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Since their inception in 1979 the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open prob-
lems and promising directions for further work.

LINZ 2008 will be the 29th seminar carrying on this tradition and is devoted to the theme “Foun-
dations of Lattice-Valued Mathematics with Applications to Algebra and Topology”. The last decade
has witnessed a significant development of the categorical, logical, and order-theoretic foundations
of lattice-valued mathematics and their impact on algebra and topology. These developments have
created or significantly strengthened bridges between lattice-valued mathematics, logic, sheaves, al-
gebraic theories, quantales and order-theoretic structures, various subdisciplines of topology, and the-
oretical computer science. The purpose of the 29th Seminar is to discuss the synergy between these
fields as well as identify important open questions.
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Graded dominance
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1 Introduction

The relation of dominance between aggregation operators has recently been studied quite inten-
sively [9, 12, 10, 11, 13, 14]. We propose to study its ‘graded’ generalization in the foundational frame-
work of higher-order fuzzy logic, also known as Fuzzy Class Theory (FCT) introduced in [1]. FCT is
specially designed to allow a quick and sound development of graded, lattice-valued generalizations of
the notions of traditional ‘fuzzy mathematics’ and is a backbone of a broader program of logic-based
foundations for fuzzy mathematics, described in [2].

This short abstract is to be understood as just a ‘teaser’ of the broad and potentially very interest-
ing area of graded dominance. We sketch basic definitions and properties related to this notion and
present a few examples of results in the area of equivalence and order relations (in particular, we show
interesting graded generalization of basic results from [6, 12]). Also some of our theorems are, for
expository purposes, stated in a less general form here and can be further generalized substantively.

In this paper, we work in Fuzzy Class Theory over the logic MTL∆ of all left-continuous t-norms
[7]. The apparatus of FCT and its standard notation is explained in detail in the primer [3], which is
freely available online. Furthermore we use X v Y for ∆(X ⊆ Y ).

2 Inner truth values and truth-value operators

An important feature of FCT is the absence of variables for truth values. However, many theorems of
traditional fuzzy mathematics do speak about truth values or quantify over operators on truth values
like aggregation operators, copulas, t-norms, etc. In order to be able to speak of truth values within
FCT, truth values need be internalized in the theory. This is done in [4] by a rather standard technique,
by representing truth values by subclasses of a crisp singleton.4 Thus we can assume that we do have
variables α,β, . . . for truth values in FCT; the class of the inner truth values is denoted by L.

Binary operators on truth values (including propositional connectives &,¬, . . . ) can then be re-
garded as functions c : L×L→ L or as fuzzy relations cv L×L. Consequently, graded class relations
can be applied to such operators, e.g., fuzzy inclusion c⊆ d ≡ (∀α,β)(α c β → α d β). Many crisp
classes of truth-value operators (e.g., t-norms, continuous t-norms, copulas, etc.) can be defined by
formulae of FCT. The apparatus, however, enables also partial satisfaction of such conditions. In the

4 Cf. [15] for an analogous construction in a set theory over a variant of Gödel logic. See [4] for details of the construction
and certain metamathematical qualifications regarding the representation. Observe also a parallel with the power-object
of 1 in topos theory.
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following, we therefore give several fuzzy conditions on truth-value operators and use them as graded
preconditions of theorems which need not be satisfied to the full degree. This yields a completely new
graded theory of truth-value operators and allows non-trivial generalizations of well-known theorems
on such operators, including their consequences for properties of fuzzy relations.

Definition 1. In FCT, we define the following graded properties of a truth-value operator cv L×L:

Com(c)≡df (∀α,β)(α c β→ β c α)
Ass(c)≡df (∀α,β,γ)((α c β) c γ)↔ (α c (β c α))

MonL(c)≡df (∀α,β,γ)(∆(α→ β)→ (α c γ→ β c γ))
MonR(c)≡df (∀α,β,γ)(∆(α→ β)→ (γ c α→ γ c β))

UnL(c)≡df (∀α)(1 c α↔ α)
UnR(c)≡df (∀α)(α c 1↔ α)

For convenience, we also define

Mon(c)≡df MonL(c) & MonR(c)
wMon(c)≡df MonL(c) ∧MonR(c)

and analogously for Un.

The following theorem provides us with samples of basic graded results.

Theorem 1. FCT proves the following graded properties of truth-value operators:

1. Mon(c) & Un(c)→ (c⊆ ∧)
2. wMon(c) & (∀α)(α c α↔ α)→ (∧ ⊆ c)
3. Mon(c) & Un(c)→ [(α c α↔ α)↔ (∀β)((α c β)↔ (α∧β))]

The three assertions above are generalizations of well-known basic properties of t-norms. Theo-
rem 1.1 corresponds to the fact that the minimum is the greatest (so-called strongest) t-norm. Theorem
1.2 generalizes the basic fact that the minimum is the only idempotent t-norm, while 1.3 is a graded
characterization of the idempotents of c. [8].

3 Graded dominance

Definition 2. The graded relation � of dominance between truth-value operators is defined as fol-
lows:

c� d≡df (∀α,β,γ,δ)((α d γ) c (β d δ)→ (α c β)d (γ c δ))

Theorem 2. FCT proves the following graded properties of dominance:

1. ∆Com(c) & Ass4(c) & Mon(c)→ (c� c)
2. Un(c) & Un(d) & (c� d)→ (c⊆ d)
3. ∆Com(c) & Ass4(c) & Mon2(c) & (dv c) & (c⊆ d)→ (c� d)
4. ∆Com(d) & Ass4(d) & Mon2(d) & (dv c) & (c⊆ d)→ (c� d)
5. Mon(c) & (&� c) & ((α→ β) c (γ→ δ))→ ((α c γ)→ (β c δ))
6. Mon(c) & (&� c) & ((α↔ β) c (γ↔ δ))→ ((α c γ)↔ (β c δ))

12



Theorems 2.1 and 2.2 are generalizations of two basic facts, namely that every t-norm dominates
itself and that dominance implies inclusion / pointwise order. Theorems 2.3 and 2.4 have no corre-
spondences among known results; they provide us with bounds for the degree to which (c� d) holds,
where the assumption (d v c) & (c ⊆ d) would be obviously useless in the crisp non-graded frame-
work (as it necessitates that c and d coincide anyway). Theorem 2.5 provides us with strengthened
monotonicity of an aggregation operator c provided that c fulfills Mon(c) and dominates the conjunc-
tion of the underlying logic. Theorem 2.6 is then a kind of “Lipschitz property” of c (if we view↔ as
a kind of generalized closeness measure).

Theorem 3. FCT proves the following graded properties of dominance w.r.t. ∧:

1. Mon(c)→ (c�∧)
2. ∆Mon(c) & ∆Un(c)→ ((∧� c) = (∧ ⊆ c))
3. wMon2(c)→ ((∧� c)↔ (∀α,β)((α c 1)∧ (1 c β)↔ (α c β)))

Theorem 3.1 is a graded generalization of the well-known fact that the minimum dominates any
aggregation operator [12]. Theorem 3.2 demonstrates a rather surprising fact: that the degree to which
a monotonic binary operation with neutral element 1 dominates the minimum is nothing else but the
degree to which it is larger. Theorem 3.3 is an alternative characterization of operators dominating the
minimum; for its non-graded version see [12, Prop. 5.1].

Example 1. Assertion 2. of Theorem 3 can easily be utilized to compute degrees to which standard
t-norms on the unit interval dominate the minimum. It can be shown easily that

(∧ ⊆ c) = inf
x∈[0,1]

(x⇒ c(x,x))

holds, i.e. the largest “difference” of a t-norm c from the minimum can always be found on the diag-
onal. In standard Łukasiewicz logic, this is, for instance, 0.75 for the product t-norm and 0.5 for the
Łukasiewicz t-norm itself. So we can infer that the product t-norm dominates the minimum with a de-
gree of 0.75 (assuming that the underlying logic is standard Łukasiewicz!); with the same assumption,
the Łukasiewicz t-norm dominates the minimum to a degree of 0.5.

4 Graded dominance and properties of fuzzy relations

The following theorems show the importance of graded dominance for graded properties of fuzzy
relations. Theorem 4 is a graded generalization of the well-known theorem that uses dominance to
characterize preservation of transitivity by aggregation [12, Th. 3.1] (compare also [6]).

Theorem 4. FCT proves:

Mon(c)→ ((∀E,F)(∆Trans(E) & ∆Trans(F)→ Trans(Opc(E,F))↔ (&� c)))

where Opc is the class operation given by c, i.e., 〈x,y〉 ∈ Opc(E,F)≡ Exy c Fxy.

The following theorem provides us with results on the preservation of various properties by sym-
metrizations of fuzzy relations.

13



Theorem 5. FCT proves the following properties of the symmetrization of relations:

1. Com(c)→ (Sym(Opc(R,R−1)))
2. (&⊆ c) & Refl2 R→ (Refl(Opc(R,R−1)))
3. (&⊆ c)→ AntiSym(Opc(R,R−1)) R
4. Mon(c) & (&� c) & ∆TransR→ (Trans(Opc(R,R−1)))

In the crisp case, the commutativity of an operator trivially implies the symmetry of symmetriza-
tions by this operator. In the graded case, Theorem 5.1 above states that the degree to which a sym-
metrization is actually symmetric is bounded below by the degree to which the aggregation operator
c is commutative. Theorems 5.2–4 are also well-known in the non-graded case [5, 6, 16]. Obviously,
5.4 is a simple corollary of Theorem 4.
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Plan AV0Z10300504. The cooperation of the team was enabled by Program Kontakt/WTZ Czech
Republic–Austria project No. 6–07–17 / 2–2007 “Formal foundations of preference modeling”.

References
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2. Libor Běhounek and Petr Cintula. From fuzzy logic to fuzzy mathematics: A methodological manifesto. Fuzzy Sets

and Systems, 157(5):642–646, 2006.
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Fuzzy topology has benefited from a considerable attention in the past (see, e.g., [12–14]). By now,
there are several established approaches to fuzzy topology: lattice-theoretical, categorial, based on
membership functions, etc. Recent advances in mathematical fuzzy logic, esp. after [10], enabled a
new, logic-based approach to fuzzy topology. This approach is part of a broader program of logic-
based fuzzy mathematics described in [3], which consists in the development of axiomatic theories
over higher-order fuzzy logic. It extends and elaborates the methodology sketched by Höhle in [11,
§5], namely a reinterpretation of classical definitions in a suitable calculus of fuzzy logic. A similar
attempt to build fuzzy topology within a logical framework appeared also in [17]. We follow this line
of research in the strictly formal framework of axiomatic theories over Hájek-style deductive fuzzy
logic. The application of this kind of formalism leads to a universal gradedness of definitions and
theorems which is not usual under traditional approaches; on the other hand it is limited to certain
methodological presuppositions [1]: thus it complements (rather than competes with) the more tra-
ditional approaches. Due to the different strength of results, also some rather elementary theorems
need to be proved anew in our setting, even though many results on related notions have already been
obtained in the frameworks of more traditional approaches to fuzzy topology.

Initial results in our logic-based fuzzy topology have been presented in conference papers [6,
5], where the relationship between three notions of fuzzy topology (namely those based on open
or closed sets, neighborhoods, and interior operators) were studied. In the present contribution we
restrict our attention to fuzzy topology based on open sets and make first steps towards the notion of
continuity in this setting. Instead of the more usual notion of continuous function, we study the notion
of continuous relation between two fuzzy topologies. This enables us to avoid making such a basic
concept as continuity depend on the notion of fuzzy function, which has many competing definitions.3

The notion of continuous relation between topological spaces has already appeared in several areas
of mathematics. Continuous relations have been defined in general topology [16, 9] and also investi-
gated by means of induced multifunctions in set-valued analysis [7]. In [15], their study was initiated
in the purely formal framework of higher-order intuitionistic logic, as a part of formal (pointless)
topology.

? The work of the first author was supported by the program Information Society project No. 1ET100300517 and Institu-
tional Research Plan AV0Z10300504.

?? The work of the second author was supported by grant No. B100300502 of GA AV ČR and grant No. 1M0572 of
MŠMT ČR.

3 We are indebted for this idea to Rostislav Horčı́k.
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In this paper we give initial observations on the concept of continuous fuzzy relation between
a pair of fuzzy topologies. We work in the framework of Fuzzy Class Theory FCT (or higher-order
fuzzy logic) introduced in [2]. For the sake of generality, here we use its variant over the logic MTL∆

of all left-continuous t-norms [8]. Besides the original paper [2], the apparatus of FCT is described in
detail in the primer [4], which is freely available online. Due to space restrictions, we do not repeat
the definitions here. We use standard abbreviations and notions from [4, §1.6,1.7]; furthermore we use
X v Y for ∆(X ⊆ Y ) and IdX for {〈x,x〉 | x ∈ X}.

In [6], the FCT notion of open fuzzy topology has been introduced. It uses the following predicates
that express the (degree of) closedness of a fuzzy class of fuzzy classes τ under

S
and ∩:

ic(τ)≡df (∀A,B ∈ τ)(A∩B ∈ τ)

Uc(τ)≡df (∀σ⊆ τ)
([

σ ∈ τ
)

Definition 1. In FCT, we define the predicate indicating the degree to which τvKerPowX is an open
fuzzy topology on a crisp class X as

OTop(X ,τ)≡df ( /0 ∈ τ) & (X ∈ τ) & ic(τ) & Uc(τ)

A predicate expressing that A such that Av X is a neighborhood of x in τ is defined as

Nbτ(x,A)≡df (∃B ∈ τ)(B⊆ A & x ∈ B)

Given a class of classes τ, we define the interior of a class A such that Av X as

Intτ(A) =df
[
{B ∈ τ | B⊆ A}

Models of the predicate OTop are closest to L-fuzzy topologies of Höhle-type studied in [13].
We assume the ground set X of an open fuzzy topology to be crisp, since quantification over fuzzy
domains is not yet well understood in the fully graded setting of FCT. Even though there are no
technical obstacles for using fuzzy X , graded definitions over fuzzy X would need a much more
careful general discussion about their meaning and motivation. Thus in this contribution we stick to
crisp ground sets of fuzzy topologies.

In the sequel we assume that R v X1×X2 and S v X2×X3, where each Xi is a crisp class. By τi

we denote a fuzzy class of fuzzy classes such that τi v KerPowXi. In Definition 2 we introduce three
predicates, each of them expressing a different definition of continuous relation (by open classes, by
neighborhoods, and by the interior operator). It is worth mentioning that the definition of the predicate
NCont resembles the one used by Sambin [15, §2.3] over intuitionistic logic.

Definition 2.

OCont(R)≡df (∀B ∈ τ2)(R←B ∈ τ1)
NCont(R)≡df (∀x ∈ X1)(∀B ∈ τ2)(R→{x}‖B→ (∃A)(Nbτ1(x,A) & A⊆ R←B))
ICont(R)≡df (∀B)(R← Intτ2(B)⊆ Intτ1(R

←B))

The following proposition says that all of the above introduced predicates are fuzzily equivalent
under rather general conditions: note that the second-order fuzzy classes τ1 and τ2 are only required
to be closed under unions of fuzzy families of fuzzy classes. Also notice that the theorem is graded,
i.e., the fuzzy equivalence holds at least to the degree of Uc(τ1) resp. Uc2(τ2). We omit all proofs due
to space restrictions.
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Proposition 1. It is provable in FCT:

1. Uc(τ1)→ (NCont(R)↔ OCont(R))
2. Uc(τ1)→ (OCont(R)↔ ICont(R))
3. Uc2(τ2)→ (ICont(R)↔ NCont(R))

As the properties OCont, ICont, and NCont are equivalent if τ1 resp. τ2 are sufficiently union-
closed, we shall restrict our attention to the predicate OCont. The following proposition shows that
continuous relations form a “fuzzy system of morphisms” between fuzzy topologies.

Proposition 2. It is provable in FCT:

1. OCont(IdX)
2. OCont(R) & OCont(S)→ OCont(R◦S)

Like in classical topology, when examining the continuity of a relation, it is sufficient to verify
openness for preimages of open classes from a base.

Proposition 3. FCT proves:

{
S

ν | ν⊆ σ} ⊆ τ2 & Uc(τ1)→ [OCont(R)↔ (∀B ∈ σ)(R←B ∈ τ1)]

A non-trivial example of continuous relations between fuzzy topological spaces is introduced in
Example 1. The predicate OCont has crisp instances, too: in particular, continuous relations studied
herein are special cases of so-called lower semicontinuous multifunctions investigated in set-valued
analysis [7].

Example 1. In [6], an interval fuzzy topology on domains densely ordered by a crisp relation ≤ has
been defined as the coarsest fully

S
-closed topology that fully contains the fuzzy subbase of fuzzily

open fuzzy intervals [A,B]. It can be proved that ≤ is a continuous relation w.r.t. this topology: since
the fuzzy family of open fuzzy intervals is closed under ∩, by Proposition 3 it is sufficient to prove
that ≤← [A,B] is open for any open fuzzy interval [A,B]. It can even be shown that ≤← [A,B] is an
open interval of the form [−∞,C] for a right-open C.4
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In this paper we will give an overview of the most significant results concerning application of al-
gebraic tools and concepts in study of fuzzy languages and automata. We will point to some older
results, concerning classical fuzzy languages and automata taking membership values in the Gödel
structure, but our attention will be aimed mostly to recent results on lattice-valued fuzzy languages
and automata, especially to those concerning fuzzy languages and automata with membership values
in lattice-ordered monoids and complete residuated lattices.

The central place in the algebraic theory of fuzzy languages and automata is held by various
questions concerning recognition of fuzzy languages by fuzzy finite automata (FFA) and determinis-
tic finite automata (DFA). In the classical theory of fuzzy languages and automata with membership
values in the Gödel structure, the classes of all DFA-recognizable and all FFA-recognizable fuzzy lan-
guages coincide, but this does not necessary hold for other structures of membership values. Namely,
Li and Pedrycz [19] studied fuzzy automata and languages over a lattice-ordered monoid L , and
they proved that the classes of all DFA-recognizable and all FFA-recognizable fuzzy languages over
L coincide if and only if the reduct L ∗ of L , with respect to join and multiplication, is a locally
finite semiring. Bělohlávek [3] and Li and Pedrycz [19] developed a method for determinization of
fuzzy automata, which results in a finite automaton if and only if L ∗ is locally finite. Ignjatović et
all [11] developed another method, which can result in a finite automaton even if L ∗ is not locally
finite, and always gives a smaller automaton than the mentioned method by Bělohlávek and Li and
Pedrycz. Ignjatović et all [11, 12] also gave certain criterions for finiteness of the resulting determi-
nistic automaton, and proved that this automaton is a minimal deterministic automaton recognizing
all fuzzy languages which can be recognized by the original fuzzy automaton. Determinization of
fuzzy automata was also studied by Li and Pedrycz [21], whereas Li [18] considered the problem of
approximation of a non-deterministic fuzzy finite automaton by a deterministic one.

The Myhill-Nerode’s type theory for fuzzy langauges and automata, in which fuzzy languages
and automata are studied through right congruences and congruences on a free monoid, traces one’s
origin to the papers by Shen [37] and Malik et all [24] (see also [29]), and recently, it was further
developed by Ignjatović et all [12]. Ignjatović et all [12] characterized DFA-recognizability of fuzzy
languages through syntactic right congruences and syntactic congruences of a fuzzy language, and
proved that for any fuzzy language there exists a minimal deterministic automaton recognizing it,
which is unique up to an isomorphism. They also gave a construction of this automaton by means of
the concept of a derivative of a fuzzy language, as well as by means of derivatives of certain crisp
languages associated with a fuzzy language (kernel and cut languages), and they gave an algorithm
for minimization of a deterministic automaton which recognizes a given fuzzy language. A similar
algorithm, for deterministic automata recognizing fuzzy languages over a distributive lattice, was also
given by Li and Pedrycz [21]. It is worth of mention that Ignjatović et all [12] studied fuzzy languages
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taking membership values in an arbitrary set having two distinguished elements 0 and 1, which are
needed to take crisp languages into consideration. Recently, Bozapalidis and Louscou-Bozapalidou [4,
5], studied fuzzy languages recognized by finite monoids and established certain relationships between
recognizability of fuzzy languages by finite monoids and fuzzy finite automata. Recognizability of
fuzzy languages by monoids was also studied in [12], where it was proved that it is equivalent to
DFA-recognizability.

Unlike deterministic automata, whose minimization is efficiently possible, it is well-known that
the state minimization of non-deterministic automata is computationally hard. Fuzzy automata are
generalizations of non-deterministic ones, and the mentioned problem also exist in work with fuzzy auto-
mata. For that reason, many researchers aimed their attention to efficient size reduction methods which
do not necessarily give a minimal automaton. Size reduction algorithms for fuzzy automata given in [2,
6, 15, 26, 29, 32] are also based on the idea of computing and merging indistinguishable states, and the
term minimization that we meet there does not mean the usual construction of the minimal one in the
set of all fuzzy automata recognizing a given fuzzy language, but just the procedure of computing and
merging indistinguishable states. M. Ćirić et all [7, 8] showed that the size reduction problem for fuzzy
automata is related to the problem of solving a particular system of fuzzy relation equations. This sys-
tem consists of infinitely many equations, and finding its general solution is a very difficult task, and
M. Ćirić et all [7, 8] considered one of its special cases, a finite system whose solutions, called right
invariant fuzzy equivalences, are common generalizations of right invariant or well-behaved equiva-
lences used in reduction of non-deterministic automata, and congruences on fuzzy automata studied
in [32]. They also gave a procedure for constructing the greatest right invariant fuzzy equivalence
contained in a given fuzzy equivalence. It was shown that the method for reduction of fuzzy automata
developed in [7, 8] gives better results than all other methods developed in [2, 6, 15, 26, 29, 32], and
that these results can be even improved using fuzzy quasi-orders instead of fuzzy equivalences.

Finally, we will also talk about regular operations on fuzzy languages and related concepts,
which have been considered in [1, 10, 14, 16, 19]. Li and Pedrycz [19] proved the Kleene’s type the-
orem for fuzzy languages which asserts that a fuzzy language over a lattice-ordered monoid is FFA-
recognizable if and only if it can be represented by a fuzzy regular expression, or equivalently, if it can
be constructed from elementary languages using the regular operations on fuzzy languages – union,
concatenation, Kleene star and scalar products. Certain related results were also obtained in [1, 16].
Ignjatović and Ćirić [10] studied fuzzy languages over a quantale L , and proved that they can be
represented by formal power series on L with coefficients which are crisp languages, and that regular
operations on fuzzy languages can be represented by operations on power series which are defined by
means of operations on crisp languages. They also proved that a fuzzy language is FFA-recognizable
if and only if it can be represented by a rational power series, and that it is DFA-recognizable if and
only if it can be represented by a polynomial whose coefficients are regular crisp languages.
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32. Petković, T.: Congruences and homomorphisms of fuzzy automata. Fuzzy Sets and Systems 157, 444–458 (2006)
33. Qiu, D.W.: Automata theory based on completed residuated lattice-valued logic (I). Science in China, Series F 44,

419–429 (2001)
34. Qiu, D.W.: Automata theory based on completed residuated lattice-valued logic (II). Science in China, Series F 45,

442–452 (2002)
35. Qiu, D.W.: Characterizations of fuzzy finite automata. Fuzzy Sets and Systems 141 391–414 (2004)
36. Qiu, D.W.: Pumping lemma in automata theory based on complete residuated lattice-valued logic: A note. Fuzzy Sets

and Systems 157, 2128–2138 (2006)
37. Shen, J.: Fuzzy language on free monoid. Information Sciences 88, 149–168 (1996)
38. Sheng, L., Li, Y.M.: Regular grammars with truth values in lattice-ordered monoid and their languages, Soft Computing

10, 79–86 (2006)

21



39. Srivastava, A.K., Tiwari, S.P.: On relationships among fuzzy approximation operators, fuzzy topology, and fuzzy au-
tomata. Fuzzy Sets and Systems 138, 197–204 (2003)

40. Tiwari, S.P., Srivastava, A.K.: On a decomposition of fuzzy automata. Fuzzy Sets and Systems 151, 503–511 (2005)
41. Xing, H.G., Qiu, D.W., Liu, F.C., Fan, Z.J.: Equivalence in automata theory based on complete residuated lattice-valued

logic. Fuzzy Sets and Systems 158, 1407–1422 (2007)

22



Pointed semi-quantales and generalized lattice-valued
quasi topological spaces

Mustafa Demirci

Department of Mathematics
Faculty of Sciences and Arts, Akdeniz University, Antalya, Turkey

demirci@akdeniz.edu.tr

Semi-quantales have been recently introduced by Rodabaugh [6] as a lattice-theoretic and an algebraic
basis of powerset theories and lattice-valued topologies. In particular, lattice-valued quasi topology
(L-quasi topology) referring to a semi-quantale L is defined in [6] as a generalization of many valued
topology (L-topology) in Höhle’s sense [2] by dropping the axiom “the characteristic function of the
underlying set belongs to the L-topology”. In a completely different context, Mulvey and Pelletier
[5] proposed the quantal spaces as a generalization of topological spaces by means of quantales. A
quantale space (X ,τX), by definition, is a Gelfand quantale X together with an algebraically strong
right embedding τX : X → QX into a product QX of discrete Hilbert quantales. Motivating with the
idea of quantal space, we define the notion of semi-quantale space: A semi-quantal space (Q,g) is
a semi-quantale Q equipped with a semi-quantale morphism g from Q to the set-indexed product of
some semi-quantales. If g is also an embedding, then the semi-quantal space (Q,g) is said to be T0.

In this talk, our main problem is to find out whether there exists a categorical connection, possibly
a categorical equivalence, between semi-quantal spaces and lattice-valued topological spaces. For this
purpose, we first show that a (T0) semi-quantal space (Q,g) can be identified with a (point-separating)
small source (Q,H ) [1] in the category SQuant of semi-quantales and semi-quantal morphisms [6],
and call the associated (point-separating) small source (Q,H ) a (spatially) pointed semi-quantale.
Here a pointed semi-quantale (Q,H ) is simply a semi-quantale Q = (Q,≤,⊗) together with a set-
indexed family H of SQuant-morphisms from Q to some semi-quantales, and its spatiality means
that for two distinct elements x,y of Q, there exists an element f of H such that f (x) 6= f (y).

The identification of semi-quantal spaces with pointed semi-quantales basically results from the
fact that the latter makes the formulation of results easier and simpler. In addition to this, spatially
pointed semi-quantales can also be viewed as a generalization of spatial locales [3, 4]. In order to
clarify this fact, let us first recall the category Frm of frames and frame morphisms [3]. Frm is
obviously a non-full subcategory of SQuant. If we consider the non-full subcategory SSQuant of
SQuant of semi-quantales and strong semi-quantale morphisms, i.e. semi-quantale morphisms pre-
serving the top elements, then Frm will be full in SSQuant. In case SQuant-morphisms in the defini-
tions of (T0) semi-quantal spaces and (spatially) pointed semi-quantales preserve the top elements, we
add the adjective “strong” in front of these concepts. Spatial locales can be defined as some special
kinds of strong, spatially pointed semi-quantales: Indeed, if we particularly choose the semi-quantale
Q = (Q,≤,⊗) as a locale (also known as a frame or a complete Heyting algebra), i.e. ⊗ = ∧ and ∧
distributes over arbitrary joins, and if we consider the set hom(Q,2) of all frame morphisms from Q
to the complete Boolean algebra 2 = ({0,1} ,≤,

V
), that are functions from Q to {0,1} preserving

finite meets and arbitrary joins, then the spatiality of Q is obviously equivalent to that (Q,hom(Q,2))
is a strong, spatially pointed semi-quantale. Consequently, in order to deal with our main problem, we
will not operate with semi-quantal spaces directly, but their pointed semi-quantal identifications.
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As a lattice-valued topological counterpart to (spatially) pointed semi-quantales, we will define
a (T0) generalized lattice-valued quasi topology to be a subproduct of a set-indexed family of semi-
quantales. In order to justify the appropriateness of the term “generalized lattice-valued quasi topol-
ogy”, it might be necessary to mention here that generalized lattice-valued quasi topology is a gener-
alization of L-quasi topology. Thereafter, we will formulate the categories of pointed semi-quantales
and of generalized lattice-valued quasi topological spaces that are denoted by PSQuant and GQTop.
As an answer to our main, we will establish a functor Sp from the opposite category PSQuantop of
PSQuant to GQTop. Here the functor Sp :PSQuantop →GQTop can be thought of as an extension
of the functor ptB :CGRop → B-TOP in [2] to the present settings. We will conclude this talk with
an important observation: If we denote the full subcategory of PSQuant of all spatially pointed semi-
quantales and the full subcategory of GQTop of all T0 generalized lattice-valued quasi topological
spaces by SPSQuant and GQTop0, then the restriction of Sp to SPSQuantop gives an equivalence
from SPSQuantop to GQTop0.
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1 Introduction

The paper initiates a study of categorical approach to fuzzification processes. Traditionally fuzzifica-
tion processes on a non-empty set X are performed by applying Zadeh Extension Principle (ZEP) [6,
9], and in this paper we are especially interested in arithmetic of fuzzy natural numbers. Linguistically,
ZEP is usually intepreted such that any operation on X can be extended to an operation on LX , where
L is typically a completely distributive lattice and for L = {0,1} we write L = 2. Is it possible to define
arithmetical operations on LN without basing them on the arithmetic of N? Example 1 illustrates this
situation.

Example 1. Consider there are some persons, each buying a couple of wine bottles. As a result, they
have all together quite many wine bottles. Clearly, ’some persons’, ’a couple of wine bottles’ and
’quite many wine bottles’ can be modelled as L-sets on the set of natural numbers N. The hedge ’quite
many’ may be considered as some kind of aggregation of ’some’ and ’a couple of’.

Example 1 suggests that the arithmetic of natural numbers is not really needed, while the extension
principle says that the arithmetic on N is defined first and then these operations are extended. Now,
we recall ZEP mathematically: Let X be a non-empty set. Then, for any A1,A2, . . . ,An ∈ LX and
x1,x2, . . . ,xn ∈ X we have

fL(A1,A2, . . . ,An)(z) =
_

f (x1,x2,...,xn)=z

(
n̂

i=1

Ai(xi)

)
, (MZEP)

where fL is an n-ary operation on LX as an extension of f : Xn −→ X .
The formula (MZEP) is the traditional way to define, for example, arithmetic of fuzzy natural

numbers as arithmetic with fuzzy’. On the other hand, the study in [3] suggests that approaching
arithmetic of fuzzy natural numbers as ‘arithmetic with fuzzy’ is counter intuitive in monadic setting.
In fact, the formation of N defines also the arithmetical operations. Indeed, N is formed by means
of the successor (succ) operation, and other arithmetical operations on N are based on succ, that is,
they are based on enumeration. In this paper we critically deliberate about extentions in the sense of
Example 1 and extensions by means of (MZEP).
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2 On monad compositions

In the sequel, let L be a completely distributive lattice. The covariant power-set functor Lid is obtained

by LidX = LX , and for a morphism X
f→ Y in Set we have ([6, 9])

Lid f (A)(y) =
_

x∈X

A(x)∧ f−1({y})(x)

=
_

f (x)=y

A(x). (1)

Further, define ηX : X → LidX by

ηX(x)(x′) =

{
1 if x = x′

0 otherwise
(2)

and µX : LidLidX → LidX by

µX(A)(x) =
_

A∈LidX

A(x)∧A(A). (3)

We refer [1, 8] for more detailed discussion on power-set functors. Especially, Lid is categorically a
correct choice to powerset operators in the sense of Rodabaugh ([8]). Moreover, it is clear that (MZEP)
and (1) coincide when n = 1.

It is well known that the functor Lid can be extended to monad with η and µ defined in (2) and (3),
respectively. Indeed, the following proposition can be presented:

Proposition 1 ([7]). Lid = (Lid ,η,µ) is a monad.

Note that 2id is the usual covariant power-set monad P = (P,η,µ), where PX is the set of subsets
of X , ηX(x) = {x} and µX(B) =

S
B , where B ∈ PPX .

The problem of extending a functor to a monad is not a trivial one, and some strange situations
may well arise as shown below. The id2 functor can be extended to a monad with ηX(x) = (x,x)
and µX((x1,x2),(x3,x4)) = (x1,x4). Similarly, idn can be extended to a monad. In addition, the proper
power-set functor P0, where P0X = PX \ { /0}, as well as id2 ◦P0 can, respectively, be extended to a
monad in a unique way. However, P0 ◦ id2 cannot be made to a monad [4].

Remark 1. Let ΦΦΦ = (Φ,ηΦ,µΦ) and ΨΨΨ = (Ψ,ηΨ,µΨ) be monads over Set. The composition Φ ◦Ψ

cannot always be extended to a monad as we see in the case of P0 ◦ id2.

Especially, L0 ◦ id2 cannot be extended to monad, where L0X = LidX \{ /0}. One might now try the
functor id2◦L0 to obtain (MZEP) as an approach to extend binary operations on X to binary operations
on LidX . However, the following discussion shows some problems.

Consider we have a binary operation f : X ×X → X . It is clear that we can think f as a Set-
morphism. Applying Lid we have then Lid f : Lid(X×X)→ LidX such that for any R ∈ Lid(X×X) and
x,y ∈ X ,

Lid f (R)(z) =
_

z= f (x,y)

R(x,y).

Unfortunately, Lid f is not a generalization of f in the sense that we should have an operation on LidX .
Indeed, we would like to have an operation h : (id2 ◦Lid)X → LidX , but it is clear that this is possible
only if we have a natural transformation σ : Lid → id2 ◦Lid . Now, for X ×X we have

σX×X : Lid(X ×X)→ Lid(X ×X)×Lid(X ×X).
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As a conclusion of this discussion we can say that MZEP may be obtained directly by Lid for unary
arithmetical operations only.

