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Since their inception in 1979, the Linz Seminars on Fuzzy Set Theory have emphasized the de-
velopment of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and
established mathematicians whose work outside the fuzzy setting can provide directions for further
research. The philosophy of the seminar has always been to keep it deliberately small and intimate so
that informal critical discussions remain central.

LINZ 20009 is the 30th seminar in this series of meetings and is devoted to the theme “The Legacy
of 30 Seminars - Where Do We Stand and Where Do We Go?”. Different to previous years, the
scope of the seminar does not restrict to a single sub-topic of fuzzy set theory. Instead, the goal is
to view fuzzy set theory and the past and future contributions of the Linz seminars from additional
perspectives. We want to determine the state of the art achieved within fuzzy set theory, to ask for
the impacts on other fields (of mathematics and applications), and to discuss their future research
directions and applications.

A large number of highly interesting contributions were submitted for possible presentation at
LINZ 2009. In order to maintain the traditional spirit of the Linz Seminars — no parallel sessions
and enough room for discussions — we selected those twenty-nine submissions which, in our opin-
ion, fitted best to the focus of this very special seminar. This volume contains the abstracts of this
impressive selection. These regular contributions are complemented by three reviews of renowned
researchers and four invited plenary talks, some of which are intended to give new ideas and impulses
from outside the traditional Linz Seminar community.
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Non-deterministic fuzzy semantics

Arnon Avron! and Beata Konikowska?

1 School of Computer Science
Tel-Aviv University
Ramat-Aviv 69978, Israel
aalmath.tau.ac.il
2 TInstitute of Computer Science
Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland
beatak@wars.ipipan.waw.pl

The idea behind the development of fuzzy logic is that in many cases propositions do not have a
crisp truth value. Thus (to take a famous example) the question whether John is tall might not have a
clear-cut, “yes” or “no” answer. Fuzzy logics try to solve this problem by allowing the whole range of
numbers between 0 and 1 to serve as potential “truth values” for propositions. By this they strongly
deviate from classical logic, which employs just the two extreme values: 0 and 1. However, current
fuzzy logics (in the narrow sense) continue to closely follow classical logic in the way they treat
complex formulas. All of them are based on the principle that the truth value assigned to a complex
formula should be completely determined in a unique, crisp way by the truth values assigned to its
components. In other words: basically, the phenomenon of fuzziness is limited to atomic formulas,
but no fuzziness is allowed in the semantics of connectives. An interpretation of an n-ary connective
is always a crisp n-ary function on the interval [0,1]. The various current fuzzy logics differ from one
another in their choices of the specific interpretation functions used, but not in the basic underlying
principle that the semantic interpretation of a connective should be a function from tuples of truth
values to single truth values. Among other things, this leads to many counterintuitive results. Thus
if p is assigned the value 1/2 then —p V p is also assigned the value 1/2 in all the three basic fuzzy
logics (according to the most common interpretation of V), even though 1 might be taken here as the
intuitive value. One can try to remedy this by taking A V B to mean —A — B, where — is Lukasiewicz
implication: then the value assigned to —p V p would indeed be 1. Unfortunately, according to this
interpretation of \V, the value assigned to p V p would again be 1 if p is assigned the value 1/2, which
is hardly intuitive or useful.

We believe that the truth functionality principle is in direct conflict with the idea and spirit of
fuzzy logic. Its employment has been inherited from orthodox (deterministic) many-valued logics,
and it makes fuzzy logic (in the narrow sense) nothing more than a branch of many-valued logic (in
the narrow, deterministic sense). Instead, we suggest that in the framework of fuzzy logics the logical
notions of “and”, “or”, “implies”, etc should also get fuzzy interpretations.

Given the above observations, we propose a new general framework which suits the idea of fuzzy
logic better than the conventional, but inflexible, deterministic many-valued logics: namely, the gen-
eralization of the latter given by nondeterministic matrices. This new framework was introduced in
[5, 6,4], where it was shown to have all the advantages of the framework of ordinary (deterministic,
multi-valued) matrices. It was later successfully applied to a whole variety of families of logics (see
e.g. [1-3]). The relevant definitions are as follows:
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Definition 1. 1. A non-deterministic matrix (Nmatrix for short) for a propositional language L is a
tuple M = (V,D, O), where:
(a) 7V is a non-empty set of truth values.
(b) D is a non-empty proper subset of V.
(c) For every n-ary connective ¢ of £, O includes a corresponding n-ary function ¢ from 9 to

2V —{0}.
2. A (legal) M -assignment in an Nmatrix M is a function from the set of formulas of £ to ¥/ that
satisfies the following condition for every n-ary connective ¢ of £ and yy,...,y, € L:

V(O(Wla oo v‘l’n)) € 5(‘)(\"1)7 s 7V(\|In))

3. An M-assignment v (in an Nmatrix M) is a model of (or satisfies) a formula y in M (notation:
viEM ) if v(y) € D.

In applying the framework of Nmatrices to fuzzy logics, we should obviously take ¥’ to be the
closed interval [0,1], and D = {1}. It also seems natural to demand that the sets assigned by the
interpretations of the connectives be intervals. This leads to the following definition:

Definition 2. A fuzzy Nmatrix for a language £ is an Nmatrix of the form ([0, 1], {1}, O), where for
every n-ary connective ¢ of £, O includes a corresponding n-ary function < from [0, 1)" to the set of
nonempty subintervals (including singletons) of [0, 1].

Examples include some plausible interpretations of the basic connectives that allow in each case the
freedom of choosing a value among those allowed by the interpretations of the basic deterministic
fuzzy logics:

a&b = [max{0,a+b— 1}, min{a,b}]

—, _ [{1} a<b
a%b_{wJ—a+Ha>b

_ {g} a=0

= [0,1—ala>0
aVb = [max{a,b},min{a+b,1}]

Note. It should be emphasized that although the values of the functions which interpret the connectives
are now intervals rather than numbers, the values assigned to formulas by legal assignments are still
single numbers.

The framework provided by fuzzy Nmatrices is only the first step in designing appropriate seman-
tics on which truly fuzzy logics can be based. The reason is that the set of legal assignments allowed
e.g. by the above nondeterministic connectives seems to be too large, so further constraints should be
imposed on it. One source of such constraints might be the intent to validate certain axioms. Here are
some examples of constraints of this type on an assignment v:

- v(AVA) =v(A)
- v(AVB)=v(BVA)
- v(mAVA)=1

12



Another source of constraints might be the intent to preserve (at least to some extent) the connections
between the connectives that are assumed in the usual, deterministic fuzzy logics (see e.g. [7]). Thus
we may demand that every legal assignment v satisfy the following condition:

v(A — B) = sup{v(C) | v(A&C) < v(B)}

Note that if v satisfies this condition, v(A) = 1 for at least one formula A, and v respects the nonde-
terministic interpretation & of & given in the foregoing, then v necessarily respects — as well. Note
also that every valuation which is legal according to one of the three basic deterministic fuzzy logics
satisfies the above constraint, and respects the above nondeterministic interpretations of the standard
connectives.

Accordingly, the obvious next step would be to explore the options of Nmatrices and constraints on
the set of legal valuations best suited for the semantics of fuzzy logics, and find the logics generated
by them. Obviously, such logics might prove more complicated than those based on deterministic
semantics. However, they will surely represent a more general concept of fuzziness — and it would
be an interesting task to compare them with the existing basic fuzzy logics.
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Fuzzy Class Theory: a state of the art

Petr Cintula*

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodarenskou vézi 2, 182 07 Prague, Czech Republic
cintula@cs.cas.cz

It is indisputable that mathematical structures arising around vague/fuzzy/non-bivalent concepts have
a broad range of applications; therefore they have been intensively investigated during the last four
decades. The discipline studying these structures is, maybe unfortunately, called Fuzzy Mathematics.

There is an ongoing project of the Prague research group in fuzzy logic, directed towards develop-
ing the logic-based fuzzy mathematics, i.e., an ‘alternative’ mathematics built in a formal analogy with
classical mathematics, but using a suitable formal fuzzy logic instead of the classical logic. First steps
in the development thereof were enabled by recent results in Mathematical Fuzzy Logic, especially
by the emergence of higher-order fuzzy logics, proposed by Libor Béhounek and the present author,
see [6]. This approach leads not only to an axiomatization, but also to a systematic study utilizing
proof-theoretic and model-theoretic methods. Moreover, the unified formalism allows an interconnec-
tion of particular disciplines of fuzzy mathematics and provides the formal foundations of (part of)
fuzzy mathematics.

The core of the project is a formulation of certain formalistic methodology (see [7]), proposing
the foundational theory (see [6]), and studying the particular disciplines (see the list below) of fuzzy
mathematics within this theory using our methodology. The proposed foundational theory is called
Fuzzy Class Theory (FCT) and it is a first-order theory over multi-sorted predicate fuzzy logic, with a
very natural axiomatic system which approximates nicely Zadeh’s original notion of fuzzy set [19]. In
paper [7] we claim that the whole enterprize of Fuzzy Mathematics can be formalized in FCT. This is
still true as classical logic is formally interpretable inside formal fuzzy logics we use, however there
are parts of fuzzy mathematics where our approach provides (very) little added value; see [3] for more
details about relation of traditional and logic-based fuzzy mathematics.

An important feature of the theory is the gradedness of all defined concepts, which makes it more
genuinely fuzzy than traditional approaches. Indeed, e.g. in the theory of fuzzy relations the majority
of traditional characterizing properties, such as reflexivity, symmetry, transitivity, and so forth, are
defined in a strictly crisp way,' i.e., as properties that either hold fully or do not hold at all. One may
be tempted to argue that it is somewhat peculiar to fuzzify relations by allowing intermediate degrees
of relationships, but, at the same time, to still enforce strictly crisp properties on fuzzy relations. This
particularly implies that all results are effective only if some assumptions are fully satisfied, but say
nothing at all if the assumptions are only fulfilled to a certain degree (even if they are almost fulfilled).

The papers written within the project so far can be divided into several groups (for more compre-
hensive list of papers together with their preprints and more details about the project in general see its
webpage www.cs.cas.cz/hp):

* The work was partly supported by grant A100300503 of the Grant Agency of the Academy of Sciences of the Czech
Republic any by Institutional Research Plan AV0Z10300504.

! The notion of fuzzy inclusion is a notable exception; graded properties of fuzzy relations were originally studied by
Siegfried Gottwald in [15].
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Methodological issues: [3,7,9]

Formalism of FCT: [6, 14] and freely available primer [8]
Fuzzy relations: [4, 10]

Fuzzy topology: [11-13]

Fuzzy filters and measures: [17, 18]

Fuzzy algebra and (interval) analysis: [1, 2,5, 16]

In this talk we survey the basic logical prerequisites, formulate the methodological standpoint, put it in
the context of other nonclassical-logic-based mathematics (intuitionistic, relevant, substructural, etc.),
compare logic-based, categorial, and traditional fuzzy mathematics, sketch the formalism of FCT and
illustrate it using simple examples from the theory of fuzzy relations. Finally, we address the possible
outlooks of FCT and its role in future fuzzy mathematics.
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Characterizations of discrete Sugeno integrals
as lattice polynomial functions

Miguel Couceiro and Jean-Luc Marichal

Mathematics Research Unit
University of Luxembourg, Luxembourg, Luxembourg
{miguel.couceiro, jean-luc.marichal}@uni.lu

Abstract. We survey recent characterizations of the class of lattice polynomial functions and of the subclass
of discrete Sugeno integrals defined on bounded chains.

1 Introduction

We are interested in the so-called discrete Sugeno integral, which was introduced by Sugeno [9, 10]
and widely investigated in aggregation theory, due to the many applications in fuzzy set theory, data
fusion, decision making, pattern recognition, image analysis, etc. For general background, see [1, 6]
and for a recent reference, see [5].

A convenient way to introduce the discrete Sugeno integral is via the concept of (lattice) poly-
nomial functions, i.e., functions which can be expressed as combinations of variables and constants
using the lattice operations A and V. More precisely, given a bounded chain L, by an n-ary polynomial
function we simply mean a function f : L" — L defined recursively as follows:

(i) Foreachie [n]={1,...,n} and each ¢ € L, the projection X — x; and the constant function X — ¢
are polynomial functions from L" to L.
(i1) If f and g are polynomial functions from L" to L, then fV g and f A g are polynomial functions
from L" to L.
(iii) Any polynomial function from L" to L is obtained by finitely many applications of the rules (i)
and (ii).

As shown by Marichal [7], the discrete Sugeno integrals are exactly those polynomial functions
f: L" — L which are idempotent, that is, satisfying f(x,...,x) = x.

In this paper, we are interested in defining this particular class of lattice polynomial functions
by means of properties which appear naturally in aggregation theory. We start in §2 by introducing
the basic notions needed in this paper and presenting general characterizations of lattice polynomial
functions as obtained in Couceiro and Marichal [2, 3]. In §3, we particularize these characterizations
to axiomatize the subclass of discrete Sugeno integrals.

2 Characterizations of polynomial functions

Let L be a bounded chain and let S be a nonempty subset of L. A function f: L" — L is said to be

S-idempotent if for every c € S, f(c,...,c) =

S-min homogenous if f(x\c) = (X) /\ ¢ for all xeLl'andceS.

S-max homogenous if f(xVc¢) = f(x)Vcforallx e L" and c € S.

horizontally S-minitive if f(x) = f(xVc) A f([x]¢) forall x € L" and ¢ € S, where [x]° is the n-tuple
whose ith component is 1, if x; > ¢, and x;, otherwise.
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— horizontally S-maxitive if f(x) = f(xAc¢)V f([x].) for all x € L" and ¢ € S, where [x]. is the
n-tuple whose ith component is 0, if x; < ¢, and x;, otherwise.

— median decomposable if f(x) = median (f(x{),x, f(x})) for all x € L" and k € [n], where x{ =
(xl, ey X—1,Cy X 1y - e - ,x,,) forall c € L.

— strongly idempotent if f(xy,...,x—1,f(X),Xk+1,--.,%,) = f(x) forall x € L" and k € [n].

Two vectors x and X’ in L" are said to be comonotonic, denoted x ~ x', if (x; —x;) (x; —x}) > 0 for
every i, j € [n]. A function f: L" — L is said to be

— comonotonic minitive if f(x AX') = f(x) A f(x") whenever x ~ X'
— comonotonic maxitive if f(xVx') = f(x)V f(x’) whenever x ~ x'.

For integers 0 < p < g < n, define
LY = {xe " |{x,....x,} n{0,1} = p and |{x1,...,.x.}| < q}-

For instance, (c,d,c) € L,SO"Z), (0,¢,d),(1,c,d) € L£I’3), but (0,1,¢,d) ¢ L,SO"Z) UL,(11’3).
Let S be a nonempty subset of L. We say that a function f: L" — L is

— weakly S-min homogenous if f(x Ac¢) = f(x) Acforall x € L% andces.
— weakly S-max homogenous if f(xVc)= f(x)Vcforallx € L% andces.

— weakly horizontally S-minitive if f(x) = f(xVc) A f([x]¢) for all x € L% and ¢ € S, where [x]¢

is the n-tuple whose ith component is 1, if x; > ¢, and x;, otherwise.

— weakly horizontally S-maxitive if f(x) = f(xAc)V f([x].) forall x € LY and ¢ € S, where ],
is the n-tuple whose ith component is 0, if x; < ¢, and x;, otherwise.

— weakly median decomposable if f(x) = median (f(x}),x, f(x})) for all x € L oL and
k € [n].

A subset S of a lattice L is said to be convex if for every a,b € S and every ¢ € L such thata < ¢ < b,
we have ¢ € S. For any subset S C L, we denote by S the convex hull of S, that is, the smallest convex
subset of L containing S. The range of a function f: L" — L is defined by Ry = {f(x) : x € L"}.

A function f: L" — L is said to be nondecreasing (in each variable) if, for every a,b € L" such
that a < b, we have f(a) < f(b). Note that if f is nondecreasing, then iTQf = [f(0), f(1)]. We say that
a function f: L" — L has a componentwise convex range if, for every a € L" and k € [n], the function
x+ fXx) = f(a1,...,ax_1,X,axs1,- - . ,a,) has a convex range.

Theorem 1. Let f: L" — L be a function. The following conditions are equivalent:

(i) f is a polynomial function.
(ii) f is median decomposable.
(ii-w) f is nondecreasing and weakly median decomposable.
(iii) f is nondecreasing, strongly idempotent, has a componentwise convex range.
(iv) f is nondecreasing, ﬁf-min homogeneous, and if-max homogeneous.

(iv-w) f is nondecreasing, weakly Ef-min homogeneous, and weakly Ef-max homogeneous.
(v) f is nondecreasing, ?(f-min homogeneous, and horizontally ?(f-maxitive.

(v-w) f is nondecreasing, weakly Ef-min homogeneous, and weakly horizontally Ef-maxitive.
(vi) f is nondecreasing, horizontally ?(f—minitive, and ﬁf-max homogeneous.

(vi-w) f is nondecreasing, weakly horizontally Ef-minitive, and weakly Ef-max homogeneous.

(vii) f is nondecreasing, if—idempotem‘, horizontally Tif—minitive, and horizontally ?{f-maxitive.
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(vii-w) f is nondecreasing, Tif-idempotent, weakly horizontally Ef-minitive, and weakly horizontally
Ef-maxitive.
Viii is R s-min homogeneous and comonotonic maxitive.
(viii) f Kf 8
(viii-w) [ is weakly R_y-min homogeneous and comonotonic maxitive.
ix is comonotonic minitive and R_;-max homogeneous.
f 8
(ix-w) f is comonotonic minitive and weakly R ;-max homogeneous.
(x) fis R y-idempotent, horizontally R ;-minitive, and comonotonic maxitive.
(x-w) fis R y-idempotent, weakly horizontally R g-minitive, and comonotonic maxitive.
xi is R ~idempotent, comonotonic minitive, and horizontally R ,-maxitive.
f P YAy
(xi-w) [ is R -idempotent, comonotonic minitive, and weakly horizontally R ;-maxitive.
(xii) f is R g-idempotent, comonotonic minitive, and comonotonic maxitive.

Remark 1. In the special case when L is a bounded real interval [a,b], by requiring continuity in each
of the conditions of Theorem 1, we can replace K ; with Ry and remove componentwise convexity in
(iii) of Theorem 1.

3 Characterizations of discrete Sugeno integrals

Recall that discrete Sugeno integrals are exactly those lattice polynomial functions which are idem-
potent. In fact, {0, 1}-idempotency suffices to completely characterize this subclass of polynomial
functions.

We say that a function f: L" — L is

— Boolean min homogeneous if f(x\c) = f(x) Acforallx e {0,1}" and ¢ € L.
— Boolean max homogeneous if f(xVc) = f(x)Vcforallx € {0,1}" and c € L.

Theorem 2. Let f: L" — L be a function. The following conditions are equivalent:

(i) f is a discrete Sugeno integral.
(ii) f is {0,1}-idempotent and median decomposable.
(ii-w) f is nondecreasing, {0, 1}-idempotent, and weakly median decomposable.
(iii) f is nondecreasing, {0, 1}-idempotent, strongly idempotent, has a componentwise convex range.
(iv) f is nondecreasing, Boolean min homogeneous, and Boolean max homogeneous.
(v) f is nondecreasing, {1}-idempotent, L-min homogeneous, and horizontally L-maxitive.
(v-w) f is nondecreasing, {1}-idempotent, weakly L-min homogeneous, and weakly horizontally L-
maxitive.
(vi) f is nondecreasing, {0}-idempotent, horizontally L-minitive, and L-max homogeneous.
(vi-w) f is nondecreasing, {0}-idempotent, weakly horizontally L-minitive, and weakly L-max homoge-
neous.
(vii) f is nondecreasing, L-idempotent, horizontally L-minitive, and horizontally L-maxitive.
(vii-w) f is nondecreasing, L-idempotent, weakly horizontally L-minitive, and weakly horizontally L-
maxitive.
(viii) f is {1}-idempotent, L-min homogeneous, and comonotonic maxitive.
(viii-w) f is {1}-idempotent, weakly L-min homogeneous, and comonotonic maxitive.
(ix) f is {0}-idempotent, comonotonic minitive, and L-max homogeneous.
(ix-w) f is {0}-idempotent, comonotonic minitive, and weakly L-max homogeneous.
(x) fis L-idempotent, horizontally L-minitive, and comonotonic maxitive.
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(x-w) f is L-idempotent, weakly horizontally L-minitive, and comonotonic maxitive.
(xi) f is L-idempotent, comonotonic minitive, and horizontally L-maxitive.

(xi-w) f is L-idempotent, comonotonic minitive, and weakly horizontally L-maxitive.
(xii) f is L-idempotent, comonotonic minitive, and comonotonic maxitive.

Remark 2. (i) As in Remark 1, when L is a bounded real interval [a,b], componentwise convexity

can be replaced with continuity in (iii) of Theorem 2.

(ii) The characterizations given in (iv) and (xii) of Theorem 2 were previously established, in the case

of real variables, by Marichal [8, §4.3]. The one given in (viii) was established, also in the case
of real variables, by de Campos and Bolafios [4] with the redundant assumption of nondecreasing
monotonicity.
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A subset system Z is a class-theoretic function from the category Pos of partially ordered sets (posets
for short) and order-preserving functions to itself such that Z assigns to each poset P a subset Z (P) of
the power set P (P) of P, and each order-preserving function f : P — Q maps each element of Z(P)
(the so-called a Z-set of P) to a Z-set of Q. This formally means that Z :Pos—Pos is a functor given
by the rule

z(rLo)=z(r)H z(0),

where Z(P) C P(P) and Z(f)(A) = f(A) for all A € Z(P). Subset systems motivated from the
issues in computer science, were first introduced by Wright, Wagner and Thatcher [21]. Since then
an increasing number of studies have been done on subset system-based generalizations of several
order-theoretical structures, e.g. Z-Semicontinuous posets [17], Z-continuous posets [9], Z-algebraic
posets [5,16,20], Z-continuous algebras [3,4, 15] and Z-frames [22], despite the fact that there is
no known use of subset systems in lattice-valued mathematics. Z-join-complete posets and Z-join-
continuous maps, also called Z-complete posets and Z-continuous maps, are basic ingredients of
those studies. By definition, for a subset system Z, a Z-join-complete poset is a poset P provided with
the additional property that each Z-set of P has a join in P. And a Z-join-continuous map is an order-
preserving function f : P — Q such that for each A € Z(P) having a join \/A in P, the join \/ f (A) of
f(A) in Q exists and the equality f(\/A) =V f(A) holds. In a dual manner, Z-meet-complete posets
and Z-meet-continuous maps can be defined by simply replacing joins in the preceding definition with
meets.

