-2 is the set of all mappings of [0,1] into [0,1] with
operations certain convolutions of operations on [0,1], as follows.

Definition 1. On [0,1][0,1], let

( f tg)(x) =
_

y∨z=x
( f (y)∧g(z)) (1)

( f ug)(x) =
_

y∧z=x
( f (y)∧g(z))

f ∗(x) =
_

y′=x
f (y) = f (x′)

1̄(x) =
{

1 if x = 1
0 if x 6= 1

0̄(x) =
{

1 if x = 0
0 if x 6= 0

The algebra M = ([0,1][0,1] ,t,u,∗ ,0̄, 1̄) is the basic algebra of truth values for type-2 fuzzy sets,
and is analogous to the algebra ([0,1],∨,∧,′ ,0,1), which is basic for type-1 or ordinary fuzzy set
theory.

Determining the properties of the algebra M is helped by introducing the following auxiliary
operations.

Definition 2. For f ∈ M, let f L and f R be the elements of M defined by

f L(x) = ∨y≤x f (y) (2)

f R(x) = ∨y≥x f (y)

The point of this definition is that the operations t and u in M can be expressed in terms of the
pointwise max and min of functions, as follows.

Theorem 1. The following hold for all f ,g ∈ M.

f tg =
(

f ∧gL)∨ (
f L∧g

)
(3)

= ( f ∨g)∧
(

f L∧gL)
f ug =

(
f ∧gR)

∨
(

f R∧g
)

(4)

= ( f ∨g)∧
(

f R∧gR)
Using these auxiliary operations, it is fairly routine to verify the following properties of the algebra

M. The details may be found in [1].

Corollary 1. Let f , g, h ∈ M. The basic properties of M follow.

1. f t f = f ; f u f = f
2. f tg = gt f ; f ug = gu f
3. 1̄u f = f ; 0̄t f = f
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4. f t (gth) = ( f tg)th; f u (guh) = ( f ug)uh
5. f t ( f ug) = f u ( f tg)
6. f ∗∗ = f
7. ( f tg)∗ = f ∗ug∗; ( f ug)∗ = f ∗tg∗

It is not known whether or not every equation satisfied by M is a consequence of these. As far as
we know, the variety generated by M has not been studied.

In [1], we studied the algebra M and some of its subalgebras, and in [2] and [3] their automor-
phisms. In our study of automorphisms, we limit ourselves initially to the algebra

M = ([0,1][0,1] ,t,u, 0̄, 1̄),

that is, the algebra M without its negation ∗. This allows more automorphisms, avoids certain techni-
calities, and it turns out that the results can be specialized to M.

2 Automorphisms of M

For an automorphism α of I = ([0,1],∨,∧,0,1), αL and αR defined by αL( f ) = α f and αR( f ) = f α

are automorphisms of M. These automorphisms satisfy

1. (αβ)L = αLβL

2. (αβ)R = βRαR

3. αLβR = βRαL

The principal result about automorphisms is that every automorphism of M is of the form αLβR,
and uniquely so. Thus Aut(M)≈ Aut(I)×Aut(I). This has many corollaries. For example, the subal-
gebras mentioned earlier are all characteristic. One subalgebra of special interest is the subalgebra of
normal convex functions. It is a maximal lattice among subalgebras of M, is a characteristic subalge-
bra of M, and is a complete lattice. There are many other results in the same vein.

A basic tool in our investigation is the determination of the irreducible elements of M. An element
f is join irreducible if f = gth implies f = g or f = h. Meet irreducible is defined similarly, and an
element is irreducible if it is both join and meet irreducible. The irreducible elements are determined
for M and for various of its subalgebras, enabling the determination of their automorphism groups.
However, many questions remain, both concerning automorphisms of subalgebras of M and other
algebraic aspects of M and its subalgebras. These will be elaborated on.
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We consider an uncertainty measure  m  on a lattice  L  with an additional residual structure in the 
sense of [1-4] as an isotonic mapping from  L  to  [0,1] with  m(0)=0, m(1)=1. There are two natural 
properties which  m  can have, namely the valuation based on the lattice operatons, and the additivity 
based on the operations derived from the residual structure. If  L  is an MV-algebra, the meaning of 
additivity is clear and well known, as several authors had found independently many years ago. 
Furthermore, a simple exercise shows that for MV-algebras additivity implies valuation. 
 