Concerning generalizations of terms, see [1], we adopt a more functorial presentation of the set
of terms, as opposed to using the conventional inductive definition of terms, where we bind ourselves
to certain styles of proofs. Even if a purely functorial presentation might seem complicated, there are
advantages when we define corresponding monads, and, further, a functorial presentation simplifies
efforts to prove results concerning compositions of monads.

For a set A, the constant set functor ASet is the covariant set functor which assigns sets X to
A, and mappings f to the identity map idA. The sum ∑i∈I ϕi of covariant set functors ϕi assigns to

each set X the disjoint union
S

i∈I({i}×ϕiX), and to each morphism X
f→ Y in Set the mapping

(i,m) 7→ (i,ϕi f (m)), where (i,m) ∈ (∑i∈I ϕi)X .
Let k be a cardinal number and (Ωn)n≤k be a family of sets. We will write Ωnidn instead of

(Ωn)Set× idn. Note that ∑n≤k ΩnidnX is the set of all triples (n,ω,(xi)i≤n) with n ≤ k, ω ∈ Ωn and
(xi)i≤n ∈ Xn.

A disjoint union Ω =
S

n≤k{n}×Ωn is an operator domain, and an Ω-algebra is a pair (X ,(snω)(n,ω)∈Ω)
where snω : Xn → X are n-ary operations. The ∑n≤k Ωnidn-morphisms between Ω-algebras are pre-
cisely the homomorphisms between the algebras.

The term functor can now be defined by transfinite induction. In fact, let T 0
Ω

= id and define

T α

Ω = (∑
n≤k

Ωnidn)◦
[

β<α

T β

Ω

for each positive ordinal α. Finally, let
TΩ =

[

α<k̄

T α

Ω

where k̄ is the least cardinal greater than k and ℵ0. Clearly, (n,ω,(mi)i≤n) ∈ T α

Ω
X , α 6= 0, implies

mi ∈ T βi
Ω

X , βi < α.

A morphism X
f→ Y in Set can also be extended to the corresponding Ω-homomorphism

(TΩX ,(σnω)(n,ω)∈Ω)
TΩ f−→ (TΩY,(τnω)(n,ω)∈Ω),

where TΩ f is defined to be the Ω-extension of X
f→ Y ↪→ TΩY associated to (TΩY,(τnω)(n,ω)∈Ω).

We can now extend TΩ to a monad. Define η
TΩ

X (x) = x. Further, let µTΩ

X = id?
TΩX be the Ω-extension

of idTΩX with respect to (TΩX ,(σnω)(n,ω)∈Ω).

Proposition 2 ([7]). TΩ = (TΩ,ηTΩ ,µTΩ) is a monad.

Proposition 3 ([1]). (LidTΩ,ηLidTΩ ,µLidTΩ), denoted Lid •TΩ, is a monad.

3 Fuzzification of logic - Where and how?

In [5] terms are described in a general setting in a substitution theory. This means essentially gen-
eralizing the underlying signature to involving usage of the composed monad Lid •TΩ. An effort to
generalize the notion of sentences can be found in [2].

The composed functor TΩLid on the other hand is problematic as we are not able to extend it
to a corresponding monad TΩ •Lid . The distinction between LidTΩ and TΩLid is important e.g. with
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respect to approaches to fuzzy arithmetic, as we need to understand if ‘fuzzy arithmetic’ produces
terms in LidTΩ or TΩLid . In the latter a composition of substitutions is not possible as the underlying
composed functor is not extendable to a monad. We are thus referred to staying within the set LidTΩX ,
and therefore we are NOT doing ‘arithmetic with fuzzy’ which has been the default approach for
‘fuzzy arithmetic’. Especially, arithmetic need to be defined before fuzzification, thus, Example 1 is
not an approach to ‘fuzzy arithmetic’.

Fuzzy sets of arithmetic expressions, like approximately x, are then represented by mappings
from TΩX to L. This is in our view intuitively more appealing.

Example 2. [3] Consider the element approx(x+y) of LT X , where L = Lid and T = TΩ. With the
substitution

x := approx 0
y := approx 60

applied to approx(x+y) we obtain the expression

approx(approx 0 + approx 60)

which is an element of LT LT X . However, applying µLT
X on approx(approx 0 + approx 60) brings

µLT
X (approx(approx0+approx60)) to become an element of LT X .

Let us focus on semantics, fuzzy natural numbers again. It is clear that MZEP can be applied to
unary operations, which can be seen as follows:

Example 3. Consider (N,succ), where succ : N→N, is the successor operation. It is clear that succ
can be extended to fsucc = Lid succ by means of (MZEP). In fact this is just a ‘shift’ by one unit to
the right for A ∈ LidN. Notice that (MZEP) determines fsucc(A)(0) = 0.

Fortunately, we can set succA(1) = fsucc(A), where succA : N → LidN. It may be also reasonable
to extend fsuccm(A) to an L-family of L-sets A ∈ LidLidN, which for all k,m ∈ N fulfills

A(fsucck(A)) = ηN(m)(k),

where fsucck(A) means that the operation fsucc is applied for k times on A. Naturally, we identify
fsuccηN(m)(A) as A , and it is clear that we have fsuccm(A) = µN(fsuccηN(m)(A)). Moreover, we can
interpret this as an addition on LidN, thus we have

A+ηN(m) = µN(fsuccηN(m)(A)).

Finally, an addition of fuzzy natural numbers A,B ∈ LidN may be considered as

A+B = µN(fsuccB(A)). (4)

Note that if A = fsuccB(A) we then have for all k ∈ N, A(fsucck(A)) = B(k). On syntactical point
of view the authors think that (4) may be obtained by means of variable substitution described in [3].

4 Conclusion

In this paper we have critically deliberated about an extention of arithmetic in the sense of Example
1 as ‘fuzzy arithmetic’. Moreover, there are doubts on extending the arithmetic of natural numbers
by means of (MZEP). However, (MZEP) can be applied to unary operations and other arithmetical
operations for fuzzy natural numbers may be produced applying the monad Lid as it was described in
Section 3. It is not yet clear which kind of signature and equational logic would have the described
semantics.
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1 Introduction and preliminaries

Closure systems (closure operators) are very useful tools in several areas of classical mathematics.
In the framework of fuzzy set theory, fuzzy closure systems and fuzzy closure operators have been
studied by Gerla etc., see e.g. [5–7], where a fuzzy set U is usually defined as a mapping from a
universe X to the real interval [0,1] in the above mentioned works. R. Bělohlávek [2] introduced the
notion of LK-closure systems when L is a complete residuated lattice [8–10].

In this paper, we generalize Bělohlávek’s LK-closure system to a more general form, namely,
(strongly) L-fuzzy closure system when L is a complete residuated lattice. In addition, we propose a
new form of fuzzy closure operators, called strongly L-fuzzy closure operator, and show the strongly
L-fuzzy closure operator is a suitable closure operator, which has close relationships with the strong
L-fuzzy closure system. In categorical aspect, we establish a Galois correspondence between the cate-
gory of (strongly) L-fuzzy closure system spaces and that of (strongly) L-fuzzy closure spaces. Finally,
indeed, we point out that every Bělohlávek’s L-closure system could be induced by a strongly L-fuzzy
closure system.

Throughout this paper, a complete residuated lattice is a triple (L,∗,1) (denoted L, simply) such
that (1) L is a complete lattice, (2) (L,∗,1) is a commutative monoid, (3) there exists a further binary
operation→ on L such that the condition a∗b≤ c⇐⇒ a≤ b→ c holds for all a, b, c∈ L. The greatest
element of L is denoted by 1 and the least element of L is denoted by 0. Let X be a universe set and
the family of all L-subsets on X will be denoted by LX . By 0X and 1X , we denote the constant L-subset
on X taking the value 0 and 1, respectively.

2 L-fuzzy closure systems and closure operator

Recall for a nonempty set X , a family Φ of subsets of X is a (classical) closure system on the set X
if the intersection of any family of elements of Φ is an element of Φ. R.Bělohlávek [2] proposed a
concept of LK-closure system. Since an LK-closure system is a classical family of L-subsets on X , as
personal viewpoint, it may not be fuzzy closure system really. In the paper, we propose the following
definition in L-fuzzy setting.

Definition 1. A mapping ϕ: LX → L is called an L-fuzzy closure system (L-fcs, in short) if and only if
the following holds

(S1) ϕ(1X) = 1;
(S2) ϕ

(V
j∈J U j

)
≥
V

j∈J ϕ(U j) for each family of {U j : j ∈ J} ⊆ LX .
If ϕ satisfies (S1), (S2) and in addition,
(S3) ϕ(a→U)≥ ϕ(U) for each U ∈ LX , a ∈ L,

then we say that ϕ is a strongly L-fuzzy closure system (SL−fcs, in short). A pair of (LX ,ϕ) is called
a (strongly) L-fuzzy closure system space if ϕ is a (strongly) L-fuzzy closure system on X. �

? This work is supported by the National Natural Science Foundation of PR China (No. 10771200)
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Obviously, every SL-fcs is an L-fcs, but we have examples to show the converse needn’t be true.
The extension of (classical) closure operators in Birkhoff’s sense to L-subsets, have been proposed

by R. Bělohlávek, i.e., a fuzzy closure closure therein is a mapping C : LX → LX satisfying (FC1),
(FC2) and (FC3) in the definition below. The condition (FC4) seems to be new and readers should
find its importance to the following contents.

Definition 2. An L-fuzzy closure operator (L-fco, in short) on a universal set X is a mapping C : LX →
LX satisfying

(FC1) ∀U ∈ LX , S(U,C (U)) = 1, or equivalently, U ≤ C (U)
(FC2) ∀U, V ∈ LX , S(U, V )≤ S(C (U), C (V ));
(FC3) ∀U ∈ LX , C (C (U)) = C (U);

If in addition C satisfies
(FC4) ∀a ∈ L, U ∈ LX , a∗C (U)≤ C (a∗U),

we say that C is a strongly L-fuzzy closure operator (SL-fco, in short) on X. A pair of (LX ,C ) is called
an (strongly) L-fuzzy closure space if C is an (strongly) L-fuzzy closure operator on X. �

For a given L-fcs (SL-fcs), there is a natural way to get an L-fco (SL-fco). In fact, for a given
mapping ϕ : LX → L, we could define an operator Cϕ : LX → LX as follows:

Cϕ(U) =
^

W∈LX

ϕ(W )∗S(U, W )→W

for each U ∈ LX . Then we have

Proposition 1. (1) If ϕ is an L-fuzzy closure system, then Cϕ : LX → LX ia an L-fuzzy closure oper-
ator; (2) If ϕ is a strongly L-fuzzy closure system, then Cϕ : LX → LX ia a strongly L-fuzzy closure
operator. �

Conversely, from a given L-fco (SL-fco), there is also a method to obtain an L-fcs (SL-fcs). Pre-
cisely, if C : LX → LX be an operator, we can define ϕC : LX → L by

ϕC (U) = S(C (U), U)

for each U ∈ LX , where S(U, V ) =
V

x∈X U(x)→ V (x) for each pair (U, V ) ∈ LX ×LX [3, 4, 8, 14].
Thus we have

Proposition 2. If C : LX → LX is an L-fuzzy closure operator, then ϕC : LX → L is an L-fuzzy closure
system. In addition, if C : LX → LX is a strongly L-fuzzy closure operator, then ϕC : LX → L is a
strongly L-fuzzy closure system. �

By Propositions 1, 2, L-fcs (SL-fcs) and L-fco (SL-fco) could be induced one by another. These
procedures have good representation as describing as follows.

Theorem 1. Let C be a (strongly) L-fuzzy closure operator on X and ϕ a (strongly) L-fuzzy closure
system on a set X, Then it hold

CϕC = C and ϕCϕ
≥ ϕ. �

At the end of section, we offer examples to show how to get an L-closure system [2] from an
SL-fcs and every L-closure system can be considered as a special SL-fcs.
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Example 1. Suppose that ϕ : LX → L is a strongly L-fuzzy closure system. Define J = {W ∈ LX |
ϕ(W ) = 1}. Then J is an L-closure system in the sense of [2]. In fact, by Corollary 3.1 [2] and (S3),
it holds that

∀W ∈ J , W ∈ J ⇒ (a→W ) ∈ J

for all a ∈ L.

Example 2. Suppose that J ⊆ LX is an L-closure system. Define a mapping ϕ : LX → L such that
ϕ(W ) = 1 when W ∈ J and =0 otherwise. Thus, it is easy to check that, by Definition 1, J is a strongly
L-fuzzy closure system as desired.

3 Category of L-fuzzy closure system spaces

We devote the section to the categorical aspect of the relationship between L-fuzzy closure spaces and
L-fuzzy closure system spaces. We refer to [1] for category theory.
Let f : X → Y be a mapping. f is called continuous from (LX ,ϕ) to (LY ,ψ) if it holds ϕ( f←(W )) ≥
ψ(W ) for all W ∈ LY , where and the following f←(W ) = W ◦ f (using the notion of [12, 13]). The
category of L-fuzzy closure system spaces with continuous mappings as morphisms is denoted by L-
FCss. Write SL-FCss for the full subcategory of L-FCss composed of objects of all strongly L-fuzzy
closure system spaces. And f is called continuous from (LX ,CX) to (LY ,CY ) if it holds CX( f←(W ))≤
f←(CY (W )) for all W ∈ LY . The category of L-fuzzy closure spaces with continuous mappings as
morphisms is denoted by L-FCos. Write SL-FCos for the full subcategory of L-FCos composed of
objects of all strongly L-fuzzy closure spaces. After the definitions and notions above, we want to
show that there exists a Galois correspondence [1] between L-FCss (SL-FCss) and L-FCos (SL-FCos)
indeed. Let us give two propositions

Proposition 3. If a mapping f : (LX ,CX)→ (LY ,CY ) is continuous, then f : (LX ,ϕCX )→ (LY ,ϕCY ) is
continuous. �

Proposition 4. If a mapping f : (LX ,ϕX)→ (LY ,ϕY ) is continuous, then f : (LX ,CϕX )→ (LY ,CϕY ) is
continuous. �

From Propositions 3 and 2(1), we obtain a concrete functor Ξ : L-FCos→ L-FCss defined by Ξ :
(LX , C ) 7−→ (LX , ϕC ) and f 7−→ f . Note that we still write Ξ for the restriction of the functor Ξ : L-
FCos→ L-FCss to the full subcategory SL-FCos, and by Proposition 2(2), Ξ : SL-FCos→ SL-FCss
form a concrete functor also.

From Propositions 4 and 1(1) we obtain a concrete functor ϒ : L-FCss→ L-FCos defined by
ϒ : (LX , ϕ) 7−→ (LX , Cϕ) and f 7−→ f . If we still write ϒ for the restriction of the functor ϒ : L-
FCss→ L-FCos to the full subcategory SL-FCss, then by Proposition 1(2), ϒ : SL-FCss→ SL-FCos
form a concrete functor

By Theorem 1, if C is an L-fco (SL-fco) on a set X , then the identity map idX : (LX ,C ) →
(LX ,ϒ(Ξ(C ))) = (LX ,CϕC ) is continuous. Moreover, if ϕ is an L-fcs (SL-fcs) on a set Y , then the
identity map idY : (LY ,Ξ(ϒ(ϕ))) = (LY , ϕCϕ

)→ (LY ,ϕ)) is continuous. Therefore, we obtain the fol-
lowing important theorem to reflects the close connection between the category of L-FCos (SL-FCos)
and that of L-FCss (SL-FCss), categorically.

Theorem 2. If an L is a complete residuated lattice, then (Ξ, ϒ) is a Galois correspondence between
the category of L-fuzzy closure spaces and that of L-fuzzy closure ststem spaces. Further, (Ξ, ϒ) is a
Galois correspondence between the category of strongly L-fuzzy closure spaces and that of strongly
L-fuzzy closure system spaces. �
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Duality methods have been extremely useful in the study of various types of algebras and logics that
have lattice reducts. This has been relatively less so for those based on chains. In recent years duality
methods for lattices with additional operations have evolved significantly and the tools needed to apply
duality to classes of algebras generated by chains are available. In this talk we give an introduction
to duality theory with particular emphasis on ‘double-quasioperator algebras’, a class containing the
lattice ordered algebras generated by chains.
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1 Introduction

The extension of the category notion to the lattice-valued case has been first considered in the seminal
paper on L-fuzzy sets by J. A. Goguen in 1967: to that extent he used a quite general monoidal structure
on the lattice L. In the last decade A. P. Sostak and others have considerably developed the original
research line outlined by Goguen giving several examples of lattice-valued categories, mainly in the
context of topological and algebraic structures: yet more they use an additional monoidal residuated
structure on the lattice L.

Here we go further in the development of lattice-valued category theory with the purpose to link
such a theory with the fundamental notions that a category comprises and reflects that in the many-
valued context are L-sets and L- order relations. The main features of the approach we propose consist
in the use of many-valued relations, instead of functions, to describe the structure of a category and to
define functors and in the use of an implicative structure, instead of a monoidal one, in the involved
lattice.

2 Basic notions and definitions

We assume L to be a complete distributive extended order (shortly cdeo) algebra (introduced in [2]),
which is associative or commutative when needed, according to the following definitions.

Definition 1. A complete, distributive extended-order algebra (cdeo algebra) is a (2.0)-type algebra
(L,→,>) such that

– the binary relation ≤ in L defined by

x≤ y if and only if x→ y =>

is a partial order;
– (L,≤) is a complete lattice with maximum > and minimum, say, ⊥;
–
W

A→
V

B =
V

(A→ B), for all A,B ∈ L
where A→ B = {a→ b | a ∈ A,b ∈ B}.

In a cdeo algebra (L,→,>) the adjoint product ⊗ : L×L→ L can be defined by

a⊗b =
^
{x ∈ L | b≤ a→ x}.

Definition 2. A cdeo algebra (L,→,>) is commutative if

(c): a→ (b→ c) =>⇔ b→ (a→ c) =>,

for all a,b,c ∈ L. L is associative if either of the following, equivalent conditions is satisfied
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(a1) : a→ (b→ c) = (
V
{x | a→ (b→ x) =>})→ c,

(a2) : a→ (b→ c) = (b⊗a)→ c,

Proposition 1. L is commutative (associative, respectively) if and only if the adjoint product ⊗ is
commutative (associative, respectively).

A commutative and associative cdeo algebra is nothing but a complete residuated lattice or, with
a different terminology, a strictly two sided commutative quantale. Our preference for the implicative
approach has several motivation, including that we need all the properties of the implication operation
but we do not need the commutativity or even the associativity of the product. Moreover a cdeo
algebra suits well as a range for L-order relations and, if L is associative then the implication itself is
an L-order on L. Eventually, we use just a cdeo algebra L to define L-categories and L-functors.

Definition 3. An L-category C on a class of objects O and a class of morphisms M is a sextuple

C = (ω,µ,δ,γ,∗, ι)
with

– an L-class of objects, ω : O → L;
– an L-class of morphisms, µ : M → L;
– a domain L-relation δ : O ×M → L,(X , f ) 7→ δX( f ) and a codomain L-relation γ : O ×M →

L,(Y, f ) 7→ γY ( f ) such that for all A,B ∈ O, f ∈M

δA( f )≤ ω(A), γB( f )≤ ω(B) (1)

– an L-set µXY : M → L, for every (X ,Y ) ∈ O×O, such that

µ =
_
{µXY | X ,Y ∈ O} (2)

and for all X ,Y ∈ O, f ∈M

µXY ( f )≤ δX( f )⊗ (δX( f )→ γY ( f )); (3)

– a composition L-relation ∗ : M ×M ×M → L, ( f ,g, l) 7→ ( f ∗ g)(l), such that for all X ,Y,Z ∈
O, f ,g, l ∈M

µY Z(g)≤ ( f ∗g)(l)→ (µXY ( f )→ µXZ(l)); (4)

– an identity L-relation ι : O×M → L,(X , f ) 7→ ιX( f ), such that for every X ∈ O, f ∈M

ιX( f )≤ µXX( f ) (5)

and for all X ∈ O, _{
ιX( f ) | f ∈M

}
= ω(X); (6)

moreover the following conditions have to be satisfied for all X ,Y ∈ O and f ,g,h ∈M

µXY (g)≤ ιX( f )→ ( f ∗g)(g) (7)

ιY (g)≤ µXY ( f )→ ( f ∗g)( f ) (8)

( f ∗g)∗h = f ∗ (g∗h) : M → L (9)

where for all f ,g,h, l ∈M
(( f ∗g)∗h)(l) =

W
p( f ∗g)(p)⊗ (p∗h)(l)

( f ∗ (g∗h))(l) =
W

q( f ∗q)(l)⊗ (g∗h)(q).
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Elementary examples show that L-sets, L-ordered sets and cdeo algebras can be viewed as L-
categories. The above definition can be weakened, so allowing further examples of L-categories.

Definition 4. An L-functor F from the L-category C =(ω,µ,δ,γ,∗, ι) to the L-category C ′ =(ω′,µ′,δ′,γ′,∗′, ι′)
consists in a pair of L-relations, both denoted F ,

F : OC ×OC ′ → L, F : MC ×MC ′ → L

such that the following conditions are satisfied, for all considered objects and morphisms

F (X ,X ′)≤ ω(X)→ ω
′(X ′) (10)

F ( f , f ′)≤ µ( f )→ µ′( f ′) (11)

F ( f , f ′)≤ F (A,A′)→ (δA( f )→ δ
′
A′( f ′)) (12)

F ( f , f ′)≤ F (B,B′)→ (γB( f )→ γ
′
B′( f ′)) (13)

F ( f , f ′)≤ F (Y,Y ′)→ (F (X ,X ′)→ (µXY ( f )→ µ′X ′Y ′( f ′))) (14)

F ( f , f ′)≤ F (X ,X ′)→ (ιX( f )→ ι
′
X ′( f ′)) (15)

F (l, l′)≤ F (g,g′)→ (F ( f , f ′)→ (( f ∗g)(l)→ ( f ′ ∗′ g′)(l′))) (16)

Under suitable conditions on L the composition of L-functors can be obtained by means of the
composition of L-relations and the L-categories are so the objects of a category whose morphisms are
L-functors.
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By regarding the real numbers as a locale L(R) rather than a space one arrives to the localic continuous
real-valued functions [1]

h : L(R)→ L

which essentially generalize classical continuous real-valued functions

f : X → R

(certainly a generalization for sober spaces).
It is then natural to consider lower and upper reals (like Dedekind sections but with only the left or

right parts) in order to define upper semicontinuous and lower semicontinuous real-valued functions
on locales. For upper semicontinuity, which is defined from below, one uses lower reals. The functions
take their values as lower reals. For lower semicontinuity, which is defined from above, one uses upper
reals.

Lower and upper reals are easily introduced in a pointfree way by defining suitable subframes of
L(R) (Ll(R) and Lu(R), respectively), independent of any notion of real number, using the fact that
frames may be presented by generators and relations. This way, upper semicontinuous and lower semi-
continuous real functions on a locale L are defined as, respectively, frame homomorphisms Ll(R)→ L
and Lu(R) → L satisfying some additional condition (see [2]), and have proved to be the right ap-
proach to develop semicontinuity in pointfree topology (see [2], [3], [4]).

Nevertheless, the fact that these three classes of morphisms have different domains is somewhat
unsatisfactory: one does not see continuous maps inside upper and lower semicontinuous ones; in
particular, one would always expect a map to be continuous if and only if it is both upper and lower
semicontinuous. It is the main purpose of this paper to remedy this, by developing a general notion
that encapsulates the three kinds of morphisms and plays the role of pointfree counterpart for the class
F(X ,R) of all real-valued functions on a set X .

To put this in perspective, we recall that by the well-known adjunction between the categories of
topological spaces and frames

Top
O //

Frm
Σ

oo

there is a bijection
Top(X ,R)' Frm(L(R),OX)

? The first and the second named authors acknowledge financial support from the Ministry of Education and Science of
Spain and FEDER under grant MTM2006-14925-C02-02. The third named author acknowledges financial support from
the Centre of Mathematics of the University of Coimbra/FCT
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between the set of all continuous real-valued functions from a space (X ,OX) into R (endowed with
the usual euclidean topology Te), and the set of all frame homomorphisms from L(R) into the frame
of open sets of X . Now, if we are interested in considering not only continuous but all real-valued func-
tions from (X ,OX) into R, we use the fact that F(X ,R) is in an obvious bijection with Top((X ,P (X)),(R,T ))
for any topology T on the reals. In particular, we have

F(X ,R)' Top((X ,P (X)),(R,Te)).

Therefore,
F(X ,R)' Frm(L(R),SX)),

where SX denotes the lattice of all subspaces of X .
One slogan of locale theory as generalized topology is that elements of the frame CL of all sublo-

cales of L are identified as generalized subspaces. Thus the above bijection justifies to think on the
members of Frm(L(R),CL) as (generalized) real-valued functions on L and to adopt the definition
that a generalized real function on a frame L is a homomorphism L(R)→ CL.

Since the real numbers are, essentially, the homomorphisms L(R)→ 2, where 2 denotes the two
element frame {0 < 1}, this also indicates, from the point of view of logic, that real-valued functions
on L should be seen as the “C(L)-valued real numbers”.

Our aim is to show that the real-valued functions on L play exactly the same role as they do in
the classical framework, and that upper semicontinuous, lower semicontinuous and continuous real
functions can be considered as particular cases of them, satisfying

u.s.c. ∩ l.s.c. = continuous.

More specifically, we achieve the following:

– Upper and lower semicontinuous functions on a frame can now be identified with real-valued
functions on the (dual) frame of sublocales such that the images of all elements of the form (−,q)
(resp. (p,−)) are closed sublocales.

– The identification above can only be stated for the semicontinuous functions that satisfy the addi-
tional condition considered in [2]. This clarifies the role of the mentioned condition.

– After having this bijection at hand one can see semicontinuous functions as a particular kind of
real-valued functions on the (dual) frame of sublocales, with the same domain, namely L(R).

– Being all upper and lower semicontinuous functions particular kinds of real-valued functions on
the (dual) frame of sublocales, we can compare them.

– Then by defining the algebraic operations for arbitrary real-valued functions that establish the
function algebra R (CL), we obtain, in particular, a way of defining the sum of an upper semicon-
tinuous function with a lower semicontinuous one.

– The class of continuous functions is precisely the intersection of the two classes of upper and
lower ones.
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The motivation for this work arose from an observation of Pultr and Rodabaugh in [4] that lattice-
valued frames may be useful in the establishment of well-founded definitions of uniform-type struc-
tures.

For X a topological space, the lattice O(X) of its open sets is a frame (i.e., a complete lattice
in which finite meets distribute over arbitrary joins), and for any continuous map f : X → Y , the
map O( f ) : O(Y ) → O(X) defined by O( f )(U) = f−1(U) is a frame homomorphism (i.e., preserves
finite meets and arbitrary joins). Thus we have a contravariant functor O : Top → Frm between the
category of topological spaces and the category of frames. Besides, considering the standard spectrum
construction Σ(M) =

(
{p : M → 2 | p∈ Frm},{Σm |m∈M}

)
for a frame M (where Σm = {p | p(m) =

1}) and defining, for each frame homomorphism h : M → N, Σ(h) : Σ(N)→ Σ(M) by Σ(h)(p) = p◦h,
a contravariant functor Σ : Frm→ Top is obtained, which is a right adjoint for O.

The above adjunction O a Σ can be easily adapted to the uniform setting, giving an adjunction
between the category UFrm of uniform frames (defined in [2] and studied in detail in [3] in terms of
covers) and the category Unif of uniform spaces.

In [4], the authors introduced L-valued frames, which relate to frames in a way parallel to that in
which L-valued topological spaces relate to topological spaces vı́a the ιL functor. Moreover, when L
is linearly ordered or, more generally, a spatial frame (see [1]), there is an adjunction between L-Top
and L-Frm which shows that L-valued frames generalize L-valued topological spaces in a similar way
to frames generalizing topological spaces.

Then, denoting by F1 and F2, respectively, the forgetful functors Unif → Top and UFrm → Frm
forgetting the uniform structure, and denoting by χT

L and χF
L the (characteristic) functors embedding

the categories of 2-valued objects in question in the corresponding categories of L-valued objects, we
get the following incomplete diagram:

? //

��?
??

??
??

��?
??

??
?? ?

��?
??

??
??

oo

L-Top
O // L-Frm
Σ

oo

Unif

OO

O //

F1 ��?
??

??
? UFrm

Σ

oo

OO

F2

��?
??

??
??

Top

χT
L

OO

O //
Frm

χF
L

OO

Σ

oo
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A natural question arises:

Does there exist two types of structure that would allow us to complete the cube (by filling in
the two question marks) in such a way that the two new vertical arrows also represent embed-
ding functors, that the two new diagonal arrows also represent forgetful functors, that the new
horizontal arrows also establish an adjunction, and that the whole diagram commutes?

It is our purpose in this work to show that all the points raised above can be addressed in a satisfac-
tory way. We introduce categories L-Unif and L-UFrm (for strictly two-sided commutative quantales
L) that fill in the two question marks: they are related respectively to the categories L-Top and L-Frm
in a parallel way and again, when L is linearly ordered or a spatial frame, L-UFrm generalizes L-Unif
in a similar way to uniform frames generalizing uniform spaces. We also present an equivalent de-
scription of L-Unif in terms of residuated mappings that will encompass Hutton’s original definition
whenever L is a Girard quantale.

We will therefore obtain the following commutative cube:

L-Unif
O //

ιUL

��

F3
��?

??
??

??
??

??
L-UFrm

Σ

oo

ιUF
L

��

F4

��?
??

??
??

??
??

L-Top

��

//
L-Frm

��

oo

Unif

χU
L

OO

//

��?
??

??
??

??
??

UFrmoo

χUF
L

OO

��?
??

??
??

??
??

Top

OO

//
Frm

OO

oo
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1 Introduction

In this talk we deal with a multivariate ”conditioning” as initiated by B.O. Koopman [7] for Boolean
algebras, further developed by H.T. Nguyen et al. [8] and for MV -algebras and Girard algebras by
U. Höhle and S. Weber [4],[5],[9],[10]. In the preparatory part, we consider ”reflectively radicable”
residuated lattices, a certain class of residuated lattices having all n-fold roots (generalizing U. Höhle’s
square roots to an arbitrary order n). Next, we study ordered n-tuples (with n ≥ 2) of elements of a
residuated lattice L which with regard to possible applications to probability theory are interpret as
variables in L. Then we introduce a lattice Ln of variables (”n-convolution” of L) equipped with a
residuated structure generalizing the ”canonical extension” of L proposed by U. Höhle and S. Weber
[4]. Further, we consider an associated to Ln lattice L̃n of variables of a special form which we call
conditional events w.r.t. variables in L generalizing the ”interval approach” of U. Höhle and S. Weber.
In the second part, we describe ‘”mean values” of those variables and conditional events generalizing
results of U. Höhle and S. Weber. Concrete examples are considered and the last step is to apply these
constructions in a setting for measures in MV -algebras.

2 Residuated lattices

Definition 21 A (commutative, integral) residuated lattice is a structure

L = (L,∨,∧,×,
·
·
,>,⊥)

with four binary operations and two constants such that

(i) (L,∨,∧,>,⊥) is a bounded lattice with the largest element > and the least element ⊥ (with
respect to the lattice ordering ≤);

(ii) (L,×,>) is a commutative monoid with the unit element >;
(iii) there exists a further binary operation (in our notation) ·

· : L× L → L, called residuum (also
known as residuation or residual implication with notations→ or→× provided with the following
property:

a×b≤ c⇔ a≤ c
b

(residuated pair).

Definition 22 A Girard algebra L =(L,∨,∧,×, ·· ,℘,¬,>,⊥) is a residuated lattice (L,∨,∧,×, ·· ,>,⊥)
equipped with the additional two operations: the involution ¬ : L → L (termed negation operation)
and the second commutative semigroup operation ℘ : L×L → L with the unit element ⊥, the dual
operation associated with ×, by setting ¬a = ⊥

a and a℘b = ¬(¬a×¬b), which in the case of disjoint
pair a,b ∈ L (i.e.,such that a×b =⊥) will be denoted by a℘̇b.
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Definition 23 (i) A Girard algebra L is called an MV -algebra if in it the divisibility property a× b
a =

a∧b holds.
(ii) An MV -algebra L is a Boolean algebra if the semigroup operation × coincides with the lattice

meet: ×= ∧ (which implies that ℘= ∨).

Example 24 (i) The real unit interval [0,1] equipped with the ”nilpotent minimum” t-norm a× b
equal to min(a,b) if a + b > 1 and equal to 0 if a + b ≤ 1 (introduced by J. Fodor in 1995),
with the residuum a

b F equal to max(a,1− b) if b > a and equal to 1 if b ≤ a, with the negation
¬a = 1− a and with the ”nilpotent maximum” t-conorm given by: a℘b is equal to max(a,b) if
a + b < 1 and equal to 1 if a + b ≥ 1 is a Girard algebra. This structure we calll Fodor algebra
and denote it [0,1]F .

(ii) The interval [0,1] equipped with the t-norm (”Łukasiewicz arithmetic conjunction”) a× b =
max(a + b− 1,0), with the residuum (written as ·

·Ł) a
b Ł = min(a + 1− b,1), with the negation

¬a = 1−a and with the t-conorm (”Łukasiewicz arithmetic disjunction”) a℘b = min(a+b,1) is
an MV -algebra referred to as Łukasiewicz algebra. This algebra will be denoted by [0,1]Ł.

Now we proceed to define ”reflectively radicable” residuated lattices, a certain class of residuated
lattices having all n-fold roots (generalizing U. Höhle’s square roots to an arbitrary order n).

Definition 25 Let L be a residuated lattice. If there exists a unary operation n
√
· : L → L fulfilling the

following two properties: an ≤ b⇒ a≤ n
√

b and ( n
√

b)n ≤ b for every natural number n and for every
pair a,b ∈ L, then we say that L has all n-fold roots and will call n

√
a n-fold root of a (noting that we

use the notation cn for the n-fold multiplication c× . . .×c). Moreover, if every n-fold root n
√

b of b ∈ L
satisfies the additional condition: ( n

√
b)n > b then we will say that L is reflectively radicable.