Conjunction of Z-join-completeness and Z-meet-completeness of a poset gives rise to the no-
tion of (Z;, Z,)-complete poset providing an order-theoretical fundament for the application of subset
systems in the theory of lattice-valued maps. In addition to this aspect of (Z;, Z,)-complete posets,
they also unify various kinds of enriched posets, e.g. posets themselves, bounded posets, semi-lattices,
lattices, complete lattices, directed-complete posets [1] (also called up-complete posets [10]), chain-
complete posets [14]. In other words, the distinction of one of such enriched posets from others
is just the matter of the choice of the subset system pair (Z;,2Z,). For example; if we consider
the subset systems Zy, Zg, Zone—rtwo> Ldirected> Lehain a0d Zg defined in such a way that for each
poset P, the set Z(P) of all Z-sets of P corresponding to each of such subset systems consists of
no subsets of P, only the empty set 0, all one-or two-element subsets of P, all directed subsets of
P, all chains in P and all subsets of P, then (2, Z1)((Zo, Z0), (21, Zone—two)> (Zone—twos Zone—two)s
(Zgirecteds 21)s (Zehain, Z1) and (Zg, Zg), resp.)-complete posets are exactly posets (bounded posets,
meet-semi-lattices, lattices, directed-complete posets, chain-complete posets and complete lattices,
resp.). (Z1,2Z,)-complete posets-natural generalizations of Z-join-complete posets propose a new
formalism providing a parametrization of lattice-theoretic concepts in terms of subset system pairs

21



(Z1,2,), and they might be used in many application fields of lattice theory, e.g. in the theory of
continuous lattices [10], in domain theory [1], in programming language semantics, data types, flow
diagrams and modelling A-calculus in computer science (see [11, 13, 15], and references therein).

Categorical consideration of (Z;, Z;)-complete posets, which will be a subject of this talk, re-
quires (2, Z,)-continuity of a map-a new concept combining Z;-join-continuity and Z,-meet-conti-
nuity of a map. There are many particular cases of (Z;, Z,)-continuous maps playing a central role
for the applications of lattice theory in various areas. For instance; ( Zyne—two, Zone—two ) ((Zdirected, 21L)
(Zehain, Z1) and (Zg, Z¢ ), resp.)-continuous maps are known as lattice-morphisms [2, 7] (Scott-conti-
nuous functions [1], chain-continuous functions [13, 14] and complete lattice-morphisms [2], resp.),
and Scott-continuous functions are an essential tool of domain theory [1] and the theory of continuous
lattices [10].

(21, Z)-complete posets and (Z;, Z,)-continuous maps constitute a category which we will de-
note by (2, Z,)-CPos. The categories (Z;, Z;)-CPos provide a useful parametrization of various
common categories in terms of subset system pairs (2, Z,). E.g. the categories of posets and order-
preserving functions [2], of meet-semi-lattices and meet-semi-lattice-morphisms, of lattices and lattice-
morphisms [2], of directed-complete posets and Scott-continuous maps [1], of chain-complete posets
and chain-continuous maps [14] and of complete lattices and complete lattice-morphisms [2] can
be written as (Zy, Z;)-CPos, (Z1, Zone—1wo)-CPOS, (Zone—twos Zone—two)~CPOS, (Zyirected, 21.)~CPoOS,
(Zehain, Z21)-CPos and (Zg, Z¢)-CPos.

The comparison of the categories (Z;, Z;)-CPos and (Z3, Z4)-CPos as the former being a subcat-
egory of the latter induces a preorder (i.e. a reflexive and a transitive relation) < on the conglomerate
of all subset system pairs (Z;, Z;). The preorder < enables us to enlarge the category (Z;, Z,)-CPos
to the category (Zy, ..., Z4)-CPos comprising all (2, Z,)-complete posets (as objects) and (Z3, Zy)-
continuous maps (as morphisms) where (Z3, Z4) < (21, Zp). Most of familiar constructs in lattice-
theory are in the form of (Z;, ..., Z4)-CPos. In other words, the constructs (Zy, ..., Z4)-CPos form a
subset system-based catalogue of order-theoretical constructs in which objects are posets having joins
of certain subsets and meets of certain subsets and morphisms are order-preserving functions that
maintain existing joins and existing meets.

Substructures of various kinds of order-theoretical notions, e.g. subsemi-lattices, sublattices, G-
sublattices and complete sublattices [7, 8] can be catalogued by (Zy, ..., Z4)-subposets defined as fol-
lows: For subset systems Z; (i = 1,...,4) with (Z3, Z4) < (24, Z2), a subposet P of a (Z;, Zp )-complete
poset Q is a (Zy,..., Z4)-subposet of Q iff it is (Z;, Z,)-complete and the inclusion map i : P — Q
is a (Zy, ..., Z4)-CPos-morphism, i.e. a (Z3, Z4)-continuous map. The main reason for considering
(21, Zy)-complete posets in the domain of lattice-valued mathematics is the fact that for some par-
ticular subset systems Z; (i = 1,...,4) with (Z3, Z4) < (21,22), a (2, Z;)-complete poset L and a
set X, the X-th power X of L, which is an object of (Z, ..., Z4)-CPos, and (Zy, ..., Z4)-subposets
of LX (e.g. lattice-valued topologies [18], fuzzy closure systems [6] and fuzzily structured sets [19])
have a central place in the theory of lattice-valued maps. Although our primary objective in this talk
is to introduce (Z;, Z,)-complete posets and their elementary aspects, we will particularly show how
fuzzy topologies in Hutton’s sense [12], lattice-valued topologies in the sense of [18], fuzzy closure
systems [6] and fuzzily structured sets [19] can be exemplified as some (Zy, ..., Z4 )-subposets of some
(21, Zy)-complete posets.
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1 Overview

Program semantics can be done in a topological manner, and in order to capture this behavior of pro-
gram semantics and make topological notions more applicable to computer science and, in particular,
to program semantics, Vickers [8] introduced the notion of topological systems and the category Top-
Sys using the concept of a satisfaction relation. The surpriing fact, despite the intention and the name,
that topological systems represent a fundamentally different kind of mathematics from topology fol-
lows from an important observation of [3] that TopSys has ground category Set x Loc, which is also
the same ground category for Loc-Top, one of the topological categories for variable-basis topology
studied in various forms in [5] and its references. More precisely, from this observation emerge several
remarkable facts, the first and third of which come from [3]:

1. TopSys is not topological over its ground Set x Loc, and therefore is fundamentally different
mathematics from topology: there is a lack of initial and final structures in TopSys even for
forgetful-functor structured singleton sources and sinks, respectively.

2. Topological systems are strikingly different from topology in the “algebraic” behavior of the Top-
Sys isomorphisms: a continuous mapping in TopSys is a homeomorphism if and only if it is an
isomorphism in the ground Set x Loc, behavior typical of group homomorphisms but not of space
homeomorphisms.

3. Despite (1) and (2), two very different embeddings exist of TopSys into Loc-Top, which are po-
tentially different ways of trying to mitigate the difference between TopSys and topology and open
the possibility of applying variable basis topology to topological systems and program semantics.

Motivated both by the aesthetics of replacing satisfaction relations by frame-valued satisfaction
relations, as well as by potential applications in Section 7 addressing database queries and (3) above,
this note defines for each frame L, a category L-TopSys of L-valued topological systems. This con-
struction has two important properties. First, for L = 2, L-TopSys is isomorphic to TopSys. Second,
for each frame L, L-Top embeds fully into L-TopSys. The key to this embedding is the “fuzzifying”
of the satisfaction relation discovered through the rewriting of topological systems as frame maps.
This note also gives the supercategory Loc-TopSys of all L-TopSys’s, and it is obtained that Loc-Top
embeds into Loc-TopSys, an embedding with potential applications for constructing the initial and
final structures of systems as systems.
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2 Category TopSys
Background for this section comes from [3] and [8], from which we summarize crucial information.

Definition 21 The ground category Set x Loc comprises as objects all ordered pairs (X,A) with X
a set and A a locale, together with all morphisms (f, ) with f being a set mapping and @ being a
localic mapping (which means the ©°P in the opposite direction is the concrete frame map preserving
arbitrary joins and finite meets); compositions and identities are taken component-wise.

Definition 22 A ropological system is an ordered triple (X,A,}=), where (X,A) € |Set x Loc| and
= is a satisfaction relation on (X,A), meaning that |= is a relation from X to A such that both the
following join and meet interchange laws hold:

if S is a subset of A, then x |= \/S iffda€ S, x E=a,
if S is a finite subset of A, then x |= \/S iffVae S, xEa.

Definition 23 The category TopSys has ground category Set x Loc and comprises the following data:

(1) Objects are all topological systems (X,A, =), where |= is a satisfaction relation on (X,A).
(2) Morphisms are all continuous maps (f,9): (X,A,=1) — (Y,B, |=2), where (f,9): (X,A) — (Y,B)
is a ground morphism satisfying the continuity condition that for all x € X and all b € B,

f(x) 2 bif and only ifx =1 977 (b).

Associated with each topological system (X,A, =) is the important function Ext : A — $(X),
where

Ext(a) ={xe X :x[=a},

important in part for reasons that emerge below. The conditions on = allow Ext to functorially gener-
ate topological spaces from topological systems.

Example 24 Let (X,T) be a topological space. (X, T ,|=) is a topological system where x |=U iff x €
U.

Example 25 Applicability of the above notions to program semantics can be seen by several examples
in [8], the gist of which is the following: given two systems (X,A,[=1),(Y,B,=2), the carrier set
in the first [second] system represents a set of input [output] bitstreams, the locale in each system
represents a collection of “open” predicates or properties, and the satisfaction relation in each system
determines which bitstream satisfies which properties. A program having X as the input bitstreams and
Y as the output bitstreams could be a continuous map as in the definition above, several pseudocode
examples of which are given in [8]—e.g., the interchanging of 0’s and 1’s is a continuous map between
topological systems.
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3 Topological systems as frame maps

It is well-known that for all sets X, Y, we have the bijection
PXxY) = (p(V)*
and the underlying correspondences

RCXXY —rg:X— () by re(x) ={y €Y : xRy}

r:X—@¥)— R CXXY by xRy & yecr(x).
Let a relation = C X x A be given. Then the first correspondence above yields
(X, AE) —»E CXxA—ETCAXX = :A— p(X).
Now let mapping r: A — (X) be given. Then the second correspondence yields

rrA—pX)—ECXxAby xEas xer(a).

Proposition 31 If (X,A, ) is a topological system, then r_- : A — ©(X) is a frame map which
coincides with Ext; and if r : A — ©(X) is a frame map, then (X,A,}=,) is a topological system.
Hence for ground object (X ,A) € |Set x Loc|, the family S (X,A) of all satisfaction relations on (X ,A)
is bijective with Frm(A, 9 (X)).

Proposition 32 Ler (X,A,=1),(Y,B,=2) be topological systems and (f,9) : (X,A) — (Y,B) be a
ground morphism. Then (f,9) : (X,A,=1) — (Y,B, |=2) is a continuous map if and only if the square

Extyo@°? = [~ oExtp
commutes.

The above considerations allow us to give a definition of a category which is isomorphic to Top-
Sys, and thus, this definition is an alternative definition of TopSys.

Definition 33 (Alternative) The category TopSys has ground category Set x Loc and comprises the
following data:

(1) Objects are all topological systems (X,A,r), where r: A — @ (X) is a frame map.
(2) Morphisms are all continuous maps (f,9) : (X,A,r) — (Y,B,r), where (f,9): (X,A) — (Y,B)
is a ground morphism satisfying the continuity condition

ro@” =f"on.
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4 Two equivalent definitions of L-TopSys

Definition 41 (Alternative) Ler L € |[Frm|. The category L-TopSys has ground category Set x Loc
and comprises the following data:

(1) Objects are all L-topological systems (X,A,r), where r : A — LX is a frame map.
(2) Morphisms are all L-continuous maps (f,9) : (X,A,r1) — (Y,B,r2), where (f,0) : (X,A) —
(Y,B) is a ground morphism satisfying the continuity condition

r O(pop :fforz,
where f;~ is the Zadeh preimage operator given by f;~ (v) =vo f.

We now indicate how the “alternative” definition yields a definition of L-TopSys expressed in
terms of satisfactions relations. The bijection @ (X x ¥) = @ (¥)* can be trivially rewritten as 2X <Y =

(ZY )X, and thus, the underlying correspondences trivially become
RCXXY = rg:X — @(Y) by [Vx,Y9, X)) = %Xr (x,3)] ,
riX — @) — R CXXY by [Vx,9y, Xg, (x,3) = %) (¥)] -
Proposition 42 Let L € |Frm|. The following hold:

(1) For sets XY, we have the bijection LX*V = (LY )X with underlying correspondences
R:X XY =L rg:X—L" by rg(x)(y) = R(x,y)
riX =LY R :XxY —LbyR,(x,y) =r(x)(y).
(2) Given mapping R : X x A — L, the mapping rp-1 : A — LX is a frame map if and only if both the
following hold:

if S is a subset of A, then R (x, \/ a) = \/ R(x,a),

acs acs

if S is a finite subset of A, then R <x, /\ a) = /\ R(x,a).

acs acs
(3) Given ground morphism (f,9): (X,A) — (Y,B), (f,9): (X,A,r1) — (Y,B,r2) is a continuous
map in L-TopSys if and only if Vx € X, Vb € B,
R, (x,97 (b)) = R,' (f(x).D).

The above proposition ensures that the alternative definition given above yields a category iso-
morphic to the one given in the following two definitions.

Definition 43 Let L be a frame. An L-topological system is an ordered triple (X ,A, =), where (X,A) €
|Set x Loc| and |= is an L-satisfaction relation on (X,A), meaning that |= : X X A — L is a mapping
satisfying both of the following join and meet interchange laws:

if S is a subset of A, then |= (x, \/ a> = \/ = (x,a),

acs acs

if S is a finite subset of A, then = (x, /\ a) = /\ E (x,a).

acs acs
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Definition 44 Ler L € |[Frm|. The category L-TopSys has ground category Set x Loc and comprises
the following data:

(1) Objects are all L-topological systems (X, A, |=), where |= : X x A — L is an L-satisfaction relation.
(2) Morphisms are all L-continuous maps ( f,9) : (X,A,=1) — (Y,B,=2), where (f,9) : (X,A) —
(Y,B) is a ground morphism satisfying the continuity condition that for all x € X and all b € B,

F1 (6077 (b)) =2 (f (x),0).
We record formally that whichever definition we choose for L-TopSys, we have:
Theorem 45 VL € |[Frm|, L-TopSys is a category.
We may regard each L-TopSys as a category for fixed-basis topological systems, in contrast with
Loc-TopSys introduced later in this note.

5 Relationships of L-TopSys to TopSys and L-Top

A topological system (X, A, =) can naturally be thought of as a 2-topological system (X,A, |=2) where
F2: X x A — 2 is defined by

T,xFa
1, otherwise *

(o= {

From this observation we have:

Proposition 51 TopSys and 2-TopSys are isomorphic categories; and hence YL € |Frm|, TopSys

embeds into L-TopSys.

Definition 52 Let L € |[Frm|. The category L-Top has ground category Set and comprises the follow-
ing data:

(1) Objects are all L-topological spaces (X,t), where T C LX is closed under arbitrary \/ and finite
A.
(2) Morphisms are all L-continuous maps f: (X,t) — (Y,0),where f: X —Y is a mapping satisfying
the conditions that
VV € G) f{ (V) €T

It is shown in [3] that each L-Top (with L a frame) embeds into TopSys, but the proof is quite
nontrivial. In marked contrast, each L-Top embeds very easily into the corresponding L-TopSys, as
seen in this next theorem. This suggests that the relationship between L-topology and L-topological
systems is perhaps the more natural one.

Theorem 53 Define Ey : L-Top — L-TopSys on spaces by
EL(XJ) = (Xatv ):)7
where
= (e u) = u(x);
and for a morphism f : (X,t) — (Y,0), put EL (f) : (X,t,=) — (Y,0,=) by

B ()= (£ (Uie)")

where (f;~ )I & IS the restriction of the Zadeh preimage operator to the L-topology & of the codomain.
Then Ey is a full embedding.
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6 Category Loc-TopSys

Definition 61 The category Loc-Top for variable-basis topology has ground category Set x Loc and
comprises the following data:

1. Objects are all topological spaces (X,L,t), where (X,7) € |L-Top)|.
2. Morphisms are all continuous maps (f,9) : (X,L,t) — (Y,M,c), where (f,9): (X,L) — (Y,M)
is a ground morphism satisfying the continuity condition that

weo, (f,0) (V) eT,

where (f,9)" is the standard variable-basis preimage operator given by

(f,9)" (v) =9 ovof.

It is well-known that Loc-Top is a supercategory for all the L-Top’s, though there are far more
morphisms in Loc-Top than are available in the mere union of the respective morphisms classes of the
L-Top’s. In a similar fashion we can construct a supercategory of all the L-TopSys’s in an analogous
way and with analogous enrichment of the morphism classes, namely by constructing the category
Loc-TopSys. Further, the embedding of Loc-Top into Loc-TopSys not only lifts all the embeddings
constructed in the previous section of each L-Top into the corresponding L-TopSys, but has other
benefits as well, one of which is explored below.

The construction Loc-TopSys requires a larger ground category, namely Set x Loc x Loc.

Definition 62 The ground category Set x Loc x Loc comprises as objects all ordered triples (X,L,A)
with X a set and L, A locales, together with all morphisms (f,@,V) with f being a set mapping and
O, being localic mappings (with ©°P y°P as the frame maps); compositions and identities are taken
component-wise.

Definition 63 The category Loc-TopSys has ground category Set x Loc x Loc and comprises the
following data:

(1) Objects are all topological systems (X,L,A, =), where (X,A, =) € |L-TopSys| as defined above.

(2) Morphisms are all continuous maps (f,¢,¥): (X,L,A, =) — (Y,M,B, =), where (f,0,¥) : (X,L,A) —
(Y,M,B) is a ground morphism satisfying the continuity condition that for all x € X and all b € B,

=1 (6w (b)) = 9% (F2 (f (x),b)) -

To sum up, Loc-TopSys is the category of variable-basis topological systems as objects and con-
tinuous maps between them as morphisms.

Theorem 64 Define E : Loc-Top — Loc-TopSys by
E (X7L?T) = (X7L7T7 ):) ?

E(f,0)= (f:0,(f,¢)")
where |= (x,u) = u(x). Then E is a full embedding.

29



As mentioned previously, each L-Top embeds into Loc-Top, and this is done as follows:

EL-T (X,’C) = (X,L,’C), EL-T (f) = (f, idL),

where idy is taken in Loc. Analogously, each L-TopSys embeds into Loc-TopSys, and all the embed-
dings of this and the previous secton mix appropriately, as seen in the next theorem:

Theorem 65 Let L € |Frm|. The following hold:

(1) E;.7s: L-TopSys — Loc-TopSys, defined by

EL—TS (X7A7 ':) = (X?L7A7 ):)7 (va) = (f; idLaW)u

is an embedding.

(2) EOEL—T = EL—TSOEL'

7

Potential applications

Example 71 (database queries) Let X be a set of database queries, i.e., the set of statements which
are generated from a standard database query language for a given database, and let Y be the entities
in the given database. The following considerations indcate potential applications of L-satisfaction
relations:

1.

For each query, an entity is returned. Thus, this process may be modeled by a set function f : X —
Y.

One may think of the queries as satisfying properties, where each property may be identified with
the set of queries for which the property is true. Likewise, there are properties associated with the
database entities. M. Smyth has made the case that collections of logically related properties may
be thought of as topologies [7]. Thus, from Example 24, we may think of X and Y as underlying
topological systems (X,A, =), where |=| relates each property in A to the queries for which the
property holds, and (Y,B, =), where |=; relates each property in B to the database entities for
which the property holds. As stated above, when we query the database, we want the answers to
our queries to be given by a set function f : X — Y.

Further, there is a function from B to A which respects the query function f. This function maps a
property of a query answer, i.e., a property of a database entity, to a corresponding property of the
query. This function acts like Dijkstra’s (weakest precondition) predicate transformer [4]. We call
this function @°P, and (f,9) : (X,A,}=1) — (Y,B,=2) is a continuous map between topological
systems.

We can use the continuous map (f,®) as follows. Suppose that we want to formulate a query that
will give us an answer with a certain property b. Each element of Ext_, (¢°F (b)) is such a query.
Further, let us assume, for example, that our query language is based on a natural language.
Thus, we may naturally introduce fuzziness into our topological system (X,A,|=1), and (X, A, =)
becomes an L-topological system for an appropriate frame L. The frame L need not be complicated
mathematically to be useful in a finite database; L could, for example, be a small finite lattice. It
could be appropriate to also consider (Y,B, =) as an L-topological system and to require (f,®)
to be an L-continuous function.
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6. See [1] for an example of a fuzzy natural language query language, and see [2] and [6] for
fuzziness in the set of database entities.

Example 72 (initial and final structures) One importance of the embedding E : Loc-Top — Loc-
TopSys of the previous section stems from the fact that it gives us a different—and possibly better—
answer than those given in [3] to the dilemma of TopSys failing to be a topological category over
Set x Loc (Section 1 above), and this indicates another potential application of L-satisfaction rela-
tions. The following comments should be made:

1. Loc-Top is topological over Set X Loc [5]. From [3] comes two very different embeddings F._ and
F of TopSys into Loc-Top, which means that forgetful functor structured sources [sinks] lacking
unique initial [final] lifts in TopSys may be taken over to Loc-Top and lifted to that category—this
is because TopSys and Loc-Top have the same ground—in each of two ways.

2. The problem now is getting these lifts “back” to a system setting. There is the “combining” functor
Fc from Loc-Top back to TopSys given in [3], but it fails to be an embedding, and the question
arises whether we can embed the solutions given by F and Fy into a systems setting. There
is indeed an embedding available from [3], but it is the “empty” embedding Egz which takes
spaces to systems with empty carrier sets, and therefore Eg does not seem very promising for
applications.