Problems arise if we consider a residual structure on  L  poorer than an MV-algebra. Dropping only 
the divisibility, we are led to a Girard-algebra, so called in [2-4]. This structure has been found as the 
natural one for the set  L   of pairs  (a,b)  of  “events” in  L  with  a≤b, which can be used to define 
“conditional events”. Because in [2,4] it was proved that any Girard-algebra  L  has a unique 
canonical Girard-algebra extension  L. Furthermore, there was shown that  L   is an MV-algebra iff  L  
is a Boolean algebra, and that an additive measure  m  on a Boolean algebra  L  has a unique additive 
extension  m  on the canonical MV-algebra extension  L . But if we start with an additive measure  m  
on an MV-algebra  L, it is not clear what “additivity” of an extension  m  on  the canonical Girard-
algebra  L   means, because the “classical additivity” leads to contradictions. 
 
It seems that the additivity of a measure is strongly connected with the divisibility of the underlying 
lattice. Therefore, in [2,4] additivity of a measure on a Girard-algebra was proposed to be defined 
by the “classical additivity” not for all disjoint pairs, but only for pairs which have the divisibility 
property. These pairs will be called, for short, admissible pairs. Now it has sense to reask the 
question whether an additive measure  m  on an MV-algebra  L  has an extension  m  on the 
canonical Girard-algebra  L  which is additive and resp. or valuation. The answer to both questions in 
general is negative in the sense that there are examples where neither an additive nor a valuation 
extension exist, and there are examples where both exist but they are different. As a positive answer, 
there can be given a non trivial example for a unique extension which is both additive and valuation. 
More general, denoting by  a'  the residual complement of  a , we can proof the following (for me 
surprising) result: 
 

If  m  is additive on an MV-algebra  L  and  m  is both additive and valuation on  L, 
then it follows  (*):  m(a,b) = [m(a)+m(b)]/2 + [m(b^b')-m(a^a')]/6 . 

 
As a corollary we obtain the above mentioned result from [2,4]: 
For a Boolean algebra  L, (*) reduces to  m(a,b) = [m(a)+m(b)]/2 . 
 
Furthermore, not all measures of the form (*) really are additive and valuation, but we can caracterize 
all measures of the form (*) by both, the additivity only for two special types of admissible pairs, and 
the valuation only for one special type of non admissible pairs. 
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Returning to the possible situations where neither additive nor valuation measure extensions exist or 
where both exist but they are different, we can resp. shall look for another weaker notion of 
additivity. For this reason we propose to define the weak additivity of a measure on a Girard-
algebra by the additivity on all sub-MV-algebras. Really, this is a weaker property because we 
have to check “classical additivity” not for all admissible pairs, but only for those in the same sub-
MV-algebra. In this sense, in all examples we could found several or unique weak additive 
extensions. 
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Abstract. We consider the two-sided asymptotic test for the Aumann-expectation of fuzzy random vari-
ables, proposed by Körner [3]. Unfortunately this test is not easy to use. Starting from the question, what is
the power of the test, we get theorem 1. With this theorem we can propose a more applicable test for interval
hypotheses.

1 Introduction

Vague outcomes of an experiment can be described by fuzzy sets. Following [10], a fuzzy set Ã on Rd

is identified by its membership function µÃ : Rd → [0,1]. The crisp setÃα :=
{

x ∈ Rd : µÃ(x)≥ α
}

, 0 <

α≤ 1 is called the α-cut of Ã. For α = 0 define: Ã0 := closure
{

x ∈ Rd : µÃ(x) > 0
}

, which is called
the support of Ã (suppÃ = Ã0). A fuzzy set Ã is called convex and compact if all α-cuts Ãα have
this property. Ã is called normal if Ã1 6= /0. The set of all normal compact convex fuzzy sets on Rd

with bounded support is denoted by F d
c . For any compact convex set A ⊂ Rd the support function

sA is defined assA(u) := supy∈A 〈u,y〉 ; u ∈ Sd−1, where 〈., .〉 is the scalar product in Rd and Sd−1 the
(d−1)-dimensional unit sphere in Rd . Note that for convex and compact A⊂ Rd the correspondence
between A and sA is one to one. A fuzzy set Ã ∈ F d

c can be characterized α-cut-wise by its support
function:

sÃ(u,α) := sÃα
(u) ; α ∈ [0,1], u ∈ Sd−1.

Via support function s, F d
c can be embedded into a space of functions on Sd−1× [0,1] and we can

define a metric in F d
c using e.g. a special L2-metric in L2(Sd−1× [0,1]), i.e.

δ2(Ã, B̃) =
(

d
Z 1

0

Z
Sd−1

(sÃ(u,α)− sB̃(u,α))2
ν(du)dα

) 1
2

,

where ν is the normalized Lebesgue measure on Sd−1. We define further〈
Ã, B̃

〉
:= d

Z 1

0

Z
Sd−1

(sÃ(u,α)sB̃(u,α))ν(du)dα and ||Ã||22 :=
〈

Ã, Ã
〉

.