We will say that a reflectively radicable MV -algebra L is strict if for every natural number n the
relation: ¬ n

√
⊥= ( n

√
⊥)n−1 holds.

Example 26 (i) Fodor algebra [0,1]F equipped with n-fold roots:
√

a = 3
√

a = . . . equal to a if a > 1
2

and equal to 1
2 if a≤ 1

2 obviously has all n-fold roots. But it is not reflectively radicable.
(ii) Łukasiewicz algebra [0,1]Ł equipped with n-fold roots n

√
a := a+n−1

n is reflectively radicable and
even strict.

Proposition 27 Let L be a strict MV -algebra. Then the identity ¬( n
√

a1× . . .× n
√

an) = n
√¬a1× . . .×

n
√¬an holds.

3 Variables and conditional events in a residuated lattice

Let L be a residuated lattice and n be the chain of integers n = {0,1, . . . ,n−1} with n ≥ 2. Consider
the set Ln of ordered n-tuples f = 〈 f0, . . . , fn−1〉 with f0 ≤ . . . ≤ fn−1. We provide it with the point-
wise partial ordering: f ≤ g ⇔ f0 ≤ g0, . . . , fn−1 ≤ gn−1. Obviously these n-tuples (which will be
referred to as variables in L) form a bounded lattice with f ∧ g = 〈 f0∧ g0, . . . , fn−1∧ gn−1〉, f ∨ g =
〈 f0∨g0, . . . , fn−1∨gn−1〉, ⊥= 〈⊥, . . . ,⊥〉 and >= 〈>, . . . ,>〉.

Theorem 31 Let L be a residuated lattice. Then the bounded lattice Ln equipped with the convolution
product (denoted by ∗) given by

( f ∗g) j =
j_

i=0

fi×g j−i, j = 0, . . . ,n−1,
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is a residuated lattice with convolution residuals in the following form:

(
f
g
) j =

n−1− j^

i=0

fi+ j

gi
, j = 0, . . . ,n−1.

This residuated lattice will be referred to as the n-convolution of L. Moreover, if L is a Girard algebra
then so is its n-convolution Ln with the convolution negation ⊥ and the dual operation # associated
to ∗ given by:

( f⊥) j = ¬ fn−1− j and ( f #g) j =
n−1− j^

i=0

fn−1−i℘gi+ j, j = 0, . . . ,n−1.

Corollary 32 Let L be a Girard algebra and let Ln be its n-convolution. Then the following assertions
are equivalent:

(i) Ln is an MV -algebra,
(ii) L is a Boolean algebra.

Definition 33 Let L be an MV -algebra and let a, f0, . . . , fn−2 ∈ L be elements of L such that f0 ≤
. . . ≤ fn−2. Then the conditional event (a ‖ f0, . . . , fn−2) of a ∈ L with respect to a ”condition”
〈 f0, . . . , fn−2,>〉 ∈ Ln is defined as the element of Ln (i.e., variable in L):

(a ‖ f0, . . . , fn−2) = 〈a∧ f0,
a∧ f0

fn−2
, . . . ,

a∧ f0

f0
〉=

〈a∧ f0〉
〈 f0, . . . , fn−2,>〉

,

which can be rewritten in the form:

(a ‖ f0, . . . , fn−2) = 〈a∧ f0〉#̇〈 f0, . . . , fn−2,>〉⊥

in notations 〈b〉 abbreviating the expression 〈b, . . . ,b〉 of a constant variable. (The next step would be
to introduce conditional variables w.r.t. variables.)

We denote by L̃n the set of all conditional events in an MV -algebra L.

Lemma 34 Variables in an MV -algebra L are in an one-to-one correspondence to conditional events
in L via

〈g0,g1, . . . ,gn−1〉= (g0 ‖
g0

gn−1
, . . . ,

g0

g1
).

We introduce the bounded lattice and residuated structures in L̃n carried to it by this correspondence.

Theorem 35 Let L be an MV -algebra and let L̃n be associated with it the lattice of conditional events.
Then there exists a binary operation ∗ on L̃n such that it is a Girard algebra. This operation is given
by:

(a ‖ f0, . . . , fn−2)∗ (b ‖ g0, . . . ,gn−2) = (α0 ‖ φ0, . . . ,φn−2),

where
α0 = (a∧ f0)× (b∧g0),

φ j =
(a∧ f0)× (b∧g0)

a∧ f0
f j
× b∧g0

g j
× ( f j ∨g j)

∧ (a∧ f0)× (b∧g0)
Wn− j−2

i=1
a∧ f0
fn−1−i

× b∧g0
gi+ j

,
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j = 0, . . . ,n−3 (with n > 2),

φn−2 =
(a∧ f0)× (b∧g0)

a∧ f0
fn−2

× b∧g0
gn−2

× ( fn−2∨gn−2)
.

Next, the residuals are given by:

(a ‖ f0, . . . , fn−2)
(b ‖ g0, . . . ,gn−2)

= (β0 ‖ χ0, . . . ,χn−2),

where

β0 =
a∧ f0

b∧g0
∧

n−2̂

i=0

¬(b∧g0)×gi

¬(a∧ f0)× fi
,

χ0 = β℘̇(¬(a∧ f0)× f0× (b∧g0)),

χ j = β℘̇[(¬(a∧ f0)× f j× (b∧g0))∨
j−1_

i=0

(
b∧g0

gn−1− j+i
×¬(a∧ f0)× fi)],

j = 1, . . . ,n−2.

Further, the convolution negations are determined by:

(a ‖ f0, . . . , fn−2)⊥ = (¬a× f0 ‖ f0,
f0

fn−2
, . . . ,

f0

f1
).

Finally, the dual operation # associated with ∗ has the following form:

(a ‖ f0, . . . , fn−2)#(b ‖ g0, . . . ,gn−2) = (γ0 ‖ ψ0, . . . ,ψn−2),

where

γ0 =
{

(a∧ f0)℘(b∧g0)℘¬( f0∨g0) if n = 2
(a∧ f0)℘(b∧g0)℘¬( f0∨g0∨

Wn−2
i=1 fi×gn−1−i) if n > 2,

ψ j = γ℘̇(¬(a∧ f0)×¬(b∧g0)×
j_

i=0

fi×g j−i), j = 0, . . . ,n−2.

4 Mean values of variables and of conditional events

In this section we present a multivariate version of the U. Höhle and S. Weber ”mean value approach”
to conditioning in MV -algebras, in Girard algebras, and also in general residuated lattices described
in [4],[5],[9],[10]. This approach of U. Höhle and S. Weber requires the existence of mean value
functions with the crucial property of ”compatibility with the complement”. Here we bring forward a
new property of ”negative weak linearity” for mean value functions on Girard algebras.

Let L = (L,∨,∧,×, ·· ,℘,¬,>,⊥) be a Girard algebra. In imitation of the J.-M. Andreoli and J.-Y.
Girard’s polarity (positive/negative) in linear logic ([1]) we name the semigroup operation × ”posi-
tive multiplication”, and the dual to it operation ℘ ”negative multiplication”. Moreover, we look at
the lattice join ∨ as a ”positive addition”, and at the lattice meet ∧ as a ”negative addition”. Thus,
the reduct L∨× = (L,∨,⊥,×,>) become a ”positive” semiring and the reduct L∧℘ = (L,∧,>,℘,⊥)
”negative” semiring. In the join-lattice reduct Ln

∨ = (Ln,∨,⊥) we can introduce the structure of a
L∨×-semimodule, namely, the ”positive” scalar multiplication by elements of the positive semiring
L∨× (also denoted by×) on Ln

∨ by the formula a× f = 〈a× f0, . . . ,a× fn−1〉. Dually, starting from the
negative semiring L∧℘ of a Girard algebra, in the meet-lattice reduct Ln

∧ = (Ln,∧,>) we can introduce
the ”negative” scalar multiplication (also denoted by ℘) by a℘f = 〈a℘f0, . . . ,a℘fn−1〉.
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Definition 41 Let L be a residuated lattice, n = {0,1, . . . ,n−1} be the finite chain of integers, Ln be
the n-convolution of it. A mean value function on L is a map E from Ln to L satisfying the following
axioms:

(i) E〈a, . . . ,a〉= a (idempotency),
(ii) f ≤ g⇒ E f ≤ Eg (isotonocity).

(iii) In the case when L is a Girard algebra a mean value function E on L will be said to be negatively
weakly linear provided that

a× f =⊥⇒ E(a℘f ) = a℘E f (negative weak linearity)

for each scalar a ∈ L and each f ∈ Ln, where the last two multipliers a and E f among themselves
are always disjoint, i.e., a×E f =⊥. This is because

a× f =⊥⇒ f ≤ 〈a〉⊥ = 〈¬a〉 ⇒ E f ≤ E〈¬a〉= ¬a⇒ a×E f =⊥.

Thus, in notation for products of disjoint elements, we can reformulate the axiom as

E(a℘̇f ) = a℘̇E f .

(iv) A mean value function E on a Girard algebra L is said to be compatible with the negation of L if
it satisfies the following additional condition:

¬(E f ) = E( f⊥), i.e., ¬(E〈 f0, . . . , fn−1〉) = E〈¬ fn−1, . . . ,¬ f0〉.

(v) A mean value function E on a general residuated lattice L is said to be bisymmetric if it satisfies
the relation:

E〈E〈 f0,0, . . . , f0,n−1〉, . . . ,E〈 fn−1,0, . . . , fn−1,n−1〉〉
= E〈E〈 f0,0, . . . , fn−1,0〉, . . . ,E〈 f0,n−1, . . . , fn−1,n−1〉〉 (bisymmetry)

for all matrices  f0,0 · · · f0,n−1
...

. . .
...

fn−1,0 · · · fn−1,n−1


such that all rows and all columns constitute elements of Ln, i.e., it satisfies: fi, j ≤ fk,l whenever
i≤ k and j ≤ l.

Example 42 To each c ∈ L there exist bisymmetric mean value functions Ec and Ec on L (not neces-
sarily compatible with ⊥) given by

Ec f = f0∨ f1× c∨ . . .∨ fn−1× cn−1,

Ec f =
f0

cm−1 ∧ . . .∧ fm−2

c
∧ fm−1.

Moreover, the latter function is negatively weakly linear.

Proposition 43 Let L be a reflectively radicable MV -algebra and let Ln be the n-convolution of it
(with n≥ 2). Then

E〈 f0, f1, . . . , fn−1〉= n
√

f0× n
√

f1× . . .× n
√

fn−1

gives a negatively weakly linear and bisymmetric mean value function E : Ln → L on L. If L is strict
then E is still compatible with the negation.
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Example 44 Let [0,1]Ł be Łukasiewicz algebra (which is a strict MV -algebra). Then mean values of
variables and of conditional events of the preceding proposition take the form:

EŁ〈r0,r1, . . . ,rn−1〉=
1
n
(r0 + r1 + . . .+ rn−1)

and
(a | r0,r1, . . . ,rn−2) = min(a,r0)+1− 1

n
(1+ r0 + r1 + . . .+ rn−2)

(with a,r0, . . . ,rn−1 ∈ [0,1]).

Example 45 Let L = [0,1] be Goguen and Łukasiewicz algebras simultaneously (equipped with residu-
ums ·

·G and ·
·Ł, respectively). For arbitrary 〈r0,r1, . . . ,rn−1〉 ∈ [0,1]n (with n≥ 2) and k ∈ [0,1], con-

sider
r0
r0

r1
...rn−1

G
Ł

G =


r0

r0+1− r1
...−

rn−2
rn−2+1−rn−1

if 〈r0,rn−1〉 6= 〈0,1〉

k if 〈r0,rn−1〉= 〈0,1〉.

This quantity defines a mean value function,denoted by EG,Ł from [0,1]n to [0,1]. In particular, its
mean values are the following: in the case when n = 2,

EG,Ł,k〈r0,r1〉=
{ r0

r0+1−r1
if 〈r0,r1〉 6= 〈0,1〉

k if 〈r0,r1〉= 〈0,1〉,

in the case when n = 3,

EG,Ł,k〈r0,r1,r2〉=

{ r0
r0+1− r1

r1+1−r2

if 〈r0,r2〉 6= 〈0,1〉

k if 〈r0,r2〉= 〈0,1〉,

in the case when n = 4,

EG,Ł,k〈r0,r1,r2,r3〉=


r0

r0+1− r1
r1+1− r2

r2+1−r3

if 〈r0,r3〉 6= 〈0,1〉

k if 〈r0,r3〉= 〈0,1〉.

5 Conditional probabilities on MV -algebras

Definition 51 ( [2]) Let L be a Girard algebra. A map P : L→ [0,1] is called an uncertainty measure
if P satisfies the following conditions:

(i) P⊥= 0, P>= 1 (boundary conditions),
(ii) a≤ b⇒ Pa≤ Pb (isotonicity.

In the case when L is an MV -algebra, an uncertainty measure P is called additive (see, e.g.,[2]) (or
weakly additive [10]) if it satisfies the axiom: a× b = ⊥⇒ P(a℘b) = Pa +Pb. We take note of the
popular ”additivity” of the operation ℘. But the author will stick to his guns.

Definition 52 We say that an uncertainty measure P on an MV -algebra L is negatively weakly mul-
tiplicative (instead of its usual name ”additive”) if it satisfies the axiom:

(i) a×b =⊥⇒ P(a℘b) = Pa+Pb (negative weak multiplicativity),
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which, viewing [0,1] as the Łukasiewicz algebra [0,1]Ł (see [?]), can be rewritten in the form:

(i)’ P(a℘̇b) = Pa℘̇Pb,

since Pa and Pb are disjoint in [0,1]Ł, because

Pa×Pb = max(Pa+Pb−1,0) = max(P(a℘̇b)−1,0) = 0.

A negatively weakly multiplicative measure P on an MV -algebra L will be shortly referred to as
probability on L.

Note that, replacing [0,1]Ł by an arbitrary MV -algebra M, we can talk about M-valued probabilities.

Definition 53 Let L and M be two MV -algebras. A map P : L → M is said to be an uncertainty M-
valued measure if it satisfies the conditions

(i) P⊥=⊥, P>=>,
(ii) a≤ b⇒ Pa≤ Pb.

An uncertainty M-valued measure P is said to be negatively weakly multiplicative if it satisfies the
additional axiom:

(iii) P(a℘̇b) = Pa℘̇Pb for every disjoint pair a,b of elements of L.

A negatively weakly multiplicative M-valued measure P on an MV -algebra L will be shortly referred
to as M-valued probability on L.

We will also consider uncertainty measures on the lattice Ln of variables in an MV -algebra L (the
n-convolution of L) and on the associated to it lattice L̃n of conditional events. Observe that these are
MV -algebras only in the case when L is a Boolean algebra. In the case when L is an MV -algebra, Ln

and L̃n unfortunate become Girard algebras.
In analogy to the classical situation (when L is a Boolean algebra) we introduce the concepts of a

simple random variable and its expectation (see, e.g., [6]). We also associate a simple random variable
with a chain of Ln.

Definition 54 Let L be an MV -algebra. Let a be a finite partition of > in L, i.e., a finite sequence
{a0,a1, . . . ,ak} of pairwise disjoint and different from ⊥ elements of L such that a0℘̇a1℘̇. . .℘̇ak =>.
By a simple random variable in L will be meant a real valued function ξ determined on a by setting:

ξ = r0Ia0 + r1Ia1 + . . .+ rkIak ,

where r0,r1, . . . ,rk are pairwise different real numbers and Iai denotes the ”indicator” of ai:

Iai(a j) =
{

1 if i = j
0 if i 6= j.

Definition 55 Let L be an MV -algebra, let P be a probability on it, and let ξ be a simple random
variable defined on a finite partition a = {a0,a1, . . . ,ak} of > in L:

ξ = r0Ia0 + r1Ia1 + . . .+ rkIak .

Then the expectation Eξ of ξ is the sum:

Eξ = r0Pa0 + r1Pa1 + . . .+ rkPak.
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Let f = 〈 f0, f1, . . . , fn−1〉 be a variable of the n-convolution Ln of L having k(≤ n−1) ”covers” in it,
i.e., a finite sequence fi0 , fi1 , . . . , fik of components of f exists such that f0 = fi0 and fi j covers fi j−1 in
f for j = 1, . . . ,k, fi j > fi j−1 , but that fi j > fl > fi j−1 for no component fl of f ). We shall proceed to
associate a simple random variable with f . For, define a0,a1, . . . ,ak+1 to be the sequence of elements
of L given by setting:

a0 = f0, a1 = ¬ f0× fi1 , . . . ,ak = ¬ fik−1 × fik

and else
ak+1 = ¬(((a0℘̇a1)℘̇. . .)℘̇ak) = ¬ fik .

From the disjoint decomposition property of L it follows that in the case when f0 6=⊥ and fn−1 6=> the
sequence a0,a1, . . . ,ak+1 obviously forms a partition of > in L. The other possible cases to consider
are as follows: the case when f0 = ⊥ and fn−1 = >, we have that the shorter sequence a1, . . . ,ak
forms a partition of >; in the case when f0 = ⊥ but fn−1 6= > then the sequence a1, . . . ,ak+1 makes
a partition of >, and in the case when f0 6= ⊥ but fn−1 = > then the partition of > is formed by the
sequence a0, . . . ,ak. Now a general component fi of f can be written in the next form:

fi =


a0 if i < i1
a0℘̇a1 if i1 ≤ i < i2
...

...
((a0℘̇a1)℘̇. . .)℘̇ak if ik ≤ i≤ n−1.

With this in mind, we arrive at the following:

Definition 56 The simple random variable ξ f associated with the variable f = 〈 f0, f1, . . . , fn−1〉 (as
above) is given by setting:

ξ f = Ia0 +(1− i1
n

)Ia1 + . . .+(1− ik
n

)Iak

(considering I1 = 1 and I0 = 0).

We shall need the next observation.

Proposition 57 For the expectation Eξ f of ξ f there are two expressions:

Eξ f = Pa0 +
k

∑
j=1

(1−
i j

n
)Pa j =

1
n

n−1

∑
i=0

P fi.

Now we shall proceed to generalize Theorem 6.5 [2] establishing the existence of the extension of
uncertainty measures from a given Boolean algebra to its MV -algebra extension (with n = 2 in op.
cit.).

Theorem 58 Let L be a Boolean algebra, and P be a probability on L. Let Ln be the MV -algebra
n-convolution of L. Then P has a unique extension to a probability E on Ln, i.e., there exists a unique
probability E on Ln such that the restriction of E to L coincides with P. In particular, E is given by

E〈 f0, . . . , fn−1〉=
1
n

n−1

∑
i=0

P fi,

which, by Proposition 5.7, can be understood as the expectation Eξ f of the simple random variable
ξ f associated with f .
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Corollary 59 In the setting of preceding theorem replacing Ln with L̃n, a probability P on a Boolean
algebra L can be extended to a probability E on L̃n via

E(a ‖ f0, . . . , fn−2) = P(a∧ f0)+
1
n
(P(¬ f0)+ . . .+P(¬ fn−2)),

which can be understood as the sum of P(a∧ f0) and the expectation Eξg of the simple random
variable ξg associated with g = 〈⊥,¬ fn−2, . . . ,¬ f0〉.

Note that the constructions of Theorem 5.8 are special cases of the following propositions (generaliz-
ing respective propositions in [2], [9]).

Proposition 510 Let L be an MV -algebra and Ln be its n-convolution. Let E : [0,1]n → [0,1] be a
mean value function. Then each probability P on L can be extended to an uncertainty measure E on
Ln via

E〈 f0, f1, . . . , fn−1〉= E〈P f0,P f1, . . . ,P fn−1〉.

For the set L̃n of conditional events, this result becomes

Proposition 511 In the setting of the preceding proposition replacing Ln with L̃n, each probability P
on L can be extended to an uncertainty measure E on L̃n, the ”mean value extension” of P (as called
in [9] in the case when n = 2), via

E(a ‖ f0, . . . , fn−2) = E〈P(a∧ f0),P((a∧ f0)℘̇¬ fn−2), . . . ,P((a∧ f0)℘̇¬ f0)〉.

Definition 512 In the setting of Proposition 5.10 the uncertainty measure E on Ln will be referred to
as the expectation on Ln and its values as expected values.

In the setting of Proposition 5.11 expected values E(a ‖ f0, . . . , fn−2) will be referred to as con-
ditional probabilities on L and denoted by P(a | f0, . . . , fn−2). Thus, in the new notation, we have
that

P(a | f0, . . . , fn−2) = E〈P(a∧ f0),P((a∧ f0)℘̇¬ fn−2), . . . ,P((a∧ f0)℘̇¬ f0)〉. (1)

Proposition 513 Let L be an MV -algebra and L2 be its 2-convolution. Let P be a probability on L
and let E : [0,1]2 → [0,1] be the usual ”arithmetic mean”: E〈r0,r1〉 = 1

2(r0 + r1). Then, according
Proposition 5.10, P can be extended to an expectation E on L2 via

E〈 f0, f1〉=
1
2
(P f0 +P f1).

Moreover, this expectation on L2 has the following property:

f ∗g =⊥⇒ E( f #̇g) = E f +Eg

for every disjoint pair f = 〈 f0, f1〉, g = 〈g0,g1〉 ∈ L2 such that

( f1×¬ f0)∧ (g1×¬g0)≤ f1×g1

(which obviously holds if L is a Boolean algebra).
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Proposition 514 In the setting of the preceding proposition replacing L2 with L̃2, according Proposi-
tion 5.11, P can be extended to a conditional probability P on L via

P(a | f0) = P(a∧ f0)+
1
2

P(¬ f0)

(=
1
2
(P(a∧ f0)+P((a∧ f0)℘̇¬ f0)).

Moreover, this conditional probability on L has the following property:

(a ‖ f0)∗ (b ‖ g0) = (⊥ ‖ >)⇒ P(c | h0)

= P(a | f0)+P(b | g0) (with (c ‖ h0) := (a ‖ f0)#̇(b ‖ g0))

for every disjoint pair (a ‖ f0), (b ‖ g0) of conditional events such that

¬ f0∧¬g0 ≤
a
f0
× b

g0

(which always holds if L is a Boolean algebra).

To motivate the choice of the notation P(a | f0, . . . , fn−2) and the name ”conditional probability”,
consider the case when P is a probability measure on a Boolean algebra L. Then (1) takes the form:

P(a | f0, . . . , fn−2) = E〈P(a∧ f0),P(a∧ f0)+1−P fn−2, . . . ,P(a∧ f0)+1−P f0〉. (2)

Consider a mean value function on the real unit interval [0,1] defined by

E2
G,Ł,k〈r0,r1〉=

{ r0
r0+1−r1

if 〈r0,r1〉 6= 〈0,1〉
k if 〈r0,r1〉= 〈0,1〉,

where k is an arbitrary number in [0,1] (see Example 4.5). From (2) (with n = 2) it follows that

P(a | f0) =

{
P(a∧ f0)

P(a∧ f0)+1−(P(a∧ f0)+1−P f0)
if P f0 6= 0

k if P f0 = 0

=

{
P(a∧ f0)

P f0
if P f0 6= 0

k if P f0 = 0,

which is the usual definition of (Kolmogorovian) conditional probability (with the usual notation).
For 〈r0,r1,r2〉 ∈ [0,1]3 (with r0 ≤ r1,≤ r2) and k ∈ [0,1],consider

E3
G,Ł,k〈r0,r1,r2〉=

{ r0
r0+1− r1

r1+1−r2

if 〈r0,r2〉 6= 〈0,1〉

k if 〈r0,r2〉,

which defines a mean value function from [0,1]3 to [0,1] (see Example 4.5 again). From (2) (with
n = 3) it follows that

P(a | f0, f1) =

{
1− P f0−P(a∧ f0)

P f0−P(a∧ f0)(P f1−P f0)
if P f0 6= 0

k if P f0 = 0
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(not forgetting the condition: f0 ≤ f1). This formula can be considered as a generalization of the usual
conditional probability.

Next, for 〈r0,r1,r2,r3〉 ∈ [0,1]4 (with r0 ≤ . . .≤ r3) and k ∈ [0,1], consider

E4
G,Ł,k〈r0,r1,r2,r3〉=


r0

r0+1− r1
r1+1− r2

r2+1−r3

if 〈r0,r3〉 6= 〈0,1〉

k if 〈r0,r3〉= 〈,1〉,

which defines a mean value function from [0,1]4 to [0,1]. From this we obtain that

P(a | f0, f1, f2)

=

{
1− P f0−P(a∧ f0)

P f0−P(a∧ f0)((P f1−P f0)(1−P f2+P(a∧ f0))+P f2−P f0)
if P f0 6= 0

k if P f0 = 0

(together with the condition that f0 ≤ f1 ≤ f2) which can be considered as an another (more high
level) generalization of the traditional conditional probability.

Similarly, one can consider the case n = 5 etc.
Finally, we arrive at

Definition 515 Let L and M be two MV -algebras. Let P : L → M be a M-valued probability on L
and let E : Mn → M be a mean value function. Then the expression P(a | f0, . . . , fn−2) defined by the
formula

P(a | f0, . . . , fn−2) := E〈P(a∧ f0),P((a∧ f0)℘̇¬ fn−2), . . . ,P((a∧ f0)℘̇¬ f0)〉 (3)

will be called M-valued conditional probability on L.

Note that in the case when n = 2 and P is the identity operator on L our L-valued conditional proba-
bility P(a | f0) becomes the conditional operator in the sense of U. Höhle and S. Weber.

Proposition 516 Let L and M be two MV -algebras. Let P : L → M be a M-valued probability and
E : Mn →M be a negatively weakly linear mean value function. Then the following decomposition

P(a | f0, . . . , fn−2) = P(a∧ f0)℘̇P(⊥ | f0, . . . , fn−2)

holds for all a, f0, . . . , fn−2 ∈ L.
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1 Introduction

The principle subject of this paper is a subalgebra LU of the algebra L of normal, convex functions
in the algebra of truth values of type-2 fuzzy sets. The algebra L is defined and some basic properties
are given in the abstract “Automorphisms of subalgebras of the algebra of truth values of type-2 fuzzy
sets,” for this meeting. We have shown that L is complete as a lattice, and that the subalgebra LU

of upper semicontinuous functions is a complete continuous lattice [4]. For any complete continuous
lattice, the Lawson topology is a compact Hausdorff topology [3]. We have shown that the Lawson
topology on this complete continuous lattice is countably based, so by [3] it is a separable topolog-
ical space which is metrizable by a complete metric. We are interested in finding a metric for this
topological space as well as a simple description of this topology.

2 The lattice DU

It is convenient to use a representation of the lattice LU that is much more intuitive that the usual
type-2 representation; for example, one in which join and meet of functions are pointwise.

Definition 1. Let D = { f : [0,1] → [0,2] : f is decreasing and 1 is an accumulation point of the
values}. Let 1 be the constant function in D with value 1. We say f ∈D is band semicontinuous (BSC)
if f ∨ 1 is lower semicontinuous and f ∧ 1 is upper semicontinuous. Equivalently, f−1 ([α,2−α]) is
closed for every 0 ≤ α ≤ 1. Let DU = { f ∈ D : f is band semicontinuous}.

As the union and intersection of two closed sets is closed, it follows that the pointwise join and
meet of two LSC functions is LSC and the pointwise join and meet of two USC functions is USC.

Theorem 1. [4] The algebra D =
(
D,∧,∨,0,1

)
is a complete lattice, where ∧ and ∨ are ordinary

pointwise minimum and maximum, 0(x) =
{

1 if x = 0
0 if x > 0

and 1(x) =
{

2 if x < 1
1 if x = 1

. With the operation

f ′ (x) = 2− f (1− x), D becomes a De Morgan algebra. The algebra DU =
(
DU ,∧,∨,0,1

)
is a com-

plete, continuous lattice, and (DU ,′ ) is also a De Morgan algebra.

A function in L can be characterized as those functions [0,1]→ [0,1] satisfying the two properties

f = f L∧ f R

f LR = 1

where f L (x) = sup{ f (y) : 0 ≤ y ≤ x} and f R (x) = sup{ f (y) : x ≤ y ≤ 1}. Note that f L is monotone
increasing and f R is monotone decreasing.
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Theorem 2. [4] The algebra L is isomorphic to D via the map Φ : L→ D where

Φ( f )(x) =
{

2− f (x) if f (x) = f L(x)
f (x) otherwise

The restriction of Φ to LU gives an isomorphism LU ≈ DU . The map Φ also gives isomorphisms
between the respective De Morgan algebras.

Roughly, Φ( f ) is produced by taking the mirror image of the increasing portion of f about the
line y = 1, and leaving the remainder of f alone. The following diagram illustrates the situation.

����������Q
Q

Q
Q

QQ

1

0 1

f

XXXXXXXXXX
Q

Q
Q

Q
QQ

1

2

0 1

f ∗

As the intersection of any family of closed sets is closed, the pointwise join of any family of LSC

functions is LSC, and the pointwise meet of any family of USC functions is USC. It follows that for
any function f there is a largest LSC function f− beneath f , the pointwise join of all LSC functions
beneath f , and there is a smallest USC function f + above f . Define ∗ : D→ DU : f 7→ f ∗ by

f ∗ (x) =
{

f− (x) if f (x)≥ 1
f + (1) if f (x)≤ 1

Then f and f ∗ agree a.e. and f ∗∗ = f ∗.
We show that the set D is closed in the product topology τp on [0,2][0,1] and that the function

d ( f ,g) =
R 1

0 | f (x)−g(x)| dx is a metric on D. This metric induces a topology on D that we will
denote by τd .

The function ∗ : (D,τp) → (DU ,τd) is continuous, and we conclude that (DU ,τd) is a compact
Hausdorff space. We will describe the relationship between these topologies and the Lawson topology
[2, 3].

3 Metric lattices

Another way of looking at this lattice is as a metric lattice.

Definition 2. A valuation on a lattice L is a map v : L → R such that

v(x)+ v(y) = v(x∨ y)− v(x∧ y)

A valuation is isotone if x≤ y implies v(x)≤ v(y). It is positive if x < y implies v(x) < v(y). A lattice
with a positive valuation is called a metric lattice.

On any metric lattice, the function d ( f ,g) = v( f ∨g)− v( f ∧g) is a metric.
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Theorem 3. [1] A metric lattice is a metric space in which ∨ and ∧ are uniformly continuous.

Theorem 4. For f ∈ DU , let

v( f ) =
Z 1

0
f (x)dx

Then DU is a metric lattice.

Thus the theory of metric lattices as given in [1] applies to DU .
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Let (L,≤) be a frame. Following Fourman and Scott [1], an L-valued set is a pair (X ,E) consisting of
a set X and an L-valued equality E : X ×X → L satisfying the following conditions:

(E1) E(x,y) = E(y,x), (Symmetry)
(E2) E(x,y)∧E(y,z)≤ E(x,z) (Transitivity)

for all x,y,z ∈ X .
An f ∈ LX is called E-strict and E-extensional iff for all x,y ∈ X it satisfies the following two

conditions:
(S0) f (x)≤ E(x,x), (E-strictness)
(S1) f (x)∧E(x,y)≤ f (y). (E-extensionality)

Given an L-valued set (X ,E), the collection

P (X ,E) = { f ∈ LX : f has (S0) and (S1)}

is a frame under pointwise ordering: f ≤ g iff f (x)≤ g(x) for all x ∈ X , the top being E ∈ LX defined
by E(x) = E(x,x).

Following Höhle [4, Def. 2.3.2(a)] and [3, p. 351] (also cf. [5]), a topology on (X ,E) is a subframe
τ⊆ P (X ,E) such that a∧E ∈ τ for all a ∈ L.

Then (X ,E,τ) is called an L-valued topological space and is an object of the category L-TOP in
which ψ : (X ,E,τ)→ (Y,F,σ) is a morphism provided that the following two conditions are satisfied:

(1) ψ is a morphism in the category of L-valued sets, i.e., ψ : X → Y is a map such that E ≤
F ◦ (ψ,ψ) and E|∆ = (F ◦ (ψ,ψ))|∆ where ∆ = {(x,x) : x ∈ X} and (ψ,ψ)(x1,x2) = (ψ(x1),ψ(x2)) for
all (x1,x2) ∈ X ×X ,

(2) g◦ψ ∈ τ whenever g ∈ σ.