3. The embedding E : Loc-Top — Loc-TopSys gives a “systems” solution to this dilemma: as before,
move the problematic sources [sinks] over to Loc-Top using Fi_ or Fy, take the unique initial [final]
lifts in Loc-Top, but now move the sources [sinks ] with their lifts over to Loc-TopSys using the fact
that the ground Set x Loc for Loc-Top embeds into the ground Set x Loc x Loc for Loc-TopSys.

4. Given what is available currently, we can find a systems solution via embedding to the lack of
initial and final structures in TopSys only by means of E : Loc-Top — Loc-TopSys, which uses
L-satisfaction relations.
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1 Introduction

Fuzzy set theory and its extensions seem to come to grips with three basic concepts that noticeably
differ from each other but may appear conjointly in various circumstances:

1. Gradualness: the idea that many categories in natural language are a matter of degree, including
truth. The extension of a gradual predicate is a fuzzy set, a set where the transition between
membership and non-membership is gradual rather than abrupt. This is Zadeh’s original intuition
[29].

2. Epistemic Uncertainty: the idea of partial or incomplete information. In its most primitive form,
it is often described by means of a set of possible values of some quantity of interest, one and only
one of which is the right one. This is possibility theory [31].

3. Bipolarity : the idea that information can be described by distinguishing between positive and
negative sides, possibly handled separately [16], as it seems to be the case in the human brain [2].

It is clear that the three notions interact closely with one another: truth may appear to be a bipolar
notion as it goes along with falsity. A fuzzy set may account for epistemic uncertainty since it extends
the notion of a set. Epistemic uncertainty is gradual since belief is often a matter of degree.

As a result the epistemological situation of fuzzy set theory and its extensions : interval-valued
or type 2 fuzzy sets and variants, Atanassov orthopairs (membership-nonmembership), etc., is often
unclear and leads to a lot of confusion in the literature:

— Controversies on the nature of vagueness between those who consider it basically as a matter of
uncertainty of meaning, and those who incriminate the clash between the gradualness of categories
and their Boolean-like use in natural language as the main source of vagueness (let alone the
limited perception of shades by the human mind)[28]

— The existence of several views of membership functions: expressing similarity to prototypes, grad-
ual incomplete information (possibility distributions), or utility functions in preference modeling
[13].

— The temptation of interpreting any gradual notion as a membership function, even if it does not
refer to a set (for instance the ambiguous notion of fuzzy number)[19].

— The confusion between gradual truth and gradual uncertainty (e.g. [18]), which turns out to be
a variant of the former whereby sets (of truth-values, especially singletons) are confused with
elements [14, 8].

— The confusion between membership functions and probability distributions [22]

— The confusion between a separate handling of positive and negative information, and uncertainty
about truth-degrees [1].
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The aim of this talk is to clarify some of these issues, by disentangling the three notions of grad-
ualness, epistemic uncertainty and bipolarity, laying bare the precise role of fuzzy sets in connection
with such notions, thus clarifying potential uses of membership functions, and existing extensions
thereof, such as interval-valued fuzzy sets (IVFSs) , type 2 fuzzy sets and Atanassov orthopairs of
fuzzy sets.

The following points are discussed in the talk:

1. The distinction between fuzzy sets representing some objective entity consisting of a weighted
collection of items, and fuzzy sets that may model incomplete information and whose member-
ship functions are interpreted as possibility distributions. The first kind is called conjunctive fuzzy
set and the second one disjunctive fuzzy set [12]. This distinction leads to distinct extensions of
mathematical notions to fuzzy sets: for instance, scalar distance between fuzzy sets vs. fuzzy-set-
valued distance between underlying ill-known precise entities. When defining the variance of a
fuzzy random variable, one may be interested in the variability of a membership function, or the
range of variability of an ill-known random variable [3].

2. The distinction between a fuzzy set and a gradual element [17]. The latter is viewed as a selection
function of the one-to-many mapping representing the nested set of cuts of a fuzzy set (i.e. pick-
ing one element in each cut). It does not represent a membership function, but a parameterized
element. It seems that the notion of fuzzy real number (in contrast with fuzzy numbers understood
as generalized real intervals) in lattice-valued topology as studied by Hutton [21] and other fuzzy
topologists [23, 20, 27] is closer to the notion of gradual real number than to a fuzzy set. However
operations between such fuzzy reals are based on the extension principle which is in agreement
with interval computations. It explains why the fuzzy real line is not a group under addition. Using
gradual reals allow to embed fuzzy real numbers into a group structure under addition.

3. The confusion between truth values and epistemic states in logic leads to an anomalous use of
a truth-functional 3-valued logic as tool for handling uncertainty, by adding the ignorance state
to the truth-values true and false [4, 14]. It comes down again to confusing elements and sets
since epistemic states are disjunctive sets of truth-values, not truth-values [8]. Knowing that a
proposition is true comes down to the singleton containing “true”, while ignorance is modelled by
the whole truth set, whose characteristic function is viewed as a possibility distribution. The same
confusion can be observed with interval-valued fuzzy sets [30], their later variants (like Atanassov
membership/non membership pairs [1]), and the type 2 fuzzy sets popular in engineering [24].
Namely, intervals of membership grades are interpreted as full-fledged truth-values to which a
truth-functional calculus is applied, consisting of standard fuzzy set connectives extended with
interval arithmetic [6]. This truth-functional calculus is a poor approximation of the right tool for
reasoning about ill-known truth-values [4], which should be based on constraint propagation and
respect the properties of the underlying fuzzy logic [9].

4. The notion of bipolar fuzzy set (distinguishing between and separately handling membership and
non-membership degrees) is carefully distinguished from the idea of ill-known membership func-
tion. A possibility distribution encodes negative information (pointing out impossible values).
Then positive information can be modelled by a second (lower) distribution (pointing out actually
possible values). Such pairs of nested distributions formally come close to using interval-valued
fuzzy sets[11]. They may also account for positive and negative preference, corresponding to goals
and constraints respectively [15]. However while interval-valued fuzzy sets represent less infor-
mation than a single membership function, the use of two membership functions in the bipolar
possibilistic setting represents more information than a single one. The (upper) possibility distri-
bution accounts for all epistemic states compatible with it (modelled by all included normal fuzzy

33



subsets), and the second (lower) distribution acts as a lower bound eliminating some of them.
Similarly a cloud in the sense of Neumaier [25] can be viewed as two possibility distributions
globally restricting a family of probability functions that is smaller than the family restricted by a
single distribution [7].

. It has been repeatedly said that the intuitionistic nature of the Atanassov system is dubious, be-

cause this structure is isomorphic to algebras of IVFSs [10]. Interpreting Atanassov orthopairs in
terms of ill-known membership functions (as suggested by many authors) inherits the same flaw as
the truth-functional calculus of interval-valued fuzzy sets. Taking Atanassov pairs of membership
and non-membership functions as bipolar information leads to viewing such pairs as more infor-
mative than single membership functions, contrary to the IVFS-based ill-known fuzzy set view.
The corresponding bipolar extensions of fuzzy set-theoretic operations on orthopairs are at odds
from the IVFS-like connectives that Atanassov proposed, i.e. cannot be interpreted as interval
arithmetics.
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Fuzzy mathematics often starts by taking a piece of classical mathematics and introducing fuzziness
to existing mathematical concepts, and then proceeds to a more essential adoption of a fuzzy per-
spective. Our paper explores this progression for two important monads: the powerset monad and its
generalizations to fuzzy powerobjects, and the term monad and its generalization to using fuzzy sets
of constants. This brings together two lines of research previously discussed at Linz.The powerset and
its fuzzy analogs are important in the development of topology in a fuzzy world and the term monad
and its fuzzy analogs are vital in understanding fuzzy computer science.

We work with fuzzy sets with values in a completely distributive lattice L equipped with a semi-
group operator x which distributes over both /A and \/. Such a lattice will have residuation for both x
and A, we write a — — for the right adjoint to ax — and a = — for the right adjoint to a A —. This
generalizes the setting of working over the unit interval with a continuous t-norm.

1 Categories of increasing fuzziness

Most of mathematics is done in the category Set whose objects are sets and morphisms are mappings
(functions). One step in fuzzifying this is to replace subsets of A with functions from A to L. This still
lives in the category Set: I is an object of Set and L-sets o.: A — L are just elements of L. To increase
incorporate fuzziness from the start we can work in the category Set(L) introduced by Goguen in [6].
Others have worked in categories allowing multiple lattices or in categories generalizing the category
of sets with relations instead of functions.

The category Set(L) has as objects pairs (A, ) where at: A — L and as morphisms f : (A, ) —
(B,B) mappings f: A — B such that B(f(a) > a(a) for all a € A.

It is known that Set(L) is topological over Set and has a monoidal structure using (A, a) ® (B,) =
(A x B,oox ) and products using (A, o) x (B,B) = (A x B,oAB). Pultr [8] showed how to get expo-
nentials for both. Because Set(L) is topological, it has all limits and colimits [1]. The category Set(L)
is also a quasitopos, but not a topos. As pointed out in [9] the logic studied in fuzzy set theory is the
logic of unbalanced subobjects (those with underlying map the identity) rather than the logic in the
quasitopos structure. This observation informs our choice of fuzzy powerobject functor.

There is a lifting functor C: Set — Set(L) taking A to the crisp fuzzy set (A, T). On functions this
functor is the identity.

There are three natural functors from Set(L) to Set to consider:

1. the underlying set functor U taking (A,o) to A and f : (A,) — (B,B) to f
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2. the full members functor F taking (A, a) to {a|a(a) = T }. A function f: (A,a) — (B, ) takes full
members to full members, so the action of this functor on maps is restriction to the full members.

3. the support functor S taking (A,a) to {alo(a) > L}. Again maps f : (A,a) — (B,P) restrict to
functions on the supports since we have B(f(a)) > o(a) > L.

We get UC=FC=SC=idand U+ C— F.

2 Monads with increasing fuzziness

2.1 Powerobject monads

As mentioned in Section 1, it is possible to replace a set A by L* and still work in Set. The powerset
monad L;; = (L;jz,M,u), from Manes [7], can be seen as the first step to introduce fuzziness in a
categorical setting: The covariant powerset functor L;;: Set — Set is obtained by L;z;A = L4, and,
following [5], for a morphism f: A — B in Set, by defining for all y € B, L f(0)(y) = V p()—y OUx).
The natural transformations M4: A = LjyA by Na(x)(x’) = T if x = x’ and L otherwise, and uy :
LigLigA = LigA by ua(A)(x) = Ve, a 0x) A A(B). In [7] it was shown that Lig = (Lig,M,p) is a
monad.
Another variant of this monad uses a x in the definition of yu:

(A =\ A(x)xA(4)
A€LiuX

This can be made more fully fuzzy by considering the internal fuzzy powerobject functor from
Set(L) to Set(L) which has action on objects given by

U (A, 0) = (L, ms ) Where s o) (f) = A (f(a) — a(a))

acA

Notice that one of the options for x is A, in which case we write = for the residuation and we get

UNA,0) = (L4 &(a o)) Where Eu o) (f) = N\ (f(a) = a(a))

acA

There are three functors U*: Set(L) — Set(L) giving unbalanced powerobjects as objects of Set(L):
one contravariant (inverse image) and its covariant right adjoint and (corresponding to direct image)
left adjoint taking f : (A,a) — (B,pB) to 37 where

34,0)6) =\ o

fla)=b

The covariant internal unbalanced powerobject monad uses the functor U* with 3¢ for its action
on maps.
The monadic structure comes from

NAaa) * (A,(X) = ‘ll*(A,oc)
where

nw@wxvz{Ti“:“

1 otherwise
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Notice that the degree of membership of (4 o)(a) in U(A, ) is

AN (@) = a(r) =T — oa) = a(a)
t
SO T(4,q) is @ map in Set(L).
The union is given by the natural transformation

Hipa (W) (A, 0) = U(A,0)

with

AL 1) (@) =\ (2(f) * f(a))
f

Proposition 1. (U*,m,u*) is a monad.

We can use the crisp functor to relate these monads on Set and Set(L). We get C(v4) = NC) and
@ UH(UH(CA)) = C <LLA) — U(C(A)) = C (LAY is C(u* : LF' — 1),

2.2 Term monads

It is useful to adopt a more functorial presentation of the set of terms, as opposed to using the con-
ventional inductive definition of terms, where we bind ourselves to certain styles of proofs. The term
monad over Set is used, for example, in [4, 5]. In [7] it was shown that T = (T, nTQ, ,uTﬂ) is a monad.

The first step to generalize term monad to fuzzy terms was to compose the monads L;; and Tq.
This requires a distributive law in the form of a natural transformation ¢ : ToL;; = L;;Tq.

To introduce the term monad in Set(L) we set id®(A,a) = ({@}, T) and id" (A, &) = (id"A,id" (o),
where id"(o)(ay,...,a,) = Ni_;o(a;). When we need the monoidal structure we replace A by *.
A constant Set(L)- covariant functor (A,®)set(z) assings any (X,§) to (A,a) and all morphisms
f:(X,€) — (Y,v) to the identity morphism id(s o). If {(A;, ;) | i € I} is a family of L-sets then
the coproduct is | |;c;(A;,04).

Let k be a cardinal number and {(Q,,9,) | n < k} be a family of L-sets. We have

LI (@ Bn)serir) x id" (X, §) = (L {n} x Qu xid"X, 01), M)
n<k n<k
where o(n, , (x)i<,) = (@) Aid" () ((x;i)i<n), ® € &, and (x;)i<, € X".
Consider (Q,0) = | ],<x(€4,9,) as a fuzzy operator domain. The term functor over Set(L) can

now be defined by transfinite induction. Let T(?z o) = id and T'(X,&) be the right side of the equation
1. Define

Tio.) (X&) = || (Qu. O)sexr) x id" \/ TG 9)(X.E)
n<k O<k<t
for each positive ordinal 1. Finally, let Tiq ) (X, &) = LI{ T°(X,8),Voerot T(‘Q 9 (X,&)}, where k is the
least cardinal greater than k and X . Notice that Tig, ), Ti0.9) : Set(L) — Set(L) and \/_, % Tl X, £)
denotes the colimit for the family {7(;,  (X,§) |0 <1 < k}.

Lemma 1. For each positive ordinal there exists a unique o, such that T(lQ o) (X,8) = (TEX,0n), and
there exists a unique o such that Tiq v)(X,§) = (ToX, ).
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Using Lemma 1 we can easily see that T(q ) indeed is a functor. Further, we can extend the

functor to a monad, since T(q 3) can be shown to be idempotent. Once we have the fuzzy term monad
on Set(L) we consider the composition with the unbalanced powerobject monad by constructing a
natural transformation 6* : T(q ¢)U* = U*T q ) as a prerequisite for the monad composition of
U* and T q ) using distributive laws [2].

This understanding of the term monad in a fuzzy setting gives a start to a well founded non-

classical logic programming. What remains is a similar understanding of unification.
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Continuous t-norms, as operations over [0,1], have been deeply studied (see [16, 3] for general sur-
veys). The prominent examples are Lukasiewicz (x*;y = max(0,x+y— 1)), Minimum and product
t-norms and the decomposition theorem for continuous t-norm states, roughly speaking, that any con-
tinuous t-norm is an ordinal sum of these three basic t-norms [20, 17]. In the last decade, the case of
left-continuous t-norms (very relevant from the logical point of view) has also deserved increasing
attention, see for example [6,9-14, 18, 19, 22]. Unfortunately, in this latter case we are still lacking
a decomposition theorem as in the case for continuous t-norms which make things much harder and
only partial results are known.

From a logical point of view, there have also been many interesting advances in the recent past
regarding fuzzy logical systems based on t-norms. Namely, the logic of continuous t-norms and their
resiuda, called BL, introduced in [8], and the logic of left continuous t-norm and their residua, called
MTL (Monoidal t-norm based logic) [7], have been introduced and deeply studied. Both logics, as
well as all their axiomatic extensions, are complete with respect to the class of linearly ordered alge-
bras (chains) of their corresponding varieties and, in many cases, also with respect to the subclass of
chains over the real unit interval, the so-called standard chains, which are defined by a t-norm and its
residuum.

In parallel, varieties of MTL-algebras (the algebraic counterpart of the logics BL, MTL and other
related t-norm based fuzzy logics) and their classes of chains have been also deeply studied, see for
instance [8, 5] for BL-chains and [21] for MTL-chains. Along this line, a new decomposition theorem
of BL-chains (and in particular of continuous t-norms) as ordinal sums of Wajsberg hoops has been
proved, where the notion of ordinal sum is slightly different than the usual one for t-norms (see [4, 2,
1] for basic notions and results). For MTL chains it has also been proved a decomposition theorem
as ordinal sum of prelinear semihoops [21]. Nevertheles, this decomposition does not help much
since so far it is unknown a characterization of the indecomposable linearly ordered semihoops. This
is the main reason why in this paper we restrict ourselves mainly to continuous t-norms and, their
generalizations, BL-chains.

The aims of this paper are:

— To provide a summary of the recent results on BL and MTL chains and its potential interest for
researchers on t-norms. We will give the definition of hoop and its basic types, the notion of ordinal
sum of hoops and the decomposition theorem of any BL-chains as ordinal sum of Wajsberg hoops.

— To motivate that a proper generalization of continuous and left-continuous t-norms over other
domains than the unit interval is the one provided by BL and MTL chains (or even by BL and
MTL algebras).
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— To study and characterize these “generalized” continuous and some left-continuous t-norms over

general chains, specially over the rational unit interval.

We believe that the results surveyed in this paper may serve for a better understanding of Zadeh’s
fuzzy sets [23] when taking values over linearly ordered scales other than the real unit interval

Acknowledgments

The authors acknowledge partial support by the Spanish project MULOG?2 (TIN2007-68005-C04).
The third author also acknowledges partial support from the grant 2006-BP-A-10043 of the Departa-
ment d’Educacié i Universitats of the Generalitat de Catalunya.

References

1

2.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22
23

. P. Agliano, I. M. A. Ferreirim and F. Montagna. Basic hoops: an algebraic study of continuous t-norms. Studia Logica

87 (2007), 73-98.

P. Agliano and F. Montagna. Varieties of BL-algebras I: general properties, Journal of Pure and Applied Algebra, 181
(2003), 105-129.

C. Alsina and M. J. Frank and B. Schweizer. Associative Functions: Triangular Norms and Copulas, World Scientific
Publishing Company (2006).

W. J. Blok and I. M. A. Ferreirim. Hoops and their implicational reducts, Algebraic Logic, Banach Center pub. 28,
Warsaw (1993).

. R. Cignoli, F. Esteva, L. Godo and A. Torrens. Basic Fuzzy Logic is the logic of continuous t-norms and their residua.

Soft Computing 4 (2000),106-112.

R. Cignoli, F. Esteva, L. Godo and F. Montagna. On a class of left-continuous t-norms. Fuzzy Sets and Systems 131
(2002), 283-296.

. F. Esteva and L. Godo. Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets and
Systems 124 (2001), 271-288.

P. Hajek. Metamathematics of fuzzy logic, Trends in Logic vol. 4, Kluwer, Dordrecht (1998).

S. Jenei. On the convex combination of left-continuous t-norms. Aequationes Mathematicae 72 (2006), 47-59.

S. Jenei. How to construct left-continuous triangular norms? State of the Art. Fuzzy Sets and Systems 143 (2004), 27-45.
S. Jenei. Structure of left-continuous triangular norms with strong induced negations (III): Construction and decompo-
sition. Fuzzy Sets and Systems 128 (2002), 197-208.

S. Jenei. Structure of left-continuous triangular norms with strong induced negations, (I) Rotation construction. J. Appl.
Non-Classical Logics 10 (2000), 83-92.

S. Jenei. New family of triangular norms via contrapositive symmetrization of residuated implications. Fuzzy Sets and
Systems 110 (2000), 157-174.

S. Jenei and F. Montagna. On the continuity points of left-continuous t-norms. Archive for Mathematical Logic 42
(2003), 797-810.

S. Jenei and F. Montagna. A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica 70
(2002), 183-192.

E. P. Klement, R. Mesiar and E. Pap. Triangular Norms, Kluwer Academic Publishers, Dordrecht (2000).

C. H. Ling. Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.

K. Maes and B. De Baets. On the structure of left-continuous t-norms that have a continuous contour line. Fuzzy Sets
and Systems 158 (2007), 843-860.

K. Maes and B. De Baets. The triple rotation method for constructing t-norms. Fuzzy Sets and Systems 158 (2007),
1652-1674.

P. S. Mostert and A. L. Shields. On the structure of semigroups on a compact manifold with boundary. Annals of Math.
65 (1957), 117-143.

C. Noguera. Algebraic study of Axiomatic Extensions of Triangular Norm Based Fuzzy Logics, Monografies de
I’Institut d’Investigacié en Intel-ligéncia Artificial (CSIC) n. 32 (2007).

. T. Vetterlein. Regular left-continuous t-norms. Semigroup Forum 77 (2008), 339 - 379.

. L. A. Zadeh. Fuzzy sets. Information Control 8 (1965), 338-353.

41



Dialogue games and the proof theory of fuzzy logics —
a review and outlook

Christian G. Fermiiller

Institute of Computer Languages
Technische Universitat Wien, A-1040 Vienna, Austria
chrisf@logic.at

Already in the 1970s Robin Giles [17, 16] presented a characterization of infinite-valued Lukasie-
wicz logic L that combines a Lorenzen-style dialogue game [20] with a simple scheme for betting on
the correctness of atomic statements. A central feature of Giles’s model of reasoning is to separate
(1) the analysis of logical connectives from (2) the interpretation of ‘fuzzy’ atomic assertions. To
this aim the stepwise reduction of logically complex assertions to their atomic components (1) is
guided by Lorenzen-style dialogue rules that regulate idealized debates between a proponent and an
opponent of an assertion. As for (2), the two players agree to pay a fixed amount of money to the
opposing player for each incorrect statement that they make. The (in)correctness of stating an atomic
sentence p is decided by an elementary (yes/no) experiment E), associated with p. ‘Fuzziness’ arises
from the stipulation that the experiments may be dispersive, i.e., yield different results upon repetition;
only a fixed success probability is known for E,,. Giles demonstrated that an initial statement F* can be
asserted by the proponent without having to expect a loss of money, independently of the probabilities
assigned to the elementary experiments, if and only if F is valid in L.