Let (Ω,F,P) be a probability space. Then Ỹ : Ω→ F d
c is called a fuzzy random variable (frv) on

Rd if for any α ∈ [0,1] the α-cut Ỹα is a convex compact random set (e.g. in the sense of [5]). This
is the Puri/Ralescu-approach to frv’s ([7]), the essential advantage of which is the embedding of the
concept of a frv into the well-developed concept of random sets. For a unified approach see also [4].

The Aumann-expectation of a frv Ỹ is defined as the fuzzy set E(A)Ỹ ∈ F d
c with

∀α ∈ [0,1] :
(

E(A)Y
)

α

= E(A)Ỹα

125



where E(A)Ỹα is the Aumann-expectation (see [1]) of the random set Ỹα defined by

E(A)Ỹα =
{

EX : X(ω) ∈ Ỹα P− a.e. and X ∈ L1(Ω,F,P)
}

.

E(A)Ỹα is the set of all (usual) expectations of random ”selectors” X which P-a.e. lie in Ỹα.

2 The tests proposed by Körner

We consider now a iid. sample of frv X̃1, X̃2, .... For the Aumann-expectation of this frv we want to
test the following two-sided hypotheses.

H0 : EX̃ = µ̃0 against H0 : EX̃ 6= µ̃0,

⇐⇒
H0 : δ

2
2(EX̃ , µ̃0) = 0 against H0 : δ

2
2(EX̃ , µ̃0) 6= 0,

Körner[3] proposed to use the statistic:

T = nδ
2
2(X̃ , µ̃0).

He proofs that T under H0 : EX̃ = µ̃0 is asymptotic distributed like

∞

∑
i=1

λiZ2
i where Zi ∼N (0,1) iid.,

where λ1,λ2, ... are the eigenvalues of the covariance operator of X̃i. So we have to reject H0 if
T > q1−α, where q1−α is the quantile of the distribution of ∑

∞
i=1 λiZ2

i .

For the practical use of this result one has followings problems:

(i) The covariance operator of X̃i is unknown in generally.
(ii) The numerical calculation of the quantile of the distribution of ∑

∞
i=1 λiZ2

i is not easy.

To overcome the problem (i) one can estimate the eigenvalues (λ̂i) of the covariance operator from the
sample X̃1, .., X̃n. If we do this, an open question is, under which assumption the asymptotic distribu-
tion of ∑

∞
i=1 λ̂iZ2

i is equal to the distribution of ∑
∞
i=1 λiZ2

i .

For numerical calculation of the quantile one can use the way which is described in Rice [8]. An
other more easy way, to overcome problem (ii), is the simulation of the distribution and then take the
quantile from the simulation for the test decision.

The way we will propose in this paper is to soften H0. I.e. we will not test whether EX̃ is equal µ̃0 or
not, but only whether it is near µ̃0 or not.

Before we do this we present the main mathematical result of this paper.
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3 The main result

If we look at the question, what is the distribution of the statistic T = nδ2
2(X̃ , µ̃0) in the case that

H1 : EX̃ 6= µ0 holds, we obtain, which generalizes a result by Montenegro, Colubi, Casals and Gil [6]
where only frv’s are considered with finite number of possible values.

Theorem 1. Let X̃1, X̃2.. be iid. Aumann-integrable Fuzzy Random variable with ||X̃1||22 < ∞ and µ̃ :=
EX̃1, then it holds:

√
n
(

δ
2
2(X̃n, µ̃0)−δ

2
2(µ̃, µ̃0)

)
d−→N (0,4σ

2),

with

σ
2 = E

(〈
X̃1− µ̃, µ̃− µ̃0

〉)
.

An first conclusion of this theorem is that the test of Körner is consistent. The same result is obtained
by Jimenez-Gamero, Pino-Mejýas and Rojas-Medar [2] in their Corollary 3.2.

Corollary 1. Under the conditions of theorem 1, for µ̃ 6= µ̃0 it holds:

lim
n→∞

P̃µ(T > q1−α) = 1.

4 Tests for interval hypotheses

With the theorem 1 we present a proposal for an asymptotic test for the following interval hypotheses:

H0 : δ
2
2(EX̃ , µ̃0)≤ a against H0 : δ

2
2(EX̃ , µ̃0) > a.

With the statistic

T =
√

n(δ2
2(X̃ , µ̃0)−a)

2σ
,

reject H0 if T ≥ z1−α.

Here z1−α is the quantile of the standard normal distribution, which is much more easier to calculate
as q1−α from above. The only problem of this test is, that σ is unknown in generally. So we have to
replace σ by a consistent estimator. Also here this estimation is much more easier as the estimation of
the eigenvalues of the covariance operator above.

5 Conclusion Remarks

For the proof of theorem 1 and more details see Wünsche [9]. Also a more detailed article is in
preparation for submission in the Journal of Statistical Planning and Inference.
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