In this talk we shall discuss a system of lower separation axioms T0, T1 and T2 in the category
L-TOP. These axioms generalize, respectively, the T0-axiom proposed independently by Rodabaugh
[8], Šostak [9], and Wuyts and Lowen [10] (and by Liu [7] in quite a different yet equivalent way), as
well as the T1-axiom of [6]. The T2-axiom is formulated in terms of the limit map of an L-valued filter.
A link between the T2-axiom and sobriety is provided by the following: if L is a complete Boolean
algebra and (X ,E) is L-valued set which is complete, then every T2-separated L-valued topological
space is sober. Examples of T2-separated L-valued topological spaces include L-probabilistic metric
spaces in the sense of [2].
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The attempt to understand the spectrum of non commutative C∗-algebras as topological structure led
to the idea to develop a concept of non commutative topological spaces (cf. [1, 4]). From the very
beginning to was evident that irreducible representations of C∗-algebras should intrinsically relate to
«points» of these non commutative spaces — an idea which can also be found in various textbooks
in the form that irreducible respresentations of non commutative C∗-algebras are viewed as filling a
role similar that of complex homomorphisms of commutative C∗-algebras. In contrary to the commu-
tative setting the problem arises here that the Hilbert space is varying and depends on the respective
irreducible representation. In order to overcome these difficulties F. Borceaux introduced the concept
of quantic spaces (cf. pp. 124 in [7]), and more recently C.J. Mulvey and J.W. Pelletier formulated
their concept of quantale spaces (cf. [6]). We do not follow here these approaches, but lean heavily on
the Gelfand-Naimark-Segal construction from which we can conclude that for every C∗-algebra there
exists a respentation having sufficiently many irreducible subrepresentations. Hence in contrast to C.J
Mulvey and J.W. Pelletier we fix the underlying Hilbert space and understand irreducible represen-
tations as global points and irreducible subrepresentations as local points of the quantised universe.
This approach leads to quantale sets (cf. [2]) or more precisely to Q-valued sets where Q is the Hilbert
quantale associated with the underlying Hilbert space (cf. [5]). On the basis of quantale sets we intro-
duce a concept of non commutative topological spaces (cf. [3]) in such a way that closed left-ideals
of C∗-algebras can be identified with strict and extensional Q-valued maps forming the «open subsets
» of these structures. In particular, the multiplication of closed left-ideals corresponds to the multipli-
cation of the respective Q-valued maps.
Moreover, partially defined quantale homomorphisms having the subquantale I(Q) of all two-sided
elements as their domain form a further source for non commutative topological spaces. This construc-
tion can be viewed as a non idempotent and non commutative generalization of space representations
of Ω-valued locales where Ω is an arbitrary frame.
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Interval analysis is a well established area of mathematics which has been investigating since Moore
published his thesis [4] in 1960s. One of the important parts of interval analysis focuses on systems
of linear equations whose parameters are only known to belong to given intervals. There are plenty of
deep results dealing with solution sets of such systems (see e.g. [5, 6]). One of them for instance tells
us that the solution set in each orthant forms a convex polyhedral set, see [6, Theorem 3.6]. In this
paper we are going to show that we can derive analogous results also if we formally develop interval
analysis within fuzzy logic. Instead of classical set theory we use Fuzzy Class Theory (FCT) which
was introduced in [1] as a ground theory for fuzzy mathematics. Originally it was built over the logic
ŁΠ. However, the definitions and basic results from [1] work in any logic extending MTL∆, where
MTL∆ is Monoidal T-norm Based Logic expanded by Baaz’s operator ∆. MTL is the logic of left-
continuous t-norms and their residua introduced in [2]. Also our results in this paper can be proved in
any fuzzy logic that is at least as strong and expressive as MTL∆.

Before we start with a formulation of the results, we present a motivational example. Let [a↑i ,a
↓
i ], [b

↑
i ,b

↓
i ]

be crisp intervals. Then we can ask whether there is a line p which “goes through” all the Cartesian
products [a↑i ,a

↓
i ]× [b↑i ,b

↓
i ]. Formally, this means that we ask if p has a non-empty intersection with

each Cartesian product [a↑i ,a
↓
i ]× [b↑i ,b

↓
i ]. This question leads to a typical task from classical inter-

val analysis (for details see [6]). The answer is affirmative iff the following interval system of linear
equations has a solution:

[a↑1,a
↓
1]k +q = [b↑1,b

↓
1] ,

...

[a↑n,a
↓
n]k +q = [b↑n,b

↓
n] ,

where k is the slope of p and q is its offset. A solution of such an interval system is usually defined as
follows: we say that a pair (k,q) describing the line p is a solution iff the following classical first-order
formula holds:

n̂

i=1

(
∃(αi,βi) ∈ [a↑i ,a

↓
i ]× [b↑i ,b

↓
i ]
)

(αik +q = βi) ,

where ∧ is the classical conjunction. Observe that this formula is true if there exists a point in each
box [a↑i ,a

↓
i ]× [b↑i ,b

↓
i ] which lies on p. In order to solve this problem, classical interval analysis gives

us methods how to find the set of all solutions.
The purpose of this paper is to discuss what happens if we change the crisp intervals to fuzzy

intervals (i.e. normal convex fuzzy classes). Let A1, . . . ,An and B1, . . . ,Bn be fuzzy intervals. Analo-
gously to the previous task we would like to find a line p which goes through all fuzzy points Ai×Bi.

? The author was partly supported by the Program “Information Society” under project 1ET100300517 and partly by the
Institutional Research Plan AV0Z10300504.
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Clearly, as the sets Ai×Bi are not crisp, some of the lines satisfy this condition better than the others.
The corresponding system of equations which we have to solve is the following one:

A1k +q = B1 ,
...

Ank +q = Bn .

A solution to this system of equations can be defined in the same way as in the case of classical interval
analysis, only interpreted in fuzzy logic. We say that a pair (k,q) describing a line p is a solution to
such an extent to which the following first-order formula holds:

n
&
i=1

(∃(αi,βi) ∈ Ai×Bi)(αik +q = βi) ,

where & is the strong conjunction in our fuzzy logic and ∃ is interpreted by supremum as usual in
first-order fuzzy logic. The corresponding solution set is a fuzzy set of pairs (k,q) where a pair (k,q)
belongs to this set to a degree to which there are points in each fuzzy point Ai × Bi lying on the
corresponding line.

Such a definition has also a reasonable interpretation. The truth degree to which a crisp point
(x,y) belongs to a fuzzy point Ai×Bi can be understood as a penalty which we have to pay if the line
in demand goes through this point. The greatest truth degree 1 represents no penalty and the lowest
truth degree 0 the unacceptable penalty (i.e. a line going through this point cannot be a solution by no
means). Then the truth degree to which a pair (k,q) describing a line p belongs to the solution set can
be interpreted as follows: in each fuzzy point Ai×Bi we find the “best” point lying on p (i.e. the point
with the greatest truth degree), the truth degree of this point tells us how “good” this point is, and
then we compute the conjunction of the truth degrees of all these points (i.e. we have to sum all the
penalties we receive in each fuzzy point Ai×Bi). The way the penalties are summed together depends
on the chosen fuzzy logic. For instance, in the standard semantics of Łukasiewicz logic, where the
conjunction is interpreted by the Łukasiewicz t-norm, the penalties are summed by the usual addition
and truncated at a maximum penalty.

Now we define our task formally. Let A = (Ai j) be an m× n matrix of fuzzy intervals and B =
(B1, . . . ,Bn) be an n-tuple of fuzzy intervals. The system Ax = B is called a fuzzy interval linear
system (FILS). Although the definition of solution set in the above-mentioned example involves only
existential quantifier, it is reasonable to define the solution set more generally using also universal
quantifier (see [6]). In order to define the formula describing the solution set, we split the matrix A
and the tuple B into two disjoint parts according to the quantifiers. We define A∀ = (A∀i j), A∃ = (A∃i j),
B∀ = (B∀i ), and B∃ = (B∃i ), where

A∀i j =


Ai j if Ai j should be

quantified by ∀,
{0} otherwise,

A∃i j =


Ai j if Ai j should be

quantified by ∃,
{0} otherwise.

Analogously for B∀ and B∃. Then we have A = A∀+ A∃, B = B∀+ B∃. Now we can write down the
formal definition of the solution set.

Definition 1. Let (A∀+A∃)x = B∀+B∃ be a FILS. Then its solution set is the following fuzzy class:

Ξ(A∀,A∃,B∀,B∃) =df {x | ((∀U ∈ A∀)(∀u ∈ B∀)

(∃E ∈ A∃)(∃e ∈ B∃)((U+E)x = u+ e)} .
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The first important results which can be generalized to fuzzy logic is [6, Theorem 3.4]. The the-
orem characterizes the solutions by means of the arithmetic defined on fuzzy intervals by means of
Zadeh’s extension principle.

Theorem 1. Let (A∀+A∃)x = B∀+B∃ be a fuzzy linear system. Then a vector x belongs to the solution
set Ξ(A∀,A∃,B∀,B∃) to the same degree as the formula A∀x−B∀ ⊆ B∃−A∃x holds, i.e.,

x ∈ Ξ(A∀,A∃,B∀,B∃)↔ A∀x−B∀ ⊆ B∃−A∃x .

The operations in A∀x−B∀ and B∃−A∃x are the arithmetic operations defined by means of Zadeh’s
extension principle.

The second important result which we can derive in FCT is an analogous version of [6, Theo-
rem 3.6]. Let (A∀+ A∃)x = B∀+ B∃ be a classical interval linear system. The theorem states that the
solution set Ξ(A∀,A∃,B∀,B∃) in each orthant forms a convex polyhedron defined by a usual system of
linear inequalities Cx ≤ d where entries in C lie among the bounds of intervals appearing in A∀+A∃,
and entries of d among the bounds of intervals appearing in B∀+B∃.

So far we are not able to generalize completely this theorem to the fuzzy case. We can do it
only for FILS where A∀ and B∀ consist of the crisp singletons {0}. Thus assume that all quantifiers in
Definition 1 of the solution set are existential. We will denote the solution set in this case by Ξ(A∃,B∃)
and call it the united solution set like in the classical interval analysis

It is clear that unlike the crisp intervals, a fuzzy interval need not have a crisp lower-bound and
upper-bound. Nevertheless, we can replace them respectively by a down-class and up-class. Let A be
a fuzzy interval. A down-class and an up-class generated by A are defined respectively as follows:

A↓ =df {x | (∃a ∈ A)(x ≤ a)} , A↑ =df {x | (∃a ∈ A)(x ≥ a)} .

Let K = {↑,↓}n be the set of all sequences of symbols ↑, ↓ whose length is n. The j-th component
of k ∈ K will be denoted by k j. Further, we define ε jk = 1 if k j =↑ and −1 otherwise. Let Qk, k ∈ K,
be the family of all orthants of Rn, i.e., we have for each Qk:

Qk = {x ∈ Rn | ε1kx1 ≥ 0 & · · · & εnkxn ≥ 0} ,

where x j stands for the j-th component of x. Each Qk is obviously crisp. Finally, we define −k j =↓ if
k j =↑ and ↑ otherwise.

Theorem 2. Let A∃x = B∃ be a FILS, Qk an orthant, and x ∈ Qk. Then

x ∈ Ξ(A∃,B∃) ↔
m
&
i=1

(
n

∑
j=1

Ak j
i j x j ≤ (B∃

i )↓ &
n

∑
j=1

A−k j
i j x j ≥ (B∃

i )↑
)

,

where A ≤ B ≡df (∃x ∈ A)(∃y ∈ B)(x ≤ y).

Note that this result is in fact of the same shape as [6, Theorem 3.6] which was mentioned above. It
tells us that a solution set in a given orthant Qk is determined by a system of linear inequalities. The
only difference is that we have to use the down-classes and up-classes instead of the bounds of crisp
intervals.

It turns out that Theorem 2 is quite useful if we want to describe the united solution set for a spe-
cific fuzzy logic and a specific shape of fuzzy intervals. For instance, we are able to describe explicitly
the solution set for the logic of Łukasiewicz t-norm if the fuzzy intervals are of the trapeziodal shape
(see [3]).
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1 Introduction

In this work we aim to introduce a procedure that allows one to translate the familiar Dempster-
Shafer evidential universe to sets of formulas and then analyze the semantics and properties of the
corresponding logic. The philosophical inspiration behind this work follows Brouwer’s idea of intu-
itionism that does not allow non-constructive proofs [7]. Earlier research findings were also reported
in [1], [2], similar representations that favored modal rather superintuitionistic logics can be found in
[3] [4].

We represent the Dempster-Shafer theory frames of discernment as Kripke models, where a frame
of discernment Θ is defined as a collection of sets and their corresponding beliefs, which in their own
turn defined through the mass assignments which are not necessarily additive or monotone [5]. By a
Kripke model we understand a triple F = 〈W,R,V 〉 where W is some set, relation R is a partial order
on W and valuation V : VarL → 2W is a multivalued map [6]. The proposed procedure allows one
to induce a Kripke model given a frame of discernment and the probability mass assignments of its
elements. The idea behind the procedure is to represent different elements of the frame of discernment
as worlds in a Kripke model and to deduce the relation R by using the knowledge about the set order
on set Θ.

Definition 1 Relation R. Assume that

p = “x ∈ A”; q = “x ∈ B”; p,q ∈ L ; A,B ∈ Θ

and let
V (p) = v, V (q) = w; where v,w ∈W

then

1. If A∩B 6= /0, then V (p∧q) 6= /0.
2. If A∩B = /0, then vR\ w and wR\ v, where aR\ b means that a cannot see b.
3. There is no wnil ∈ W such that V (n) = wnil , where n =“x ∈ /0”, i.e., there is no separate point

corresponding to the empty set.
4. B ⊂ A requires vRw and wR\ v.
5. If there is w ∈ W such that w ∈ V (p), then there must exist v ∈ W such that v ∈ V (r), where

r = “x /∈ A”

When a model is built according to the definition above the worlds that correspond to the core
elements of the frame of discernment ‘inherit’ their mass assignments. Whenever the evidence is
updated two or more frames of discernment are combined together. In terms of the models it means
combining two models together which sometimes involves creating new nodes, i.e. nodes that were
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not present in the original constructions. If a new node is formed then we assume that if m1(A) = s1
and m2(B) = s2 the updated belief in A∧B is given by m(A∧B) = s1s2: Shafer’s postulate used for
developing the evidence combination rule.

The proposed procedure for translating frames of discernment to Kripke models also works when
one needs to update the evidence. In other words given two Kripke models representing two different
frames of discernment they can be combined in a single model that represents updated evidence. The
probability mass assignment for the worlds of the new model is the same as the one produced by taking
an orthogonal sum of the probability mass assignments of the underlying frames of discernment.

2 Logic LDS

The procedure of representing Dempster-Shafer frames of discernment by Kripke frames, gives rise
to a si-logic1, LDS.

A logic can be defined in different ways: through a set of first-order conditions on Kripke frames
as in the case with LDS, or through a finite set of axioms as in the case with Int and Cl. A finite set
of axioms that describe a logic gives one a calculus. Having a calculus is extremely convenient for
both validating or refuting formulas and for answering fundamental questions of completeness and
soundness.

Logic LDS is defined as the set of formulas in ForL validated in every Kripke frame F = 〈W,R〉
that satisfies

∀x,y,z,u ∈W ((xRy∧ xRz∧ yR\ z)→ (yR\ u∨ zR\ u)) (1)

Equation 1 cannot be directly translated to formulas in ForL and thus that there is no finite ax-
iomatization for LDS. However, logic LDS is sound and complete.

Theorem 1 There is no finite set of axioms describing LDS.

The fact above is proven by considering the truth-preserving operations on the Kripke model and
demonstrating that the models that violate the conditions of equation 1 can be mapped into trees and
quoting the fact that any Kripke model may be transformed into a disjoint union of trees, thus making
the task of searching for the formulas provable in the frames that satisfy equation 1 but refuted in the
ones that don’t impossible.

3 Completeness of LDS

To show that logic LDS is complete and sound regardless of the fact that it does not form a calculus,
we use the parallelism between Heyting algebras and Kripke models. To generate the corresponding
class of algebras we use the fact that for every finite Heyting algebra U there exists a Kripke frame F

such that U is isomorphic to U p (F) [6]. We call these isomorphic algebras duals F+ of Kripke frames
and take advantage of semantic equivalence between them and Kripke frames: F |= φ iff F+ |= φ.

When the connection between algebras and Kripke models is established the semantic analysis
of LDS is reduced to analyzing the corresponding class of algebras CDS. The class of algebras can be
conveniently defined through the propositions below.

Proposition 1 All duals of rooted frames have the second greatest element.

1 si-logic stands for superintuitionistic logic, hence ‘a’ rather than ‘an’ article
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Proposition 2 Duals of Kripke frames that do not satisfy equation 1 have the second least element.

A Kripke model violates equation 1 only if it is both rooted and has the greatest element. We thus
can think of CDS as a class of algebras that have either second largest or second least element but not
both. The task of showing the completeness and soundness of LDS is now reduced to showing that the
algebras in CDS form a variety [8].

A set of algebras forms a variety if it is closed under taking subalgebras, products and homomor-
phic images. A fairly straightforward check reveals that class CDS is indeed closed under the three
operations mentioned above and thus forms a variety VarCDS as desired.

4 Limits of representation

The next step of our analysis involved trying to find the ’reasonable limits’ for the proposed paral-
lelism. The Dempster-Shafer theory is the approach that possesses a fairly rich formal set of instru-
ments that enable one to update and transform known evidence. The evidence update should not be
confused with evidence combination: the first deals with transforming separate frames of discernment,
the second with combining two different frames. There are also virtually no limitations imposed on
the belief functions (except for normalization).

In the present inquiry we tried to look at the possibility to develop a formal apparatus that helps
to translate the operations on frames of discernment (different from taking the orthogonal sum) to the
operations on Kripke models as well as seeing the effects of such operations on the corresponding
logic.

It was shown that operations of frame refinement and frame coarsening can be translated to the
language of Kripke models and lead to the same relation between the cores (sets of elements with non-
zero probability assignments) of the respective structures. However, imposing a new non-monotonous
belief function on a refined frame, i.e. redefining the core using arbitrary mass assignments, may lead
to producing a Kripke model that will ultimately violate the conditions of equation 1. On the bright
side, we have also demonstrated how this problem can be resolved by building a new Kripke model
whose nodes correspond to the core elements of the refined frame.
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Abstract. Modifiers are self-maps on the set of all fuzzy sets. Their idea is to modify each fuzzy set to
another fuzzy set. In this paper, we introduce a logic for substantiating fuzzy-set modifiers. Its language,
axiomatization, and semantics is presented. Furthermore, completeness of the logic is proved.

1 Fuzzy sets and their modifiers

We begin with recalling some notions and notation. Let us denote by I the unit interval [0,1]. For any
nonempty set X , we denote by IX the set of all mappings X → I. The elements of IX are called fuzzy
sets on X .

Because the interval I may be ordered with its usual order, also the set IX can be ordered pointwise
by setting

µ≤ ν ⇐⇒ (∀x ∈ X)µ(x)≤ ν(x)

for all µ,ν∈ IX . The set IX has the greatest element 1 : x 7→ 1 and the least element 0 : x 7→ 0. It is easy
to observe that with respect to the pointwise order, IX is a distributive lattice such that for all µ,ν ∈ IX

and x ∈ X ,
(µ∨ν)(x) = max{µ(x),ν(x)} and (µ∧ν)(x) = min{µ(x),ν(x)}.

Any mapping M : IX → IX is called a modifier M . A modifier M is

(i) a substantiating modifier if M (µ)≤ µ and
(ii) a weakening modifier if µ≤M (µ)

for all µ ∈ IX . Our next example is modified from an example appearing in [1].

Example 1. In Fig. 1 is presented a subjective assignment of degrees of tallness of men. For instance,
if someone is smaller than 165 cm, then he is not tall to any degree. If his height is 180 cm, we might
say that he is tall to, say, with degree 0.7. If he is over 190 cm, then he is tall, period.

In Fig. 1 one can also find the membership function of ‘very tall’. The fuzzy set ‘very tall’ is
modified from the fuzzy set ‘tall’. It can be easily observed that the membership function values of
‘very tall’ are below the values of the fuzzy set ‘tall’. Therefore, ‘very’ is a substantiating modifier.

We could also define a fuzzy set ‘more or less tall’ and notice that its membership function values
are always above the values of ‘tall’. Hence, ‘more or less’ can be interpreted as a weakening modifier.

66



165 170 175 180 185 190
T

al
ln

es
s Tall

Very tall

Height

0

1

0.5

Fig. 1. Subjective degrees of tallness of men

Remark 1. Example 1 deals with linguistic expressions. Such modifiers are called hedges by Lakoff
[1]. Note also that the study of Lakoff is done more or less from the viewpoint of ‘philosophical logic’
and he only suggested some possible axiomatizations. Mattila has presented several axiom systems
and defined Kripke-style semantics for modifier logics; see [2], for instance. He has also outlined a
many-valued modifier logic in [3]. However, the current work is the first study in which algebraic
semantics is presented to valuate modifier logic formulas.

We may also define an implication operation on IX in various ways. For instance,

(µ→ ν)(x) := min{1,1−µ(x)+ν(x)}.

In the next section we will study the logic of normal substantiating modifiers. A modifier M is normal
if it satisfies the following conditions for all µ,ν ∈ IX :

(i) M (1) = 1
(ii) M (µ→ ν)→ (M (µ)→M (ν))

2 Syntax for modifier logic

The propositional modifier language consists of an enumerable set P of propositional variables,
propositional constants ⊥ and >, logical connective of implication →, modifier operators M0, M1,
. . . , Mn, and parenthesis ( and ). Well-formed formulas are defined inductively as follows:

(i) Every propositional variable and propositional constant is a formula.
(ii) If A and B are formulas, then so are A→ B and Mi(A) for all 0≤ i≤ n.

Let us denote by Φ the set of all formulas.
Before we present our axiom system, we introduce for the sake of simplicity the following abbre-

viations for negation, disjunction, conjunction, and equivalence:

¬A := A→⊥
A∨B := (A→ B)→ B

A∧B := ¬(¬A∨¬B)
A↔ B := (A→ B)∧ (B→ A)

The logical system has the following nine axioms:
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(Ax1) A→ (B→ A)
(Ax2) (A→ B)→ ((B→C)→ (A→C))
(Ax3) (A∨B)→ (B∨A)
(Ax4) (>→ A)→ A
(Ax5) ¬¬A→ A
(Ax6) A∧ (B∨C)→ (A∧B)∨ (A∧C)
(Ax7) M0A↔ A
(Ax8) MlA→MkA for all l ≥ k
(Ax9) Mi(A→ B)→ (MiA→MiB) for all 0≤ i≤ n.

The following are the rules of inference:

(MP)
A A→ B

B
(Ni)

A
Mi(A)

for all 0≤ i≤ n

The first rule is the classical modus ponens and the other says that the so-called necessitation analogy
applies to all modifiers. We may call it the rule of substantiation.

A formula A is said to be provable, denoted by ` A, if there is a finite sequence A1,A2, . . . ,An of
formulas such that A = An and for every 1 ≤ i ≤ n: either Ai is an axiom or Ai is the conclusion of
some inference rules, whose premises are in the set {A1, . . . ,Ai−1}.

Proposition 1. For all formulas A and B, we have for 0≤ i≤ n:

(i) `Mi(A)→ A (reflexivity rule)

(ii)
Mi(A) A→ B

B
(modified modus ponens)

3 Modifier algebras and semantics for logic of fuzzy set modifiers

Here we define semantics for our logic. A modifier algebra is an algebra

(L,→,m0, . . . ,mn,0,1),

where → is a binary operation, each mi is a unary operation, 0,1 ∈ L, and the following conditions
hold for all a,b,c ∈ L:

(m1) a→ (b→ a) = 1
(m2) (a→ b)→ ((b→ c)→ (a→ c)) = 1
(m3) a∨b = b∨a
(m4) 1→ a = a
(m5) a′′→ a = 1
(m6) a∧ (b∨ c) = (a∧b)∨ (a∧ c)
(m7) m0 a = a
(m8) ml a→ mk a = 1 for all l ≥ k
(m9) mi(a→ b)→ (mia→ mib) = 1 for all 0≤ i≤ n

(m10) mi 1 = 1 for all 0≤ i≤ n,

where the following abbreviations are employed:

a′ := a→ 0, a∨b := (a→ b)→ b, a∧b := (a′∨b′)′

For a modifier algebra L, we may define a binary relation ≤ by setting

a≤ b ⇐⇒ a→ b = 1.
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Proposition 2. If L is a modifier algebra, then the partially ordered set (L,≤) is a bounded distribu-
tive lattice such that sup≤{a,b} = a∨ b and inf≤{a,b} = a∧ b; the least element is 0 and 1 is the
greatest element.

The formulas of the logic can be now valuated canonically as presented in the following. Let L
be a modifier algebra. Any map v : P→ L is called a valuation on L. The valuation v can be extended
canonically to the set of all formulas Φ as follows:

v(A→ B) = v(A)→ v(B)
v(⊥) = 0
v(>) = 1

v(Mi(A)) = mi(v(A))

Completeness of the logic can be proved by the ‘standard’ method of applying Lindenbaum-Tarski
algebras.

Theorem 1 (Completeness Theorem). Let A ∈Φ. Then ` A if and only if v(A) = 1 for every valua-
tion v on any modifier algebra.
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1 Introduction

Let A be an MV -algebra with the underlying lattice L. Denote by W (A) the set consisting of sets W (a),
a∈ A which form a base of closed sets in SpecA. It is known [4] that L̂ = (L,∨,0) is a semilinear space
over A with the external multiplication pa = p� a. Then an isomorphism A −→W (A), a 7→W (a),
carries L̂ onto a semilinear space W (L̂) over W (A). If SpecA is a compact T1-space, in fact, Hausdorff,
then both A and W (A) are Boolean algebras. Moreover, W (A) is totally disconnected precisely when
the sets W (a), a 6= 1, constitute a decomposition of SpecA. Our goal is to find a linear combination
in W (L̂) which characterizes the case. We also form the corresponding connection with level sets in
fuzzy mathematics.

Lattices, MV -algebra and their ideals are referenced as [1], [2] and [3]. For the spectral space
SpecA, see [1]. Its open base consists of sets V (a) = {p ∈ SpecA | a /∈ p} and closed base of W (a) =
{p ∈ SpecA | a ∈ p} where p is a prime ideal of the MV -algebra A and a ∈ A. For definitions of
ring and field of sets we refer to[2], and semilinear space with needed consepts to [4]. The two fuzzy
mathematics concepts, fuzzy sets and level sets, can be found from [5].

A topological space is called a T1-space iff its singles are closed. The following two definitions
can be found from [1] or [5]:

Let A be an MV -algebra. A nonempty set S ⊆ A is an orthogonal set if 0 /∈ S and a,b ∈ S, a 6= b
implies a∧b = 0.

A decomposition of a topological space T is an union T =∪Ti, where each Ti is a nonempty subset
of T and Ti∩Tj = /0, i 6= j.

2 SpecA as a T1-space

Proposition 1. [5] Let A be an MV -algebra. Then the sets W (ai), ai ∈ A, ai 6= 1 constitute a de-
composition of a topological space SpecA iff the set S∗ = {ai

∗ | ai
∗ ∈ A} is an orthogonal subset of

A.

Proposition 2. Let A = (L,⊕,�,∗ ,0,1) be an MV -algebra with the underlying lattice (L,∧,∨,0,1),
and the set W (A) = {W (a) | a ∈ A} a base of closed sets of SpecA. Then a mapping

W : L−→W (L), a 7−→W (a)

is a lattice isomorphism.

Proof. By [5], for any b,c ∈ L, b = c iff W (b) = W (c) implying that W : L −→W (L) is a bijection.
Moreover,

W (b∨ c) = W (b)∩W (c) and W (b∧ c) = W (b)∪W (c) (1)
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Since p is an ideal, b∨c ∈ p iff b ∈ p and c ∈ p and the first equation is proved. To show the second
one we suppose that p ∈W (b∧ c), equivalently, b∧ c ∈ p. Since p is a prime ideal, then b ∈ p or
c ∈ p implying p ∈W (b)∪W (c). Conversely, let p ∈W (b)∪W (c), that is, p ∈W (b) or p ∈W (c).
If p ∈W (b), then b ∈ p. Since b∧ c ≤ b and p is an ideal, b∧ c ∈ p meaning that p ∈W (b∧ c). It is
proved that W : L−→W (L) is a lattice isomorphism.

By [2], any compact T1-space X is determined up to homeomorphism by any ring of closed sets
of X which constitutes a base of closed sets. This base is a distributive lattice. Moreover, X has a field
of closed sets which form a base iff it is totally disconnected.

Corollary 1. The following holds:

(i) W (A) is a field of closed sets of SpecA.
(ii) SpecA is a compact T1-space iff it is totally disconnected. In this case, SpecA is homeomorphic

with W (A) which constitutes a base of closed sets of SpecA.
(iii) If SpecA is a T1-space, then A and W (A) are Boolean algebras.

Proof. According to (1), W (b)∪W (c) and W (b)∩W (c) belong to W (A) for any pair W (b), W (c) ∈
W (A). The set-complement of W (a) is V (a) = W (a∗) = SpecA \W (a), and so W (A) is a field of
closed sets. Let SpecA be a compact T1-space. Since W (A) forms a base of closed sets in SpecA, then
SpecA is homeomorphic with W (A) and precisely, in this case, it is totally disconnected. Finally, any
field of sets is a Boolean algebra [2].

Proposition 3. Suppose SpecA is a compact T1-space. Then W (A) is totally disconnected iff the sets
W (a), for every a ∈ A, a 6= 1, constitute a decomposition of SpecA.

Proof. By Corollary 1, W (A) is a T1-space having then closed singles. Suppose W (A) is totally
disconnected and let a, b be any pair in A, a 6= b iff W (a) 6= W (b) [5]. Choose a disconnection
W (A) = C1∪C2, C1∩C2 = /0 such that C1 = {W (a)}, W (b) ∈C2 = W (A)\{W (a)} = W (∪c),c 6= a.
Therefore, W (b)⊆W (∪c), W (a)∩W (∪c) = /0 which implies W (a)∩W (b) = /0 leading to W (a∨b) =
W (a)∩W (b) = /0 =W (1), that is,by [5], a∨b = 1 being equivalent with a∗∧b∗ = 0 (also for a,b 6= 1).
Proposition 1 implies that the sets W (a) form a decomposition of SpecA. The converse holds trivially
because, by Corollary 1, W (A) is always totally disconnected.

3 W(L̂) as a semilinear space

By [4], we conclude: Let A = (L,⊕,�,∗ ,0,1) be an MV -algebra and L = (L,∨,∧,0,1) its underlying
lattice. Define operations in L as follows: a+b = a∨b and pa = p�a. Then L̂ = (L,+,0) = (L,∨,0)
is a semilinear space over A with the external multiplication pa = p� a. If A is a Boolean algebra,
pa = p∧a.

Proposition 4. Let A be a MV -algebra with an underlying lattice L. Then the isomorphism W : L−→
W (L), a 7→W (a) maps the semilinear space L̂ onto the semilinear space W (L̂).

Proof. We show that

W (L̂) = (W (L),∨W ,W (0)) = (W (L),∩,W (0))

is a semilinear space over W (A).

71



Let ∨ and ∧ be two binary operations in the lattice L. Suppose that ∨W and ∧W are the corresponding
operations in W (L). Put the binary operations in W (L):

W (a)∨W W (b) = W (a)∩W (b) and W (a)∧W W (b) = W (a)∪W (b)

for all W (a),W (b) ∈W (A). Then, by the equations (1)

W (a∨b) = W (a)∩W (b) = W (a)∨W W (b)
W (a∧b) = W (a)∪W (b) = W (a)∧W W (b)

For a set complement in W (A) we use the same notation ∗ as for the complement in A. Moreover,
W (a∗) = W (a)∗.

Hence, W maps the complement of a ∈ A to the complement of W (a). Also, W : L −→ W (L)
carries both the lattice - and MV -operations of L, resp. A, to the corresponding operations of W (A).
In A, we have the lattice order but the dual order in W (A): W (a)⊆W (b) iff W (b)≤W (a). It follows
that W (0) = SpecA and W (1) = /0 are the least and greatest elements in W (A).

L̂ = (L,∨,0) is a semilinear space over A with the external multiplication pa = p�a. This means
that W (L̂) = (W (L),∨W ,W (0)) is a semilinear space over W (A) with the ∨W -operation in W (L̂):
Again,

W (a∨b) = W (a)∩W (b) = W (a)∨W W (b).

If b is a linear combination of ai, then, by [4], the coefficients p = ai → b leading to

p�ai = (ai → b)�ai = ((ai → b)→ a∗i )
∗ = ((b∗→ a∗i )→ a∗i )

∗ = (b∗∨a∗i )
∗ = b∧ai

For the external multiplication W (p)W (a) in W (L̂) we obtain

W (pa) = W (p�a) = W (b∧ai) = W (p)∪W (a) = W (p)W (a) in the general case.

W (pa) = W (p∧a) = W (p)∪W (a) = W (p)W (a) in the Boolean case.

Proposition 5. Let A be a complete MV -algebra and W(L̂) a semilinear space over W (A) where
L̂ = (L,∨,0) is a semilinear space over A. Then, for a pseudo-complement z~ of any z ∈ A, W (z~)
can be represented as a linear combination of elements W (a) in W(L̂), the number of which is finite
or infinitely denumerable:

W (z~) = ∩W (a) a ∈ (z~) = {a | a∧ z = 0}

If A is a complete Boolean algebra, the linear combination consists of only one element, itself V (z) =
W (z∗), z∗ is a complement of z. For level sets

AW (z~) = ∩AW (a) = ∩W (a), and in the Boolean case, AV (z) = V (z)

Let SpecA be a compact T1-space. Then the following holds:

(i) A and W (A) are Boolean algebras,
(ii) SpecA and W (A) are totally disconnected and compact Hausdorff,

(iii) The sets W (a) a ∈ A, a 6= 1, constitute a decomposition of SpecA, i.e., {a∗ | a ∈ A, a 6= 1} is a
maximal orthogonal set.
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(iv) The disjoint sets W (a) = AW (a) form a topological base for SpecA,
(v) The sets W (a) form a base of closed sets in SpecA.

Proof. Since A is a complete MV -algebra, then for every z ∈ A there exists a pseudo-complement z~

satisfying a∧ z = 0 iff a ≤ z~ for any a ∈ A, and therefore z~ = ∨{a | a∧ z = 0} = ∨{a | a ∈ (z~)}
[3].

Suppose the above a-sets are finite or infinitely denumerable. Because p is an ideal, a∨ b ∈ p
iff a ∈ p and b ∈ p, i.e., W (a∨ b) = W (a)∩W (b). By induction, W (∨a) = ∩W (a). Consequently,
W (z~) = W (∨a) = ∩W (a). Let A be a complete Boolean algebra. Then pseudo-complements z~ and
complements z∗ coinside [3]. Also, the equation a∧ z = 0 has a unique solution a = z∗. This means
that V (z) = W (z)∗ = W (z∗) = W (a) for any z ∈ A, denoted by z = a∗. The assertion for level sets
follows from the fact p = Ap, where p is any lattice element [5] and ∩Ap = A∩p.