The purpose of this contribution is to connect Giles’s dialogue game theoretic characterization
of Lukasiewicz logic with more recent developments in the proof theory of fuzzy logics. We want
to demonstrate that dialogue games not only provide an alternative semantic foundation for different
t-norm based fuzzy logics, but also relate in a natural way to appropriate Gentzen-type proof systems.
In fact already Giles himself, in a paper with A. Adamson [1], presented a sequent calculus for L that
is based on the search for winning strategies in his dialogue game. However, a version of the cut rule
is needed for the completeness of this system. This not only renders the calculus non-analytic (i.e.,
the subformula property cannot be maintained) but also spoils the direct connection with winning
strategies. In contrast, as indicated in [9], the logical rules of the hypersequent system HE. of [21]
can be viewed as rules for the systematic construction of generic winning strategies in Giles’s game
and thus connect strategies with analytic, i.e., cut-free derivations. Hypersequents were introduced
by Avron [2, 3] as a generalization of Gentzen sequents that takes account of disjunctive or parallel
forms of reasoning. In our context, hypersequents correspond to multisets of possible dialogue states,
joined disjunctively at the meta-level. Making the relation between winning strategies and analytic
proofs precise is somewhat tricky and involves interesting design choices for a formal presentation of
the game that was described rather informally by Giles. (This is the subject of current work pursued
in[11].)

Giles’s game for L can be generalized to Godel logic G and Product logic P by using alternative
evaluations of atomic states and an extended dialogue rule for implication. The logical rules of the
so-called r-hypersequent system of [6] that are uniform for k., G, and P correspond to the dialogue
rule of the generalized game, as indicated in [9]. This observation constitutes no means the final result
of analyzing the correspondence between winning strategies and analytic proofs. To the contrary, it
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triggers various further investigations into the foundations of reasoning with fuzzy logics. In this con-
text we mention the fact, hinted at in [9, 11], that Cancellative Hoop Logic CHL [8] naturally emerges
from Giles’s game for L and a corresponding hypersequent system if we disallow experiments that can
never succeed, i.e., if only non-zero probabilities of positive results are assigned to elementary exper-
iments. (As a consequence, L is removed from the language.) A further example is the dialogue game
based characterization of the logic SL. in [14] that connects the concept of supervaluation with degree
based evaluation by extending f.ukasiewicz logic ¥. with an appropriate modality for ‘supertruth’.
Yet another recent example is the dialogue game based analysis of interval based fuzzy logics that at-
tempts to solve puzzles about the truth functionality of logical connectives in the context of ‘imprecise
knowledge’ [12].

There exist also other types of dialogue games, not based on Giles’s approach, that are also closely
related to specific proof systems. We will review two cases that are of interest for fuzzy logic: (1) Truth
comparison games for finite and infinite valued Godel logics [15] that correspond to sequent-of-
relations systems as developed in [4, 5] and (2) parallel versions of Lorenzen’s original dialogue game
for intuitionistic logic that are adequate for intermediate logics, in particular for Godel logic G [10,
13].

On a more general level, we argue that there is a conspicuous discrepancy between the by now
vast amount of results in the algebraic, model theoretic approach to fuzzy logics (in Zadeh’s narrow
sense) and the still rather preliminary state of knowledge in proof theory for the same realm of logics.
Indeed, relevant books like [19, 7, 23] restrict attention to axiomatic, Hilbert-style calculi for the syn-
tactic presentation of logics and do not address the challenge to find adequate analytic (cut-free) proof
systems. We emphasize that only calculi of the latter type provide a suitable base for automated de-
duction, but also for extracting information (e.g., about counter models) from failed proof search. (The
forthcoming book [22] will be the first monograph focusing on the proof theory of fuzzy logics.) It is
of central significance in this context that both, the dialogue theoretic analysis and the proof theoretic
approach to fuzzy logics, aim at an analysis of reasoning with fuzzy propositions and predicates that
goes beyond the mere characterization of validity and entailment relations. This fact alone provides
ample ground for future research into the foundations of deductive fuzzy logics.
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This talk contains an overview on the development of binary fuzzy relations and preference modelling.
It also reflects my personal reminiscences on particular outcomes of Linz Seminars in the field.

Fuzzy relations in general, and preferences in particular, have played an important role at some
Linz Seminars. The very first lecture linked to fuzzy relations was delivered by Llorenc Valverde in
1982, entitled “Indistinguishability relations with implicative part”. Then the Twelfth Linz Seminar
in 1990 was devoted to “Applications of Logical and Algebraic Aspects of Fuzzy Relations”, and it
was the first time I participated in. The chair of the PC was Llorenc Valverde. In 2001, the subject of
the 22nd Linz Seminar was “Valued Relations and Capacities in Decision Theory”, chaired by Marc
Roubens. The 27th Linz Seminar in 2006 was concentrated on ‘“Preferences, Games and Decisions”,
co-chaired by Marc Roubens and myself.

In the overview we consider traces of binary fuzzy relations and emphasize their role in the char-
acterization of some fundamental properties of fuzzy relations. We deal also with the transitivity prop-
erty of binary fuzzy relations. We show a general representation theorem for any 7'-transitive binary
fuzzy relation, where T is a left-continuous triangular norm. The study is carried out by using traces.

We consider two frameworks in which preferences can be expressed in a gradual way. The first
framework is that of fuzzy preference structures as a generalization of Boolean (2-valued) preference
structures. A fuzzy preference structure is a triplet of fuzzy relations expressing strict preference, in-
difference and incomparability in terms of truth degrees. An important issue is the decomposition of a
fuzzy preference relation into such a structure. The second framework is that of reciprocal relations as
a generalization of the 3-valued representation of complete Boolean preference relations. Reciprocal
relations, also known as probabilistic relations, leave no room for incomparability, express indiffer-
ence in a Boolean way and express strict preference in terms of intensities. We describe properties of
fuzzy preference relations in both frameworks, focusing on transitivity-related properties.

After that we give a state-of-the-art overview of representation and construction results for fuzzy
weak orders, concentrating on results that hold in the most general case when the underlying set is
possibly infinite.

In the last part we introduce quaternary fuzzy relations in order to describe difference structures.
Three models are developed and studied, based on three different interpretations of a fuzzy impli-
cation. Functional forms of the quaternary fuzzy relation are determined by solutions of functional
equations of the same type. These quaternary fuzzy relations turn out to be representable fuzzy weak
orders on the set of pairs of alternatives.
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1 Introduction

Most of the time aggregation functions are defined on [0, 1], where 0 and 1 represent the lowest and
highest scores along each dimension. We may desire to consider a third particular point e of the
interval, which will play a particular role, for example a neutral value or an annihilator value (this is
the case with uninorms). For convenience, we may always consider that we work on [—1,1], and 0
corresponds to our particular point e.

The motivation for such a study has its roots in psychology. In many cases, scores or utilities
manipulated by humans lie on a bipolar scale, that is, a scale with a neutral value making the fron-
tier between good or satisfactory scores, and bad or unsatisfactory scores. With our convention, good
scores are positive ones, while negative scores reflect bad scores. Very often our behaviour with pos-
itive scores is not the same as with negative ones, hence it becomes important to define aggregation
functions that are able to reflect the variety of aggregation behaviours on bipolar scales.

In the sequel, we will consider several ways to define bipolar aggregation functions, starting from
some aggregation funnction defined on [0, 1]. We first consider associative aggregation functions, and
treat separetely the case of minimum, and maximum, then we will turn to nonassociative aggregation
functions.

This work is closely related and brings new insights to the following mathemetical and applied
fields:

(i) algebraic structures, such as rings, groups and monoids, ordered Abelian groups. In particular,
Section 3 offers a incursion into nonassociative algebra, a domain which has been scarcely inves-
tigated. Many-valued logics dealing with bipolar notions is also concerned.

(i1) integration, measure theory by providing a new type of integral (Choquet integral w.r.t. a bi-
capacity). In the finite case, the notion bi-capacity is related to bi-set functions, which are known
in some domains of discrete mathematics and combinatorial optimization (bisubmodular base
polyhedron, see, e.g., Fujishige [1]).

(iii) decision making and mathematical economics, since the motivation of this work is rooted there.
This work offers a generalization of the well-known Cumulative Prospect Theory (see Section 5).

The material presented here is drawn from Chapter 9 of [7], a forthcoming monograph on aggre-
gation functions written by the authors.

We introduce first the fundamental concept of pseudo-difference.
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Definition 1. Let S be a t-conorm (see [8] for details on t-norms and t-conorms).

S
(i) The S-difference is defined for any (a,b) in [0,1]? by a — b := inf{c € [0,1] | S(b,c) > a}.
(i) The pseudo-difference associated to S is defined for any (a,b) in [0,1]* by

S

a—>b ifazb

. S
aSsb:=93_(p>a) ifa<b
0, ifa=0>,

S
Proposition 1. If' S is a continuous Archimedean t-conorm with additive generator s, then a — b =
s7H OV (s(a) —s(b))), and aSsb =g ' (g(a) — g(b)), with g(x) := s(x) for x > 0, and g(x) := —s(—x)
for x < 0.

2 Associative bipolar operators

In this section, we want to define associative and commutative operators where 0O is either a neu-
tral element or an annihilator element, which we call respectively (symmetric) pseudo-addition and
(symmetric) pseudo-multiplication. This section is mainly based on [3].

We denote respectively by @,® : [~1,1]*> — [—1, 1] these operators.

2.1 Pseudo-additions
Our basic requirements are the following, for any x,y,z € [—1,1]:

Al Commutativity: xy =y P x

A2 Associativity: x® (y®z) = (x®y) Dz

A3 Neutral element x0 =08 x = x.

A4 Nondecreasing monotonicity: x@®y < X’ @y, for any x < x/, y <.

The above requirements mean that we recognize @ as a t-conorm when restricted to [0, 1], which we
denote by S. Since [—1, 1] is a symmetric interval, and if O plays the role of a neutral element, then we
should have

A5 Symmetry: x@ (—x) =0, forall x €] — 1,1].
From A1, A2, and AS we easily deduce (—x) @ (—y) = —(x®y), V(x,y) €] —1,0]>U]0,1[>. Then,
A3 and A4 permit to define @ on [—1,1]:

S(x,y) if x,y € [0,1]

_S(_xa _y) ifxvy € [_130}

_ |
YOV ves (o) ifxe[01],y€]-1,0] M)

lor —1 ifx=1,y=—1,

with the remaining cases being determined by commutativity. We distinguish several cases for S. We
write for convenience x @ (—y) = xOy for any x,y € [—1,1]%.
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S is a strict t-conorm with additive generator s. Let us rescale @ on [0, 1]?, calling U the result:

(2z—=1)@®(2t—1))+1
5 .

U(z,1) := 2)

We introduce g : [—1,1] — [—e0,00] by g(x) := s(x) for positive x, g(x) := —s(—x) for negative x,
i.e., g is a symmetrization of s. Then x®y = g~ (g(x) +g(y)) forany x,y € [ 1, 1], with the convention
0o — oo = oo Or —oo. Also, U is a generated uninorm that is continuous (except at (0,1) and (1,0)),
strictly increasing on ]0, 1[?, has neutral element % and is conjunctive (respectively, disjunctive) when
the convention co — oo = —oo (respectively, oo — co = o). Finally, we have:

Theorem 1. Let S be a strict t-conorm with additive generator s and @ the corresponding pseudo-

addition. Then (]—1,1[,®) is an Abelian group.

S is a nilpotent t-conorm with additive generator s. It is easy to see that the construction does not lead
to an associative operator.

S is the maximum operator. This case will be treated in Section 3.

S is an ordinal sum of continuous Archimedean t-conorms. In this case too, associativity cannot hold
everywhere.

2.2 Pseudo-multiplications
Our first requirements are, for any x,y,z € [—1,1]

MO 0 is an annihilator element: x®0=0®Rx =0
M1 Commutativity: x®y =y Qx
M2 Associativity: x® (y®z) = (x®Yy) ®z.

Let us adopt for the moment the following.

M3 Nondecreasing monotonicity on [0,1]*: x®y < ¥ ®y, forany 0 <x < ¥’ <1,0<y <y < L.
M4 Neutral element for positive elements: x® 1 = 1 ® x = x, for all x € [0, 1],

then axioms M1 to M4 make ® a t-norm on [0, 1]2, and M0 is deduced from them. If pseudo-addition
and pseudo-multiplication are used conjointly, a natural requirement is then distributivity.

MS5 Distributivity of ® with respectto ®: x® (y®z) = (x®y) P (x®z) and (xDy)®Rz= (x®2) B (yR2)
for all x,y,z € [—1,1].

Then under Al to A4, and M1 to M4, axiom M5 can be satisfied on [0, 1]? if and only if & = V.
Finally we can show:

Proposition 2. Under M1 to M5 and A3, A5, ® has the form x @y = sign(x-y)T(|x|, [y
t-norm T.

), for some

If distributivity is not needed, we can impose monotonicity of ® on the whole domain [—1,1]%:
M3’ Nondecreasing monotonicity for @: x@y <X @y, -1 <x <X <1, -1 <y<y < 1.
Then, if we impose in addition

M4’ Neutral element for negative numbers: (—1) ® x = x for all x < 0,
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up to a rescaling in [0, 1]2, ® is a nullnorm with @ = 1/2. In summary, we have shown the following.

Proposition 3. Under M1, M2, M3’, M4 and M4’, ® has the following form:

T(x,y) ifx,y=>0
x@y=1<¢Skx+1,y+1)—1 ifx,y<0
0 otherwise

for some t-norm T and t-conorm S.

3 Symmetric minimum and maximum

The previous section has shown that except for strict t-conorms, there was no way to build a pseudo-
addition fulfilling requirements A1 to A5. Hence extending the maximum on [—1,1]? in this way is
not possible. However, we will show that this is in fact almost possible (see [2] for details).

3.1 The symmetric maximum
Our basic requirements are:

SM1 @ coincide with V on (L*)2.

SM2 Commutativity

SM3 Associativity

SM4 0 is a neutral element

SM5 —x is the symmetric image of x, i.e. x@(—x) = 0.

These requirements are already contradictory. In fact, SM1 and SMS imply that associativity (SM3)
cannot hold. The following can be shown.

Proposition 4. Under conditions (SM1), (SM5) and (SM6), no operation is associative on a larger
domain than @ defined by:

(X VIyl) iy # —xand x| VIy| = —xor = —y

x@y=<0 ify=—x 3)
x| V [y otherwise.
Except for the case y = —x, x@Y equals the absolutely larger one of the two elements x and y.

3.2 Symmetric minimum

The case of the symmetric minimum is less problematic. The following requirements determine it
uniquely.

Sm1 @ coincides with A on (LT)?

Sm2 Rule of signs: —(x@®y) = (—x) Oy =x®(—y), forall x,y € L.

Under Sm1 and Sm2, we get

xoy = § ~(HIADI) if sign(x) # sign (y)
' x| A [y otherwise.

“
As for pseudo-multiplications, we could as well impose a different rule of signs, namely —(x®y) =

(—x) ®(—y), and impose monotonicity on the whole domain. This would give, up to a rescaling, a
nullnorm, namely Medg 5(x,y) := Med(x,y,0.5).
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4 Separable aggregation functions

We consider here not necessarily associative functions A. A simple way to build bipolar aggregation

functions is the following. Let AT, A~ be given aggregation functions on [0,1]”. We define A on

[—1,1]" by A(x) := y(AT(xT),A"(x7)), Vxe[-1,1]", wherex" :=xV0,x :=(—x)",and yisa

pseudo-difference (Definition 1). A bipolar aggregation function defined as above is called separable.
We give as illustration three cases of interest.

At = A~ is a strict t-conorm S. If AT = A~ is a strict t-conorm S with generator s, and Og is taken
as pseudo-difference, we recover the construction of Section 2.

A" = A~ is a continuous t-conorm S. 'We know by Section 2 that associativity is lost if S is not strict.
Restricting to the binary case, it is always possible to apply the definition of & given by (1), taking
the associated pseudo-difference operator ©s. For example, considering S = Sy, we easily obtain

Alxy) = ((x+y) A1)V (=1).

At A~ are integral-based aggregation functions. An interesting case is when AT, A~ are integral-
based aggregation functions, such as the Choquet or Sugeno integrals. Then we recover various defi-
nitions of integrals for real-valued functions. Specifically, let us take A", A~ to be Choquet integrals
with respect to capacities u™,u~, and  is the usual difference ©r,. Then:

— Taking u™ = u~ we obtain the symmetric Choquet integral or éipoé integral é'y(x) = Gu(xt) —
Cu(x7). o

— Taking u~ = u* we obtain the asymmetric Choquet integral C,(x) := Cy(x) — Ga(x7).

— For the general case, we obtain what is called in decision making theory the Cumulative Prospect
Theory (CPT) model [9] CPT,+ - (x) := G+ (xT) — G- (x7).

5 Integral-based aggregation functions

It is possible to generalize the above definitions based on the Choquet integral to a much wider model
called the Choquet integral w.r.t bicapacities (see [4, 5] and [6] for a general construction).

We introduce Q(N) := {(A,B) | A,BC N,ANB = @&}. A bicapacity w on N is a function w :
Q(N) — Rsatisfying w(@,2) =0, and w(A, B) < w(C,D) whenever A C C and B O D (monotonicity).

Definition 2. Let w be a bicapacity and x € R". The Choquet integral of X with respect to w is given
by Cu(x) := G . (|X]), where vyy is a game on N defined by vy (C) == w(CNNg,CNNy ), and
Nf:={ieN|xi=0}, Ny =N\N{.

The CPT model (and hence the asymmetric and symmetric Choquet integrals) are recovered taking a
bicapacity of the form w(A,B) = u; (A) —u_(B), for all (A,B) € Q(N).
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In the context of point-set lattice-theoretic approach to fuzzy topological spaces fuzzy points and local
properties play an important role either from a theoretical point of view or for application to topology
and topological systems. In this respect, several kinds of relations involving fuzzy points and fuzzy
sets have been considered.

In [3] a so called attachment relation between L-sets is proposed, depending on a suitable family of
filters in L. This allows to state functorial relationship between the category of L-topological spaces, L-
Top, and either the category Top of topological spaces or the category TopSys of topological systems,
as these are defined in [6]. In particular, under the assumption of spatiality there is an embedding of
L-Top into TopSys and an embedding of L-Top into Top. The latter one maps (X, 1) to a topological
space (Sx,T*), where Sy is the set of all L-points on X and t* is frame-isomorphic to .

The basic definitions and results can be summarized as follows.

Definition 01 An attachment family, or more simply an attachment in a complete lattice L is a family
F ={F|\ € L} of subsets of L with

-F =0
— F, completely coprime filter VA # 1.

Definition 02 The attachment is said to be

— spatial if
(Sp)OLfB = HXZ(XEF;L,B%FX
— isotonic if
(l.)}\'SHjFKng
— symmetrical if
(s)ue F,=AeF,
— inverse isotonic if
(ii) i C Fy = A <u

The following relationship between the conditions listed in the above definition holds.

Proposition 03 For any attachment F in L one has

= (5) = ()
= (5), (i) = (sp).

If ¥ is an attachment in L, a binary relation A4, called attachment relation, is defined between L-sets
on any set X
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A A Bif B(x) € Fy(y) for some x € X.

For any A € L, denote A* = {\, € Sx| A, A A}
and consider the function
w1 LX — P(Sy), Ars A*

Then

Proposition 04 Whatever is the fixed attachment
(1) *is aframe map;

under (sp)

(2) *is an embedding of posets.

Let (X, 1) be any L-topological space and denote T* = {A*| A € t}.

Then clearly (Sy,t*) is a topological space; moreover, T and t* are isomorphic frames if the
attachment is spatial

For any function f : X — Y, consider

f* Sy — Sy, ?\‘x = }"f(x)-

Then the correspondences

(X7T> — (SXvT*)
f €L-Top((X,1),(Y,0)) — f* € Top((Sx,T*),(Sy,0"))

define a functor
* : L-Top — Top.

and the correspondences
(XvT) = (SX’T”q)v [ (f*v(f{)()p)

define a functor
*sys - L-Top — TopSys.

Moreover the following holds.

Proposition 05 If the attachment is spatial, then the functors * : L-Top — Top and *gy, : L-Top —
TopSys are embeddings.

Interesting examples of attachment come from lattice-ordered implicative and multiplicative struc-
tures related to (non-classical ) logics with primes (see [3]): roughly speaking, if L is such a kind of
structure, an L-point A, is attached to an L-set A if the product (i.e. conjunction) of the existing value A
of x and the belongness degree A(x) of x to A does not go below some prescribed prime. The negation
operation in L may be involved, too.

We notice the following results relating special attachment relations with spatial frames and with
order reversing involutions and primes in L.

Proposition 06 For any complete lattice L the following are equivalent

1. A spatial attachment exists in L
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2. Lis a spatial frame
3. VA & uaprime o € L exists s.t. u < o, A £ O

Proposition 07 Let L be a complete lattice. An attachment F exists in L that satisfies (ii) and (s) if
and only if an order reversing involution exists in L and all the elements of L other than T are prime.

This latter result shows that thirty years of applications of quasi-coincidence relation to fuzzy
topological spaces, usually obtained by specific and long computations, get a motivation and a sim-
plification from the above embedding and isomorphisms. In fact the quasi-coincidence relation in-
troduced in [5] and widely considered in Chinese schools since 1980 comes from the Fukasiewicz
algebra ([0,1],V,A,®r,—1,0,1) by the attachment ¥ = {F| A € L}, where F;, = {u| A®Lu > 0},
which satisfies (i1) and (s).

Most applications can be considered in L-topological spaces, for any spatial frame L: as an example,
in [4] some basic topological notions such as the neighborhood structure, interior and exterior of L-
sets, separation axioms and compactness are introduced in the L-topological space (X,T), by means
of a spatial attachment in L, not just rephrasing those concepts as in classical topology but concretely
transporting the corresponding notions in the space (Sx,T*) by the functor x : L-Top — Top.

The g-neighborhood structure of an L-topological space (X,T) is nothing but the neighborhood struc-
ture in the space of L-points (Sx,T"*) which explains why it works fine to approach most L-topological
properties and in the applications to discrete fuzzy topological dynamical systems (see e.g. [1]), whose
points are, in fact, fuzzy points.