Let SpecA be a compact T1-space, equivalently, it is compact Hausdorff. According to Proposition
3, the sets W (a) for every a ∈ A, a 6= 1 constitute a decomposition of SpecA iff W (A) is totally
disconnected. But, by Corollary 1, SpecA and W (A) are totally disconnected and W (A) forms a base
of closed sets in SpecA. On the other hand, W (A) = AW (A) is a topological base for SpecA and all the
sets W (a) are disjoint.
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Abstract. Adjunctions between categories are common and important. The existence of an adjunction tells
us much about the corresponding categories, including that there are equivalent subcategories. If we replace
categories by concrete categories and functors by concrete functors, we can generalize adjunctions to cor-
respondences. This generalization allows us not only to retain some important adjunction properties and
results; it also allows us to introduce order theoretic concepts into the concrete categorical setting.

1 From polarities to correspondences

Correspondences are not only generalizations of adjuctions, they are also generalizations of connec-
tions and Galois connections. In fact, there is an interesting history of development of generalizations
to correrspondences. In 1940, G. Birkhoff introduced polarities [2]. These were generalized to (order-
reversing) Galois connections by O. Ore in 1944 [9]. The next step in the development was not a
generalization, but in 1953, J. Schmidt modified Galois connections so that the maps were order-
preserving [10]. In 1982, H. Crapo generalized Galois connections to connections [3].

By this time, adjunctions were well known and often used in category theory and in applications
of category theory. It was commonly accepted that adjunctions were the natural categorical gener-
alization of Galois connections, and indeed adjunctions are a natural categorical generalization of
Galois connnections. However, they are not the only generalization, and in fact, the generalization to
Galois correspondences introduced by Herrlich and Hušek in 1990 allows for a more natural general-
ization of Galois connections in that some of the lattice theoretical properties of Galois connections
are preserved in this generalization [4]. See also [1].

There was also another line of development from connections to correspondences. It is well known
that order-preserving Galois connections are better suited for applications in computer science than are
order-reversing Galois connections. However, even order-preserving Galois connections have limited
applicability in computer science. These limitations were the reason why the applications of Galois
connections to computer science in [7] were restricted to Galois connections with one map being an
injection. These limitations were overcome by Melton, Schröder, and Strecker with the introduction of
Lagois connections in [8]. By using Lagois connections, the computer science examples which were
modeled with injective Galois connections in [7] could be given in full generality in [8]. In 2004,
Melton introduced Lagois correspondences [6].

For the sake of completeness, the next section begins with the definition and some properties of
connections. Then the necessary background for defining correspondences is given; correspondences
are defined; and a theorem detailing some of their properties is given.

2 Correspondences

Definition 2.01 Let (P,≤) and (Q,≤) be partially ordered sets, and let f : P → Q and g : Q → P be
order-preserving maps. ( f ,P,Q,g) or simply ( f ,g) is said to be a connection if f g f = f and g f g = g.
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When ( f ,P,Q,g) is a connection, we denote the image of Q under g by P∗, i.e., P∗ = g[Q]. Likewise,
Q∗ = f [P]. Further, f ∗ denotes the restriction of f from P∗ to Q∗, and g∗ denotes the restriction of g
from Q∗ to P∗.

Theorem 2.02 Let ( f ,P,Q,g) be a connection.

1. ∀p ∈ P, p ∈ P∗ iff p = g f (p) and ∀q ∈ Q, q ∈ Q∗ iff q = f g(q).
2. f is injective iff g is surjective iff g f = 1P and if f is surjective iff g is injective iff f g = 1Q.
3. P∗ and Q∗ are isomorphic posets with f ∗ and g∗ being isomorphisms.
4. If P and Q are (complete) lattices, then so are P∗ and Q∗, though they need not be sublattices.

Theorem 2.02 is well known; for a proof, see, for example, [8].

Definition 2.03 Let A and B be categories and G : A→ B a functor. G is said to be a faithful functor
if whenever f ,g : A→ A′ are A-morphisms with G( f ) = G(g), then f = g.

Definition 2.04 Let A and X be categories and U : A→ X a functor. (A,U) or simply A is said to be
a concrete category over X if U is a faithful functor.

Definition 2.05 Let X be a category, and let (A,U) and (B,V ) be concrete categories over X. A
functor G : A→ B is said to be a concrete functor from (A,U) to (B,V ) if U = V G.

Let (A,U) be a concrete category over X. The fibers determined by U are pre-ordered classes where
the pre-order is defined as follows. If A and B are A-objects such that U(A) = U(B) = X , then A≤ B
if and only if there exists an A-morphism f : A→ B such that U( f ) = idX . Further, if G1,G2 : A→ B
are concrete functors, then G1 ≤ G2 if and only if G1(A)≤ G2(A) for each A-object A. [1]

For the sake of simplicity, we assume that our concrete categories are amnestic; that is, we assume
that all pre-ordered fibers in our concrete categories are partially ordered classes.

Definition 2.06 Let (A,U) and (B,V ) be concrete categories over X, and let G : A→ B and F : B→ A
be concrete functors over X. (G,(A,U),(B,V ),F) or simply (G,F) is said to be a correspondence if
G and F are quasi-inverses, i.e., if GFG = G and FGF = F .

Theorem 2.07 Let (G,(A,U),(B,V ),F) be a correspondence.

1. ∀g ∈ Mor(A), if g ∈ Mor(A∗) then g = FG(g) and ∀ f ∈ Mor(B), if f ∈ Mor(B∗) then f =
GF( f )1.

2. If G is an embedding, then FG = 1A; if F is surjective, then FG = 1A; if G is surjective, then
GF = 1B; and if F is an embedding, then GF = 1B. Further, G is an embedding (respectfully,
surjective) iff F is surjective (respectively, an embedding).

3. (A∗,U) and (B∗,V ) are isomorphic concrete categories with restrictions to G∗ and F∗ being in-
verse functors.

1 This statement implies a similar statement for objects in A∗ and B∗ since a functor’s images of objects must correspond
to its images of identity morphisms.
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4. Whatever limits or colimits exist in A, also exist in A∗, and whatever limits or colimits exist in B,
also exist in B∗. Further, whatever lattice structure exists in A or B also exists in A∗ and in B∗.
Thus, if A or B is complete or co-complete, then so are A∗ and B∗.

3 Example

Let Topc be the category of topological spaces and convergence related functions. (“Convergence
related functions” are defined below.) Let Rel be the category of sets with assoicated relations and
relation preserving functions.

Given a topological space (X ,τ), one can define a relation ρτ on X by x1ρτx2 if and only if whenever
U ∈ τ and x1 ∈U , then x2 ∈U .

Definition 3.08 Let (X ,ρ) be a relation. (X ,ρ) is said to be a complete quasi order (cqo) if ρ is a
quasi order (i.e., if ρ is reflexive and transitive) and if whenever D is a directed subset of X , then a
least upper bound of D (lubD) exists in X .

Definition 3.09 Let (X ,ρ) be a relation, and let C ⊆ X . C is said to have the convergence related
property if whenever D be a directed subset of X with lubD ∈C, then D is eventually in C.

Definition 3.010 Let f : (X ,σ) → (Y,τ) be a continuous function. f is said to be convergence re-
lated if whenever V ∈ τ has the convergence-related property with respect to ρτ then f−1(V ) has the
convergence-related property with respect to ρσ.

A topological space (X ,τ) is said to be a Scott topological space if the topology is the set of all
ρτ-up-closed sets with the convergence related property.

Define G : Topc → Rel such that G(X ,τ) = (X ,ρτ). Define F : Rel → Topc such that F(X ,ρ) is the
Scott topology determined by ρ.

Theorem 3.011 (G,(Topc,U),(Rel,V ),F) is a correspondence where U and V are forgetful functors
to Set.

This example generalizes the main result in [5].
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We study weakly stratified (all constants are open) L–topological spaces with respect to a continuous
frame (L,≤) (with top element 1). Their category is denoted by WS-L-TOP.
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1 Introduction

Every many-valued logic is uniquely determined by the algebraic properties of the structure of its
truth values. It is generally accepted that in fuzzy logic, it should be a residuated lattice, possibly
fulfilling some additional properties. A higher-order fuzzy logic — the fuzzy type theory (FTT) — has
been introduced in [10]. The algebra of truth values considered there is the IMTL∆-algebra. In [9],
other kinds of FTT have been introduced, namely those where the algebra of truth values is one of
Łukasiewicz∆, BL∆ or ŁΠ-algebra (see [4, 3, 6, 2] and elsewhere).

The basic connective in FTT, however, is a fuzzy equality since it is developed as a generaliza-
tion of the elegant classical formal system originated by A. Church and L. Henkin (see [1, 7]). In the
algebras considered in FTT so far, however, the basic connective is implication and the equivalence
is derived on the basis of it. An extension of MV-algebra by similarity (fuzzy equality) has been pre-
sented in [5]. An algebra of truth values specific for FTT that is called EQ-algebra has been introduced
in [11, 12]. In this paper, we continue the work on these algebras with the goal to provide grounds for
new establishment of FTT. For this reason, we have slightly revised the axioms of EQ-algebras so that
the algebras introduced in [11, 12] will now be referred to as weak EQ-algebras.

Let us also remark that a concept related to EQ-algebras are equivalential algebras introduced in
[8]. It turns out, however, that they are very special algebras that are of little interest for fuzzy logics
since they are strongly related only to Heyting algebras.

Recall that a fuzzy relation E : U×U → L is called a fuzzy equality on U if it is reflexive (E(u,u) =
1), symmetric (E(u,v) = E(v,u)) and transitive (E(u,v)⊗E(v,w)≤ E(u,w)).

2 EQ-algebras

Definition 1. EQ-algebra is the algebra

L = 〈L,∧,⊗,∼,1〉 (1)

of type (2, 2, 2, 0) where for all a,b,c ∈ L:

(E1) 〈L,∧,1〉 is a commutative idempotent monoid (i.e. ∧-semilattice with top element 1). We put
a≤ b iff a∧b = a, as usual.

(E2) 〈L,⊗,1〉 is a (commutative) monoid and ⊗ is isotone w.r.t. ≤.
(E3) a∼ a = 1,
(E4) ((a∧b)∼ c)⊗ (d ∼ a)≤ c∼ (d∧b),
(E5) (a∼ b)⊗ (c∼ d)≤ (a∼ c)∼ (b∼ d),

? The research was supported by project MSM 6198898701.
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(E6) (a∧b∧ c)∼ a≤ (a∧b)∼ a,
(E7) (a∧b)∼ a≤ (a∧b∧ c)∼ (a∧ c),
(E8) a⊗b≤ a∼ b.

The operation “∧” is called meet (infimum), “⊗” is called product and “∼” is a fuzzy equality.

Axiom (E3) is axiom of reflexivity, (E4) is substitution axiom, (E5) is congruence axiom, (E6)–
(E7) are monotonicity axioms and (E8) is axiom of boundedness.

Clearly, ≤ is the classical partial order. We will also put

a→ b = (a∧b)∼ a, (2)

and

ã = a∼ 1, (3)

a,b ∈ L. The derived operation (2) will be called implication.
EQ-algebra is separated if for all a,b ∈ L

(E9) a∼ b = 1 implies a = b.

The following properties hold in EQ-algebras:

(a) a∼ b = b∼ a, (symmetry)
(b) (a∼ b)⊗ (b∼ c)≤ (a∼ c), (transitivity)
(c) (a→ b)⊗ (b→ c)≤ a→ c. (transitivity of implication)

Let a≤ b. Then

(a) a→ b = 1. If L is separated then a→ b = 1 implies that a≤ b.
(b) c→ a≤ c→ b, b→ c≤ a→ c.
(c) a∼ b = b→ a.
(d) ã≤ b̃.

Let us introduce the following induced operations:

a↔ b = (a→ b)∧ (b→ a), (4)

a ↔̂ b = (a→ b)⊗ (b→ a). (5)

Lemma 1. The following holds in every EQ-algebra L:

(a) (a∧b)↔ a = (a∧b) ⇔̂ a = a→ b.
(b) a ⇔̂ b≤ a∼ b≤ a↔ b.
(c) Both ↔ as well as ⇔̂ fulfil axioms (E3), (E4), (E6)–(E8).
(d) If L is linearly ordered then a↔ b = a ⇔̂ b = a∼ b.

Lemma 2. Let L = 〈L,∨,∧,⊗,⇒,0,1〉 be a residuated lattice and f : L→ L be a ∧-homomorphism
such that a⇔ b≤ f (a)⇔ f (b) holds for all a ∈ L where a⇔ b = (a⇒ b)∧ (b⇒ a). Put

a∼ b = f (a)⇔ f (b).

Then 〈L,∧,⊗,∼,1〉 is an EQ-algebra.
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Example 1. Let L = [0,1], x⊗y = 0∨(x+y−1) be the Łukasiewicz conjunction and define f : [0,1]→
[0,1] by f (x) = 1∧ (x+ k) for some k ∈ [0,1] and put

x∼ y = 1−| f (x)− f (y)|, x,y ∈ [0,1]. (6)

Then
L = 〈[0,1],∧,⊗,∼,1〉

is an EQ-algebra in which x̃ = f (x). This algebra is separated.

Example 2. Let L = 〈L,∧,∨,⊗,⇒,0,1〉 be a residuated lattice. Furthermore, let ∗ be a new monoidal
operation such that ∗ ≤⊗. Then L = 〈L,∧,∗,⇔,1〉 is a separated EQ-algebra. If L is linearly ordered
then also L = 〈L,∧,∗,⇔̂,1〉 is a separated EQ-algebra where a ⇔̂ b = (a⇒ b)⊗ (b⇒ a).

There are also examples of finite non-trivial (i.e. non-residuated) algebras.

Lemma 3. If a→ b = 1 then a≤ b or a∼ b = 1 or a‖b.

By this lemma, we can have comparable elements a,b such that a > b, a ∼ b = 1, and a → b = 1.
Such an ordered couple 〈a,b〉 will be called pathological.

A filter is a subset F ⊂ L such that the following is fulfilled:

(i) If a ∈ F and a≤ b then b ∈ L.
(ii) If a,b ∈ F then a⊗b ∈ F .

(iii) If a→ b ∈ F for a non-pathological couple 〈a,b〉 ∈ L2 and c ∈ L then
a⊗ c→ b⊗ c ∈ F .

Put

D = {1}∪{u | (∀a,b,c ∈ L)(∃n)((a→ b = 1 and a‖b) implies

u≥ ((a⊗ c)→ (b⊗ c))n)}. (7)

Lemma 4. The set D defined in (7) is a filter and D⊂ L.

Put
a≈F b iff a∼ b ∈ F. (8)

The relation ≈F is the equivalence relation on L. The equivalence class w.r.t. ≈F will be denoted by
[a]. Furthermore, we will define a factor-algebra

L |F = 〈L|F,∧,⊗,∼F ,1〉 (9)

in the standard way where [a]∼F [b] = [a∼ b]. The top element is [1].

Theorem 1. Let an EQ-algebra L does not contain pathological couples. Then

(a) To every a 6= 1 there is a maximal filter F ⊂ L such that a 6∈ F.
(b) The relation ≈F is a congruence in it.
(c) The algebra (9) is a separated EQ-algebra and f : a 7→ [a] is a homomorphism of L onto L |F.

Let L contain also the bottom element 0. Then we put ¬a = a∼ 0.

(i) EQ-algebra is spanned if
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(E10) 0̃ = 0.
(ii) semiseparated if for all a ∈ E,

(E11) a∼ 1 = 1 implies a = 1.
(iii) EQ-algebra is good if for all a ∈ L,

(E12) a∼ 1 = a.
(iv) EQ-algebra is involutive (IEQ-algebra) if for all a ∈ L,

(E13) ¬¬a = a.
(v) EQ-algebra is residuated if for all a,b,c ∈ L,

(E14) (a⊗b)∧ c = a⊗b iff a∧ ((b∧ c)∼ b) = a.

If the EQ-algebra is good then it is spanned but not vice-versa. Each residuated EQ-algebra is good
and separated. Many properties of good EQ-algebras become the standard properties known from the
theory of residuated lattices. E.g., in every good EQ-algebra a↔ 1 = a ⇔̂ 1 = a. An EQ-algebra L is
good iff a⊗ (a∼ b)≤ b for all a,b ∈ L. IEQ-algebra is good, spanned and separated.

An EQ-algebra is complete if it is a complete ∧-semilattice. A lattice ordered EQ-algebra is an
EQ-algebra that is at the same time also a lattice. It is a lattice EQ-algebra (`EQ-algebra) if it is lattice
ordered and, moreover, the following additional substitution axiom holds:

(E15) ((a′∨b)∼ c)⊗ (a′ ∼ a)≤ ((a∨b)∼ c).

A complete EQ-algebra is a complete lattice ordered EQ-algebra. A finite EQ-algebra is latice
ordered. A complete residuated EQ-algebra is a complete residuated lattice.
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1 Introduction

Duality theory emerged from the work by Marshall Stone [18] on Boolean algebras and distributive
lattices in the 1930s. Later in the early 1970s Larisa Maksimova [10, 11] and Hilary Priestley [15,
16] developed analogous results for Heyting algebras, topological Boolean algebras, and distributive
lattices. Duality for bounded, not necessarily distributive lattices, was developed by Alstir Urquhart
[19]. Since the 1970s establishing a duality between and class of algebras and a class of (ultrafilter)
frames has become an important methodological problem both in algebra and in logic.

All the abovementioned classical duality results are developed using topological spaces as dual
structures of algebras. Imposing a topology on the (ultrafilter) frame allows the original algebra to be
recovered - in particular, as the algebra of basic open sets of the topology. Recent developments build-
ing on Priestley duality include canonical extensions of Gehrke[3, 5] and the coalgebraic approach of
Venema[20]. The relationship between these developments and dualities for Boolean algebras is given
[2, 20].

Here we consider dualities from a different angle with the aim of presenting a framework that
serves as a tool for developing Kripke-style semantics for logics whose algebraic semantics is given
by a class of algebras (see, for example, [17, 13, 7]).

In an attempt to arrive at this framework we use two ideas. The first, from non-classical logic,
is that, given a formal language, its Kripke semantics can be derived from its algebraic semantics,
and vice versa. The second is that underlying Urquhart’s [19] duality is a relational representation of
bounded lattices in terms of abstract relational structures, namely doubly ordered sets (X ,≤1,≤2).
Urquhart’s duality then shows that any bounded lattice can be represented as the lattice of Galois
closed sets of a Galois connection between the lattice of ≤1-increasing subsets of X and the lattice of
≤2-increasing subsets of X . The relational structures involved may be referred to as frames following
the terminology of non-classical logics. A topology is not involved in the construction of these frames
and hence they may be thought of as having a discrete topology. The relational representation may be
referred to as a discrete duality.

Manifestations of discrete duality for classes of lattices with operators can be traced back to
Jónsson and Tarski [8, 9], Goldblatt [6], Allwein and Dunn [1]. Essentially the idea is that for lattices
with operators (such as, for example, negation, fusion, implication, necessity operators, sufficiency
operators, monotone operators) the frames require an additional binary relation satisfying certain con-
ditions derived from the properties of the particular operator. (See, for example, [4, 12].) In each case
these conditions are sufficient to ensure a discrete duality for the particular class of lattices with oper-
ators.

Establishing a discrete duality therefore involves the following steps. Given a class Alg of algebras
(resp. a class Frm of frames) we define a class Frm of frames (resp. a class Alg of algebras). Next, for

83



an algebra W ∈ Alg we define its canonical frame X (W ) and for each frame X ∈ Frm we define its
complex algebra C (X). Then we prove that X (W ) ∈ Frm and C (X) ∈ Alg. A discrete duality between
Alg and Frm holds provided that the following facts are proved:

(D1) Every algebra W ∈Alg is embeddable into the complex algebra C (X (W )) of its canonical frame.
(D2) Every frame X ∈ Frm is embeddable into the canonical frame X (C (X)) of its complex algebra.

The representation theorems (D1) and (D2) play an important role in proving completeness of
logics with respect to the Kripke-style semantics determined by the class of frames associates with a
given class of algebras [13].

In this talk we attempt to arrive at a general framework for various bounded lattices with opera-
tors, including Heyting algebras with operators [14], lattices with modal-type operators, lattices with
relation algebra operators, and lattice with negations [4].
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1 Introduction

Linear behavior of fuzzy systems has been recently discovered in [5]. Two cases may occur: a be-
havior of a system is characterized by fuzzy IF-THEN rules (expert knowledge and similar) or it is
characterized by a set of input-output pairs of fuzzy sets (monitoring, collecting knowledge, etc.). In
the second case, the problem of solving a respective system of fuzzy relation equations arises [6, 11].
However, it has not yet been observed (besides, probably in [3]) that the mentioned problem is similar
to the problem of solving systems of linear equations. In this contribution, we show that a system of
fuzzy relation equations can be considered as a system of linear-like equations in a semilinear space
over a residuated lattice. We will concentrate on systems with sup−∗ composition and inf→ compo-
sition because they are more popular in practical applications. Both systems are considered on finite
universes.

In this contribution we change an angle under which this problem is usually considered (see, e.g.,
[1, 4, 6, 10]). We concentrate on a characterization of possible right-hand sides which make a system
solvable with a given left-hand side. We prove that the right-hand side of a systems with sup−∗
composition (inf → composition) must be a fixed point of a special contraction (dilatation) operator.
Moreover, we show that a set of fixed points of a contraction operator is a linear subspace of an
underlying vector space. We characterize each fixed point of a contraction operator as an eigenvector
of the respective similarity matrix. Last, but not least, we show that the class of equivalence of each
fixed point of a contraction operator is set of solutions of the system with inf→ composition.

2 Semi-linear spaces

In this section, a semilinear space is taken as a semimodule over a ∨-reduct of a residuated lattice
supplied with an additional scalar operation. The latter is introduced on the basis of a new idea (dif-
ferent from “natural” definitions used in [5, 7, 9]), which makes utilizing knowledge about residual
mappings possible.

Definition 1. Let L = 〈L,∨,∧,∗,→,0,1〉 be a residuated lattice ([8]) and L∨ its semiring reduct. Let
〈A,∨,0〉 be a ∨-semilattice with the least element.

We say that A = 〈A,∨, ∗̄,0〉 is an idempotent semilinear space over a residuated lattice (shortly,
a semilinear space) if the scalar multiplication ∗̄ : L×A→ A is defined so that

– 〈A,∨,0〉 is a semimodule over L∨ (The scalar multiplication is ∗̄),
– for each λ ∈ L the mapping hλ : A → A, defined by hλ(a) = λ∗̄a, has a residual, i.e. the isotone

mapping gλ : A→ A such that

(gλ ◦hλ)(a)≥ a, (1)

(hλ ◦gλ)(a)≤ a. (2)
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We say that a semilinear space A is lattice-ordered if its carrier is a lattice with respect to the order
given above. The elements of a semilinear space are called vectors and denoted by bold characters,
and elements of L are called scalars and denoted by Greek characters.

Based on the fact (see e.g. [2]) that if a residual mapping exists then it is unique, we define another
scalar operation →̄ on A:

λ→̄a = gλ(a). (3)

It is true that for any a ∈ A, λ→̄a = max{b ∈ A | λ∗̄b≤ a} holds true if and only if the right-hand side
exists. Therefore, if A has the greatest element 1 then for any a ∈ A, 0→̄a = 1.

The following is the example of a semilinear space which we will use in the sequel.

Example 1. Let L = 〈L,∨,∧,∗,→,0,1〉 be a residuated lattice on L. The set of n-dimensional vectors
Ln, n≥ 1, such that

(a1, . . . ,an)≤ (b1, . . . ,bn) ⇐⇒ a1 ≤ b1, . . . ,an ≤ bn

is a lattice ordered semilinear space over L where for arbitrary λ ∈ L

λ∗̄(a1, . . . ,an) = (λ∗a1, . . . ,λ∗an),
λ→̄(a1, . . . ,an) = (λ→ a1, . . . ,λ→ an).

3 Systems of fuzzy relation equations under ◦ and . compositions

In what follows, we fix a residuated lattice L with a support L and consider Lm and Ln, m,n ≥ 1,
as semilinear spaces over L . Throughout this section, let A = (ai j) be a fixed n×m matrix and b =
(b1, . . . ,bn), d = (d1, . . . ,dm) vectors, all have components from L. The following two systems of
linear-like equations

m_

j=1

(ai j ∗ x j) = bi, i = 1, . . .n, (4)

n̂

i=1

(ai j → yi) = d j, j = 1, . . .m, (5)

are considered with respect to unknown vectors x = (x1 . . . ,xm) and y = (y1 . . . ,yn).
In the literature, which is related to fuzzy sets and systems, the above considered systems are

known as systems of fuzzy relation equations:

A◦x = b
A.y = d

where ◦ is the so called sup−∗ composition and . is the inf→ composition.
The problem of solvability of systems (4) or (5) will be considered in the following formulation:
Given n×m matrix A, characterize all vectors b ∈ Ln (all vectors d ∈ Lm) such that (4) (respec-

tively, (5)) is solvable.
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4 Fixed points of the contraction and dilatation operators

In this section, we will show that problems (4) and (5) are equivalent with the respective fixed point
problems of contraction and dilatation operators.

Definition 2. Let A = (ai j) be a n×m matrix with components from L. We say that

– AA→ : Ln 7→ Ln is a contraction operator if for any b ∈ Ln such that b = (b1, . . . ,bn), (AA→)(b) =
((AA→)b1, . . . ,(AA→)bn) where

(AA→)bi =
m_

j=1

(ai j ∗
n̂

l=1

(al j → bl)), i = 1, . . . ,n. (6)

– A→A : Lm 7→ Lm is a dilatation operator if for any d ∈ Lm such that d = (d1, . . . ,dm), (A→A)(d) =
((A→A)d1, . . . ,(A→A)dm) ∈ Lm where

(A→A)d j =
n̂

i=1

(ai j →
m_

l=1

(ail ∗dl)), j = 1, . . . ,m. (7)

Due to the limitation of space, we will give only some results related to the contraction operator
AA→ and its fixed points.

Proposition 1. Let A = (ai j) be a n×m matrix with components from L, AA→ : Ln 7→ Ln the corre-
sponding contraction operator. Then the following holds true:

– for each b ∈ Ln, (AA→)b≤ b,
– for each b ∈ Ln, b0 = (AA→)b is a fixed point of of AA→,
– for each b1,b2 ∈ Ln, b1 ≤ b2 implies (AA→)(b1)≤ (AA→)(b2),
– b0 ∈ Ln is a fixed point of AA→ if and only if there exists x ∈ Lm such that A◦x = b0,
– if b0 ∈ Ln is a fixed point of AA→ such that b0 = (AA→)b then A→b≤ A→b0,
– if b1,b2 ∈ Ln are fixed points of AA→ then b1∨b2 is a fixed point too.

Theorem 1. Let A = (ai j) be a n×m− matrix with components from L, AA→ : Ln 7→ Ln the corre-
sponding contraction operator. Then the set of fixed points of AA→ is a linear subspace of Ln generated
by vector-columns a1, . . . ,am of A.

5 Theorem of isomorphisms

In this section, we show that the contraction operator AA→ establishes an equivalence ≡(AA→) on Ln

such that each class [·]≡(AA→) is a set of solutions of the system with inf→ composition.

Lemma 1. Let A = (ai j) be a n×m matrix with components from L, AA→ : Ln 7→ Ln the corresponding
contraction operator. Let b1,b2 ∈ Ln, d1,d2 ∈ Lm. The following are equivalences on Ln and Lm

respectively:

– b1 ≡(AA→) b2 ⇐⇒ (AA→)(b1) = (AA→)(b2);
– d1 ≡A d2 ⇐⇒ (A◦d1) = (A◦d2).

Theorem 2. Let L(a1, . . . ,am) be the linear subspace of Ln generated by vector-columns of A. The
following isomorphisms between factor spaces can be established:
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1. Ln/≡(AA→)
∼= L(a1, . . . ,am),

2. Lm/≡A
∼= L(a1, . . . ,am),

3. Ln/≡(AA→)
∼= Lm/≡A .

Theorem 3. Let b0 be a fixed point of (AA→). The class of equivalence [b0]≡(AA→) is a set of solutions
of (5) with the righthand side given by A→b0, i.e.

A.y = A→b0.

6 Similarity matrices in a semi-linear space

Definition 3. An n×n matrix E is a similarity matrix if for all i, j,k = 1, . . . ,n, the following holds:

– Sii = 1,
– Si j = S ji,
– Si j ∗S jk ≤ Sik.

We say that vector (b1, . . . ,bn) ∈ Ln is extensional with respect to E if for all l,k = 1, . . . ,n,

Elk ≤ bl ↔ bk.

Let a1, . . . ,am ∈ Ln be vectors and a j = (a j
1, . . . ,a

j
n), j = 1, . . . ,n. We consider the following n×n

similarity matrix EA:

EA
lk =

m̂

j=1

(a j
l ↔ a j

k). (8)

We say that vectors a1, . . . ,am generate EA or that they are generating vectors.
We will show that a fixed point of the operator AA→ is an eigenvector of a similarity matrix

generated by the column vectors a1, . . . ,am of A.

Theorem 4. Let b ∈ Ln be a fixed point of the operator AA→ where A = (ai j) is an n×m matrix with
components from L. Let EA be a similarity matrix generated by the column vectors a1, . . . ,am of A.
Then b is extensional with respect to EA, and it is a fixed point of the operator (EA)(EA)→.

Corollary 1. Let the assumptions of Theorem 4 be fulfilled. Then any fixed point b∈ Ln of the operator
AA→ is a fixed point of both operators (EA) : Ln 7→ Ln and (EA)→ : Ln 7→ Ln, i.e.

– (EAb)i =
Wn

j=1(e
i
j ∗b j) = bi, i = 1, . . .n,

– ((EA)→b)i =
Vn

j=1(e
i
j → b j) = bi, i = 1, . . .n.
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References

1. W. Bandler, L. Kohout, Semantics of implication operators and fuzzy relational products, Int. J. Man-Machine Studies
12 (1980) 89–116.

2. T. S. Blyth, M. F. Janowitz, Residuation Theory, Pergamon, Oxford, 1972.
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1 Preliminaries and purpose

All lattices L of membership values are frames, i.e., complete lattices satisfying the first infinite dis-
tributive law. The inconsistent frame with ⊥ equal > is allowed.

The fixed-basis category L-Top comprises all L-topological spaces (X ,τ), where τ is a subframe
of LX , together with all L-continuous morphisms f : (X ,τ)→ (Y,σ), where f : X→Y is a function and
( f←L )→ (σ) ⊂ τ, the notation ( f←L )→ indicating the traditional image operator of the Zadeh preimage
operator defined by f←L (v) = v◦ f . Note Top embeds into each L-Top and is isomorphic to 2-Top via
Gχ : Top→ L-Top given by

Gχ (T) = {χU : U ∈ T} , Gχ (X ,T) =
(
X ,Gχ (T)

)
, Gχ ( f ) = f .

The variable-basis category Loc-Top, cf. [3], [4], [5], [20], [21], [22], [23], [25], [27], [30],
[31], comprises all topological spaces (X ,L,τ) such that (X ,τ) ∈ |L-Top| , together with continu-
ous morphisms ( f ,ϕ) : (X ,L,τ)→ (Y,M,σ) such that ( f ,ϕ) : (X ,L)→ (Y,M) in the ground category
Set×Loc and (( f ,ϕ)←)→ (σ) ⊂ τ, where ( f ,ϕ)← (v) = ϕop ◦ v ◦ f (ϕop being a frame map). Each
L-Top embeds into Loc-Top via

(X ,τ) 7→ (X ,L,τ) , f 7→ ( f , idL) ,

and Top embeds into Loc-Top via the composition of this embedding with Gχ. Further, Loc embeds
into Loc-Top via both the singleton functor S and the empty functor ∅:

S(A) = (1,A,A1), S(ϕ) = (id1,ϕ),
∅(A) = (∅,A,A∅), ∅(ϕ) = (id∅,ϕ).

Thus Loc-Top is, up to functorial isomorphism, a supercategory of both Top and Loc, apparently the
first known such category.

The full subcategory SL-Top [SLoc-Top] [9], [15] of all stratified L-topological [topological]
spaces has objects (X ,τ) [(X ,L,τ)] such that {α : α ∈ L} ⊂ τ, where α : X → L is the constant map
with value α.

The category SL-Top is fundamentally related to Top via the adjunction ω a ι [14], [15], where
ω : Top→ SL-Top and ι : Top← L-Top as follows, using 〈〈 〉〉 to indicate the L-topology or topology
generated by a subbasis:

ω(T) = Top [(X ,T) ,(L,〈〈{L− ↓(α)} : α ∈ L}〉〉)] ,

ω(X ,T) = (X ,ω(T)) , ω( f ) = f ,
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ι(τ) =
〈〈{

[u � α] : u ∈ τ, α ∈ L
}〉〉

, ι(X ,τ) = (X , ι(τ)) , ι( f ) = f .

And SL-Top is fundamentally related to Top via the adjunction V a Gk, where V : SL-Top→ L-Top
is the forgetful functor and the stratification functor Gk : SL-Top← L-Top is given by

Gk (τ) = τ∨{α : α ∈ L}= 〈〈τ∨{α : α ∈ L}〉〉 ,

Gk (X ,τ) = (X ,Gk (τ)) , Gk ( f ) = f .

The categry SLoc-Top has similar relationships to both Top and Loc-Top which can be constructed
by the reader.

The necessity of stratified spaces in lattice-valued topology is well known, in part because of their
natural generation by ω. The necessity of non-stratified spaces was recognized as early as 1986 [7],
[21] from the standpoint of the L-spectrum and L-soberification functors. This paper surveys recent
and ongoing work in L-frames and topological systems which provides a more complete picture of the
necessity of non-stratified spaces, their natural generation by a variety of functors, and the necessity
of both stratified and non-stratified spaces in the L-Top’s and Loc-Top.