Eventually we remark that the functor described above from L-Top to TopSys gives a useful con-
tribution to the detailed analysis of the relationship between lattice-valued topology and topological
systems exploited in [2].
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Mathematical fuzzy logic (fuzzy logic as a kind of mathematical logic) has been presented at most
Linz meetings (the present author lectured about it in years 1996, 1997, 2000, 2003, 2004, 2005,
2007). The present contribution continues this by presenting a (surprising) fact on decidability and
undecidability of fuzzy theories. In classical logic the extension of a decidable theory T by a sin-
gle axiom ¢ is again a decidable theory thanks to the deduction theorem: 7,0 - y iff T - ¢ — .
(It follows that a decidable theory has a decidable complete extension, which is useful e.g. for the
proof of essential undecidability some theories.) Also for some fuzzy logics (Godel logic, logics with
Baaz’s Delta) provability in 7', @ recursively reduces to provability in 7" and decidability of 7" implies
decidability of (7,@) due to specific deduction theorem of these logics. But in general the answer
is negative. We are going to present a decidable theory T over Lukasiewicz logic and its extension
(T, @) which is undecidable (but of course recursively axiomatizable). We shall construct 7' and ¢ in
Lukasiewicz propositional logic but it gives trivially a example in predicate logic (propositional vari-
ables understood as nullary predicates, then each formula is logically equivalent to a quantifier free
formula).

Let R(n,m) be a recursive relation on natural numbers such that its existential projection (3n)R(n,m)
is not recursive. Let T be a theory over Lukasiewicz propositional logic whose language consists of
propositional variables g, p, (n positive natural) and whose axioms are ¢* — p,, for all n,m with
R(n,m). (¢" is g& ... &q, n conjuncts, as usual.)

The theory has a trivial crisp model evaluating ¢ by 1 and evaluating p,, by 1 iff (3n)R(n,m),
otherwise evaluating p,, by 0.

Theorem. (7, q) b p,, iff (3n)R(n,m), hence (T, q) is undecidable.
(Easy.)

Theorem. The theory T is decidable.

Surprisingly difficult. Hint: The set of all formulas ¢ provable in T is of course ¥; (recursively
enumerable). One can show that also the set of formulas unprovable in T is X;: one can recursively
reduce the problem of T-unprovability of a formula to the satisfiability problem of open formulas in
the ordered field of reals, the latter being decidable (even PSPACE, [1]).

Remark. (1) The theorem trivially holds for BL; simply add the schema ——& — o for each o to
the axioms of T'.

(2) In my paper [3] a weak arithmetic is defined over the fuzzy logic BLV and Godel’s incomplete-
ness theorem for it is proved (each axiomatizable extension of this arithmetic consistent over BLV is
incomplete in the sense of fuzzy logic) and it is claimed that essential undecidability follows. But the
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problem of the existence of a decidable complete extension of a decidable theory over the logic BLY

seems to remain open as well as the problem whether the weak arithmetic over BLY is essentially
undecidable.
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1 Introduction

The algebra of truth values of type-2 fuzzy sets was introduced by Zadeh in 1975, generalizing the
truth value algebras of ordinary fuzzy sets, and of interval-valued fuzzy sets. This algebra is quite a
complicated object. There is an extensive literature on it. Many fundamental mathematical properties
of this algebra have been developed, but many basic questions remain open. This paper addresses
some questions about the variety generated by this algebra of truth values, and our principal result is
that it is generated by a finite algebra. In particular, this algebra of fuzzy type-2 truth values is locally
finite. Many natural questions remain; for example, finding an equational base for the variety.

We begin by giving the definition of our algebra, and listing some of its known properties.

2 The algebra of fuzzy truth values of type-2 fuzzy sets

The underlying set of the algebra of truth values of type-2 fuzzy sets is M = Map([0, 1], [0, 1]), the set
of all functions from the unit interval into itself. The operations imposed are certain convolutions of
operations on [0, 1]. These are the binary operations LI and 1, the unary operation *, and the nullary
operations 1 and 0 as spelled out below.

(fug) (x) =sup{f(y)Ng(z):yVz=ux} )
(fr1g) (x) =sup{f(y) Ag(z) :yNz=x}
frx)=sup{f(y): 1 —y=x}=f(1-y)

- 0ifx 1 _ lifx=0

160 = { Lifx=1 0400 = {Oifx;éO

These yield the algebra Ml = (M,LI,1M, *,1,0), the algebra of truth values for fuzzy sets of type-2.
Using some auxiliary operations, it is fairly routine to verify the following properties of the algebra
M. The details may be found in [1].

Corollary 1. Let f, g, h € M. The following equations hold in M.

L fuf=frmf=r

2. fUg=gUf; frg=gnf

3. fU(gUh) = (fUg)Uh; f(grh) = (frg)rh
4. Inf=f0uf=f

5. fu(fng)=rfn(fug)

6. f**:f

7.

(fUg) =f Mgt (fng) =fug
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Easy examples show that M is not a lattice. However, M is a De Morgan bisemilattice—a general
algebra with two binary operations, both of which are idempotent, commutative, and associative, and
a unary operation satisfying (6) and (7). There is a fairly extensive literature on distributive bisemilat-
tices, but M is not distributive.

Notice that the algebra M has an additional equation connecting directly the operations LI, and I,
namely equation (5).

3 The main results

We begin with a bit of notation, and then list our main results.

- M= (M,n,u,*0,1).
— V(M) denotes the variety generated by the algebra M.
— V(EQ) denotes the variety generated by the equations in (1)—(7) above.

Definition 1. An algebra is locally finite if every subalgebra generated by a finite subset is finite. A
variety is locally finite if every member of it is locally finite.

Since V(EQ) contains all ortholattices, it is not locally finite, as it is well known that ortholattices
are not locally finite.

Theorem 1. M = (M,M,L, *,0,1) is locally finite with a uniform upper bound on the size of a subal-
gebra in terms of the size of a generating set.

Corollary 2. The variety V (M) generated by M is locally finite.

Corollary 3. M satisfies an equation not a consequence of the equations in (1)—(7) above. Thus this
set of equations is not an equational base for the variety generated by M.

We have not yet found such an equation. Actually, we have a stronger result than Theorem 1.

Theorem 2. 1V (M) is generated by an algebra with 32 elements. In particular, this variety is locally
[inite.

The proof of this theorem is effected by showing that 7/ (M) is generated by the subalgebra E =
({0,131, 1,11, *,0,1) of M, and then constructing homomorphisms of [E into an appropriate algebra
with 32 elements.

Analogous results hold for the algebra M without the unary operation *, except that the variety
that algebra generates is generated by an algebra with 8 elements.

We have not found an equational base for the variety %/ (M), with or without the unary operation
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The purpose of this talk is threefold. First, it is intended to convey an idea of the state-of-the-art in the
field of fuzzy logic-based machine learning, to be understood as the application of theoretical con-
cepts, methods, and techniques from fuzzy set theory and fuzzy logic in the field of machine learning
and related research areas, such as data mining and knowledge discovery. Second, the potential contri-
butions that fuzzy logic can make to machine learning shall be assessed in a somewhat systematic and
critical way, highlighting potential advantages of fuzzy extensions and recent advances in combining
machine learning methods with fuzzy modeling and inference techniques, but also pointing to some
deficiencies and pitfalls of this line of research. Finally, some promising directions of future research
shall be sketched and promoted, including problems of ranking and preference learning, the represen-
tation of uncertainty in model induction and prediction, and the use of fuzzy modeling techniques for
feature generation.
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Abstract. First we shall give a historical overview in which we shall confine our attention to the alge-
braic development of left-continuous t-norms only. It will be followed by recent results of the speaker: The
main geometric aspects of the study of residuated lattices will be summarized together with a new finding
in this direction. Then the structural description of both e-involutive uninorms on [0, 1] and e-involutive
finite involutive uninorm chains will be presented. This description involves a striking new construction,
called skew-symmetrization, in which one has to leave the accustomed residuated setting, and has to enter
a co-residuated setting too. The main “philosophical” contribution of this result says: for the description
of residuated structures one needs as well co-residuation; it is a surprising observation in the theory of
residuated lattices, a theory which goes back to 70 years.

1 Historical overview, geometric aspects

Many mathematical theories dealing with t-norms have been using only the left-continuity assump-
tion for the t-norm. Despite a complete structural description of continuous t-norms has been available
since 1957 [12] not even an example left-continuous t-norms was known till a good decade ago. Then
the first example, the nilpotent minimum was introduced in [2]. Even after this paper a conjecture
went to print saying that the nilpotent minimum (up to isomorphism) may be the only left-continuous
(but not continuous) t-norm. Next a sequence of papers was published, mainly by the author of the
present abstract, in which several methods constructing left-continuous t-norms have been introduced.
For some details, see [4] and the references therein. The sudden abundance of example left-continuous
t-norms has called for structural description of any kind. In the opinion of the author such a character-
ization for the whole class of left-continuous t-norms does not exist. However, this does not exclude
the possibility of characterizing subclasses of them. In an attempt to attach this problem decomposi-
tion theorems have been established for the rotation, the rotation-annihilation and the triple rotation
theorems. An important structural description has been given for the weakly cancellative class in [3]
by relating them to full Hahn groups. Another important result is that the rotation construction is
descriptive enough to characterize the structure of perfect IMTL-algebras [10].

The extreme structural complexity of the class of left-continuous t-norms has called for a better
insight. In response to this requirement a novel geometric approach to understand the structure of
residuated lattices has been introduced [7, 6]. The main focus has been to determine how the associa-
tivity property can be seen from the surface of the graph of a commutative associative operation and
from the sections thereof. This geometric understanding of associativity has several immediate alge-
braic applications including the introduction of the rotation construction. Next, motivated by the mail
result of [11] another geometric result, the so-called reflection-invariance lemma has been established

* Supported by the EC MC grant 219376 and by the OTKA grant 76811.
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in [5]. It is this lemma that has lead the author to observe that co-residuated operations play a crucial
role in the algebraic study of residuated lattices, a topic which is in the focus of the recent talk. As
a demonstration the structural description of e-involutive uninorms will be presented here. The struc-
tural description inevitably relies on co-residuated operations which are derived from the uninorm to
be described, thus leading to the notion of skew pairs and skew duals.

2 Structural description of e-involutive uninorms

Residuated lattices and substructural logics are subjects of intense investigation. Substructural logics
encompass among many others, classical logic, intuitionistic logic, relevance logics, many-valued log-
ics, fuzzy logics, linear logic and their non-commutative versions. Equivalent algebraic counterparts
of substructural logics are classes of residuated lattices. Below we give a structural description for
both e-involutive uninorms on the real unit interval [0, 1] and finite e-involutive uninorm chains.

For any binary operation e (on a poset) which is commutative and non-decreasing one can define
its residuum —, by xey <z <= x—,z >y . The displayed equivalence is often referred to as
adjointness conditions. If —, exists, it has an equivalent description, namely, — is the unique binary
operation on the poset such that we have x —, y = max{z | xez < y}.

Let C = (X,<,1,T) be a bounded poset. A involution over C is an order reversing bijection on
X such that its composition by itself is the identity map of X. Involutions are continuous in the order
topology of C. T-conorms (resp. t-norms) over C are commutative monoids on X with unit element |
(resp. T). T-conorms and t-norms are duals of one another. That is, for any involution ” and t-conorm
@ over (, the operation ® on X defined by x®y = (x'@®y’)’ is a t-norm over C. Vice versa, for any
involution ’ and t-norm ® over C, the operation & on X defined by x®y = (¥’ ®y’)’ is a t-conorm
over C. Uninorms over C [13, 1] are commutative monoids on X with unit element e (which may be
different from L and T). Every uninorm over C has an underlying t-norm © and t-conorm @& acting
on the subdomains [L,e] and [e, T, respectively. That is, for any uninorm e over C, its restriction to
[L,e] is a t-norm over [, e], and its restriction to [e, T] is a t-conorm over [e, T].

Definition 1. (X, <, | T e, f,e) is called an involutive uninorm algebra if C = (X,<,1,T) is a
bounded poset, & is a uninorm over C with unit element e, for everyx € X, x—, f =max{z € X | xez <
[} exists, and for every x € X, we have (x —, ) —+ f = x. If C is a chain, we call (X,<,1,T e, f,®)
an involutive uninorm chain. In an involutive uninorm algebra one can define an order-reversing
involution by X' = x —, f.

Definition 2. (X, <, 1, T, e, &) is called an e-involutive uninorm algebra if (X, <, L, T e,e, &) is an
involutive uninorm algebra.

Definition 3. For any binary operation e (on a poset) which is commutative and non-decreasing one
can define its co-residuum «—, by xey > 7 <= x<—¢2z < y. If <, exists it has an equivalent
description: <, is the unique binary operation on the poset such that x <4y =min{z | xez < y}.

Definition 4. For any commutative residuated chain (X,<,®,—q, 1), define ® : X x X — X by
x@®y=inf{u®v | u>x,v >y}, and call it the skewed pair of @. For any commutative co-residuated
chain (X, <, ® —g,1), define ® : X xX - X by x®y=sup{u®v | u < x,v <y}, and call it the
skewed pair of ®. Call (&, ®) a skew pair.
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Definition 5. Let (L, <) be a chain and Ly C Ly. Let (Ly,®,—a, <, T ) be a commutative residuated
chain and ' be an order reversing involution on L. The operation © is said to be dual to @ with
respect to if ® is a binary operation on (L;) ={x' | x € L} givenby x©y = (X' ®Y'). We say that
the operation ® is skew dual to & with respect to’ if ®is the skewed pair of ®.

Definition 6. Let C = (X, <, 1, T) be a bounded chain, and' be an involution on X with fixed point
e € X. For any left-continuous t-conorm @ on [e, T|, define its skew symmetrization s : X — X as
follows.

x®y ifx,y€le,T]

(x—ay) ifxele,T)andy € [L,e] and x <y
(y—ax) ifxe[Ll,e]landy€ e, T)and x <y
(Yoy) ifxyellel ’
X' —ey ifxe[l,elandycle, T]andx>y
Y—ex ifxele,Tlandy€e|[L,elandx>y

XBsy = 1

where ® denotes the skewed pair of .
For any left-continuous t-norm © on [ L e|, define its skew symmetrization @5 : X — X as follows.

(@) ifxy€le,T]
X —ey ifx€le,T]andy€ [l elandx<y
@y = Y—eox ifxe[Ll,elandy€c e, T]andx<y @
* (y—oX) ifxele,Tlandy€e[L,e]landx >y’
(x—oY) ifxe[Ll,elandy€le, T]and x>y
xX@y ifx,y€[L,e]

where ® denotes the skewed pair of ©.

Theorem 1. Any e-involutive uninorm on [0, 1] and any finite e-involutive uninorm chain can be rep-
resented as the skew symmetrization of its underlying t-conorm or t-norm.

Corollary 1. For any e-involutive uninorm chain on [0,1] and for any finite e-involutive uninorm
chain, its underlying t-norm and t-conorm form a skew dual pair with respect to'. Furthermore, @ is
self skew dual with respect to.
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Abstract. We study Lipschitzian strong negations and Lipschitzian De Morgan triplets (7, S,n), where T
is a t-norm, S is a t-conorm, and n is a strong negation. We also investigate the relationships between the
best Lipschitzian constants of connectives T, S and n. Several examples are included.

1 Introduction

In this contribution we study Lipschitzian strong negations and Lipschitzian De Morgan triplets
(T,S,n) of fuzzy connectives, where T is a t-norm, S is a t-conorm, and n is a strong negation [1,
4-6], especially the relationships between the best Lipschitzian constants of connectives 7', S and n.
In the paper all functions 7', S and n are considered to be Lipschitzian with respect to the L;-norm.
The Lipschitzian property of connectives T, S, n is very desirable, because it guarantees the stability
of these functions with respect to input errors [2, 3]. Simply said, k-Lipschitzian functions do not in-
crease the changes of inputs by more than a multiplicative factor of k. Therefore this property is of
great importance in fuzzy sets and fuzzy logic applications where possible errors in input values of
membership functions cannot be avoided.

2 Lipschitzian strong negations

Definition 1. (i) A decreasing function n: [0,1] — [0,1] is called a negation if
n(0)=1 and n(l)=0.
(ii) A negation n is a strong negation if it is an involution, i.e., non = id| ).

Note that each strong negation is a strict negation, i.e., it is continuous and strictly decreasing.

We will be interested in Lipschitzian (strong) negations. Lipschitzian properties of one place
[0,1] — [0, 1] functions are defined as follows.

Definition 2. Let ¢ € [0,0[. A function f: [0,1] — [0, 1] is c-Lipschitzian if for all x,, x, € [0,1],
[f(x1) = f(e) < ¢l —xa. (D

Evidently, if f is k-Lipschitzian, then it is also p-Lipschitzian for any p > k.
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Definition 3. (i) A function f: [0,1] — [0, 1] is Lipschitzian if

ap { L) =10

X1 — X2

|X1,x2€[0,1],x175x2} 2)

is finite.
(i) If f is Lipschitzian then the number c* which is equal to the supremum in (2), is called the best
Lipschitzian constant of f.

Evidently, if n: [0,1] — [0, 1] is a c-Lipschitzian negation then necessarily ¢ > 1.

Proposition 1. Fix a constant ¢ € [1,eo[. Then for each c-Lipschitzian strong negation n it holds n, <
n < 7., where the functions n_,7i.: [0,1] — [0, 1] are c-Lipschitzian strong negations given by

n.(x) = max <1—cx, 1:x) , 3)
_ . x
7(x) = min (c(l—x),l—g>. 4)

The function n, is the smallest c-Lipschitzian strong negation and 7, is the greatest one.

Example 1. Let ¢ = 1. Then for each x € [0, 1], n;(x) = 7;(x) = 1 —x, which means that the only
1-Lipschitzian strong negation is the standard negation n,: [0, 1] — [0, 1], ny(x) =1 —x.

Proposition 2. For the best Lipschitzian constant ¢* of a Lipschitzian strong negation n it holds

(i) ¢* = |n'(0")] if n is a convex function,
(i) ¢* = |n'(17)] if nis a concave function.

(Here n' denotes the derivative of n.)

Example 2. Consider the Sugeno negations {n;b};be]_17m[ given by

1—x

n}b(x):m, X e [0,1]

All functions ny, are strong negations. Moreover, the functions n) are concave for A €] — 1,0}, and

convex for A € [0,0[. As the derivative is given by n; (x) = —ﬁ, x € [0, 1], by Proposition 2, the

best Lipschitzian constant of n; is

= ﬁ if)\.E]—l,O[,
ATV 14Af Ae 0,0

Example 3. The function n: [0,1] — [0,1], n(x) = v/1 —x2, is a strong negation, but it is not Lips-
chitzian. The function 7 is concave and |n'(17)| = 0.

The following claim is immediate due to the involutivity of strong negations.

Proposition 3. If n is a c-Lipschitzian strong negation then at all points, where the derivative exists,
it holds

' (x)| € [ic]
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Note that the derivatives of the strong negations n,, 71, defined by (3), (4), have minimal ranges,
Rannl. = Ranw, = {—1,—c}.

Trillas [13] characterized all decreasing involutions on the interval [0, 1]. According to this char-
acterization, see also Th. 2.38 in the monograph by Klement et al. [6], each strong negation n can be
represented in the form

n(x) =g '(1-g(x)),

where g: [0,1] — [0, 1] is a monotone bijection. The function g is called a generator of .

Proposition 4. Let g: [0,1] — [0,1] be a monotone p-Lipschitzian bijection, whose inverse function
-1

g ' is r-Lipschitzian. Then the strong negation n generated by g is c-Lipschitzian where c = p .r.
Remark 1. By Proposition 4, if p* is the best Lipschitzian constant of the function g and r* is the
best Lipschitzian of g~!, then the strong negation n generated by g has the best Lipschitzian constant
c < p*.r.

Proposition 5. For each Lipschitzian strong negation n — with the best Lipschitzian constant c* —

there is a monotone bijection g: [0,1] — [0,1] generating n, such that g is p*-Lipschitzian, g~ is

r*-Lipschitzian and ¢* = p*.r*, where p*, r* are the best Lipschitzian constants of g and g~ , respec-

tively.

Note that if n is a c-Lipschitzian strong negation, then the function

1—n(x)+x
s =" e, ®
is an increasing [0, 1] — [0, 1] bijection generating n. It can be shown that the function g is p* = <F-
Lipschitzian and g~ ! is r* = C%_fl -Lipschitzian, and these constants are the best Lipschitzian constants

for g and g~!. Evidently, ¢* = p*.r".

The following example illustrates Proposition 5.

Example 4. Consider again the Sugeno negations {”k}xe]—l,w[’ see Example 2. Given a A € |—1, 0],
the function gy : [0,1] — [0, 1],
(24 L) x+Ax2

an(x) = 2(1+Ax)

constructed by (5), generates n; . All functions g; are differentiable, with the derivative

, 1 1+A
&.(x) = 5T 20+
IfA>0,
Jﬁ%gﬁwsﬁf.
The best Lipschitzian constant for g; is py = 7”2'2 and for g, Uis ry = zgjjz)”). By Proposition 5, for

the best Lipschitzian constant c; of ny we have ¢; = p;.ry = A+ 1, which agrees with the result of

Example 2. Similarly, for A € |—1,0], p; = 2{‘@%, ry = x%z thus ¢ = p;.ry = )\%1
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3 Lipschitzian De Morgan triplets

Assume that 7 is a t-norm, S is a t-conorm and 7 is a strong negation. A triplet (7, S,n) is a De Morgan
triplet, if for all (x,y) € [0,1]? it holds

S(x,y) =n(T (n(x),n(y))),

or, equivalently,
T(x,y) = n(S(n(x),n(y))).
More details can be found, e.g., in the monographs [4-6].

In the next parts of the paper we will be interested in Lipschitzian De Morgan triplets. A De
Morgan triplet (7,S,n) is called a Lipschitzian De Morgan triplet if all functions T, S and n are
Lipschitzian.

Definition 4. Let k € [0,00]. A function F: [0,1)*> — [0, 1] is k-Lipschitzian if for all x,x2,y1,y2 €
[0,1],
|F(x1,51) = F(x2,y2)[ <k (Jx1 —x2 +[y1 —y2])- (6)

Definition 5. (i) A function F: [0,1]> — [0,1] is Lipschitzian if

Sup{ |F (x1,y1) — F(x2,¥2)]
|x1 — x| + [y1 — 2|

| (x1,31), (x2,y2) € [0,1]2, (x1,1) # (xz,yz)} (N

is finite.
(ii) If F is Lipschitzian then the number k* which is equal to the supremum in (7), is called the best
Lipschitzian constant of F.

Note that for each Lipschitzian function F, k* = inf{k € [0,o[ | F is k — Lipschitzian}.