2 Levels of non-stratification

Since all L-topological spaces are stratified for |L| ≤ 2, sequens it is assumed that |L| ≥ 3 unless stated
otherwise.

Definition 1. Let (X ,τ) ∈ |L-Top| .

1. (X ,τ) is non-stratified if ∃α ∈ L−{⊥,>} , α /∈ τ.
2. (X ,τ) is anti-stratified [2], [19] if ∀α ∈ L−{⊥,>} , α /∈ τ.
3. (X ,τ) is normalized [1] if ∀u ∈ τ−{⊥} , ||u||=>, where ||u||=

W
x∈X u(x) .

Proposition 1. The following hold [1]:

1. Normalized⇒ anti-stratified⇒ non-stratified; and none of these implications reverses.
2. L-homeomorphisms preserve each of these conditions: stratified, non-stratified, anti-stratified,

normalized.
3. ∀(X ,T) ∈ |L-Top| , ∀L ∈ |Frm| , each Gχ (X ,T) is normalized.

3 Non-stratification and L-spectra

Fix frame L, let A ∈ |Loc| , and recall from [6], [7], [12], [13], [16], [17], [21], [22], [23], [24], [26]
that

Lpt (A) = Frm(A,L) , ΦL : A→ LLpt(A) by ΦL (a)(p) = p(a) ,

LPT (A) = (Lpt (A) ,(ΦL)
→ (A)) .

Then the L-topological space LPT (A) is the L-spectrum of A. It is known that the L-sober spaces are
precisely the L-spectra. Recall that A is L-spatial if ΦL : A→ (ΦL)

→ (A) is an order-isomorphism.

Theorem 1. If |Frm(L,L)| > 1, then LPT (A) is non-stratified, in which case each L-topological
space has a non-stratified Čech-Stone compactification; and if ∀α∈L−{⊥,>} , ∃ψ∈Frm(L,L) , ψ(α) 6=
α, then LPT (A) is anti-stratified, in which case each L-topological space has a anti-stratified Čech-
Stone compactification.
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Given (X ,τ) ∈ |L-Top|, put LΩ(X ,τ) = τ. With appropriate actions on morphisms, LΩ and LPT
are functors, LΩ a LPT , and this adjunction sets up the equivalence between L-sobriety and L-
spatiality as well as various classes of Stone representations and Čech-Stone compactifications. The
composition LPT ◦LΩ is called (the) L-soberification (functor); and the composition LPT ◦Ω is called
(the) L-2 soberification (functor), where Ω : Top→ Loc is the classical functor [11] equivalent to 2Ω

via Gχ.

Theorem 2. The following hold:

1. If (X ,τ) ∈ |L-Top| is non-stratified [anti-stratified, normalized], then so is LPT (LΩ(X ,τ)).
2. If (X ,T) ∈ |Top| , then LPT (Ω(X ,T)) is normalized.
3. ∀L ∈ |Frm| , R∗ (L) and I∗ (L) [26] are normalized.
4. ∀L ∈ |CBool| , R(L) and I(L) are normalized.

The relevance of being normalized is that a collection
{(

Xγ,τγ

)
: γ ∈ Γ

}
of normalized spaces

necessarily has a product-separated product topology [1]; localic products also have a form of product-
separation; so this property could be related to how

N
γ∈Γ τγ compares with

L
γ∈Γ τγ.

4 Anti-stratification and L-frames

For this section L is restricted to be a complete chain; L• ≡ {t ∈ L : t <>}. An L-frame A [10], [16],
[17], [18], [19] is a pair

(
Au,Al

)
—Au is the “upper” frame and Al is the “lower” frame—together with

a family
{

ϕA
t : Au→ Al | t ∈ L•

}
of frame morphisms satisfying the following axioms:

(F0) For ∅ 6= S⊂ L•, ϕAV
S =
W

t∈S ϕA
t .

(F1)
{

ϕA
t : Au→ Al | t ∈ L•

}
is an extremal epi-sink.

(F2)
{

ϕA
t : Au→ Al | t ∈ L•

}
is a mono-source.

An L-frame morphism is a pair
(
hu,hl

)
: A→ B such that hu : Au→ Bu, hl : Al→ Bl are frame mor-

phisms and for each t ∈ L•, hl ◦ϕA
t = ϕB

t ◦hu.
The motivation for L-frames (particularly (F0)) stems from both presheaves [18] and the ι functor

of Section 1 above [16], [18]. The role of ι is especially critical since—letting L-Frm be the category
of all L-frames and L-frame morphisms and L-Loc be its dual—the spectrum adjunction lLΩ a
between L-Top and L-Loc lives on ι-sobriety (a fundamentally different sobriety than L-sobriety)
defined by saying (X ,τ) is ι-sober iff (X , ι(τ)) is traditionally sober.

It is known that L-Frm is complete and cocomplete and has epi-mono decomposition with
diagonalization property [18]. Intrinsic to these proofs are the two forgetful functors Uu, Ul : L-
Frm→ Frm given by

Uu (A) = Au, Uu (h) = hu; Ul (A) = Al, Ul (h) = hl.

The left adjoint L : L-Frm← Frm of Uu is constrcuted using quotients of frame coproducts; the right
adjoint R : L-Frm← Frm of Ul is constructed using quotients of frame products; and L and certain
modifications R ∗ of R , Ω∗ of Ω, and ∗ of yield the following factorizations:

Theorem 3. For each complete chain L, the following hold [19]:

1. LPT ∼= ◦Lop;
2. ω = ∗ ◦R ∗ ◦Ω∗.
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Every L-sober space is ι-sober, but not conversely (for L a complete chain, R(L) and I(L) are
ι-sober but not L-sober); and, using Section 2 above, upper frames of L-frames always produce L-
sober and hence anti-stratified L-topological spaces. On the other hand, lower frames of an L-frames
resulting from ordinary topological spaces (via Ω∗) always produce (via ∗) stratified L-topological
spaces. Thus the single category L-Frm (or L-Loc) argues for including in L-Top both stratified and
non-stratified spaces.

5 Non-stratification and topological systems

Given (X ,A) ∈ |Set×Loc|, a binary relation � ⊂ X×A is a satisfaction relation [32] if the following
join and meet interchange laws hold:

∀x ∈ X , ∀{ai}i∈I ⊂ A, x �
_

i∈ I

ai ⇔ x � ai for some i ∈ I,

∀x ∈ X , ∀ finite {ai}i∈I ⊂ A, x �
^

i∈ I

ai ⇔ x � ai for each i ∈ I,

in which case (X ,A,�) is a topological system [32]. The relation � is maximal [2] if it is X ×
(A−{⊥}) . Having ground category Set×Loc, TopSys [32] comprises all topological systems to-
gether with ground morphisms ( f ,ϕ) : (X ,A,�)→ (Y,B,�) satisfying

∀x ∈ X , ∀b ∈ B, f (x) �2 b⇔ x �1 ϕ
op ( f (b)) ,

such ground morphisms being called continuous maps.
Given (X ,T) ∈ |Top| , (X ,T,∈) is a topological system; and given A ∈ |Loc|, (Pt (A) ,A,�) is a

topological system, where Pt (A) = 2pt (A) and p � a iff p(a) =>. The first [second] correspondence
is part of an embedding EV [ELoc] of Top [Loc] into TopSys [32], making TopSys the second known
category that is, up to functorial isomorphism, a supercategory of both Top and Loc. How are the two
supercategories Loc-Top and TopSys related? The most important relationships include the following
three concrete functors from TopSys to Loc-Top [2], the first two of which are embeddings and the
second and third of which use the notion of extent—for a ∈ A, Ext (a) = {x ∈ X : x � a}:

τ� =
{

u ∈ AX : (∀x ∈ X , x � u(x)) or u =⊥
}

,

F� (X ,A,�) = (X ,A,τ�) ,

τk =
〈{

a∧χExt(a) : a ∈ A
}〉

,

Fk (X ,A,�) = (X ,A,τk) ,

τ
k =

〈{
a∧χExt(b) : a,b ∈ A

}〉
,

Fk (X ,A,�) =
(

X ,A,τk
)

.

Theorem 4. The following hold:

1. ∀(X ,A,�) ∈ |TopSys| , F� (X ,A,�) is non-stratified if and only if (X ,A,�) is non-maximal [2].
2. ∀(X ,A,�) ∈ |TopSys| , Fk (X ,A,�) is non-stratified if and only if (X ,A,�) is non-maximal [2].
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3. ∀(X ,A,�) ∈ |TopSys| , Fk (X ,A,�) is stratified [2].
4. ∀(X ,T) ∈ |Top| , F� (X ,T,∈) is normalized [1] and Fk (X ,T,∈) is anti-stratified [2].
5. ∀A ∈ |SpatLoc| , F� (Pt (A) ,A,�) is normalized [1] and Fk (Pt (A) ,A,�) is anti-stratified [2].
6. ∀A ∈ |Loc| with Pr(A•)−{⊥} 6= ∅, F� (Pt (A) ,A,�) and Fk (Pt (A) ,A,�) are non-stratified [2].
7. ∀A ∈ |Loc| with |A| ≥ 3, F� (Pt (A) ,A,�) and Fk (Pt (A) ,A,�) are non-stratified [2].

Remark 1. TopSys provides both stratified and non-stratified spaces to Loc-Top, arguing for Loc-Top
including both types of spaces. On the other hand, Loc-Top may provide information for TopSys:
TopSys is not topological over Set×Loc [2]; Loc-Top is topological over Set×Loc [9]; so initial
and final structures lacking in TopSys are provided in Loc-Top. This latter benefit points up the
need for functors from Loc-Top to TopSys, the most important of which, so far, is a functor which
combines the embeddings of all the L-Top’s into TopSys, each of which generalizes EV and provides
anti-stratified spaces via F� and Fk even when starting with stratified spaces [2].
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Lattices and, in particular, bounded lattices are used in any many-valued logic as sets of truth val-
ues [4–7, 11, 12]. Such bounded lattices need not necessarily form a chain (a first attempt in this
direction is described in [4, Section 15.2], compare [1, 3] and also the paraconsistent logic in [2]).
Conjunction and implication form the basic constituents w.r.t. logical operations on such lattices of
truth values — the conjunction is interpreted by some triangular norm on L and the implication, most
often, by its related residuum/residual implication.

In this contribution we focus on triangular norms on some bounded lattice L of truth values in
particular on its construction as extensions of a triangular norm acting on a (complete) sublattice S
of L. We investigate the strongest as well as the weakest extension. It is interesting to see that in
case of the strongest extension the sublattice S has to fulfill some conditions, and can, therefore, not
necessarily be chosen arbitrarily. In case of the weakest extension the (complete) sublattice S can be
chosen without any restrictions. Ensuring that the (complete) sublattice S can be chosen arbitrarily in
both cases implies that L be a horizontal sum of chains (compare also [8–10]).

We further investigate the case of strongest and weakest extensions of families of t-norms on
corresponding families of sublattices and particular cases of bounded lattices of truth values such
as horizontal sums, ordinal sums, and Cartesian products of bounded lattices. We further relate our
results to properties of triangular norms such as, e.g., the intermediate value property.
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1 Introduction

The notion of fuzzy set introduced by Zadeh in [13] and generalized by Goguen in [2] induced many
lines of research to study different fuzzy structures. In particular, [3, 8] consider fixed-basis as well
as variable-basis fuzzy topologies and its properties. On the other hand, localic theory was being
developed in 1960’s and 1970’s and was given a coherent statement by Johnstone in [5]. One of the
milestones was the result of Papert and Papert [6] (described more succinctly by Isbell [4]) stating that
the (obvious) functor Top O−→ Loc has a right adjoint. As a result one got an appropriate environment
in which to develop (pointless) topology.

A fuzzy analogue of the aforesaid adjunction was considered in, e.g., [8] (replacing Loc by the
dual of the category CQML of complete quasi-monoidal lattices) as well as in [9] (in a more general
way for the category L-Loc of L-locales).

Motivated by the aforesaid results we considered in [11] an adjunction between the dual of the
category Q-Alg of algebras over a given unital commutative quantale Q [12] and the category Q-Top
of stratified Q-topological spaces. With appropriate changes in the definitions of sobriety and spatiality
we got an equivalence of the categories of Q-sober spaces and Q-spatial Q-algebras (already included
in the L-sobriety of [9]).

By analogy with the notion of quantaloid of Rosenthal [10] we introduced in our talk during
”The 45th Summer School on Algebra and Ordered Sets” in Tále (Slovakia) the notion of quantale
algebroid. It is our purpose now to generalize the results of [11] to the new setting. The necessary
categorical background can be found in [1].

2 Algebraic preliminaries

This section introduces the category Q-Abrds of Q-algebroids over a given unital commutative quan-
tale Q. Start by recalling the notion of quantale from [10].

Definition 1. A quantale is a
W

-lattice Q together with an associative binary operation ⊗ satisfying:
q⊗(

W
S) =

W

s∈S
(q⊗s) and (

W
S)⊗q =

W

s∈S
(s⊗q) for q∈Q and S⊆Q. A quantale Q is unital provided

that there exists an element  ∈ Q with ⊗q = q = q⊗ for q ∈ Q. Q is commutative provided that
q⊗ s = s⊗q for q,s ∈ Q.

Every frame is a unital commutative quantale, e.g., the chain 2 = {0,1} is a quantale.

Definition 2. A map Q
f−→ S between quantales is a quantale homomorphism provided that f preserves

⊗ and
W

.
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Definitions 1 and 2 give the category Quant of quantales and quantale homomorphisms.
On the next step we define the category Q-Mod of left Q-modules over a given unital quantale Q

[7, 10] motivated by the category of left modules over a ring.

Definition 3. Given a unital quantale Q, Q-Mod is the category, the objects of which (called unital
left Q-modules) are pairs (A,∗), where A is a

W
-lattice and Q×A ∗−→ A is a map such that for q,q′ ∈Q,

a ∈ A and T ⊆ Q, S ⊆ A:

– q∗ (
W

S) =
W

s∈S
(q∗ s) and (

W
T )∗a =

W

t∈T
(t ∗a);

– q∗ (q′ ∗a) = (q⊗q′)∗a;
– ∗a = a.

Morphisms (A,∗) f−→ (B,∗) (called unital left Q-module homomorphisms) are
W

-preserving maps

A
f−→ B such that f (q∗a) = q∗ f (a) for a ∈ A and q ∈ Q.

It is easy to see that the category 2-Mod is isomorphic to the category CSLat(
W

) of
W

-lattices and
W

-preserving maps.
Now we are ready to define the category Q-Alg of Q-algebras over a given unital commutative

quantale Q motivated by the category of algebras over a commutative ring.

Definition 4. Given a unital commutative quantale Q, Q-Alg is the category, the objects of which
(called Q-algebras) are Q-modules (A,∗) such that A is a quantale with the property that: q ∗ (a⊗
b) = (q ∗ a)⊗ b = a⊗ (q ∗ b) for a,b ∈ A and q ∈ Q. Morphisms (A,∗) f−→ (B,∗) (called Q-algebra

homomorphisms) are quantale homomorphisms A
f−→ B which are also Q-module homomorphisms.

One can easily see that the category 2-Alg is isomorphic to the category Quant.
The next definition is motivated by the concept of quantaloid of Rosenthal [10]. Recall that quan-

taloids are categories, whose hom-sets are
W

-lattices, with composition in the category preserving
W

in both variables.

Definition 5. Given a unital commutative quantale Q, a Q-algebroid is a category, whose hom-sets
are Q-modules, with composition of morphisms preserving

W
and ∗ in both variables.

If A is a Q-algebroid, then for every A-morphisms f ,g with f ◦ g defined, q ∗ ( f ◦ g) = (q ∗ f ) ◦ g =
f ◦ (q ∗ g) for q ∈ Q, and for every A-object A, the hom-set A(A,A) is a unital Q-algebra (from here
the terminolgy ”quantale algebroid”). Notice that quantale algebroids can be thought of as quantale
algebras ”with many objects”.

Definition 6. A functor A F−→ B between Q-algebroids is a Q-algebroid homomorphism provided that
on hom-sets it induces a Q-module morphism A(A,A′)−→ B(F(A),F(A′)).

Definitions 5 and 6 give the (quasi)category Q-Abrds of Q-algebroids and Q-algebroid homomor-
phisms. The category 2-Abrds is isomorphic to the (quasi)category Qtlds of quantaloids of [10].

There exists the (obvious) forgetful functor Q-Abrds
|−|−→ CAT with CAT being the (quasi)category

of categories and functors.

Example 1. A quantale algebroid with one object is just a unital quantale algebra. Given a unital
commutative quantale Q, the categories Q-Mod and Q-Alg are Q-algebroids.

From now on we do not distinguish between (quasi)categories and categories.
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3 Topological preliminaries

This section introduces the category S(Q-Top) of stratified Q-topological spaces for a particular Q-
algebroid Q. Start by fixing a unital commutative quantale Q. Since every unital commutative quantale
is an algebra over itself (with action given by multiplication), Example 1 provides a Q-algebroid Q.
Moreover, every category X provides the category |Q|X of all functors X F−→Q which is a Q-algebroid
as well.

Definition 7. Given a category X, OQ(X) is a (quasi, – , stratified) Q-topology on X provided that
OQ(X) is a (subcategory, subquantaloid, sub(Q-algebroid)) of |Q|X. The pair (X,OQ(X)) is a (quasi,
– , stratified) Q-topological space provided that OQ(X) is a (quasi, – , stratified) Q-topology on X.

For shortness sake we will denote a topological space (X,OQ(X)) by X alone. The following lemma
motivates the term ”stratified”.

Lemma 1. A Q-topological space X is stratified iff for every OQ(X)-object F and every q ∈Q, F αq

−→
F with α

q
X = q is a OQ(X)-morphism.

Proof. αq = q∗α = q∗1F and q∗β = αq ◦β for q ∈ Q and β in OQ(X). ut

Definition 8. A functor X H−→ Y between (quasi, – , stratified) Q-topological spaces is Q-continuous
provided that FH αH−−→ F ′H is a OQ(X)-morphism for every OQ(Y)-morphism F α−→ F ′.

Definitions 7 and 8 provide the categories QU(Q-Top), Q-Top and S(Q-Top) of (quasi, – , strati-
fied) Q-topological spaces and Q-continuous functors. The objects of S(Q-Top) will be referred to as
Q-spaces. Notice that all notions generalize the existing ones used in the fuzzy community (see, e.g.,
[3, 8]).

4 Q-algebroids versus Q-topological spaces

This section generalizes for the category Q-Abrds the aforesaid adjunction of [4, 6]. Start by fixing
a unital commutative quantale Q. According to the notation used by many authors, the dual of the
category Q-Abrds is denoted by Lo(Q-Abrds) (the ”Lo” stands for localic). If H is a Lo(Q-Abrds)-
morphism, the respective Q-Abrds-morphism is denoted by H∗.

There exists a functor S(Q-Top)
OQ−→ Lo(Q-Abrds) defined by: OQ(X H−→ Y) = OQ(Y)

O∗
Q(H)

−−−−→
OQ(X) with O∗

Q(H)(F α−→ F ′) = FH αF−→ F ′H.

Theorem 1. The functor S(Q-Top)
OQ−→ Lo(Q-Abrds) has a right adjoint.

Proof. Given a Q-algebroid A, construct the universal arrow as follows. Let PtQ(A) be the full sub-
category of |Q||A| with objects Q-Abrds(A,Q). For every A-object A define a Q-algebroid mor-

phism PtQ(A) PA−→ Q by: PA(F α−→ F ′) = F(A) αA−→ F ′(A). For every A-morphism A
f−→ A′ define a

natural transformation PA
Ω f

−→ PA′ by: Ω
f
F = F( f ). Let OQ(PtQ(A)) be the category with objects

all PA and morphisms all Ω f . The required universal arrow A
ε∗A−→ OQ(PtQ(A)) is then given by:

ε∗A(A
f−→ A′) = PA

Ω f

−→ PA′ . ut

Theorem 1 gives the adjunction (η,ε) : OQ aPtQ : Lo(Q-Abrds)−→ S(Q-Top) where: given a Q-Abrds-

morphism A H∗
−→ B, PtQ(H)(F α−→ F ′) = FH∗ αH∗

−−→ F ′H∗ and given a Q-space X, X ηX−→ PtQ(OQ(X))
is defined by: ηX(X)(F α−→ F ′) = F(X) αX−→ F ′(X) and ηX( f )F = F( f ).
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5 Q-sobriety versus Q-spatiality

This section considers some consequences of the adjunction of Theorem 1.

Definition 9. A Q-space X is Q-T0 (Q-sober) provided that ηX is a monomorphism (isomorphism) in
CAT.

One can easily see that every Q-sober Q-space is Q-T0 but not vice versa.

Lemma 2. A Q-space X is Q-T0 (Q-sober) iff for every X-morphisms f ,g with f 6= g there exists a
OQ(X)-object F such that F( f ) 6= F(g) (ηX is a Q-homeomorphism). The Q-space PtQ(A) is Q-sober
for every Q-algebroid A.

The next definition is induced by the notion of spatial locale of [5].

Definition 10. A Q-algebroid A is Q-spatial provided that for every A-morphisms f ,g with f 6= g
there exists a PtQ(A)-object F such that F f 6= Fg.

Lemma 3. A Q-algebroid A is Q-spatial iff ε∗A is an isomorphism. The Q-algebroid OQ(X) is Q-
spatial for every Q-space X.

Let Q-Sob be the full subcategory of S(Q-Top) with objects all Q-sober Q-spaces and let Q-Spat
be the full subcategory of Lo(Q-Abrds) with objects all Q-spatial Q-algebroids.

Theorem 2. The restriction of the adjunction of Theorem 1 to the categories Q-Sob and Q-Spat gives
an equivalence. The inclusion Q-Sob E−→ Q-Top has a left adjoint PtQ ◦OQ. The inclusion Q-Spat E−→
Lo(Q-Abrds) has a right adjoint OQ ◦PtQ.
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Those of us working in Fuzzy sets regularly do mathematics with reasoning taking its truth values
in a lattice. The simplest case is when that lattice has only two elements, giving classical logic. The
next level of complexity happens when we let the lattice of truth values be [0,1] and consider logical
operations resulting from connectives defined there. The connectives ∧ and ∨ come from the lattice
structure, but further logical connectives typically need further structure on the lattice. A DeMorgan
negation gives a self adjoint contravariant functor from the lattice to itself. An implication can be
gotten as a right adjoint a⇒− to the functor−∧a. A t-norm gives a monoidal structure on the lattice
of truth values. Generalizing to an arbitrary lattice with a monoidal structure leads to considerations
of quantale valued logics, linear logics, and other variants (many of which have been studied by Hájek
and others in the Prague school [5, 8, 7, 6],[2],[1]. One can go even further with the generalization and
ask for truth values in a category with a monoidal (or perhaps monoidal closed) structure rather than
just a lattice.

A number of different categories have been proposed which can be thought of as places for math-
ematics with truth values in one of these rich structures to live. Topoi provide one model, since they
have truth values forming a Heyting algebra and have a rich higher order internal logic in which math-
ematics can be carried out. The Higgs construction of the topos of sheaves on a complete Heyting
algebra ([9], [3]) has provided a pattern for several attempts to produce a notion of fuzziness in which
equality as well as existence is fuzzy and the maps are strict extensional relations. See, for instance
[13], [11], [10], [12]. Some of these constructions have used the monoidal structure on the lattice in
an attempt to capture fuzzy logic (perhaps from a t-norm) rather than the intuitionistic logic which
results from using ∧ and⇒.

The Goguen category Set(L) of L valued fuzzy sets with (crisp) functions which do not reduce
degree of membership has also been carefully studied. It is not a topos, but has a rich internal logic
just the same. Its structure was described in [15], [17], [4], and [14] and generalizations to a non-
commutative ? were in [16].

Interpretation of predicate logic in any of these categorical settings gives rise to consideration of
categories of predicates on an object and also to category objects internalizing them. One would hope
that these would have the algebra structures which arise for the various logics studied.

This paper investigates when these various constructions lead to monoidal, symmetric monoidal,
monoidal closed, and locally monoidal closed categories.
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6. Petr Hájek. Fuzzy logic with non-commutative conjunction. Journal of Logic and Computation, 13:469–479, 2003.
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Sambin in his forthcoming book [6] introduced the theory of “The Basic Picture”, that generalizes
both the notion of topological space and its point-free version. He also introduced the concept of
overlap algebra to the aim of putting in algebraic form those properties that are needed to define such
topological structures. The goal of our work is to generalize such topological notions in the context
of many-valued sets. In particular, we want to test whether Sambin’s original algebrization of his new
topological notions can be considered also the algebrization of their many-valued version.

Since all his work was developed in a predicative constructive set theory [5], then it comes natural
to place our project in the context of sets evaluated on a complete Heyting algebra H. The reason is
that a complete Heyting algebra can be taken as an algebraic counterpart of the logic underlying the
set theoretic foundation adopted by Sambin, which is intuitionistic logic. When trying to do this, we
realized that the power collection PH(X) of a H-valued set does not in general enjoy all the algebraic
properties of P (X) that Sambin expressed via the notion of overlap algebra. In more precise terms, the
power collection of a H-set is not in general an overlap algebra, if we consider an overlap relation as
exactly the many-valued version of that defined in P (X). Since H itself, seen as P (1), does not come
necessarily equipped with a structure of an overlap algebra, we then assumed that H is an overlap
algebra as a starting point. In fact it turned out that if we take H to be a complete Heyting algebra
equipped with a primitive notion of overlap, then PH(X) inherits a structure of overlap algebra, where
the overlap relation is the pointwise one induced by H. This led us to place our project in the context
of sets evaluated on an overlap algebra.

Then, after defining the category Rel(H) of sets and relations evaluated on a overlap algebra H (H-
sets and H-relations for short) by adopting the definitions in [1], we started to analyze the relationships
between this category and the category OA of overlap algebras as defined in [6]. In particular, we
considered the functor P : Rel(H)→OA associating the power collection of all H-valued subsets to
each H-set. We then investigated whether this is full and faithful as the analogous functor defined in
[6] from the category Rel of sets and relations (in the foundation adopted by Sambin) to OA. It turned
out that P is faithful but not generally full. We also characterized the morphisms under which P is
full, by applying analogous results of fullness in [2, 4]. Such conditions seem to be better understood
if we consider the representation of sets evaluated on a complete Heyting algebra in terms of sheaves
as shown in [1, 7, 3]. Hence, before carrying on our general project, we want to investigate this and to
characterize the role of the overlap relation in the context of sheaves.
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Abstract. Höhle has shown that fuzzy sets, valued in a frame (complete Heyting algebra) Ω, can be identi-
fied with certain sheaves over Ω: they are the subsheaves of constant sheaves, and more general sheaves can
be got as quotients of the fuzzy sets.
The technical development is complicated by the fact that there are four different, but equivalent, technical
expressions of the notion of sheaf: local homeomorphisms, presheaves with the sheaf pasting condition,
and Ω-valued sets with or without a completeness condition. Fuzzy sets relate most naturally to the Ω-
valued sets, and in fact they first lead one to incomplete Ω-valued sets. However for technical reasons Höhle
describes the sheaf constructions known from topos theory in terms of complete Ω-valued sets.
In my talk I shall present the geometric fragment of those topos theoretic constructions, namely those con-
structions that are preserved by inverse image functors of geometric morphisms. I shall describe how (i)
the geometric constructions correspond to a natural idea of sheaf as continuous set-valued map on a space,
(ii) they enable pointwise reasoning even for non-spatial frames (without enough points) and (iii) they have
simple descriptions in terms of incomplete Ω-valued sets.
My aim is to give a simpler picture of sheaves and how fuzzy sets lie within them.

1 Introduction

In his two papers [2] and [3], Ulrich Höhle has shown how fuzzy sets, valued in a frame, may be con-
sidered as particular kinds of sheaves over the corresponding locale. There are two particular insights
that underly this treatment. The first is that, of the various equivalent different ways of expressing
the notion of sheaf, the one most relevant to fuzzy sets is that of the “Ω-valued set”. The second is
that fuzzy sets are then seen as subsheaves of the “constant sheaves” that correspond to standard sets,
and that the general sheaf can then be got as a quotient of a fuzzy set. From this point of view, fuzzy
set theory is mathematically deficient in that it does not include quotienting, and when quotienting is
added one obtains sheaf theory.

As is well known, the category of sheaves over a locale is a topos and so supports categorical op-
erations corresponding to those of (intuitionistic) set theory. These include products (cartesian prod-
ucts), pullbacks (fibred products), coproducts (disjoint unions), coequalizers (quotients), exponentia-
tion (function sets), the subobject classifier (set of logical truth values) and power objects (powersets).
In [2] these are described concretely in terms of the Ω-valued set structure of the sheaves.

The purpose of my talk is to publicize a certain class of operations that are particularly well
behaved. These are the geometric operations, and are known from topos theory as those operations that
are preserved by the inverse image functors of geometric morphisms between toposes. Although they
omit some of the topos-valid (intuitionistic) operations, they have an inherent continuity that makes it
useful to restrict oneself to the geometric operations where possible. When sheaves are viewed as local
homeomorphisms, the geometric operations have the important property that they can be calculated
stalkwise. At first sight this approach would seem to be useful only when the locale is spatial (so that
are enough points and hence enough stalks), but in fact it can be made sense of for general locales.

? I am very grateful to Prof. Steve Rodabaugh, Prof. Larry Stout and the organizers of the 29th Linz Seminar on Fuzzy Set
Theory (2008) for inviting me to present this material there.
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The geometric constructions provide a key to treating locales as spaces of points, and their sheaves as
continuous assignments of stalks to points.

A technical point that arises is in regard to the completeness of the Ω-valued sets. In general,
different Ω-valued sets can present the same sheaf. However, any Ω-valued set can be completed to
give a canonical representative. There is then an isomorphism (not just an equivalence) between the
categories of sheaves and of complete Ω-valued sets. Höhle describes his constructions in terms of the
complete Ω-valued sets, but the geometric operations can be described in particularly simple ways as
constructions on the uncompleted Ω-valued sets and we shall describe examples of these.

2 Background

2.1 Locales

Standard references for frames and locales are [4] and [9]. For the topos-theoretic account of con-
structive locales see [7].

Definition 1. A frame is a complete lattice in which binary meet distributes over arbitrary joins. A
frame homomorphism is a function between frames that preserves finite meets and arbitrary joins. We
write Fr for the category of frames and frame homomorphisms.

Frames embody the idea of “point-free topology”. A frame is intended to be a “lattice of opens”,
except that these opens are not specified as subsets of a given set of points. Points of frames are
nonetheless defined, but for some frames there are not enough of them to distinguish between all the
opens – frames need not be spatial. One might wonder therefore what virtue there is in the point-free
approach to topology: not only does it obfuscate the topology by converting it to lattice theory, it does
not even capture the established theory. However, it turns out that in constructive mathematics (for
example, in the mathematics one can obtain by replacing sets by sheaves) it gives a theory that is
better behaved than point-set topology, retaining classical theorems that otherwise are lost.

We shall use the language of locales. For present purposes, we may think of a locale as “a frame
pretending to be a topological space” and define the category Loc of locales to be the opposite of the
category of frames. That is to say, the objects are the same, but a morphism (a continuous map, or
just map) f : X → Y between locales is a frame homomorphism (the inverse image function) in the
opposite direction. We shall write ΩX for the frame corresponding to X , and Ω f : ΩY → ΩX for the
frame homomorphism. The purpose of this duplication of notation is to allow us to use a language
that supports spatial intutions in point-free topology.

A point of a locale X is a map 1 → X , where Ω1 is the frame of truth-values. A generalized point
at stage W is a map W → X . Then the ordinary points are often called global points.

Composition with a map f : X →Y transforms points of X to points of Y , just as with an ordinary
continuous map. If one just considers global points here, then there is a problems, because a locale
need not have“enough” points. That is to say, the action on global points does not in general define
the locale map. This is clearest in those locales that are non-trivial, but have no global points at all.

However, composition with f also transforms points at any given stage W . Now, we do have
enough points. In fact, consider the generic point, the identity map Id : X → X , which is a point at
stage X . Transforming this immediately gives f , as a point of Y at stage X . An additional property
of this point transformation is that it respects change of stage. Suppose we have α : W1 →W2. Then
composition with α transforms points at stage W2 to points at stage W1. Associativity of composition,
i.e. f ◦ (x◦α) = ( f ◦ x)◦α, says that the point transformer f commutes with change of stage.

In general, suppose we have a point transformer that commutes with change of stage. More pre-
cisely, –
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1. For each stage W , we have a function FW that transforms points x : W → X of X at stage W to
points FW (x) : W → Y of Y at stage W .

2. If α : W1 →W2, then FW2(x)◦α = FW1(x◦α).

Let f = FX(Id) : X → Y . Then if x : W → X we have

FW (x) = FW (Id◦x) = FW (Id)◦ x = f ◦ x.

From this it follows that morphisms are equivalent to “generalized point transformers that com-
mute with change of stage”. This is a completely general argument that applies in any category. We
shall see later for locales how to use logical techniques to guarantee commuting with change of stage.

2.2 Sheaves

Fundamental though sheaves are, a big conceptual difficulty is that they have a variety of different
but equivalent technical expressions. The two best known definitions are as local homeomorphisms
and as pasting presheaves. In addition, Höhle’s connection with fuzzy sets is via a lesser known, and
quite different, notion, that of Ω-valued set; and this comes in two different flavours, complete and
incomplete.

I’ll summarize the four kinds here, partly to show how bad the problem is. The four really are
different, and choosing one rather than another can make a big difference to ease of calculation –
but different calculations can require different choice of sheaf style. A key message of my talk is
to illustrate a more fundamental conceptual base: a sheaf over a space X is a continuous set-valued
map X → Set. The problem with this, unfortunately, is we cannot make it precise by topologizing the
class of sets in the ordinary way. (In fact, it is an example of the generalized topological spaces, i.e.
toposes, of Grothendieck. Topos theory says it has opens, but only three: the empty space, the entire
space, and the space of non-empty sets. The usual definition of continuity, applied with this topology,
will not give us the notion of sheaf. The space of sets is one for which there are too few opens to
define the topology, so a more elaborate description is needed, using sheaves. A sheaf over Set will
be a functor F from Set f , the category of finite sets, to Set. This can then be extended to a functor
defined for every set S, by taking a colimit of sets F(S0) where S0 is a finite family of elements of S.
This extended functor is the “continuous set-valued map from Set to Set.” The topos described here
as “the space of sets” is normally called the object classifier.)

The various definitions of sheaf are technical expressions of this idea of “continuous set-valued
map”. This comes out most clearly in the first definition, that a sheaf over X is a local homeomorphism
p : Y → X , i.e. a (continuous) map such that each y in Y has an open neighbourhood V for which the
image p(V ) is open and p homeomorphically maps V to p(V ). Y is the display space for the sheaf.
The subspace topology on each stalk p−1(x) is discrete, and the assignment of stalks to points of X is
the “continuous set-valued map” on X . Intuitively, the definition says that if x is varied slightly, then
the stalk p−1(x) does not make discontinuous changes. We also need to consider the sheaf morphisms.
If p : Y → X and q : Z → X are two local homomorphisms, then a morphism between them is a map
f : Y → Z such that q◦ f = p. For each x, f will map p−1(x) into q−1(x).

The second technical expression is via the notion of presheaf. If p is a local homeomorphism, then
for each open U in X one can consider the set Sectp(U) of local sections of p over U , maps σ : U →Y
such that p◦σ is the identity on U , so for x in U , σ continuously selects σ(x)∈ p−1(x). If U ⊆U ′ then
there is a restriction map from Sectp(U ′) to Sectp(U), and this makes Sectp a contravariant functor
(presheaf) from the topology ΩX to the category of sets. Moreover, it has the following “sheaf pasting”
condition. Suppose Ui (i ∈ I) is a family of opens in X , and suppose we have a family of sections
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σi ∈ Sectp(Ui) such that for each pair (i, j), σi and σ j have the same restriction to Sectp(Ui ∩U j).
There is a unique σ ∈ Sectp(

S
iUi) that restricts to every σi.

Presheaves F : (ΩX)op → Set satisfying the sheaf pasting condition are equivalent to local home-
omorphisms. A sheaf morphism from F to G is a natural transformation – that is to say, for each
U ∈ ΩX a function θU : F(U) → G(U) such that if V ⊆U and a ∈ F(U) then θV (a|V ) = θU(a)|V .
(The symbol | denotes restriction, arising from the functoriality of presheaves. For instance, a|V is
F(V ⊆U)(a).)

The definition of sheaf over X that was exploited by Höhle is that of ΩX-valued set. (To speak
of these in generality, without specifying a particular X , we refer to “Ω-valued sets”.) Let A be a
set. An ΩX-valuation on A is a function E : A×A → ΩX satisfying E(a,b) = E(b,a) and E(a,b)∧
E(b,c) ≤ E(a,c). This is the simplest of all the definitions of sheaf, but the definition of morphism
is more complicated. If A and B are two ΩX-valued sets then a morphism from A to B is a function
θ : A×B → ΩX such that

θ(a,b)≤ E(a,a)∧E(b,b)
E(a′,a)∧θ(a,b)∧E(b,b′)≤ θ(a′,b′)

θ(a,b)∧θ(a,b′)≤ E(b,b′)

E(a,a)≤
_

b∈B

θ(a,b)

Finally, for an ΩX-valued set A we say that a function s : A → ΩX is a singleton if it satisfies

s(a)≤ E(a,a) (s is strict)

s(a)∧E(a,b)≤ s(b) (s is extensional)

s(a)∧ s(b)≤ E(a,b).

(Actually, the third condition implies the first. But we separate them out in order to make explicit
the properties of strictness and extensionality.) Then A is complete if for every singleton s there is a
unique a ∈ A such that for all b we have s(b) = E(a,b). For complete ΩX-valued sets, morphisms can
be defined more simply: this is because a morphism θ : A → B defines, for each a ∈ A, a singleton
θ(a,−) and hence an element of B. In fact, the morphisms are equivalent to functions ψ : A → B such
that E(a,a′)≤ E(ψ(a),ψ(a′)) and E(a,a) = E(ψ(a),ψ(a)).

With four different notions of sheaf, there is a complex web of equivalences between them. We
have already seen how, from the local homeomorphism, one gets the pasting presheaf of local sec-
tions. The equivalence between pasting presheaves F and complete ΩX-valued sets A is relatively
straightforward: A is the disjoint union of the sets F(U). If ai ∈ F(Ui) (i = 1,2), then

E(a1,a2) =
_
{V ∈ ΩX | a1|V = a2|V}.

Every ΩX-valued set can be completed by taking the set of all singletons, and this respects the
morphisms. There are some advantages in completing. The morphisms are simpler, and in addition it
gives a canonical representation of the sheaf: two complete ΩX-valued sets are isomorphic as sheaves
iff they are structurally isomorphic as ΩX-sets, whereas incomplete ΩX-valued sets can be structurally
quite different but still give isomorphic sheaves. However, the completion process itself is non-trivial.

One connection we shall particularly focus on is the transformation from an ΩX-valued set A
to a local homeomorphism. If x is a point of X , then we can define a partial equivalence relation
(symmetric and transitive, but not necessarily reflexive) ∼x on A by a ∼x b if x in E(a,b), and so
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we get a set A/ ∼x. Taking these as stalks, their disjoint union can be topologized so as to make
the projection map a local homeomorphism. E(a,a) describes the region on which a is defined, and
E(a,b) the region on which a and b are defined and equal. We shall describe this more carefully in
Section 4. Note that each element a ∈ A provides a local section ã over E(a,a) of the corresponding
sheaf: if x is in E(a,a) then ã(x) is the ∼x-equivalence class [a] of a. The sets {ã(x) | x in E(a,a)}
(a ∈ A) form a base of opens for the display space.

2.3 Sheaves over locales

Now let X be a locale. Clearly the presheaf and ΩX-valued set definitions transfer directly, since they
are expressed in terms of the frame ΩX and do not mention points. Less clearly, the local homeomor-
phism definition also transfers: a locale map p can be defined to be a local homeomorphism if the
unique map ! : X → 1 and the diagonal map ∆ : X → X ×X are both open ([7]; see also [10]). This
is again equivalent to the pasting presheaf notion, using the same idea of defining the set of sections
Sectp(U) for each U ∈ ΩX , but now using locale maps σ : U → Y .

If p : Y → X is a local homeomorphism (between locales) and x : 1 → X is a global point of X ,
then we can construct the stalk p−1(x) using a pullback (or fibred product)

p−1(x) −→ Y
x∗p ↓ ↓ p

1 −→
x

X

The universal characterization of pullback is equivalent to defining the generalized points of p−1(x) at
any stage W : they are the points y of Y such that p(y) = x (where p(y) is by definition the composite
p◦y). It can be proved that p−1(y) is a discrete locale, i.e. one whose frame is a powerset, so the locale
corresponds to a set. Thus again the stalks provide an assignment of sets to points of X .

Since X might not have enough global points, it by now seems less plausible that a sheaf can
be sensibly viewed as a continuous set-valued map; nonetheless this works. The above argument
for a global point x also works for generalized points, due to the fact that pullback preserves local
homeomorphisms. Hence if we think of “sets at stage W” as the sheaves over W , each point x : W → X
gives us by pullback a “generalized stalk” x∗p.

2.4 Direct and inverse image functors

We shall write SX for the category of sheaves over X . This is ambiguous, since we have four different
definitions of sheaf, and we get four equivalent but non-isomorphic categories. Nonetheless, we shall
work with the ambiguous notation, leaving it to be interpreted according to one’s current favourite
definition.

If f : X → Y is a map, then we get from it two functors between SX and SY , forming an adjoint
pair. The left adjoint is f ∗ : SY → SX is the inverse image functor, and the right adjoint f∗ : SX → SY
is the direct image functor. An important property of f ∗ is that it preserves not only colimits (as does
any left adjoint) but also finite limits. (Such an adjoint pair is a geometric morphism from X to Y , and
these are in fact equivalent to the locale maps.) A key part of our discussion here is of the “geometric”
constructions, those that are preserved by every f ∗.

An interesting fact is that the ease of constructing f ∗ and f∗ depends on what definition of sheaf
one is using.
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For pasting presheaves, f∗ is easy. If F : (ΩX)op → Set is a pasting presheaf, then f∗(F) is got by
composing with Ω f . Explicitly, f∗(F)(β) = F(Ω f (β)). Because complete Ω-valued sets A are closely
related to the pasting presheaves, f∗ can also be easily calculated for them as a pullback along Ω f .

f∗(A) = {(a,β) ∈ A×ΩY | E(a,a) = Ω f (β)}

E((a1,β1),(a2,β2)) =
_
{β ≤ β1∧β2 | Ω f (β)≤ E(a1,a2)}.

On the other hand, f ∗ is harder for these, as it involves a completion step (or “sheafification” for the
presheaves).

For local homeomorphisms, as we saw in Section 2.3, f ∗ is easy, constructed as a pullback

f ∗(Z) −→ Z
f ∗p ↓ ↓ p

X −→
f

Y

Finally, f ∗ is easy for Ω-valued sets (non necessarily complete). If (B,EX) is an ΩY -valued set,
then f ∗(B) is B again, with ΩX-valuation EX(b1,b2) = Ω f (EY (b1,b2)). Note how this matches the
stalks. The stalk of (B,EX) over x is isomorphic to the stalk of (B,EY ) over f (x), and this shows the
pullback construction of the local homeomorphism.

We shll be particularly interested in how the geometric constructions, the ones preserved by f ∗,
are done for Ω-valued sets.

3 Geometric logic

Geometric logic is a positive logic matched to topological structure. For example, the logical connec-
tives in its propositional fragment are finite conjunction and arbitrary disjunction, matching the finite
intersections and arbitrary unions with which one can combine open sets. It goes along with a certain
notion of “geometric construction”, and our claim here is to show that this is the essence of continuity.
For locales at least, a continuous map X →Y is a geometric construction of points of Y out of points of
X . This is surprising for two reasons. First, no continuity proof is needed. The geometricity constraints
mean that geometric constructions are intrinsically continuous. In a sense, obeying those constraints
means foregoing the ability to construct discontinuous functions. Second, it applies even to locales,
where there might not be enough points. We then generalize this to the situation where we might be
constructing not points of a locale but more elaborate set-based structures, and this will include the
notion of sheaf as continuous set-valued map.

Compared with ordinary classical logic, geometric logic has an added layer of structure. An axiom
in a geometric theory is not simply a set of sentences (formulae with no free variables), as in classical
logic, but a set of sequents.

3.1 Propositional geometric logic

Let Σ be a propositional signature, i.e. a set of propositional symbols. A geometric formula is built
out of them using finitary conjunction (∧) and arbitrary disjunction (

W
). We shall not go into the

logical rules here, but there are enough to ensure that each formula is equivalent to one expressed as a
disjunction of finite conjunctions of propositional symbols. A geometric sequent is of the form φ→ψ,
where φ and ψ are geometric formulae. A geometric theory over Σ is a set of sequents.
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In fact a geometric theory (Σ,T ) is structurally the same as a presentation of a frame using genera-
tors (the propositional symbols in the signature) and relations (the sequents in theory). A model of the
theory (Σ,T ) is exactly the same as a point of the corresponding locale, which we shall write [Σ,T ].
Hence one can think of a locale as “the space of models for a propositional theory”. The geometric
formulae give the opens of the locale.

This can be extended. The usual logical notion of model requires each propositional symbol to
be interpreted as a truth value, so that interpreting them all is the same as designating a subset of the
symbols (those that are interpreted as true). But this still makes sense if the symbols are interpreted
in any other frame ΩW , and then the models of (Σ,T ) in ΩW are the same as frame homomorphisms
Ω[Σ,T ]→W , i.e. locale maps W → [Σ,T ], i.e. generalized points of [Σ,T ] at stage W . Hence we can
say in generality that the points of the locale [Σ,T ] are the models of (Σ,T ).

Now consider maps [Σ1,T1]→ [Σ2,T2]. These are models of (Σ2,T2) in Ω[Σ1,T1]. But all the ingre-
dients of such a model are made geometrically (i.e. using ∧ and

W
) from the symbols of Σ1 and one

deduces that maps are equivalent to geometrically defined transformations of models of (Σ1,T1) into
models of (Σ2,T2). To define a map of locales f : X → Y one says “let x be a point of X” (technically
this is then going to be the “generic” point of X in ΩX , corresponding to the identity map X → X) and
then, geometrically, defines a point f (x) of Y . Maps can be defined pointwise, even if X does not have
enough global points, and no continuity proof is needed!

Conceptually, therefore, –

– a locale is the “space of models” of a propositional geometric theory, and
– a map is a geometric transformation of models.

To summarize it as a slogan, continuity is geometricity.
However, there is a subtle question here: Why geometricity? A frame is a complete Heyting alge-

bra, and has non-geometric structure such as the Heyting arrow and negation. Suppose we say “let x be
a point of X”, and then, non-geometrically, define a point f (x) of Y . We can apply this to the generic
point, the identity map on X , and thus get a point of Y at stage X , in other words a map X → Y .
However, in terms of the discussion in Section 2.1, the non-geometricity means this does not com-
mute with change of stage. This is because change of stage for α is achieved by applying the frame
homomorphism Ωα, and non-geometric operations are not preserved by frame homomorphisms.

Example 1. Let S be the Sierpinski locale, given by the geometric theory with one generator P and no
relations. It has (in classical mathematics) two points, got by interpreting P as either true or false. It
has three opens, 0 (bottom), P and 1 (top). A point of S at stage W , in other words a model of the theory
in ΩW , is just an open of W . Now consider the point transformer FW got by applying Heyting negation
¬ in ΩW . The generic point, as element of ΩS, is P, and in ΩS we have ¬P = 0. The corresponding
frame homomorphism takes 1 to 1, and P and 0 both to 0. When we use composition with this to give
a point transformer, we find it always takes any open U of W to 0, and not to ¬U as intended. It just
happens that for the generic point P, we have ¬P and 0 are equal.

3.2 Predicate geometric logic

There is also predicate geometric logic. For this, we allow the signature Σ to include sorts, and function
symbols and predicates together with their arities (including the sorts of the arguments and results).
Then terms can be built from sorted variables and the function symbols in the usual way, and geometric
formulae are built from terms and predicate symbols using not only ∧ and

W
, but also equality =

and existential quantification ∃. Then a geometric sequent is of the form (∀xyz · · ·)(φ → ψ), where
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“xyz · · ·” is a finite list of sorted variables, and φ and ψ are geometric formulae in which every free
variable is in the list xyz · · · . A geometric theory is again a set of sequents.

The infinitary disjunctions make this an unusual logic, with a natural type theory (sort construc-
tions) associated with it. They give us the power within geometric theories to characterize certain sorts
up to isomorphism. Suppose, for example, we want to characterize a sort N as the natural numbers.
We can do this with a constant 0, a successor map s, and sequents

(∀n)(s(n) = 0 → false)
(∀mn)(s(m) = s(n)→ m = n)

(∀n)(true →
_

i∈N
n = si(0))

(Here, the exponent i in si(0) is not part of the logical syntax, but is meant to suggest an inductive
definition of formulae φi in which φ0 is the formula n = 0, φ1 is n = s(0), φ2 is n = s(s(0)) and so on.)

Because of this ability, which is impossible in finitary logic, geometric logic embodies a “geomet-
ric type theory”. The geometric type constructions include finite limits (products, pullbacks, equaliz-
ers, ...), arbitrary colimits (coproducts, quotients, ...) and also all free algebra constructions.

3.3 Geometric logic of sheaves

The usual interpretation of predicate logic in sets can be generalized to sheaves. Sorts are interpreted
as sheaves, function symbols as sheaf morphisms from a sheaf product to another sheaf, and predicates
as subsheaves of sheaf products. Once that is done, terms can be interpreted as sheaf morphisms and
formulae as subsheaves. Specific categorical structure in the category of sheaves is needed for this; for
instance, equalizers are needed in order to interpret =. In fact, all can be done using finite limits and
arbitrary colimits. Moreover, particular properties of the way these limits and colimits interact with
each other ensure that the rules of geometric logic are valid in the sheaf interpretations.

An important fact is that all this structure is preserved by inverse image functors α∗, and it follows
that the α∗s also preserve the geometric type constructions.

Now recall the argument in Section 3.1 that “continuity is geometricity”. It said that to define a
locale map f : X → Y it sufficed to provide a geometric transformation of points of X into points of
Y , even though (i) there may not be enough global points of X , and (ii) no explicit continuity proof
is given. We now show how sheaves can be defined the same way: it suffices to provide a geometric
transformation of points of X into sets. In other words, to describe a sheaf, it suffices to describe the
stalks, as long as the description is geometric. The same also goes for sheaf morphisms. This, then, is
the technical content of our claim that sheaves can be thought of as continuous set-valued maps.

Let X be a locale, and suppose F(x) is a set, described geometrically in terms of its parameter x, a
point of X . The category SX of sheaves over X includes the opens, for the opens can be identified with
the subsheaves of the constant sheaf 1. Hence the generic point of X in ΩX can also be found in SX .
Applying F to it gives an on object of SX , a sheaf S. For any generalized point x : W → X , we know
that x∗(S) is got by pullback, and so is the stalk of S over x. But x∗ preserves geometric constructions,
so x∗(S) is constructed from x in the same way as S is constructed from the generic point.

The same argument also applies to sheaf morphisms: to describe one, it suffices to give a geometric
description of its action on the stalks.
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4 The local homeomorphism of an ΩX-valued set

Let (A,E) be an ΩX-valued set. Höhle defines the frame P(A,E) to have as its elements the strict,
extensional maps. (Let us here use the notation P(A,E) for the locale rather than the frame. It is the
display locale for the sheaf.) He shows that if X is spatial then so is P(A,E), and the display map
pt(P(A,E))→ ptX is a local homeomorphism corresponding to the sheaf for (A,E). Actually, we can
do better than that, for we can define the local homeomorphism even in the non-spatial case.

Lemma 1. ΩP(A,E) can be presented by generators and relations as

Fr〈ΩX (qua frame), ã (a ∈ A) | 1 ≤
_

a∈A

ã

ã∧ b̃ ≤ E(a,b)
E(a,c)∧ c̃ ≤ ã〉.

Proof. Let us write F for the frame presented as stated. To define a homomorphism θ : F →ΩP(A,E)
we must describe its action on the generators and show that it respects the relations (including that it
preserves the frame structure on ΩX). It will map α ∈ ΩX to the strict, extensional map θ(α)(a) =
α∧E(a,a), and it will map the formal generator ã to the strict, extensional map that Höhle already
calls ã, defined by ã(b) = E(a,b). This respects the relations. Next we define φ : ΩP(A,E) → F by
φ( f ) =

W
a∈A f (a)∧ ã. This is easily seen to be a homomorphism, using the fact that the joins and

binary meets on the strict, extensional maps are defined argumentwise. Finally, it remains to show that
θ and φ are mutually inverse. The more interesting part is that φ◦θ is the identity on F , and it suffices
to check its action on the generators. If α ∈ΩX then φ◦θ(α) =

W
a∈A α∧E(a,a)∧ ã. From the second

relation (and putting b = a) we see ã ≤ E(a,a), so it suffices to show α =
W

a∈A α∧ ã, which follows
from the first relation. For ã we have φ◦θ(ã) =

W
b∈A E(a,b)∧ b̃ and this equals ã by the third relation.

The advantage of this is that the generators and relations give us a direct description of the points
that applies even to generalized points: a point is a function from the generators to Ω that respects the
relations. On the generators α this gives us a point x of X . On the generators ã we find a subset S ⊆ A
such that (i) S is non-empty, (ii) if a,b ∈ S then x satisfies E(a,b), and (iii) if x satisfies E(a,c) and
c ∈ S then a ∈ S: in other words, S is an equivalence class for ∼x. Hence a point of P(A,E) can be
described geometrically as a pair (x,u) where x is a point of X and u is an element of its stalk.

(Actually, the use of the frame ΩX is non-geometric. However, this can be circumvented by using
a presentation of it by generators and relations.)

This is the standard description that applies to any sheaf. The projection map p : P(A,E) → X is
defined on points (x,u) by forgetting u. However, its inverse image function Ωp is also clear enough;
it is the inclusion of generators α.

5 Geometric constructions on ΩX-valued sets

[2] describes a full range of topos-theoretic constructions on complete ΩX-valued sets. For some of
them, completeness is a very convenient part of the construction. However, our contention here is that
for the geometric constructions (which are performed stalkwise on the local homeomorphisms) there
are simpler and more natural constructions that work directly on the uncompleted ΩX-valued sets and
avoid the need to complete.

As the most fundamental construction, let us look at morphisms. Suppose θ : A→ B is a morphism
of ΩX-valued sets. Given a point x, let us write [a] for the equivalence class of a under ∼x, assuming
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x in E(a,a) (i.e. a ∼x a, which is required in order for a to have an equivalence class – remember that
∼x is only a partial equivalence relation). We can define θx : A/∼x→ B/∼x, by θx([a]) = [b], where
x in θ(a,b). To show that there is such a b, we have x in E(a,a) ≤

W
b θ(a,b). If we have another

candidate b′ then x is in θ(a,b)∧θ(a,b′) ≤ E(b,b′) and so b ∼x b′ and [b] = [b′]. To show that [b] is
independent of choice of a, if we also have a ∼x a′ then x is in E(a′,b)∧θ(a,b)≤ θ(a′,b).

We give an illustration of the geometric reasoning.

Proposition 1. Let θ : A → B be a morphism of ΩX-valued sets.

1. θ is monic (all stalk functions θx are 1-1) iff θ(a,b)∧θ(a′,b)≤ E(a,a′) for all a,a′,b.
2. θ is epi (all stalk functions θx are onto) iff E(b,b)≤

W
a θ(a,b).

3. θ is an isomorphism iff both the above conditions hold.

Proof. (1) Monicness is characterized geometrically, so θ is monic if we can prove geometrically that
every stalk function is monic (1-1). Let x be a point of X . θx is monic iff θx([a]) = θx([a′])⇒ a ∼x a′,
i.e. if x in θ(a,b)∧θ(a′,b) then x in E(a,a′). The result follows.

(2) is a similar argument, and (3) combines the first two.

Now recall the motivation for the link with fuzzy sets: fuzzy sets are subsheaves of constant
sheaves, and to get more general sheaves one needs a notion of quotienting.

5.1 Constant sheaves

As a local homeomorphism over X , the constant sheaf !∗(A) for a set A is just the projection map
X ×A → X . (Note that we are treating A as a sheaf over the one-point locale 1, and the notation !∗(A)
is referring to the unique map ! : X → 1.) The stalk at any point x is clearly A, so it is the stalks that
are constant. The pasting presheaf is certainly not a constant functor.

This can be presented as an ΩX-valued set A, with E(a,b) =
W
{true | a = b}. In other words,

E(a,b) is the top element true of the frame iff a = b. It is easy to calculate that a∼x b iff a = b, so the
stalk A/∼x is A, as expected. Note that this argument is geometric, so we do not have to worry about
whether there are enough points. We know that this ΩX-valued set presents the right sheaf.

5.2 Subsheaves

Suppose A is an ΩX-valued set. How can we describe its subsheaves A′? A partial equivalence relation
can express not only quotients but also subsets, by restricting the elements that are self-equivalent, and
in the context of a ΩX-valued set A this would be done by making each E(a,a) possibly smaller. This
suggests taking A′ = A, but using a smaller ΩX-valuation E ′. If φ : A → ΩX is a strict, extensional
map then E ′(a,b) = E(a,b)∧φ(a) is also an ΩX-valuation. (This is also clear from Section 4, since
each strict, extensional map is equivalent to an open of the display locale.) The relation E ′ is also a
monic morphism from (A′,E ′) to (A,E).

Now suppose θ : B→ A is a morphism of ΩX-valued sets. We can define a strict, extensional map
φ on A by φ(a) =

W
b θ(b,a) that defines the image of θ. If (A′,E ′) is the induced subsheaf, then we

find that θ factors through (A′,E ′) as an epi followed by a monic. This is the image factorization of θ.
If θ itself is monic, then the epi part is an isomorphism and one sees that the monic is equivalent to the
subsheaf (A′,E ′). Thus every monic can be presented (up to isomorphism) using a strict, extensional
map, and subsheaves are equivalent to strict, extensional maps.

Let us apply this now to subsheaves of constant sheaves. Let A be a set. Then the subsheaves of
!∗(A) are equivalent to strict, extensional maps on A. But these are just arbitrary functions φ : A→ΩX ,
in other words fuzzy sets on A.
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5.3 Quotients

A quotient of (A,E) is defined by an an ΩX-valuation E ′ that is smaller than E, but does not affect
the definedness of any a: we have E ′(a,a) = E(a,a). Now consider an arbitrary (A,E). The function
φ(a) = E(a,a) gives a fuzzy set on A and hence a subsheaf of the constant sheaf !∗A, and (A,E) is
a quotient of it. Hence when one allows quotients as well as subsheaves one can move beyond fuzzy
sets to arbitrary sheaves.

5.4 Other geometric constructions

We give some more examples to illustrate the techniques. Note that in each case the construction is
close to what is familiar from set theory. This depends on the fact that we are happy to work with
incomplete ΩX-valued sets. If we had to complete, the constructions would be made much more
complicated.

Products: Let A and B be ΩX-valued sets. How can we define the product as ΩX-set? It would
seem natural use the set product A×B, with equality defined componentwise – (a1,b1)∼x (a2,b2) =
a1 ∼x a2 and b1 ∼x b2. This gives us the definition of E on A×B, namely

E((a1,b1),(a2,b2)) = E(a1,a2)∧E(b1,b2).

To check that that does indeed define the sheaf product, it suffices to check the stalks. This is because
binary product is a geometric construction, so sheaf product exists and is calculated stalkwise. In
other words, we must check (A×B)/ ∼x∼= A/ ∼x ×B/ ∼x, which is clear. We also need the product
projections p : A×B→ A and q : A×B→ B. Clearly we want px([a,b]) = [a′] iff a∼x a′ (and b∼x b),
which translates into

p((a,b),a′) = E(a,a′)∧E(b,b).

One can then check that this is a morphism and gives the correct stalk functions.
Equalizers: Let A and B be ΩX-valued sets and let θ,φ : A → B be morphisms. The equalizer

is a subsheaf of A, given by the same set A and a strict extensional map ψ. The elements of the
corresponding substalk are those [a] such that θx([a]) = φx([a]), so we get

ψ(a) =
_

b

θ(a,b)∧φ(a,b).

Again, one must check that this gives the right stalks.
List sets: If A is a set, we write A∗ for the set of finite lists of elements of A. How can we make the

analogous construction for ΩX-valued sets A? It would seem natural to use the set A∗, with (ai)m−1
i=0 ∼x

(bi)n−1
i=0 if m = n and for each index i we have ai ∼x bi. This translates into

E((ai)m−1
i=0 ,(bi)n−1

i=0 ) =
_
{

m−1̂

i=0

E(ai,bi) | m = n}.

(Note that the expression on the right evaluates to 0 if m 6= n, since the set of disjuncts is then empty.)
This gives the correct stalks. Associated structure, such as the concatenation operation that, with the
emepty list as unit, makes the list set into a monoid, can also be checked stalkwise.
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6 Conclusions

Their range of different technical expressions can make sheaves daunting to the newcomer. However,
there is a simple unifying intuition: a sheaf over a locale X is a continuous set-valued function, the
value at a point x being the stalk. We have described why continuity may be thought of as geometricity
of the construction. Geometric constructions on sheaves, such as finite limits, arbitrary colimits and
free algebra constructions, can be performed stalkwise. When carried out on ΩX-valued sets, they can
often be formulated simply if one does not require the ΩX-valued sets to be complete, and can be
verified by checking the actions on stalks.

7 Further reading

The recomended introduction to sheaves from a topos point of view is [8]. [1] is less deep, but shows
well how logic and set theory translate into category theory. The ultimate comprehensive reference is
[5], [6], but is not for the beginner. [10] develops in more detail the relationship between continuity
and geometricity, and sheaves as continuous set-valued maps.
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1 Introduction

Fuzzy sets with fuzzy subsets of [0,1] as truth values were introduced by Zadeh [6]. This notion extends the
notion of both ordinary fuzzy sets and interval-valued fuzzy sets. By now, there is a large literature, both theo-
retical and applied, on the topic. In [1], there is a treatment of the mathematical basics of type-2 fuzzy sets, that
is, of the algebra, as defined by Zadeh, of these truth values. Let M denote this algebra of fuzzy truth values.
In [2], a study was begun of automorphisms of M. This study was continued in [3], where the automorphism
group of the algebra was explicitly determined in terms of the automorphism group of the unit interval with its
usual lattice structure. This theorem has several corollaries concerning characteristic subalgebras of M and their
automorphism groups.

The algebra M has many subalgebras, and their study is relevant because each subalgebra could serve as
the basis of a fuzzy theory, where a fuzzy set in this theory is a mapping of a universal set into this subalgebra.
The subalgebras considered are typically characteristic. That is, automorphisms of the algebra of truth values
induce automorphisms of these subalgebras. Characteristic subalgebras are of special interest because they are
“canonical”. If an algebra is characteristic, then there is no subalgebra isomorphic to it sitting in the containing
algebra in the same way. A number of subalgebras were proved characteristic in the papers [2–5]. But char-
acteristic subalgebras can have automorphisms other than those induced by automorphisms of the containing
algebra. This paper addresses that issue. A subalgebra of special interest is the subalgebra of convex normal
functions. It is a De Morgan algebra, and in particular, a lattice. Though characteristic, it has automorphisms
not induced by those of M, and those automorphisms are the principal focus of this paper.

2 The algebra of fuzzy truth values

The algebra of truth values for fuzzy sets of type-2 is the set of all mappings of [0,1] into [0,1] with operations
certain convolutions of operations on [0,1], as follows.

Definition 1. On [0,1][0,1], let

( f tg)(x) =
_

y∨z=x
( f (y)∧g(z))

( f ug)(x) =
_

y∧z=x
( f (y)∧g(z))

f ∗(x) =
_

y′=x
f (y) = f (x′)

1̄(x) =
{

1 if x = 1
0 if x 6= 1

0̄(x) =
{

1 if x = 0
0 if x 6= 0

The algebra M = ([0,1][0,1] ,t,u,∗ ,0̄, 1̄) is the basic algebra of truth values for type-2 fuzzy sets, and is
analogous to the algebra ([0,1],∨,∧,′ ,0,1), which is basic for type-1 or ordinary fuzzy set theory.

Determining the properties of the algebra M is helped by introducing the following auxiliary operations.
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Definition 2. For f ∈M, let f L and f R be the elements of M defined by

f L(x) = ∨y≤x f (y)

f R(x) = ∨y≥x f (y)

The point of this definition is that the operations t and u in M can be expressed in terms of the pointwise
max and min of functions, as follows.

Theorem 1. The following hold for all f ,g ∈M.

f tg =
(

f ∧gL)∨ (
f L∧g

)
= ( f ∨g)∧

(
f L∧gL)

f ug =
(

f ∧gR)
∨

(
f R∧g

)
= ( f ∨g)∧

(
f R∧gR)

Using these auxiliary operations, it is fairly routine to verify the following properties of the algebra M. The
details may be found in [1].

Corollary 1. Let f , g, h ∈M. The basic properties of M follow.

1. f t f = f ; f u f = f
2. f tg = gt f ; f ug = gu f
3. 1̄u f = f ; 0̄t f = f
4. f t (gth) = ( f tg)th; f u (guh) = ( f ug)uh
5. f t ( f ug) = f u ( f tg)
6. f ∗∗ = f
7. ( f tg)∗ = f ∗ug∗; ( f ug)∗ = f ∗tg∗

3 Automorphisms

In our study of automorphisms, we limit ourselves initially to the algebra M = ([0,1][0,1] ,t,u, 0̄, 1̄), that is,
the algebra M without its negation ∗, and similarly for subalgebras of M. This allows more automorphisms,
avoids certain technicalities, and it turns out that the results can be specialized to M. For an automorphism α

of I = ([0,1],∨,∧,0,1), αL and αR defined by αL( f ) = α f and αR( f ) = f α are automorphisms of M. The
principle result for M is that every automorphism is of the form αLβR, and uniquely so [3]. Thus Aut(M) ≈
Aut(I)×Aut(I). This has many corollaries. But a characteristic subalgebra of M may have automorphisms not
induced by those of M.

One characteristic subalgebra of special interest is the subalgebra of normal convex functions. And element
f of M is normal if ∨x∈[0,1] f (x) = 1, and is convex if whenever x≤ y≤ z, then f (y≥ f (x)∧ f (z). Equivalently, f
is convex if f = f L∧ f R. The normal functions form a characteristic subalgebra, and so do the convex functions.
Their intersection is thus characteristic. It is a De Morgan algebra, and as a lattice, it is maximal among the
subalgebras of M that are lattices. We denote this subalgebra by L.