From the existence of neutral element, it follows that neither t-norms nor t-conorms can be k-
Lipschitzian with k < 1. Thus the smallest best Lipschitzian constant £* in the framework of t-norms
and t-conorms is k* = 1. The class of 1-Lipschitzian t-norms has been characterized by Moynihan
[10]. According to this characterization a continuous Archimedean t-norm 7 is 1-Lipschitzian if and
only if it has a convex additive generator. Note that 1-Lipschitzian t-norms are copulas. More details
on t-norms can be found, e.g., in monographs [1, 6, 11].

A partial characterization of k-Lipschitzian t-norms for k > 1 has been given by Shyu [12]. A
complete characterization of Archimedean k-Lipschitzian t-norms based on the k-convexity of their
additive generators has been given by Mesiarova [7-9]. In general, a t-norm 7' is k-Lipschitzian if and
only if it is an ordinal sum of t-norms with k-Lipschitzian summands [7].

Theorem 1. Let (T,S,n) be a De Morgan triplet with a strong negation n. If the t-norm T is a-
2

Lipschitzian and the negation n is c-Lipschitzian then the t-conorm S is b-Lipschitzian, where b=ac~.
Corollary 1. A De Morgan triplet (T,S,n) with a strong negation n is Lipschitzian if and only if the
functions T and n (S and n) are Lipschitzian.

Remark 2. (i) Obviously, if the t-conorm S is b-Lipschitzian and the negation # is c-Lipschitzian then
T is a a-Lipschitzian t-norm with a = bc?.

(i) Though the constants b = ac? in Theorem 1 and @ = b¢? in item (i) of this remark, need not be
the best Lipschitzian constants for S and 7', respectively, Theorem 1 and Remark 2(i) cannot be
strengthen in general.
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(iii) For the best Lipschitzian constants a*, b* and ¢* of functions 7', S and n, respectively, it holds
a* <b*.(c*)? and b* < a*.(c*)?. Evidently, both inequalities can be turned into equalities iff ¢* = 1,
i.e., iff n = ng, and then b* = a*.

Example 5. Let (T,Sy,n2) be the De Morgan triplet with the Lukasiewicz t-conorm Sz, Sz.: [0, 1]2 —
[0,1], S.(x,y) = min(x+y,1), which is 1-Lipschitzian, and with the negation 7z, — the greatest 2-
Lipschitzian strong negation, 7 (x) = min (2 (1 —x),1— 3), introduced in Theorem 1. Using the no-
tation from Remark 2(i), we have b = 1 and ¢ = 2. As the t-norm T is given by

itholds T (2,2) =

Wi

, T (%, %) =0, i.e., for couples

3
1
Hence, the best Lipschitzian constant for 7" is a* = 4.

In BL-algebras of Héjek [5], T is a continuous t-norm and Rr is the residual implication related
to T, ie., Rr: [0,1]* = [0,1], Rr(x,y) = sup{z € [0,1] | T(x,z) < y}. Then the negation ny: [0,1] —
[0,1] given by nr(x) = Rr(x,0), is a strong negation if and only if 7 is a nilpotent t-norm generated
by a normed additive generator ¢ (t: [0, 1] — [0, 1] is a decreasing bijection), i.e.,

T(x,y) =" (min(1,1(x) +1(»))),
and then
nr(x) =t (1 —1(x)).
A triplet (7, S,nr) is a De Morgan triplet iff S = Sy, where
Sr(e,y) =1 (max(0,1(x) +1(y) ~ 1)), (x.y) € [0,1]%.
More details can also be found in the monograph by Klement et al. [6].

Theorem 2. Let T be a nilpotent t-norm generated by a normed additive generator t. Let the function
t be p-Lipschitzian and let its inverse t~ be r-Lipschitzian. Then the De Morgan triplet (T, St,nr) is
a Lipschitzian De Morgan triplet whose components T, St and nr are p.r-Lipschitzian functions.

Note that in general the constant p.r in Theorem 2 cannot be improved. However, if p* and r* are the
best Lipschitzian constants of # and 1!, respectively, then for the best Lipschitzian constants a*, b*,
c¢* of T, St and nr, respectively, it holds a* < p*.r*, b* < p*.r* and ¢* < p*.r".

Example 6. Putt =y, i.e. t(x) =min (2(1 —x),1—%), x € [0, 1]. The function ¢ and also its inverse
are 2-Lipschitzian functions (p* = r* = 2). The t-norm T generated by ¢ is given by

x+y—1 if x+y>3

T(x,y) =< 4x+4y—6 if %§x+y<%

max (0,x+4y—4,4x+y—4) otherwise,

and the negation ny generated by ¢ is given by
. x 3

nr(x) = min (1 ~213 —x,4(1 —x)> .
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Both functions T and ny are 4-Lipschitzian (¢* = ¢* =4 = p*.r").

However, the t-conorm Sy is 1-Lipschitzian (b* = 1), because of the fact that its additive generator
s=1—t,s(x) = max (2x -1, %), is convex (compare with the result of Moynihan [10] for t-norms).
Note that S is given by

min (x—i—y,”%”) if (x,y) € [O,%]z,

St(x,y) =
() min (1, max (% +y,x+3,x+y—3)) otherwise.

Acknowledgement. The authors kindly acknowledge the support of the grants VEGA 1/0198/09 and
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1 Introduction and motivation

To explain the motivation of our work we give a short glimpse into the history of Fuzzy Topology called
more recently Lattice-Valued Topology or Many Valued Topology. In 1968, C. L. Chang [1] introduced
the notion of a fuzzy topology on a set X as a subset T C [0, 1]¥ satisfying the natural counterparts of
the axioms of topology: (1) Ox,1x €T; Q) U,Ve1=UAV €1, (3) UC 1=\ U €. Five years
later, J. A. Goguen [2] replaced the interval [0, 1] with an arbitrary complete infinitely distributive
lattice L thus obtaining the concept of an L-fuzzy topology or just an L-fopology.> In 1980, U. Hohle
[3] came to the concept of an L-fuzzy topology being an L-subset T of the powerset P(X) ~ 2%, that
isamap 7 : P(X) — Lsuch that: (1) T(0) =T(X)=1,2) T(UNV)>T{U)AT(V) for any U,
VeP(X),and 3) T(VU) > AT(U) for all UC P(X). The latter concept is now called a fuzzifying
topology, after the 1991 paper by Mingsheng Ying [4].

Finally, in 1985, the authors of this abstract independently introduced the concept of an L-fuzzy
topology X as a map T : LX — L such that: (1) T(Ox) = T(1x) = 1; Q) T(UAV) > T(U)AT(V)
YU,V € LX; 3) T(V U) > NT(U) VU C L*; see [5], [10], [11]. For historical reason we note that
in [10] the case L = [0, 1] was considered and developed, while [5] merely introduces (without further
developing) fuzzy topologies of the form 7 : LX — M with L and M being complete lattices in a
variable-basis setting 4 1a S. E. Rodabaugh [8] (see next section).

Note also that some authors (J.A. Goguen [2] was the first) consider topological-type structures
in the context of L-fuzzy sets in case when L is endowed with an additional binary operation * which
allows to introduce residuation in L. However, we will not scare this direction since our interest here
concerns mainly the role of the lattice properties of L in the research of topological-type structures in
the context of fuzzy sets.

2 (L,M)-fuzzy topologies and (L, M)-fuzzy topological spaces: Basic notions

Already in 1993, the authors of this talk started with their project to extend the well-established second
author’s theory from L = M = [0, 1] to a general theory of (L, M)-fuzzy topological spaces (so far, the
only published outcome is our papers [6], [7] ) because it was clear for us that the role of the lattice for
fuzzy sets is quite different than the role of the range lattice for the fuzzy topology. Thus we came to
the agreement to consider an (L, M )-fuzzy topology on a set X being a map T : LX — M satisfying the
properties analogous to the properties of an L-fuzzy topology defined in the previous paragraph. Since
M usually necessitates more lattice properties than L we have chosen to assume M being completely

3 In actual fact, Goguen replaced [0, 1] by — what is now called — a quantale with unit being the top element of L.
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distributive * and L being a complete lattice. The pair (X,T) is called an (L,M)-fuzzy topological
space. The aim of this talk is to present main ideas and discuss principal concepts and results of the
theory of (L, M)-fuzzy topological spaces so far developed. In the following we list the main items to
be discussed in the talk.

3 The tools

When developing the theory of (L, M)-fuzzy topological spaces we essentially rely on the auxiliary
concepts of a \/-map and a A-map, “extracting” separate conditions of an (L, M )-fuzzy topology. By
a \/-map we call a mapping S : LX — M such that S(\/ 4) > A S(A4) for each 4 C LX; a mapping
S:LX — M is called a A-map if S(A AB) > S(A) AS(B) for any A, B € L. In particular, we define an
operator T : ME — ME assigning to a map S : LX — M a \/-map T : LX — M, which moreover is
a A-map (and hence essentially an (L, M)-fuzzy topology) whenever S itself is a A-map. A pair (X, S)
will be refereed to as a \/- space (A-space) if S is a \/-map ( a A-map) resp.

Another tool essentially used and investigated in the work are powerset operators introduced by
S.E. Rodabaugh [9]. It is shown that powerset operators (f; )3, : MY — ME" and (fiu ME
ME" are both A-map preserving and \/-map preserving.

4 Lattice properties of (L, M )-fuzzy topologies

Let T(X,L,M) stand for the family of all (L, M)-fuzzy topologies on a set X. Then

- T(X,L,M) is a complete lattice in which sups and infs are defined as follows:

(/\‘2‘) (A)= A T(A) and (\/fr) a)=\{oeM:Ac \/ Tp}
TeT

TeT

where A € LX, T CT(X,L,M) and Ty = {U € LX | T(U) > a};
- (/\ (I)oc = ﬂTe"[ To.
- (V7)o =M{V7eqr Ty : v € COPRIME(M) and y < o}

where < is the way-below relation in M.

5 Category TOP(L,M)

A mapping f: X — Y where (X, Tx) and (Y, Ty) are (L,M)-fuzzy topological spaces is called contin-
wous if Ty (f~'(V) > Ty (V) for each V € LY. Let TOP(L, M) be the category with (L, M)-topological
spaces as objects and continuous mappings as morphisms. Some properties of this category are dis-
cussed. In particular, basing on the results of the previous paragraph we show the existence of final
and initial structures in TOP(L,M). This allows to describe basic operations and constructions such as
products, co-products, etc., in this category. Its full subcategories TOP(2,2), TOP(L,2), TOP(2,L) and
TOP(L,L) with appropriately chosen lattice L are, respectively, the categories of topological spaces,
of Chang-Goguen L-topological spaces, of fuzzifying topological spaces and of L-fuzzy topological
spaces.

4 The condition of complete distributivity in some cases can be weakened, however we assume it here in order to make
exposition more homogeneous
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6 Lower set valued L-topological spaces

An important special case of (L, M )-fuzzy topological spaces are (L,IL(M))-fuzzy topological spaces
where (M) is the complete lattice of lower subsets of the lattice M. Such spaces were first considered
in our paper [6] under the name lower set valued L-topological spaces.

Given an arbitrary map 7 : LX — L(M) let TV : LX — M be defined by TV (A) = \/ T (A) VA € LX.
Further, given an arbitrary map S : LX — M let §! : LX — IL(M) be defined by S'(A) =] S(A). We
show that the operations (-)¥ and (-)! give rise to an adjoint situation (-)¥ — (-)! from the category
TOP(L,IL(M)) to the category TOP(L,M).

7 Interior operators and (L, M )-fuzzy topologies
Let (X,T) be an (L,M)-\/-space, in particular, an (L, M)-fuzzy topological space. By setting
Intr(A,a) = \/{U € LX |U <A, T(U) > a},

we define a monotone operator Inty : LX x M — LX such that for all A € LX, o € M:

(1) Int(1x,0) = 1y; (2) Int(A, ) < A; (3) Int(Int(A, ), ) = Int(A,); (4) if Int(A, o) = A Vo €
M° C M, then Int(A, vM®) = A°. Conversely given a monotone operator Int : LX x M — L satisfying
properties (1) - (4), by setting

Tin(U) = \/{ot| Int(U, @) > U}

an (L, M)-\/-space (X, Tiy) is obtained. Besides Ty, = T and Intz; , = Int. Other properties of interior
operators and their relations with (L, M)-fuzzy topologies are discussed.

8 Neighbourhood and g-neighbourhood operators in (L, M)-fuzzy topological spaces
Let (X,T) be an (L,M)-A-space, in particular an (L, M )-fuzzy topological space. By setting

N (x,a,U) =sup{T(V) |V <U,V(x) > o}
we define an operator A : X x L x LX — M. This operator has the following properties:

(IN) if Al(x,0,U) > 0, then U (x) > o;

(2N) \/UELX N()Q(X,U) - la

(3N) N(xv Q, Ul /\UZ) 2 N(X,(X,Ul) /\N(xv Q, UZ)a
(4N) if U <U',0/ < a, then A (x,o,U") > N (x, 0, U);

(SN) A0 U) < Vy<yr (30060 V) A Ay =p X00BW)) )

Conversely, starting with an operator A : X x L x LX — M satistying (IN) - (5N), by setting Ty (U) =
infy o A(x, 01, U) we obtain an (L,M)-A-map T : L* — M. Besides ‘NTN = A and Ty, > T. In case
when T is an (L, M)-fuzzy topology the equality Ty, = T holds.

Neighbourhood operators are used to characterize local structure of (L,M)-fuzzy topological
spaces. In particular, local description of continuity for mappings of (L, M)-fuzzy topological spaces
is given in terms of neghbourhood operators.

An alternative tool to describe local structure of (L, M )-fuzzy topological spaces and continuity of
mappings is given by means of g-neighbourhood operators.
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1 Introduction

Aggregation functions arise wherever aggregating information is important: applied and pure math-
ematics (probability, statistics, decision theory, functional equations), operations research, computer
science, and many applied fields (economics and finance, pattern recognition and image processing,
data fusion, etc.). For recent references, see Beliakov et al. [2] and Grabisch et al. [9].

Let I be a real interval, bounded or not. Given an aggregation function F : I" — R, it is often useful
to define values or indices that offer a better understanding of the general behavior of F with respect
to its variables. These indices may constitute a kind of identity card of F and enable one to classify
the aggregation functions according to their behavioral properties.

For example, given an internal aggregation function A (“internal” means Min < A < Max, where
Min and Max are the minimum and maximum functions, respectively), it might be convenient to ap-
praise the degree to which A is conjunctive, that is, close to Min. Similarly, it might be very instructive
to know which variables, among xj,...,x,, have the greatest influence on the output value A(x).

In this note, we present various indices, such as: andness and orness degrees of internal functions,
idempotency degrees of conjunctive and disjunctive functions, importance and interaction indices,
tolerance indices, and dispersion indices.

Sometimes different indices can be considered to measure the same behavior. In that case it is
often needed to choose an appropriate index according to the nature of the underlying aggregation
problem.

The material presented here is a summary of [9, Chapter 10], a forthcoming monograph on aggre-
gation functions written by the authors.

2 Expected values and distribution functions

A very informative treatment of a given function F : I" — R consists in applying it to a random
input vector and examining the behavior of the output signal by computing its distribution function.
However, determining an explicit form of the distribution remains very difficult in general.

Instead, we can calculate the expected value or, more generally, the moments of the output variable
and derive indices that would provide information on the location of the output values within the range
of the function.
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3 Importance indices

When using a given aggregation function A of n variables, one may wonder which are the most
influential variables in the computation of A(x), if any. We may say that no such variable exists if A is
symmetric. In case symmetry does not hold, e.g., for weighted aggregation functions and for integral-
based ones, it is very instructive to know the level or percentage of contribution of each variable in the
computation of the result. We call this level of contribution or influential power the importance index.

For weighted aggregation functions, a naive answer to the above question is to take as importance
index simply the weight of each variable. A first simple reason to discard this idea is that the definition,
meaning and normalization of weights differ from one aggregation function to another: just consider
the weighted arithmetic mean, with weights in [0, 1] summing up to 1, and the weighted maximum,
whose weights are in [0, 1] with no summation condition, but whose maximum value is 1. A second
reason is that intuitively, a weight value, say 0.5, does not have the same effect in a weighted arithmetic
mean as in a weighted geometric mean.

A natural approach when I is a bounded closed interval [a,b] is to compute an average of the
marginal contribution of variable x;.

4 Interaction indices

Although the notion of importance index is useful to analyze a given aggregation function, the de-
scription it provides is still very primitive. Take for example the arithmetic mean, the minimum, and
the maximum. Since they are symmetric, they have the same importance index for all coordinates,
yet they are extremely different aggregation functions, because the minimum operator is a conjunc-
tive aggregation function, the maximum operator is disjunctive, and the arithmetic mean is neither
conjunctive nor disjunctive.

The question is how to quantify or describe the difference between these aggregation functions,
which are indistinguishable by the importance index. Since andness and orness are reserved to internal
aggregation functions, other indices have to be found.

The key of the problem lies in the interrelation between variables. The notion of importance index
is based on the variation of the aggregated value vs. the total variation of a given variable, the others
being fixed. We may consider the variation induced by the mixed variation of two variables, or more.
This is expressed by the second order (total) variation of A with respect to coordinates i and j.

5 Tolerance indices

Some internal aggregation functions are more or less intolerant (respectively, tolerant) in the sense
that they are bounded from above (respectively, below) by one of the input values or by a function of
these values.

Here, we mainly deal with internal aggregation functions having veto and/or favor coordinates as
well as k-conjunctive and k-disjunctive internal aggregation functions. Starting from the properties of
these functions, we define indices that provide degrees to which an internal aggregation function is
intolerant or tolerant.

6 Measures of arguments contribution and involvement

Given an aggregation function A, we consider in this final section the following two indices:
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1. The index of uniformity of arguments contribution, which measures the uniformity of contribution
of the n components of x € I" in the computation of the aggregated value A(x).

2. The index of arguments involvement, which measures the proportion of arguments among xi, ..., X,
that are involved in the computation of the aggregated value A(x).
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Abstract. In this paper, based on [14], we present some well established construction methods for aggre-
gation functions as well as some new ones.

There is a well-known demand for an ample variety of aggregation functions having predictable
and tailored properties to be used in modelling processes. The need for bigger flexibility and ability of
fitting more accurate aggregation functions requires the extension of aggregation functions buffer, and
one of approaches how to reach this is just based on construction methods. Several construction meth-
ods have been introduced and developed for extending the known classes of aggregation functions
(defined either on [0, 1] or, possibly, on some other domains). There are several construction methods,
introduced in many fields [1-5,7,9, 14, 15, 24, 25]. Obviously, new construction methods should be a
central issue in the rapidly developing field of aggregation functions. In this paper we present some
well established construction methods as well as some new ones.

The first group of construction methods can be characterized “from simple to complex”. They are
based on standard arithmetical operations on the real line and fixed real functions. The second group
of construction methods starts from given aggregation functions to construct new ones. Here we can
start either from aggregation functions with a fixed number of inputs (e.g., from binary functions
only) or from extended aggregation functions. Observe that some methods presented are applicable
to all aggregation functions (for example, transformation), while some of them can be applied only to
specific cases. Finally, there are construction methods allowing us to find aggregation functions when
only some partial knowledge about them is available. For more details on this topic we recommend
[14], Chapter 6. In our presentation we will discuss these items:

— transformation of aggregation functions (recall the classical transformation of the sum into the
product),

— composed aggregation (recall recursive aggregation functions, convex sums, etc.),

— weighted aggregation functions (quantitative and qualitative approaches),

— aggregation based on optimalisation (mixture operators, for example),

— ordinal sums of aggregation functions (covering in one formula well-known ordinal sums of t-
norms and t-conorms).
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The relationship between probability and many-valued logics is a main theme in the tradition of Linz
Seminars. A great number of papers, including several chapters of the Elsevier Handbook of Measure
Theory, and various monographs owe their existence to what might be called the Linz Seminar cross-
fertilization. A wealth of interesting results have been obtained in probability theory for t-norm logics,
featuring various integral representations. In particular, the concept of state s in an MV-algebra A (i.e.,
a unit preserving map s: A — [0, 1] which is additive on ®-incompatible elements of A) has many
characterizations, including:

1. s is the restriction to A of a positive normalized real homomorphism of the unital £-group corre-
sponding to A via the I" functor,

2. s arises via Riesz representation as the integral on the maximal ideal space of A, relative to some
regular Borel probability measure (this is the Kroupa-Panti theorem, showing that states are a
finitely additive algebraization of -additive probability measures),

3. s is a coherent probability assessment (in the sense of De Finetti) for A with respect to the set of
possible worlds given by all homomorphisms of A into [0, 1],

4. s is a limit, in the Tychonov cube [0, 1]4, of convex combinations of homomorphisms of A into
[0,1] (because extremal states coincide with such homomorphisms, by a result of Goodearl and
Handelman). In other words, letting A be the Lindenbaum algebra of some theory ® in Lukasiewicz
logic, s is a limit of convex combinations of valuations satisfying all formulas of ©.

In view of these deep relations between logic and probability—generalizing Carathéodory time-
honored boolean algebraic probability theory—one may naturally ask if a further generalization is
possible in other [0, 1]-logics L. One finds in the literature various definitions of “state”, capturing
some of the above features (1)-(5), which in L need no longer be equivalent. Whatever L is, one
can anyway define the benchmark notion of “coherent” probability assessment for any finite set E
of formulas in L, and any set W of truth-valuations in L for the formulas of E. This is so because,
independently of any logic context, for any finite set £ = {Xj,...,X,} whose elements are called
“events” and closed set W C [0, 1]E of “possible worlds”, a bookmaker’s map b: E — [0, 1] is said to
be incoherent (in the sense of De Finetti) if a bettor can fix stakes si,...,s, € R such that the book-
maker looses at least 1 (million euro) in any possible world V € W. Whether or not E and W arise
from some logic L, it turns out that there is a theory ® in Lukasiewicz logic such that coherent maps
coincide with restrictions to E of states in the Lindenbaum algebra of ®. Thus coherent probability
assessments in L can always be interpreted in Lukasiewicz logic. We will exemplify this result to the
Aguzzoli-Gerla-Marra theory of coherent probability assessments for Godel logic.
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Abstract. Tribes became a successful basis of measure theory on fuzzy sets. During their investigation,
new requirements occurred. We discuss possible modifications of the original definition of a tribe.

1 Original definitions

Classical measure theory is based on the notion of an algebra (=field) of subsets of a set (in case of
finitely additive measures), resp. a G-algebra of subsets (in case of countably additive measures). It is
the basis of probability theory on classical events whose occurrence can be described in yes-no terms.

Fuzzy measure theory tries to extend this approach to events whose satisfaction is gradual, de-
scribed by a many-valued scale of truth degrees, usually (a subset of) the real interval [0, 1]. Such
events are naturally represented by fuzzy sets. In order to define measures and probabilities, we need
to restrict ourselves to adequate collections of fuzzy subsets of some universal set X. This idea gave
origin to the notion of clan, resp. tribe, as a fuzzification of an algebra, resp. c-algebra of subsets.
Clans were studied already by O. Wyler in [24], then used by D. Butnariu and E.P. Klement in [3-5,
9], where tribes were introduced as a 6-complete analogue. This approach assumes a fixed continuous
triangular norm (t-norm) 7 and a strong fuzzy negation '. These operations are naturally extended to
pointwise operations on fuzzy subsets of X and 7" can be generalized to any countable arity. A T-clan
on X is a collection 7 C [0,1]* such that

(T1) 07T,
(T2) feT —= 1—f€T,
(T3) f,g€T = T(f,g)eT.

A T-clan T is called a T-tribe on X if it satisfies a stronger version of the latter condition:
(T3+) (fa)nen € TV = Thenfu€ T.

A functional u: T — [0, 00[ is called a T-measure if it satisfies the following conditions:
M1) p(0) =0,

M2) f,eeT = u(T(f,g))+u(S(f,g)) =u(f)—+u(g), where S is the triangular conorm dual to 7,
M3) (fa)uen € TV, fu /' f, f €T = ulfa) / u(f).

The notion of T-measure is a special case of a stochastic measure introduced by Hohle [8].

These definitions follow the classical approach. Many interesting properties of measures on these
structures have been derived in [4] and subsequent papers (e.g. [1,2, 11-15, 17, 18], see an overview
by S. Weber and E.P. Klement in [23]). The set B = T N {0, 1}X of Boolean elements of T forms a
o-algebra of subsets of X. For Archimedean Frank (and some other, so-called sufficient [6]) t-norms,
all elements of 7" are B-measurable.

The consequences of the line initiated by Butnariu and Klement have led also to proposals of
revisions. In the sequel, we present some of these arguments.

* The author was supported by the Czech Ministry of Education under project MSM 6840770038.
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2 The choice of negation

The original definition of a T-tribe works only with the standard fuzzy negation’: x — 1 —x. This can
be replaced by an arbitrary fuzzy negation which is strong (=involutive). Condition (T2) then reads:

(T2) feT = feT.

In condition (M2), S is the triangular conorm dual to T with respect to ’.

This change is not essential. Each strong negation has a generator. Applying this generator point-
wise to all fuzzy sets in the 7-tribe, we obtain a new collection in which the negation is standard. The
t-norm 7 and its dual t-conorm § are modified to some 7*,S*. We obtain a T *-tribe which differs only
by the change of scale of membership degrees.

3 Tribes as c-lattices

Fuzzy sets are ordered by the usual ordering of functions, f < g <= Vx € X : f(x) < g(x). Let Ty
be the minimum t-norm. In a Tyy-clan 7, Ty (f,g) = f A g is the infimum (with respect to the above
ordering) and a 7 is a lattice. If 7 is a Tyj-tribe, it is a G-complete lattice.

Now let us consider a T-tribe 7, where T is an arbitrary continuous t-norm. Condition (M3)
applies only to the case when the countable supremum f = \/, o f, is in 7. If we want to omit the
assumption f € 7, we need 7 to be a 6-complete lattice, equivalently a Tyi-tribe (and at the same
time a T-tribe). This observation led to a modification of the definition of a T-tribe — condition (T3)
is replaced by the following:

(T4) (fn)nEN € {INa W/ f= feT.

Together with (T3), it implies (T3+), thus it is a strengthening. This definition occurred first in [16]
and was used later in [19, 20].

It was proved in [4] that if T is an Archimedean Frank t-norm, then every T-tribe is also a T -
tribe (where Ty, is the Lukasiewicz t-norm) and a Tys-tribe. Thus it satisfies also (T4). For non-Frank
t-norms, the two definitions differ. However, the basic result of [19] is that T-tribes which admit
reasonably rich collections of 7T-measures are essentially those where T is an Archimedean Frank t-
norm. Therefore the difference between these definitions is not much important. Condition (T4) seems
to fit better to the definition of a 7-measure.

There is a non-symmetry in the definition of a 7-measure: It preserves limits of increasing se-
quences, but not of decreasing ones. Therefore the following requirement was added in [19]:

MA) (fdnen € TV, fu \ofs f €T = u(fa) \ulf)-

In c-algebras, this dual requirement was unnecessary, but in tribes it excludes 7-measures which
seem to have low applicability because they depend only on the supports of fuzzy sets,

Suppf ={xeX|f(x)>0}CX,
not on a finer scale of their membership degrees.
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4 Clans with underlying c-algebras

Closedeness under countable operations (condition (T3+) or (T4)) seems to be a natural requirement,
following the analogy with c-algebras. However, fuzzy sets combine two “directions”: The first —
horizontal or qualitative — is determined by the support of the fuzzy set. The second — vertical or
quantitative — is determined by the membership degrees of elements of the support; these are numbers
from [0, 1]. The above definitions imply that a T-tribe 7 is closed under countable operations in both
directions.

As pointed out by D. Mundici and T. Kroupa (personal communication, 2008, cf. also [10]), the
theory of G-additive measures requires only the horizontal closedness under countable operations, i.e.,
the set B of Boolean elements of 7" must form a G-algebra of subsets of X. (We identify subsets of X
with their characteristic functions.) However, there is no need to require such a strong restriction for
the vertical direction. The set of membership values at x € X,

T)={f()|feTr<[0,1].

must be closed under " and T with finite arity. If T is a strict t-norm and 7 (x) is closed under 7" with
countable arity, it can be only {0, 1} or the whole interval [0, 1]. This restriction is unnecessary, we
may admit, e.g., a collection of fuzzy sets whose membership degrees are rational. Then we have only
a T-clan. However, we admit only such a T-clan whose elements are B-measurable.

5 Algebraization of tribes

This approach is inspired by Boolean algebras. These are algebras defined by equations, without a
reference to any set representation. In fact, in Boolean algebras this makes no difference; due to Stone
theorem, every (abstract) Boolean algebra can be represented as an algebra (field) of subsets of some
set. The difference becomes important if we require 6-completeness. There are 6-complete Boolean
algebras which cannot be represented as G-algebras of subsets. (There is still a weaker representation
obtained by the Loomis—Sikorski theorem, see [22].)

Another analogy can be found in MV-algebras [7,21]: 6-complete M V-algebras are a generaliza-
tion of T -tribes and Ty -tribes are exactly those c-complete MV-algebras which can be represented
by fuzzy sets. We want to find a common generalization of (abstract) -complete MV-algebras and
T -tribes.

With H. Weber (personal communication), we suggested such an algebra based on a G-complete
lattice. The set of Boolean elements is expected to form an (abstract) Boolean 6-algebra. Monotonicity
of the t-norm implies that the corresponding operation should distribute over countable suprema. A
proposed definition might be the following:

A fuzzy 6-algebra is an algebra (4, T,’,A\,0,1) of type (2,1,2,0,0), where (4, A,0, 1) is abounded
o-complete lattice,’: 4 — A is an antitone involutive mapping, and T : 4> — 4 is an operation which
is commutative, associative, has a neutral element 1, and satisfies

T(a, /\ b,,) = /}NT(a,bn), T(a, \/ b,,) = \/ T (a,by,)

neN neN neN

for all @ € A4, (by),cy €: A". This notion admits only those T-tribes which are also Ty-tribes. On
the other hand, it is more general in the sense that it admits a collection of fuzzy sets with operations
defined pointwise, but using different fuzzy negations and t-norms at different points. From the alge-
braic point of view, there is no way how to distinguish and exclude such cases. A fuzzy G-algebra may
allow to apply a rich collection of algebraic methods (developed for varieties).
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In the list of open problems by Alsina, Frank, and Schweizer [2], the following two problems have
been stated:

Problem 1. Is the arithmetic mean, or for that matter any convex combination, of two distinct t-norms
ever a t-norm?

Problem 2. More specifically, can Tp be expressed as a convex combination of two associative copu-
las?

We recall that a convex combination of two t-norms 77, T is a function F = a7} + (1 — o) T»
where o € [0, 1]. It is immediate that for trivial convex combinations, i.e. for a € {0,1} or for T} = T,
the answer is positive. A positive example can be given even for non-trivial convex combinations
of non-continuous t-norms [3, 10, 12]. For example, let 77 be an ordinal sum of the product t-norm
Tp on the carrier [0,3]. Let 7> be a binary operation on [0, 1] such that T3(x,y) = 0 for x,y € [0, 1]
and T»(x,y) = min{x,y} otherwise. It is easy to check that T is a left-continuous t-norm. Observe
now that any convex combination of 77 and 75 is a left-continuous t-norm. However, for continuous
t-norms the problem still has not been answered completely although it is conjectured that the answer
is negative [2].

Thus, in order to exclude the trivial cases mentioned above, whenever we write “convex combina-
tion” we mean a function o 77 + (1 — o) 7> where a € |0, 1], 71 # T», and both t-norms are continuous.

Here we briefly outline the results related to convex combinations of t-norms which have been
done so far. In the historically first paper dealing with this problem, Tomas [11] has given the following
result:

Proposition 1. [11] Let T, T, and T3 be strict t-norms with additive generators t1, tp, and t3, respec-
tively, derivable on |0, 1], with derivatives distinct from zero, continuous on |0,1], and

nx _n1)

x—0 té(x) a té(l) .

IfTs = #for all x,y € [0,1], then Ty =T, = T5.

* The first author was supported by the Czech Ministry of Education under project MSM 6840770038.
** The second author was supported by Czech Science Foundation under Project 201/07/1136.
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However, the smoothness assumption [1] and the constraint are rather restrictive. In the papers by
Ouyang, Fang, and Li [7, 8], the whole class of continuous t-norms is treated under no additional
assumptions. For example, they prove [7, Theorems 2.1 and 2.2] that a convex combination of a
continuous Archimedean t-norm and a continuous non-Archimedean t-norm is never a t-norm. In
other words, if a convex combination of two continuous t-norms is a t-norm again, then both com-
bined t-norms are ordinal sums with the same structure of summand carriers and with continuous
Archimedean summands. By this result, in order to clarify the convex structure of the class of con-
tinuous t-norms it is sufficient to clarify the convex structure of the class of continuous Archimedean
t-norms. By another result of theirs [7, Theorem 3.1], a convex combination of a strict and a nilpotent
t-norm is never a t-norm. Thus even the latter task can be subdivided into solving the convex structure
of the nilpotent class and of the strict class separately. Another type of results are no-way theorems
for pairs of t-norms satisfying an additional property. One of them is due to Jenei [3] and applies to
all pairs of left-continuous t-norms with an additional property that both t-norms share a level set of
special properties (which, on the other hand, significantly reduces the generality of the result). An
immediate consequence of this result is that for two nilpotent t-norms 77, T, which share a z-level set
for z € [0, 1], none of their convex combinations is a t-norm. Let us mention also the recent result by
Mesiar and Mesiarova-Zemankova [4] where it is stated that a convex combination of two continu-
ous t-norms with the same diagonal section is never a t-norm. (We recall that a diagonal section of a
t-norm 7 is the function x — T (x,x).)

In the recent work [5,6,9, 10], the authors have presented several new findings on continuous
Archimedean t-norms. First, it is the characterization of the associativity of t-norms by means of the
web geometry and the Reidemeister condition which leads to proofs of the following two theorems:

Theorem 1. A non-trivial convex combination of two distinct nilpotent t-norms is never a t-norm.
Theorem 2. A non-trivial convex combination of a strict and a nilpotent t-norm is never a t-norm.

The proof of the second theorem is an alternative proof of the result given earlier by Ouyang,
Fang, and Li [7, Theorem 3.1].

Further results have been obtained by the study of relations between the shape of a t-norm and the
shape of its (multiplicative and additive) generator. This enabled the proof of the following theorem:

Theorem 3. Let T be a strict t-norm. Define
br:]0,1[—]0,1[: y+— T'(0,y).

Suppose that the value br(y) is defined for every y € |0,1]. Then there are three mutually exclusive
possibilities:

(i) the function by is the constant function I,
(ii) the function by is an order isomorphism of the interval |0, 1],
(iii) the function by is the constant function 0.

Moreover, in the case (ii) the unique continuous extension of by to the whole unit interval is a multi-
plicative generator of T.

Definition 1. Let T be a strict t-norm such that the function by: |0,1[ — ]0,1], given by br(y) =
T'(0,y), is well defined. According to Theorem 3, the following four classes of strict t-norms are
defined:
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if by is a bijection then T € Ty,
ifbr(y) =0thenT € T,
ifbr(y)=1thenT € I3,
if T & TlroUTyUT; then T € “Iy.

Note that these four classes form a partition of the class of all strict t-norms.

N~

Theorem 3 allows an immediate proof of the following proposition:

Proposition 2. Ler Ty and T, belong to two distinct classes from Tro, Iy, T1. Then no non-trivial
convex combination of Ty and T, is a t-norm.

Definition 2. By ‘Ir; we denote the set of all strict t-norms whose multiplicative generators 0 satisfy
0'(1) €]0,0[. (If one of multiplicative generators of a t-norm satisfies this condition, all its multi-
plicative generators satisfy it, t0o.)

Finally, for the intersection of Tro and the newly defined class 7ri, the following condition can
be given:

Theorem 4. Let Ti, T, € Tro N ‘Ir1. Let 01 and 0, be multiplicative generators of Ty and T, given by
01(y) =T'(0,y) and 02(y) =T'(0,y), y € [0, 1], respectively. Let t; = —1In®y, resp. t = —In0y, be the
corresponding additive generators of Ty, resp. T.

If a non-trivial convex combination of Ty and T; is a t-norm then, necessarily, for each y € [0, 1]
at least one of the following conditions is satisfied.:

05 (y) = S%EB 01(y), (1)
1) =ny). )

This directly leads to the following corollary:

Corollary 1. Let T1, T € ‘Igo N IRy be two distinct strict t-norms. If the (multiplicative and additive)
generators of both Ty and T, are absolutely continuous, then no non-trivial convex combination of Ty
and T, is a t-norm.
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The so called Fuzzy Logic in Narrow Sense (FLn) is the basic constituent of mathematical fuzzy logic.
Its development has been initiated by the paper of J. A Goguen [7] and the first, highly sophisticated
paper is that of J. Pavelka [24]. His work has been continued by the author of this paper in [14]
and especially in the book [13]. Fuzzy logic has been established as a generalization of classical
mathematical logic with clearly distinguished syntax and semantics. The syntax consists of precise
definitions of the formula, proof, formal theory, model, provability, etc. and the semantics is formed by
a special residuated lattice. The latter in the above mentioned works is an MV-algebra and, namely, the
standard Lukasiewicz algebra since Pavelka proved that completeness of the syntax w.r.t. semantics
can be kept providing that the corresponding algebra fulfils the following four equations:

\/(a—>b,):a—>\/bl, /\(a—>b,):aﬁ/\(b,) (1)

iel iel iel il
\/(a,-—>b):/\al-—>b, /\(Cli—>b)=\/ai—>b )
il il iel iel

These equations are in [0, 1] equivalent to continuity of —, which is fulfilled only by Lukasiewicz
implication and its isomorphs. The resulting logic is quite strong since it is complete with respect to
the generalized syntax, in which all formulas are evaluated by elements from the underlying algebra
and the completeness thus takes the form of generalization of the Godel completeness:

Th,A iff Tl,A, a€l,

for all all formulas A € Fj(r) and fuzzy theories T where the latter are determined by fuzzy sets of
axioms. This means that the situation when an axiom needs not be fully true is acceptable in this
logic. For this reason, its preferred name is fuzzy logic with evaluated syntax (Evy).

The major turning point in the development of FLn is represented by the book of P. Hijek [8]. He
relaxed the requirement that completeness should be fulfilled for every truth value and considers only
traditional syntax, so that the resulting logic fulfils a weaker form of completeness:

THA iff TEA

where T = A means that M (A) = 1 for every model M of the (classical) theory 7. This approach
opened the door to introducing various other formal systems which are now taken as constituents
of FLn. They usually differ from each other on the basis of the assumed algebra of truth values,
which then determines all of the properties of the given calculus. It is argued in [19] that the most
distinguished calculi are MTL-, IMTL-, BL-, Lukasiewicz- and, perhaps, LII-fuzzy logic. The MTL-
logic is the basic kind of the, so called, core fuzzy logic [9]. The discussion, however, is not yet

* The research was supported by project MSM 6198898701.
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finished. FLn is in detail studied especially from the algebraic point of view. One can hardly estimate,
how far this work can still continue. It seems that FLn is in the position of a theory promising a deeply
justified technique for modeling various manifestations of the vagueness phenomenon and for various
other applications. There are not, however, so many results in the latter.

One of exceptions is the program announced by P. Cintula and L. Béhounek [1, 2]. Several paper
have already been published and the program seems to be very promising.

Nevertheless, we think that we should move on further in the development of the logical part so
that the power of FLn were fully acknowledged. A possible direction is Fuzzy Logic in Broader Sense
(FLb) which was established by V. Novék in 1995 in [15] as a program for extension of FLn, which
aims at developing of a formal theory of natural human reasoning that would include mathematical
models of special expressions in natural language with regard to their vagueness. There is an overlap
with two other paradigms proposed in the literature, namely commonsense reasoning and precisiated
natural language (PNL).

The main drawback of the up-to-date formalizations of commonsense reasoning, in our opinion,
is that it neglects the vagueness present in the meaning of natural language expressions (cf. [3] and
the citations therein).

PNL, on the other hand, is based on two main premises:

(a) Much of the world knowledge is perception based,
(b) perception based information is intrinsically fuzzy.

It is important to stress that the term precisiated natural language means “a reasonable working for-
malization of semantics of natural language without pretension to capture it in detail and fineness”. Its
goal is to provide an acceptable and applicable technical solution. It should also be noted that the term
perception is not considered here as a psychological term but rather as a result of human, intrinsically
imprecise measurement.

PNL methodology requires the presence of World Knowledge Database and Multiagent, Modular
Deduction Database. The former contains all the necessary information including perception based
propositions describing the knowledge acquired by direct human experience, which can be used in
the deduction process. The latter contains various rules of deduction. No exact formalization of PNL,
however, has been developed until recently, so it should be taken mainly as a reasonable methodology.

Thus, our concept of FLb is a glue between both paradigms that should consider the best of each.
During the years, it has been slowly developed and so far, it consists of the following theories:

(a) Formal theory of evaluative linguistic expressions [20],

(b) formal theory of fuzzy IF-THEN rules [5, 22],

(c) formal theory of perception-based logical deduction [4, 23, 17, 16],
(d) formal theory of intermediate quantifiers [18,21].

Let us remark, that perceptions are technically identified with specific evaluative expressions of natural
language, i.e. expressions that characterize values from some scale. The FLn-mathematical basis for
all these theories is fuzzy type theory because we argue (together with logicians and linguists, cf. [11,
12, 26]) that the first order (fuzzy) logic is not sufficient for capturing semantics of natural language.

We think that there are good reasons to continue this development of FLb and move it further to-
wards human (i.e., commonsense) reasoning, following the methodology of PNL and results obtained
in the Al theory of commonsense reasoning. Another promising direction is to include also uncertainty
in FLb in the sense that has been nicely established in [6]. In this paper, logic is joined with probability
theory.

So, we see some of the possible future directions of FLb in the following:
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(a)
(b)
(©
(d)
(e

()
(2)

Extend the repertoire of natural language expressions, for which a reasonable working mathemat-
ical model can be elaborated.

Find a reasonable class of “intended models” for the theory of intermediate quantifiers.

Extend the theory of generalized quantifiers (cf. [10, 25]) using the formalism of FLn.

Study various forms of commonsense human reasoning and search for a reasonable formalization
of them. As a subgoal, extend the list of generalized syllogisms with intermediate quantifiers.
Develop a reasonable formalization of FLb on the basis of which the above mentioned constituents
of PNL methodology, namely the World Knowledge Database and Multiagent, Modular Deduction
Database could be formed.

Extend the technique started in [6] to be able to include also uncertainty inside FLb.

Study the ways, how other formal systems of FLn (besides fuzzy type theory) could be used for
solution of problems raising in FLb and develop them accordingly.
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Abstract. In this paper, based on [12, 18], we present infinitary aggregation functions on sequences pos-
sessing some a priori given properties. General infinitary aggregation is also discussed, and the connection
with integrals, e.g., Lebesgue, Choquet and Sugeno integrals, is given.

Aggregation of finitely many inputs, directly related to many applications, were investigated in
many fields [1-3,5,7, 12, 15,24, 26]. Aggregation of infinitely but still countably many inputs is im-
portant in several mathematical areas, such as discrete probability theory, but also in non-mathematical
areas, such as decision problems with an infinite jury, game theory with infinitely many players, etc.
Though these theoretical tasks seem to be far from reality, they enable a better understanding of de-
cision problems with extremely huge juries, game theoretical problems with extremely many players,
etc., see [20, 22, 25].

In our contribution, based on [12, 18], we discuss infinitary aggregation functions on sequences
possessing some a priori given properties, such as additivity, comonotone additivity, symmetry, etc.
Based on these properties, infinitary OWA operators are discussed, among others, see [23]. On the
other side we discuss infinitary aggregation functions A(): [0, 1]N — [0, 1] related to a given extended
aggregation function A: U, [0, 1]" — [0, 1], where special attention is paid to t-norms, t-conorms,
and weighted arithmetic means, where a connection with Toeplitz matrix (see [4, 11]) was obtained.
Note that the discussion of the infinitary arithmetic mean AM®: [0,1]N — [0, 1] can be found in [13,
14].

General infinitary aggregation is also discussed (see [12,19]), thus extending the results con-
cerning aggregation of infinite sequences. Note that in such case, some restrictions on the domain
of aggregation functions is usually necessary. For example, to apply Lebesgue, Choquet or Sugeno
integrals, see [21], one should require the measurability of the input function to be aggregated.
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France and Serbia Pavie Savi¢ N° 11092SF, and Action SK-SRB-19, the internal research project
Decision Mathematics and Operations Research supported by the University of Luxembourg, projects
APVV-0375-06, APVV-0012-07, and VEGA 1/4209/07, the grants MNTRS (Serbia, Project 144012),
Provincial Secretariat for Science and Technological Development of Vojvodina, and MTA HMTA
(Hungary).