Theorem 2. Let α,β, and γ be automorphisms of ([0,1],∨,∧,0,1). Then Φ defined by

Φ( f ) = α( f γ)L∧β( f γ)R

is an automorphism of L. Distinct triples (α,β,γ) of automorphisms of ([0,1],∨,∧,0,1) yield distinct automor-
phisms of L.
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The upshot of this theorem is that L has many more automorphisms than those induced by automorphisms
of M. We do not know if L has automorphisms other than those specified in the theorem above. A basic tool
in our investigation of automorphisms of subalgebras of M is the determination of the irreducible elements of
a subalgebra. An element f is join irreducible if f = gth implies f = g or f = h. Meet irreducible is defined
similarly, and an element is irreducible if it is both join and meet irreducible. Irreducible elements are carried to
irreducible elements by automorphisms. We have determined the irreducible elements of L [2]. One irreducible
element of L is the constant function 1. It would be important to know whether or not this irreducible element
is carried to itself by automorphisms of L, but we have not been able to determine this. We do conjecture that
this is so, and that the group of automorphisms of L consists of those automorphisms specified in the theorem
above.
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Let L be an MV-algebra, where Chang’s [1] original operations ·, + and −, resp. will be interpreted
as and denoted by ”intersection” u, ”union” t and ”complementation” ′, resp. Let m be an uncertainty
measure on L in the sense of [6] as an isotonic mapping from L to the real interval [0,1] with boundary
conditions m(0) = 0, m(1) = 1 and compatibility m(a′) = 1−m(a) with respect to complementation,
where the bottom and top elements in L and in [0,1] will be denoted by the same symbols. Then the
additivity of m has the clear and well known meaning as

m(aṫb) = m(a)+m(b) for all ”disjoint unions”,

denoted as ṫ and given by aub = 0. It is clear that additive measure are also valuations on the under-
lying lattice L.

But if L has a structure poorer than an MV-algebra, it turns out to be a non-trivial problem to find
a reasonable notion of additivity for uncertainty measures m on L. In our joint papers [2] resp. [3] with
U. Höhle, we proposed for quantum De Morgan algebras resp. Girard algebras L to define additivity
of m by

(SA) m(aṫb) = m(a)+m(b) only for ”divisible unions”,

i. e. only for those disjoint unions which are divisible in the sense of

a′u (atb) = b and b′u (atb) = a.

Particularly, the structure of Girard algebras seems to be the natural one in the problem of condition-
ing, because in [3] we have proved that any Girard algebra L has a unique ”canonical Girard algebra
extension” L̃ := {(a,b) ∈ L×L : a ≤ b}. Furthermore, we proved that the canonical extension L̃ of a
Boolean algebra L is an MV-algebra and any additive measure m on L has a unique extension to an
additive measure m̃ on L̃, given by

m̃(a,b) =
m(a)+m(b)

2
.

For a not Boolean MV-algebra L, the canonical extension L̃ is not an MV- but only a Girard algebra.

My talk during the Linz Seminar 2007 was dedicated to discuss in this situation the problem of
extending the additivity of m on L to m̃ on L̃. There we presented examples where a unique extension
m̃ exists which is additive in the sense of (SA), but also examples where such additive extensions
do not exist. Therefore, we called (SA) ”strong additivity”, and we proposed as a second reasonable
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notion the ”weak additivity” of an uncertainty measure m on a Girard algebra L, which is not MV-
algebra, by

(WA) m(aṫb) = m(a)+m(b) only on all sub-MV-algebras of L.

In this talk, we start with a finite chain L = Cn with exactly n− 1 different non-trivial elements,
say 0 < a1 < .. . < an−1 < 1. In the extended paper [6] of my above mentioned talk Linz 2007, it was
proved that L has a unique MV-algebra structure given by

a j uak = 0, a jṫak = a j+k for j + k ≤ n,
a′k = an−k for 0 ≤ k ≤ n, including a0 = 0, a1 = 1,
a j uak = a j+k−n for j + k > n.

Therefore, Cn is an MV-algebra ”generated by” a1, written for short as Cn = M(a1), in the sense that
any element ak 6= 0 of Cn is the disjoint union of k terms of a1. But the main result in [6] for L = Cn

was that for n ≥ 4 there does not exist a strongly additive measure m̃ on C̃n. This was the motivation
to look for (all) weakly additive measures m̃, which requires to look for all sub-MV-algebras of C̃n.
Now, we can give a complete solution to this problem, which will be outlined in the following.

For any 0 ≤ t ≤ n, Mt := {(ak−t ,ak) : t ≤ k ≤ n}∪{(0,0),(1,1)} is a sub-chain of C̃n. Clearly,
M0 = M(a1,a1) can be identified with Cn. Furthermore, M1 = M(0,a1) has n non-trivial elements and
Mn = M(0,1) has 1 non-trivial element. For n≥ 3, it will be proved that any other sub-MV-algebra of
C̃n is a proper subset of some Mt and, therefore, is generated by an element (ax−t ,ax) ∈Mt for some
x≥ t. Furthermore, it will be given a procedure with several steps which permits to decide whether or
not a given (a j,ak) ∈ C̃n with t := k− j ≥ 2 and k ≤ n

2 is contained in some sub-MV-algebra of Mt .
In a first step, L ≥ 1 and 0 ≤ l < k can be uniquely determined by n− j

k = L + l
k . For l = 0 the answer

is positive, for l = 1 negative. For any other l ≥ 2 the answer is:

(a j,ak) is contained in some sub-MV-algebra of C̃n if and only if
t ≤ l and there exists x with t ≤ x ≤ l such that k = Q · x, l = R · x with some R,Q.

Trivially, for any k ≤ n
2 , M(ak, a′k) is a sub-MV-algebra with 1 non-trivial element. Moreover, it will

be proved that for all 1 ≤ j +1 ≤ k < n
2 , none of the elements (a j, a′k) are in some sub-MV-algebra.

As a simple consequence of the above briefly outlined analysis we obtain the characterization of
all weakly additive measures m̃ on C̃n by the values

m̃(a j, ak) =
k

n+ k− j

of m̃ on all sub-MV-algebras of C̃n, i. e. which is based on the ”mean value function”

M(x,y) =
y

1+ y− x
,

a notion introduced and discussed in [4,5] in the context of conditioning.

On the other hand, also all valuations m̃ on C̃n will be characterized by a completely different
form. Finally, it will be proved that an uncertainty measure m̃ on C̃n is both weakly additive and
valuation, and then is unique, if and only if n = 3 or n = 5.
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1 Introduction

In this talk, we present an analysis of some basic notions in fuzzy subset theory form the point of view
of enriched category theory. The results demonstrate that ideas and methods from enriched category
theory are very useful in the study of fuzzy subsets; and that a remarkable part of the mathematical
theory of fuzzy subsets is an important and interesting application and/or an indispensable part of the
general theory of enriched categories.

The following table shows the correspondence between some basic notions in the theory of fuzzy
subsets and those in that of enriched categories.

Fuzzy subsets Enriched categories
implication structure closed category
monoidal implication structure monoidal closed category
commutative, unital quantale symmetric, monoidal closed category
fuzzy preorder enriched category
many valued set symmetric enriched category
fuzzy subset functor from a discrete category
fuzzy powerset functor category
fuzzy relation distributer
fuzzy function left adjoint in a 2-category

2 Implication structure

Implication is one of the most discussed concept in fuzzy logic. There is a vast literature on this
concept, to name a few, [1, 3, 11, 15, 17, 19, 26, 49, 54], etc. Implication structures are meant to capture
the basic features of ”implication” in lattice valued logic (or, fuzzy logic).

Definition 1. An implication structure is a triple (L,→,D) where L is a complete lattice; →: L×
L−→ L is a binary function, called the implication; and D is a subset of L, called the set of designated
values. These data satisfy that for all a,b,c ∈ L:

(I1) a→ b≤ a→ c if b≤ c;
(I2) a→ c≤ b→ c if a≥ b;
(I3) a→ b≤ (c→ a)→ (c→ b);
(I4) a→ b ∈ D ⇐⇒ a≤ b;
(I5) e→ a≤ a for all e ∈ D.
An implication structure (L,→,D) is complete if D has a smallest element.

Definition 2. If →1 and →2 are implications on a complete lattice L with the same set of designated
values, we say that →1 is conjugate to →2 if a≤ (b→1 c) ⇐⇒ b≤ (a→2 c) for all a,b,c ∈ L.
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Clearly, if an implication → has a conjugate, its conjugate must be unique. Therefore, we shall
write →c for the conjugate of an implication → in the sequel.

Suppose that P,Q are partially ordered sets. A pair of non-increasing maps f : P −→ Q and g :
Q −→ P is said to be a Galois connection if q ≤ f (p) ⇐⇒ p ≤ g(q) for all p ∈ P,q ∈ Q. Suppose
that →1 and →2 are implications on a complete lattice L with the same set of designated values. Then
→1 is conjugate to →2 if and only if for all c ∈ L, the pair of functions (−) →1 c : L −→ L and
(−)→2 c : L−→ L is a Galois connection.

Proposition 1. Suppose that (L,→,D) is an implication structure and that → has a conjugate →c.
Then the followings hold.

(1) For all a,b,c ∈ L, a→c (b→ c) = b→ (a→c c).
(2) For all a,b ∈ L, a→ b =

V
c∈L[(b→ c)→c (a→ c)].

(3) (
W

at)→ b =
V

(at → b) for all b ∈ L and all subset {at} of L.

Definition 3. Let (L,→,D) be an implication structure. Then
(1) (L,→,D) is symmetric if → is conjugate to itself, i.e., it satisfies the exchange principle
(S) a→ (b→ c) = b→ (a→ c) for all a,b,c ∈ L.
(2) (L,→,D) has a neutral element if there is some I ∈ L such that
(N) I → a = a for all a ∈ L.
(3) (L,→,D) is inf-preserving on the second argument if it satisfies
(IPS) a→ (

V
bi) =

V
(a→ bi).

Proposition 2. Suppose that (→,→c) is a conjugate pair of implications on L.
(1) I is a neutral element for → if and only if I is a neutral element for →c.
(2) → is inf-preserving on the second argument if and only if →c is inf-preserving on the second

argument.

It is easy to check that the set D of designated values in an implication structure (L,→,D) is an
upper set in L; and that if (L,→,D) has a neutral element I, this element must be the smallest element
in D. However, a complete implication structure does not necessarily have a neutral element.

Example 1. ([48]) By a unital quantale is meant a triple (L,∗, I), where L is a complete lattice; I is an
element in L; and ∗ is a binary operation ∗ : L×L−→ L, subject to the following conditions:

(1) (L,∗, I) is a monoid;
(2) a∗ (

W
bi) =

W
(a∗bi) and (

W
bi)∗a =

W
(bi ∗a) for all a,bi ∈ L.

If (L,∗, I) is a unital quantale. Let →r,→l be defined by

a≤ b→r c ⇐⇒ b∗a≤ c ⇐⇒ b≤ a→l c.

Then (→r,→l) is a conjugate pair of implications.

Example 2. (Gaines-Rescher, [21, 47]) Let L be a complete lattice. This example presents two impli-
cation structures on L with D = {1}. The first is given by:

a→ b =
{

1, a≤ b;
0, otherwise.

This is the smallest implication (under pointwise order) on L. Clearly, (L,→,{1}) is a complete
implication structure. (L,→,{1}) is inf-preserving on the second argument but has no neutral element
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in general. This implication is called the Gaines-Rescher implication in the literature. The Gaines-
Rescher implication on a complete lattice L has a conjugate if and only if L = {0,1}.

The second is given by

a→ b =
{

1, a≤ b;
b, otherwise.

This is the smallest implication on L with 1 as a neutral element. Clearly, (L,→,{1}) is symmetric
and complete, but not inf-preserving on the second argument in general. It is easy to check that → is
inf-preserving on the second argument if and only if L is linearly ordered. In this case,→ is the Gödel
implication, and it is generated by the commutative, unital quantale (L,∧,1).

Definition 4. An implication structure (L,→,D) is monoidal if there exist an element I ∈ L and a
binary operation ∗ : L×L−→ L such that

(1) ∗ is order-preserving;
(2) (L,∗, I) is a monoid;
(3) a∗b≤ c ⇐⇒ b≤ a→ c.
In this case, (L,→,D) is determined by the monoid (L,∗, I). We write (L,→,D,∗, I) for a monoidal

implication structure.

Proposition 3. Suppose that (L,→,D,∗, I) is a monoidal implication structure. Then, for all a,b,c ∈
L,

(1) I is a neutral element;
(2) a→ (b→ c) = b∗a→ c,a∗ (a→ b)≤ b,(a→ b)∗ (b→ c)≤ a→ c;
(3) a→ (

V
bi) =

V
(a→ bi), a∗ (

W
bi) =

W
(a∗bi);

(4) a∗b =
V
{c : b≤ a→ c}, b→ c =

W
{a : b∗a≤ c};

Theorem 1. Suppose that (→,→c) is a conjugate pair of implications on a complete lattice L with
D⊆ L as the set of designated values. Then the following conditions are equivalent.

(1) (L,→,D) is quantale-based, i.e., there exist a binary operation ∗ on L and an element I ∈ L
such that (L,∗, I) is a unital quantale and that (→,→c) = (→r,→l).

(2) (L,→,D) is monoidal.
(3) (L,→,D) is complete and is inf-preserving on the second argument.

Corollary 1. Suppose that ∗ is a binary operation on a complete lattice L such that a ∗ (
W

bi) =W
(a∗bi) and (

W
bi)∗a =

W
(bi ∗a) for all a,bi ∈ L. Then ∗ is associative.

Definition 5. A closed map f : (L1,→1,D1)−→ (L2,→2,D2) between implication structures is a map
f : L1 −→ L2 such that

(1) f : L1 −→ L2 preserves order;
(2) f (D1)⊆ D2;
(3) f (a→1 b)≤ f (a)→2 f (b).

In the following we shall omit the index i in →i if no confusion would arise.

Proposition 4. Suppose that (L1,→1,D1,∗, I1),(L2,→2,D2,�, I2) are monoidal implication struc-
tures and that f : L1 −→ L2 is an order-preserving function. Then the following are equivalent:

(1) f : (L1,→,D1)−→ (L2,→,D2) is a closed map;
(2) f (a)� f (b)≤ f (a∗b), for all a,b ∈ L1 and I2 ≤ f (I1).
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If we regard the two points lattice {0,1}, with ordering 0 < 1, as a category then 2 = {{0,1},∧,1}
is a symmetric, monoidal closed category. Thus, we can define a closed category over 2, see [16],
p. 549. It is easy to check that (1) if (L,→,D) is an implication structure with a neutral element
I, then (L,→, I) is a closed category over 2, and vice versa; (2) a closed map between implication
structures with neutral elements is exactly a closed functor in the sense of [16]; and (3) (L,→,D) is
a (symmetric) monoidal implication structure (with I as neutral element) if and only if (L,→, I) is a
(symmetric) monoidal closed category over 2. Therefore, implication structures are a generalization
of closed categories over 2, and they can be regarded as closed categories without, possibly, neutral
elements.

3 L-categories and L-sets

In this section, (L,→,D) is always assumed to be an implication structure. Sometimes, we write
simply L for the triple (L,→,D).

Definition 6. Let L = (L,→,D) be an implication structure. An L-category is a set X together with
a function R : X ×X −→ L subject to the conditions:

(1) R(x,x) ∈ D for all x ∈ X;
(2) R(y,z)≤ R(x,y)→ R(x,z) for all x,y,z ∈ X.

X is called the underlying set of (X ,R(−,−)), and R(−,−) is called the hom-functor. We often write
X for (A,R) and X(−,−) for R(−,−), if the hom-functor is clear from the context. In this case, write
|X | for the underlying set of X .

Two elements x and y in X are said to be isomorphic if X(x,y) ∈ D and X(y,x) ∈ D. X is called
antisymmetric if different elements in X are always non-isomorphic.

Given an L-category A, if we interpret A(a,b) as the degree to which b precedes a, then the
condition A(a,a) ∈ D is to require that A be reflexive and the condition X(a,b) ≤ A(c,a)→ A(c,b)
is a variation of transitivity of order relation. For this reason, L-categories can be studied as fuzzy
preorders. When L is a (symmetric) quantale-based implication structure, this has been done in [4, 5,
7, 33, 36, 40, 42, 43, 52, 53, 46, 55, 56, 59, 60].

Definition 7. An L-functor f : X −→ Y between L-categories is a function f : |X | −→ |Y | such that
X(x,y)≤ Y ( f (x), f (y)).

If L = (L,→,D) is an implication structure with a neutral element, i.e., L is a closed category
over 2, then an L-category is exactly a category over L and an L-functor is exactly an L-functor in the
sense of Eilenberg and Kelly [16]. The category of L-categories and L-functors is denoted by L-Cat.

Example 3. (1) ([16]) Let L = (L,→,D) be an implication structure. For any a,b ∈ L, let R(a,b) =
a→ b. Then (L,R) is an antisymmetric L-category by (I3) and (I4). The L-category structure on L is
called the canonical L-category structure on L. In the remainder of this article, we shall write (L ,→)
for this L-category.

(2) ([55]) Let X be a set and λ : X −→ L a function. For any x,y ∈ X , let Vλ(x,y) = λ(x)→ λ(y).
Then (X ,Vλ) is an L-category.

Example 4. (Discrete L-categories) Let L = (L,→,D) be an implication structure such that D has a
least element e. Given a set X and x,y ∈ X , let X(x,y) = e if x = y and X(x,y) = 0 if x 6= y. Then
X becomes an L-category, called a discrete L-category. In this case, every function X −→ L is an
L-functor.
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Let L = (L,→,D) be an implication structure such that → has a conjugate →c. Let X be an L-
category. For all x,y ∈ X , let Xop(x,y) = X(y,x). Then Xop is an Lc-category, where Lc = (L,→c,D).
Indeed, for all x,y,z ∈ X , because X(x,z) ≤ X(y,x) → X(y,z), we obtain that X(y,z) ≤ X(x,z) →c
X(y,z), therefore Xop(x,y)≤ Xop(z,x)→c Xop(z,y).

In particular, if L = (L,→,D) is symmetric, we can talk about symmetric L-categories. An L-
category X is said to be symmetric if X(x,y) = X(y,x) for any x,y ∈ X . A symmetric L-category shall
also be called an L-set. The full subcategory consisting of L-sets is denoted by L-Set.

Example 5. ([52]) Let L = (L,→,D) be an implication structure, X an L-category, and x ∈ X . Then
the function X(x,−) : X −→ (L ,→) is an L-functor. If→ has a conjugate→c, then X(−,x) : Xop −→
(L ,→c) is an Lc-functor.

Proposition 5. (c.f. I.8.6 in [16]) Suppose that L = (L,→,D) is a complete implication structure; X
be an L-category and a ∈ X. Then, for any L-functor f : X −→ L ,

^

x∈X

(X(a,x)→ f (x)) ∈ D ⇐⇒ f (a) ∈ D.

Lemma 1. (Yoneda lemma) Suppose that L = (L,→,D) is an implication structure such that → has
a conjugate →c. Let X be an L-category and a ∈ X. Then for any L-functor f : X −→ L ,

^

x∈X

(X(a,x)→c f (x)) = f (a).

Example 6. (Functor category) Let L be a complete implication structure which is inf-preserving on
the second argument. For any L-categories X ,Y , let [X ,Y ] be the set of all L-functors X −→ Y . For
any f ,g ∈ [X ,Y ], let

[X ,Y ]( f ,g) =
^

x∈X

Y ( f (x),g(x)).

Clearly, [X ,Y ]( f , f ) ∈ D for any f ∈ [X ,Y ]. Because

[X ,Y ]( f ,g) =
^

x∈X

Y ( f (x),g(x))

≤
^

x∈X

(
Y (h(x), f (x))→ Y (h(x),g(x))

)
≤
^

x∈X

(^
y∈X

Y (h(y), f (y))→ Y (h(x),g(x))
)

= [X ,Y ](h, f )→ [X ,Y ](h,g)

for any f ,g,h ∈ [X ,Y ], [X ,Y ] becomes an L-category. This L-category is called the functor category
from X to Y .

In particular, if X is a set, considered as a discrete L-category, then [X ,L ] = LX and [X ,L ](λ,µ)
is known as the degree that λ is a subset of µ [3, 9].

Example 7. Let L = (L,→,{1}), where L is a complete lattice, → is the Gaines-Rescher implication
on L. Then for any set X , considered as a discrete L-category, the functor category is essentially the
complete lattice LX under pointwise order.
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Suppose that (L,→,D) is complete and inf-preserving on the second argument and that → has
a conjugate →c; or equivalently, (L,→,D) is quantale-based. Given an L-category X and two L-
functors f ,g : X −→ L , let

[X ,L ]c( f ,g) =
^

x∈X

( f (x)→c g(x)).

Then it is easy to check that [X ,L ]c becomes an Lc-category. Thus, [X ,L ]op
c is an L-category.

Proposition 6. (co-Yoneda embedding, [52]) Let L = (L,→,D) be a quantale-based implication
structure; X an L-category, and a ∈ X. Then, for any L-functor f : X −→ L ,

[X ,L ]c(X(a,−), f ) = f (a).

Therefore,
y′ : X −→ [X ,L ]op

c , a 7→ X(a,−),

is a fully faithful L-functor in the sense that X(a,b) = [X ,L ]op
c (y′(a),y′(b)) for all a,b ∈ X.

y′ in the above lemma is called the co-Yoneda embedding. Similarly, let [Xop,Lc] denote the set
of all Lc-functors Xop −→ Lc and for all f ,g ∈ [Xop,Lc], let

[Xop,Lc]( f ,g) =
^

x∈X

( f (x)→ g(x).

Then [Xop,Lc] becomes an L-category. It is routine to check that the correspondence

y : X −→ [Xop,Lc], a 7→ X(−,a),

defines a fully faithful L-functor, y is called the Yoneda embedding [52].

4 Two categories of L-subsets

In this section, (L,→,D) is always assumed to be a complete implication structure which is inf-
preserving on the second argument, if not otherwise specified.

The category L-FSet consists of the following data:

– Objects: pairs (X ,λ), where X is a set, λ : X −→ L is a function;
– Morphisms: a morphism f : (X ,λ)−→ (Y,µ) is a function f : X −→Y such that λ(x1)→ λ(x2)≤

µ( f (x1))→ µ( f (x2)) for all x1,x2 ∈ X ;
– Composition: the usual composition of functions.

Intuitively, a morphism in L-FSet is a function which makes the membership degrees less dra-
matically changed.

Before elaborating on the category L-FSet, we recall some basic notions of concrete categories
from [2]. By a concrete category over the category Set of sets is meant a pair (A,U), where A is
a category and U : A −→ Set is a faithful functor. A concrete category (A,U) is often abbreviated
to A if the functor U is obvious. Let (A,U) be a concrete category. Given a set X , the fibre of X
is the preordered class consisting of all A-objects A with U(A) = X ordered by: A ≤ B if and only
if idX : UA −→ UB is an A-morphism. A-objects A and B are said to be equivalent provided that
A ≤ B and B ≤ A. (A,U) is said to be amnestic provided that the fibre of any set X is a partially
ordered class, that is, no two different A-objects are equivalent. A concrete category (A,U) is said

to be transportable provided that for every A-object A and every bijection UA k−→ X there exists a
A-object B with UB = X such that UA k−→ X is an A-isomorphism.
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Proposition 7. L-FSet is a concrete category over Set. It is transportable but not amnestic.

By aid of the category L-FSet, we can talk about the shape of L-subsets.

Definition 8. (X ,λ) and (X ,µ) are of the same shape if they are equivalent in L-FSet, i.e., λ(x)→
λ(y) = µ(x)→ µ(y) for all x,y ∈ X.

Example 8. Let L be a complete lattice equipped with the Gaines-Rescher implication. Then (X ,λ)
and (X ,µ) are of the same shape if and only if λ(x)≤ λ(y) ⇐⇒ µ(x)≤ µ(y) for all x,y ∈ X .

An L-subset λ : X −→ L can be regarded as an expression of a property of elements in X . The
above example says that, with respect to the Gaines-Rescher implication, two function λ,µ : X −→ L
express the same property if they define the same order on X in the way that x≤ y if λ(x)≤ λ(y). It is
the thus-defined order, not the particular value λ(x), that is most important.

Example 9. Let L = (L,→,{1}), where L = [0,1] and → is the implication corresponding to the
Łukasiewicz t-norm on [0,1]. Then λ,µ : X −→ L are of the same shape if and only if there is some
real number a such that λ(x) = µ(x)+a for all x ∈ X . Hence, λ and µ are of the same shape if and only
if the difference between λ(x) and µ(x) is a constant.

Example 10. Let L = (L,→,{1}), where L = [0,1] and → is the implication corresponding to the
product t-norm. If L = (L,→,{1}). Then λ,µ : X −→ L are of the same shape if and only if there is
some real number a such that λ(x) = a ·µ(x) for all x ∈ X . Hence, λ and µ are of the same shape if and
only if λ equals the product of µ with a real number.

Example 11. Let L = (L,→,{1}), where L = [0,1] and → is the implication corresponding to the
t-norm min. A L-subset λ : X −→ L is said to be regular if either (i) max{λ(x) : x ∈ X} = 1; or (ii)
{λ(x) : x ∈ X} has no maximal element. The constant function 1 is regular, but, for every a 6= 1, the
constant function a is not regular. Given a fuzzy set λ : X −→ L, let λ#(x) = 1 if λ(x) is maximal in
{λ(z) : z ∈ X}, otherwise let λ#(x) = λ(x). Then λ# is regular, called the regularization of λ. Then
λ,µ : X −→ L are of the same shape if and only if λ# = µ#. That is, λ and µ are of the same shape if
and only if they have the same regularization.

For each morphism f : (X ,λ)−→ (Y,µ) in V : L-FSet, it is easy to see that f : (X ,Vλ)−→ (Y,Vµ)
is a morphism in L-Cat. Thus, the correspondence (X ,λ) 7→ (X ,Vλ) defines a concrete functor V : L-
FSet−→ L-Cat.

Theorem 2. If L has a neutral element, then the functor V : L-FSet−→ L-Cat satisfies the following
conditions:

(1) V is full and faithful.
(2) L-Cat is amnestic, transportable, and concretely complete.
If L is linearly ordered with 1 ∈ L as neutral element, then
(3) V is concrete limit-dense, i.e., for every L-category A there exists a small diagram E : J −→L-

FSet such that A is a concrete limit of V ◦E.
(4) V preserves limits of small diagrams.
(5) For every amnestic, transportable, and concretely complete category C and every concrete

functor F : L-FSet−→ C that preserves concrete limits of small diagrams, there exists a unique con-
crete functor F : L-Cat−→ C that preserves concrete limits of small diagrams, with F = F ◦V .
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Thus, if L is linearly ordered with 1 ∈ L as neutral element, L-Cat is the universal completion of
the amnestic modification [2] of L-FSet in the sense of Herrlich [27].

When (L,→,D) is generated by a commutative, unital quantale structure on L, we can introduce
another category of L-subsets, the category L-CSet. L-CSet consisting of the following data:

– Objects: pairs (X ,λ), where X is a set, λ : X −→ L is a function;
– Morphisms: a morphism f : (X ,λ)−→ (Y,µ) is a function f : X −→Y such that λ(x1)↔ λ(x2)≤

µ( f (x1))↔ µ( f (x2)) for all x1,x2 ∈ X ;
– Composition: the usual composition of functions.

Parallel to the definition of the functor V : L-FSet−→ L-Cat to L-CSet, we can define a functor
H : L-CSet−→ L-Set.

Theorem 3. If (L,ra,{1}) is a commutative, unital quantale based and linearly ordered implication
structure, then L-Set is the universal completion of L-CSet.

5 Fuzzy functions as left adjoints

L = (L,→,D,∗, I) is assumed to be a symmetric, quantale-based implication structure in this section.
We show that left adjoints in the 2-category of L-sets can be regarded as the fuzzy functions between
L-sets.

Let X ,Y be L-sets. An L-relation from X to Y , in symbols R : X ⇀Y , is an L-functor R : X⊗Y −→
(L ,→), that is, for all x1,x2 ∈ X ,y1,y2 ∈ Y ,

X(x2,x1)∗R(x1,y1)∗Y (y1,y2)≤ R(x2,y2).

The composition of two fuzzy relations R : X ⇀ Y and S : Y ⇀ Z is given by

S◦R(x,z) =
_

y∈Y

R(x,y)∗S(y,z)

for all x ∈ X ,z ∈ Z.
An L-relation R : X ⇀ Y is exactly a distributer from X to Y in [52].
For each L-set X , let idX : X ⇀ X be the L-relation given by idX(x1,x2) = X(x1,x2). Then it

is easy to check that R ◦ idX = R = idY ◦ R and that (R ◦ S) ◦ T = R ◦ (S ◦ T ) for any L-relations
R : X ⇀ Y,S : Y ⇀ Z and T : Z ⇀ W . Thus, we obtain a category L-Rel of which the objects are
L-sets and the morphisms are L-relations, the category of L-relations. It is an interesting fact that
for any L-sets X and Y , the homset L-Rel(X ,Y ) is itself an L-category (as the functor category from
X ⊗Y to L). We write [X ⇀ Y ] for the functor category [X ⊗Y,L ].

Theorem 4. L-Rel is a category enriched over the monoidal closed category L-Cat.

Therefore, the category of L-relations is a 2-category, indeed, a locally partially ordered 2-category
with:

– Objects: L-sets;
– 1-morphisms: L-relations R : X ⇀ Y ;
– 2-morphisms: there is exactly one morphism from 1-morphism R : X ⇀Y to 1-morphism R′ : X ⇀

Y if R≤ R′ under the pointwise order.

131



Definition 9. An L-relation R : X ⇀ Y is said to be functional if it is a left adjoint in the 2-category
L-Rel, that is, there exists an L-relation S : Y ⇀ X such that idX ≤ S◦R and R◦S≤ idY . In this case,
S is called a right adjoint of R.

Example 12. ([44]) Suppose f : X −→ Y is an L-functor. Then f generates an L-relation f\ : X ⇀
Y, f\(x,y) = Y ( f (x),y). It is easy to verify that f\ is functional and that a right adjoint of f\ is given by
f \ : Y ⇀ X , f \(y,x) = Y (y, f (x)).

In order to show that functional L-relations can be regarded as fuzzy functions, we introduce the
following

Definition 10. (C.f. [12, 35]) A singleton of an L-set X is an L-functor s : X −→ (L ,→) such that
(s1) s(x)∗ s(y)≤ X(x,y); and
(s2)

W
x∈X s(x)∗ s(x)≥ I.

Put differently, a singleton of X is an L-relation s : 1 ⇀ X such that sop : X ⇀ 1 is a right adjoint
to s; hence, s is a functional L-relation from the terminal L-set 1 to X .

We say that the unit element I in a quantale (L,∗, I) is square accessible if
W

A ≥ I ⇒
W
{a ∗ a :

a ∈ A} ≥ I for any subset A ⊆ L. This condition first appeared in [35] (for idempotents). It is easy to
check that every BL-algebra [26] satisfies this condition.

Lemma 2. Suppose the unit element I is square accessible and X is an L-set. Then every functional
L-relation 1 ⇀ X is a singleton.

Lemma 3. If the unit element I is square accessible, then for every functional L-relation F : X ⇀ Y ,
the right adjoint of F is given by Fop : Y ⇀ X ,Fop(y,x) = F(x,y).

Theorem 5. Suppose the unit element I is square accessible and X ,Y are L-sets. Then, an L-relation
F : X ⇀ Y is functional if and only if it satisfies

(F1) F ◦Fop ≤ idY , that is, F(x,y1)∗F(x,y2)≤ Y (y1,y2) for all x ∈ X and y1,y2 ∈ Y ;
(F2) Fop ◦F ≥ idX , that is,

W
y∈Y F(x1,y)∗F(x2,y)≥ X(x1,x2) for all x1,x2 ∈ X.

The condition (F1) says that F is ”single-valued” and (F2) says that F is ”totally defined” on X .
Thus, F is a fuzzy function.

Acknowledgement: This work is supported by NCET (05-0779) and Natural Science Foundation of
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5. R. Bělohlávek, Concept lattices and order in fuzzy logic, Annals of Pure and Applied Logic 128(2004) 277-298.
6. J. Bénabou, Introduction to bicategories, Lect. Notes Math. Vol. 47, Springer, 1967, pp. 1-77.
7. M. Bonsangue, F. Breugel, J.J.M.M. Rutten, Generalized metric spaces: completion, topology, and powerdomains via

the Yoneda embedding, Theoretical Computer Science 193(1998) 1-51.

132



8. F. Borceux, Handbook of Categorical Algebra, 3 volumes, Cambridge University Press, 1994.
9. P. Burillo, N. Frago, R. Fuentes, Inclusion grade and fuzzy implication operators, Fuzzy Sets and Systems 114(2000)

417-429.
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K.P. Klement, U. Höhle, (eds.) Applications of Category Theory to Fuzzy Subsets, Kluwer, Dordrecht, 1992, pp. 9-31.
13. M. Demirci, Fuzzy functions and their fundamental properties, Fuzzy Sets and Systems 106(1999) 239-246.
14. M. Demirci, Fuzzy functions and their applications, J. Math. Anal. Appl. 252(2000) 495-517.
15. D. Dubois, H. Prade, Fuzzy sets in approximate reasoning, Part 1: inference with possibility distributions, Fuzzy Sets

and Systems 40(1991) 143-202.
16. S. Eilenberg, G.M. Kelly, Closed categories, Proceedings of the Conference on Categorical Algebra, La Jolla 1965,

Springer, 1966, pp. 421-562.
17. F. Esteva, L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems

124(2001)271-288.
18. M. Eytan, Fuzzy sets: a topos-logical point of view, Fuzzy Sets and Systems 5(1981) 47-67.
19. J. Fodor, On fuzzy implication operators, Fuzzy Sets and Systems 42(1991) 293-300.
20. A. Frascella, C. Guido, Transporting many-valued sets along many-valued relations, Fuzzy Sets and Systems 159(2008)

1-22.
21. B.R. Gaines, Foundations of fuzzy reasoning, Int. J. Man-Machine Studies 8(1976) 623-668.
22. J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18(1967)145-174.
23. J.A. Goguen, Concept respresentation in natural and artificial languages: axioms, extensions and applications for fuzzy

sets, Int. J. Man-Machine Stud. 6(1974)513-561.
24. S. Gottwald, A Treatise on Many-valued Logics, Studies in Logic and Computation 9, Research Studies Press, Baldock,

2001.
25. S. Gottwald, Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part II: Category theoretic approaches,

Studia Logica 84(2006) 23-50.
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