91



References

15.

16.

18.
19.

20.

21.

22.

23.

24.

25.
26.

. Acz€l, J., Dhombres, J.: Functional equations in several variables, Encyclopedia of Mathematics and its Applications

31, With applications to mathematics, information theory and to the natural and social sciences, Cambridge University
Press, Cambridge, 1989.

Alsina, C., Frank, M. J., Schweizer, B.: Associative functions, Triangular norms and copulas, World Scientific Publish-
ing Co. Pte. Ltd., Hackensack, NJ, 2006.

Beliakov, G.,Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, Studies in Fuziness and Soft
Computing, Springer, Berlin, 2007.

Boéttcher, A., Silbermann, B.: Analysis of Toeplitz operators, Springer, 1990.

Bouchon-Meunier, B. (ed.): Aggregation and fusion of imperfect information, Studies in Fuzziness and Soft Comput-
ing. 12. Heidelberg: Physica-Verlag, 1998.

Bullen, P. S.: Handbook of means and their inequalities, Mathematics and its Applications 560, Kluwer Academic
Publishers Group, Dordrecht, 2003.

. Calvo, T. and Mayor, G. and Mesiar, R. (eds.), Aggregation operators, Studies Fuzziness Soft Computing 97, Physica,

Heidelberg, 2002.

. Calvo, T., Mesiar, R., Yager, R.R.: Quantitative Weights and Aggregation, IEEE Trans. Fuzzy Syst. 12 (2004), 62-69.
. Calvo, T., Pradera, A.: Double aggregation operators, Fuzzy Sets and Systems 142(1) (2004), 15-33.

10.
11.
12.
13.

Cutello, V., Montero, J.: Recursive connective rules, Int. J. Intelligent Systems 14 (1999), 3-20.

Dunford, N., Schwartz, J. T.: Linear Operators L. Interscience, New York-London, 1958.

Grabisch, M., Marichal, J. -L., Mesiar, R., Pap, E.: Aggregation Functions, Cambridge University Press (in press).
Gonzélez, L., Muel, E., Mesiar, R.: What is the arithmetic mean of an infinite sequence? Proc. ESTYLF’2002, Leon,
2002, 183-187.

. Gonzdlez, L., Muel, E., Mesiar, R.: A remark on the arithmetic mean of an infinite sequence. Internat. J. Uncertainty,

Fuzziness, Knowledge-Based Systems 10, Suppl. (2002)51-58.

Klement, E. P, Mesiar, R., Pap, E.: Triangular norms, Trends in Logic—Studia Logica Library 8, Kluwer Academic
Publishers, Dordrecht, 2000.

Luo, X., Jennings, N. R.: A spectrum of compromise aggregation operators for multi-attribute decision making, Artifi-
cial Intelligence 171 (2007), 161-184.

. Marques, P., Ricardo, A., Ribeiro, R. A.: Aggregation with generalized mixture operators using weighting functions,

Fuzzy Sets and Systems 137 (2003), 43-58.

Mesiar, R., Pap, E.: Aggregation of infinite sequences, Information Sciences 178(18) (2008), 3557-3564.

Mesiar, R., Thiele, H.: On T-quantifiers and S-quantifiers. In: Novék V., Perfilieva I., eds., Discovering the World with
Fuzzy Logic. Physica-Verlag, Heidelberg, 2000, 310-326.

Neyman, A.: Values of games with infinitely many players. In: R.J. Aumann, S. Hart (ed.), 2002. "Handbook of Game
Theory with Economic Applications,” Handbook of Game Theory with Economic Applications, Elsevier, edition 1,
volume 3, number 3, chapter 56, 2121-2167.

Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht- Boston-London, 1995.

Rovatti, R., Fantuzzi, C.: s-norm aggregation of infinite collections. Fuzzy Sets and Systems 84 (1996), 255-269.
Stupnianova, A.: Infinitary OWA operators, International Conference 70 Years of FCE STU, December 4-5, 2008,
Bratislava, Slovakia.

Torra, V., Narukawa, Y.: Modeling decisions: Information Fusion and Aggregation Operators, Cognitive Technologies,
Springer, 2007.

Vallentyne, P., Kagan, Sh.: Infinite Value and Finitely Additive Value Theory. Journal of Philosophy 94 (1997): 5-26.
Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst.,
Man, Cybern. 18 (1988) 183-190

92



Towards a theory of a fuzzy rule base interpolation

Irina Perfilieva

Institute for Research and Applications of Fuzzy Modeling
University of Ostrava, 701 03 Ostrava, Czech Republic
Irina.Perfilieva@osu.cz

1 Introduction

It is well known that a fuzzy rule base is a characterization of a partially given mapping (fuzzy func-
tion) between fuzzy universes. For practical applications, it is desirable to interpolate that function in
order to compute its values at points (fuzzy or crisp) other than fuzzy sets (nodes) in antecedents of
the rule base. Moreover, interpolation requires that in the case of coincidence between a point and a
node, a computation method should produce a fuzzy set that coincides with the corresponding one in
the consequence part of the rule base.

Moreover, by Lotfi Zadeh, interpolation is a fuzzy logic inference engine. In his early papers [14,
15], he proposed the Generalized Modus Ponens (GMP) in the form of a formal scheme of inference
and its possible realization in the form of the Compositional Rule of Inference (CRI). Both schemes
were intensively investigated by many authors which resulted in a collection of methods related to a
fuzzy rule base interpolation. Let us briefly overview main contributions to the field. In our opinion,
all contributions can be classified into the following four groups.

— Technical solutions which are focused on detailed construction of an interpolating value [1-3,
7,9, 8, 13]. The following steps are common to all proposed solutions in this group: algorithmic
construction of an interpolating value, choice of closeness measures in spaces of arguments and
dependent values, proving that in the case of closeness between known and arbitrary arguments,
the known and computed dependent values are close as well. In the milestone paper [8] and then in
[1,7,13], it is required that arguments and dependent values have some predefined characteristics
(shapes, norms, etc.). In all papers above, the case of sparse data is used for testing.

— Axiomatic approach. A set of axioms has been proposed by Jenei [6], aiming at capturing almost
all properties that have been of interest in the previous (to him) publications. The property of
linearity has been considered as well. Similar approach has been proposed in [7].

— Theoretical approach. The interpolation problem consists in extending a fuzzy IF-THEN rule base,

considered as a partial function between fuzzy set universes, to a total function between these
universes. Moreover, a certain criterion should be minimized. According to the chosen criterion
a solution and its representation are determined. In [12], an interpolating function is chosen from
a Sobolev space of functions. A criterion is analogous to the case of spline interpolation between
crisp values: it minimizes a real value measuring smoothness. Although the approach is very
interesting, it does not provide any hint how to calculate the interpolating function.
In [11, 10] we propose to consider an interpolating function as a member of a space of functions
which are represented by fuzzy relations. The criterion is maximization of a similarity expressed
by the biresiduation. Moreover, the interpolating function is assumed to be represented by a for-
mula over a set of primitives given by fuzzy sets in the rule base. In contrast to [12], the inter-
polating function is obtained constructively via solution of the related system of fuzzy relation
equations.
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It is worth to be remarked that the theoretical approach is close to the technical one in what
concerns a computational aspect. However, its significance is in explicit characterization of a set
of interpolating functions together with a criterion which picks up just one member of that set.

— Logical approach. Being inspired by Lotfi Zadeh’s ideas, the approach has been realized in [5]. It
is focused on how a logic of similarity dedicated to interpolation can be defined, by considering
different natural consequence relations induced by the presence of a similarity relation on the set
of interpretations.

If interpolation of a fuzzy function is focused on finding a fuzzy function which interpolates the
given data and has no other restrictions, then it can be solved in a class of fuzzy functions represented
by fuzzy relations. In this case, interpolation leads to a problem of solvability of a system of fuzzy
relation equations. On the other hand, if an interpolating fuzzy function is used for computation at
arbitrary fuzzy points then the problem of interpolation is focused on estimation of closeness between
an original and interpolating fuzzy functions. In this case, interpolation becomes a part of a prob-
lem of approximation and thus requires a rigorous formulation that includes a choice of a quality of
approximation, etc.

In our contribution, we overview the principal literature devoted to problems mentioned above
and propose a general framework for the interpolation problem in accordance with the presented
theoretical approach. We will explain, why CRI does not guarantee interpolation at nodes, and show
how this deficiency can be overcome. We restrict ourselves to those solutions of the interpolation
problem which can be expressed by fuzzy relations [10, 11]. In that particular case, the interpolation
problem is equivalent to the problem of solvability of a system of fuzzy relation equations. However,
we will not consider the problem of solvability in its full depth. We will concentrate on requirements
which allow us to pick up a unique solution which is, moreover, representable by a formula. We also
propose a solution of the interpolation problem in the case of a sparse rule base and at a point which is
disjoint with any of fuzzy sets in antecedents of the fuzzy rule base. Last, but not least, we will show,
how the proposed approach relates to semi-linear spaces and their homomorphisms [4].
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Consider a finite set of alternatives X = {xy,...,x,} and a set N of agents, here chosen to be finite as
well, thatis, N = {1,...,n}. Preference aggregation is a key topic in social choice and game theories,
as well as, more recently, in artificial intelligence. Broadly speaking, the issue is to unify, in some
way, the n individual preferences of agents i € N. Traditionally, these latter take the form of binary
relations =;,i € N over X, where x; =; x; reads ‘xi is at least as good as x; to agent i € N’. Formally,
2iC X x X is a subset of ordered pairs, and x; =>; x; is the short-hand notation for {{x; }, {xx,x;}} €2,
where {{x;},{xx,x;}} denotes the ordered pair consisting of any two elements x;,x; with x; being the
first (in set theory).

Aggregation of preferences may be conceived in terms of providing some (hopefully non-empty) sub-
set X* C X of socially optimal alternatives. To this end, Pareto-dominance is a main criterion [3],
according to which if an alternative x; € X is not Pareto-dominated, that is, if there is no x; € X such
that x; =; x; for all i € N, with strict preference x; >; x; for at least one i € N, then such an alternative
is socially optimal, that is, x; € X*. Another main criterion is majority voting, and definitely several
more criteria could be listed [5]. In general, non-emptiness of the set X* of socially optimal alter-
natives, however obtained, depends on what assumptions on individual preferences one is prepared
to make. Two main such assumptions are completeness, that is, for all i € N and all x;,x; € X either
Xx =i X; or x; =i x; or both, and transitivity, that is, for all i € N and all xp,x¢,x; € X if x;, 2; x; and
Xk 2 x; then xj, 2; x;. A preference relation satisfying both these conditions is commonly said to be
rational [9].

In a rational preference relation = with no indifference, for any two alternatives there is always one
strictly preferred to the other. Clearly, such a preference corresponds to a unique permutation of alter-
natives, and indeed several mechanisms for implementing socially most desirable alternatives require
agents to declare one such a strict preference relation or, equivalently, one permutation of alternatives
[5]. This paper extends such an approach by allowing players to declare as many permutations of
alternatives as they want, with no consistency requirement, of any kind, among them. In fact, an even
preliminary idea comes from the observation that the general (and somehow traditional) approach de-
scribed above, according to which preference aggregation should yield some subset X* C X of socially
optimal alternatives, may result somehow binding. Specifically, even when X* #£ 0, still no informa-
tion is provided about how to socially rank sub-optimal alternatives x € X\X*, which instead could
be useful in many circumstances. Furthermore, just like aggregating n real numbers (i.e. integrating a
function f : N — R) amounts to provide a unique real number according to some criterion (or measure
U, so to obtain [ fdu), similarly aggregating preferences could well be (and is, indeed, in this paper)
conceived in terms of providing a unique social preference 2y (i.e. a preference associated with the
whole set N of agents) for given individual preferences of agents =;,i € N. That is to say, aggregating
any collection of elements, of whatever kind, should consist in providing a unique such an element.
Hence when elements are preferences any aggregation technique should yield a preference as well.
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Formally, agents’ preferences take the form of a permutation group S!, C S,, which is only required to
be a non-empty subset of the symmetric group of degree m [1, p. 20], that is, S, # 0 for all i € N, with
the convention that preferred alternatives come first. Representing a preference relation as a generic
non-empty subset of permutations seems an interesting modeling choice [8]. It does not require nor
imply completeness. Hence, this latter becomes a special feature that preferences may or may not
display, making the whole approach rather general and flexible [4].

Before detailing the adopted additive and non-additive aggregation techniques, it must be specified
how a permutation group identifies a (possibly non-complete) preference. In this view, it is crucial to
observe that assessing whether x; =, x; requires to inspect what positions (k) and ©t(/) are assigned to
such two alternatives by all permutations T € 5! . Concerning strict preference, x; >; x; if (k) < 7(l)
for all € Si,. On the other hand, agent i € N is indifferent between ¢ alternatives x, , . .. ,x,, denoted
Xpy ~i - ~i X, With 1 <t <m, if there exists [, € {t,r+1,...,m} such that both the following con-
ditions are satisfied:

() m(ky) € {l,—t+1,,,—t+2,....I} forall ' € {ki,...k,;} and all T € S ,

(ii) for all ¢’ € {ky,...k} and all [ € {l, — ¢+ 1,[, —t+2,...,1,} there are at least (r — 1)! distinct
T € 8!, such that w(ky) = I.

In words, there must be ¢ consecutive positions occupied by the ¢ alternatives in each permutation and
each alternative must occupy each position in at least (t — 1)! distinct permutations. Finally, x; ~; x
for all alternatives x; € X and all agents i € N. Transitivity clearly holds: if x;, >; x; >; x; then x, >; x;
as well as x; ~; x; ~; x; entails x;, ~; x;. But completeness does not, because if any pair of alterna-
tives does not fall in any of the above two cases then such two alternatives remain incomparable. On
the other hand, a rational (i.e. complete and transitive) preference relation corresponds to a unique
ordered collection of equivalence classes of alternatives, and therefore if an agent i € N has a rational
preference relation, then the permutation group S/, representing such a preference is the set of all per-
mutations that are admissible w.r.t. (with respect to) the unique associated ordered partition [2] of X.
With these modeling choices, a preference aggregation technique (for n-cardinal agent sets) is in-
tended to be a mapping P : (25'"\{0})’1 — 257\ {0} providing, given any n-profile S!, ..., 5" of per-
mutation groups, some social permutation group SY. This means selecting some non-empty subset of
socially optimal permutations. Hence, the general method may consist in evaluating the social worth
W(m) (determined according to some criterion, see below) of each permutation T € S, and next
choosing as optimal those whose worth is maximal, that is,

SN={Re€Sy: W&)>W(n)foralln € S,}.
The next step is to suitably define some real-valued function W : §,, — R, quantifying the social
worth of permutations. To this end, the basic tool is the distance between permutations, which in
combinatorial theory is traditionally chosen to be the analog of the /., norm [1, p. 25, ex. 14]. Yet, in
the present setting the analog of the #, norm seems more appropriate. In any case, it is clear that any
permutation of m elements is, in fact, a m-vector whose coordinates are the first m natural numbers

(in some order), which therefore sum up to (’";1) [7, p. 6], and thus several other metrics on 5, may
well be conceived. Formally,

1
5\ 2
d(m,6) = <n(k) - G(k)) for all 1,6 € S.
1<k<m
For each T € §,, define fr: N — [, 1] by

£ 1

" 1+ mind(m,0)’

GES),
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=

gn= |1+ ) (n—2k—1)? = [l—i- maxd(n,c)]l.

T,GES
0<k<l3] "

Inspection reveals that fr (i) is a strictly decreasing function of the distance separating permutation 7
from (a closest element in) the permutation group S of each agent i € N. Accordingly, any discrete
integral of fr w.r.t. some suitable additive measure provides a social worth of . For example, if one
wants to assign more weight to agents with more flexible preferences, then one conceivable additive
measure p : N — A"~ (where A"~! denotes the n — 1-dimensional simplex whose extreme points or
vertexes correspond to players) is _

. S

p(l) — | I‘I‘l‘ j .
Y jen Sl

Accordingly, the social worth /(1) of any permutation T € S, is given by

W(n) = / frdp = 12 Fr(i)p(i).

<i<n

In order to allow for non-additive aggregation, a fuzzy measurey: 2V — [0, 1], with y(0) = 1 —y(N) =0
and y(A) <y(A’) forall A C A’ € 2¥ = {B: B C N}, must be specified. Again, if one wants to assign
more weight to coalitions with more flexible preferences, then one conceivable fuzzy or non-additive
measure is

| U, Shl
_ €A

U s
JEN

Y(4)
Accordingly, the social worth may be given by the discrete Choquet integral [6)

c

W(m) =/ frdy="Y [fa(() = fli = OIYHO G+ 1), ()}),
1<i<n

where () : N — N is any relabeling of agents satisfying fr((i)) > fx((i —1)) for 1 <i < n, with

fx((0)) :=0.

Finally, each permutation 7 identifies a coalitional game [12] vy : 2V — [g,, 1] defined by ,v(0) := 0

and
1

~ 1+ mind(z,0)

oesa

va(A) forall A € 2,0 # A,

where 53 = .UAS,;;. This game is clearly monotone, that is, A C B = vz(A) < vr(B) for all coalitions
S

A,B € 2V, Accordingly, it may be the integrated w.r.t. Y by means of the extended Choquet integral

[10]
EC
/ vadYy.

In particular, two distinct such extended integrals may be used. One obtains by integrating along any
maximal chain of coalitions through which v; displays minimal increases and, given this, ¥* displays
maximal increases, where Y* is the dual fuzzy measure of v, defined by Y*(A) = 1 —y(N\A) for all
A € 2V, The other obtains by means of the Mébius inversion u** of v, given by [11]

@A) =Y (—1)"\Bly(B) for all A € 2V
BCA
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In both cases the resulting integral [ EC s an extension of Ik €, because if vy is additive, then S/ EC VrdY=
il ¢ fv.dvy for all measures 7y, where f, denotes the restriction of vy to singletons.
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1 Introduction

This paper is based on topics discussed by D. Dubois and H. Prade in his contribution to the 2005
Linz Seminar, entitled Fuzzy intervals versus fuzzy numbers: is there a missing concept in fuzzy set
theory? [3]. In Fuzzy Set Theory, the usual representation of imprecise quantities and proportions is
by means of fuzzy numbers. Fuzzy numbers are defined as fuzzy subsets of numbers (real numbers
unless other type is specified) verifying they are normal, convex, and have finite support. Usually they
are defined by means of triangular membership functions, though other shapes are also employed.
Fuzzy numbers represent ill-defined quantities like around 3 or approximately between 1.5 and 2.3 by
means of soft, fuzzy restrictions on the set of numbers. They are important since we humans are used
to express quantities this way, and hence we find it intuitive to be given an imprecise result expressed
by a fuzzy number. Among the most important applications of fuzzy numbers we can mention fuzzy
control, in which restrictions on the numerical domain of variables are usually expressed by fuzzy
numbers that appear in the rules. They have also been employed in order to extend the mathematical
notion of measure to imprecise (fuzzy) sets, such like cardinalities and probabilities.

Recently, some alternatives to the usual representation of imprecise quantities and proportions as
fuzzy numbers have been proposed, namely Gradual Numbers [4] and RL-numbers [7]. As discussed
in [3], both approaches consider that the so-called fuzzy numbers are in fact fuzzy intervals and provide
a definition of imprecise quantities in which each possible precise approximation or representative is
a crisp number instead of a crisp interval. As noted in [3], this was a topic of unresolved debates in
early Linz Seminars, in particular in the first Linz Seminar in 1979.

Gradual and RL-numbers are essentially the same, with small differences regarding the starting
point in their development and the way they are summarized and interpreted. In this work we argue
about differences and analogies, advantages and disadvantages, between fuzzy numbers and the new
proposals, and we conclude that they are different but complementary approaches. Finally, we make
a proposal about when and how to employ each one in practice, and we recall an approximation to
probability and statistics with fuzzy events on the basis of RL-numbers proposed in [5].

2 Gradual and RL-numbers

2.1 Gradual numbers

Gradual numbers were suggested in [2] and introduced under that name in [4]. Gradual numbers are
seen as particular cases of gradual/fuzzy elements, the latter characterized by an assignment function
from a complete lattice L of membership grades with top 1 and bottom 0 to a set X (were O has no
image). Hence, a gradual (real) number is an assignment from L\ {0} to R. Typically, L is some subset
of the unit interval.
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The arithmetic of Gradual numbers is defined as follows [4]: given two Gradual numbers repre-
sented by their assignment function A, 4,, and a crisp arithmetic operation *, we obtain a Gradual
number as:

Agsy(0) = Ac(00) * Ay () (1

The algebraic structure and properties of Gradual numbers with operation * is the same as those
of the corresponding crisp numbers with the same operation.

2.2 RL-numbers

The concept of RL-number comes from the notion of RL-representation [6]. RL stands for restriction
level, represented by values in (0, 1] that correspond to the degree to which we are strict in the defi-
nition of the property. This notion is similar to that of Gradual set as explained above by interpreting
values in the lattice L as restriction levels, with two main differences:

— First, all the crisp operations between sets are extended to the case of RL representations by op-
erating in each level independently. Though this idea is also employed with Gradual sets and
Gradual numbers, the former is always interpreted as the representation of a certain fuzzy set,
requiring a mapping of degrees in order to preserve consistency with the usual fuzzy set opera-
tions. On the contrary, RL-representations are not intended to be a different way of representing
fuzzy sets, but an alternative way of representation of which fuzzy sets are a particular case (every
o € L\{0} is assigned the corresponding o-cut of the fuzzy set, verifying the usual nested inclu-
sion). No mapping of degrees is considered and any operation and definition is extended from the
crisp case by operating in each level individually. This way, crisp properties are maintained, re-
markably all those related to the complement operation (negation of properties) like the Excluded
Middle axioms.

— In RL-representations, fuzzy sets are seen both as particular cases and also as a way to summarize
the information given by the RL-representation by accumulating the evidence associated to each
element. A fuzzy set can be obtained from a RL-representation by assigning a each level o €
L\{0} an evidence mass given by the difference with the next level, and then adding up for each
element the mass of those levels in which the element appears. This way of obtaining a fuzzy
set from a RL-representation differs also from the one proposed in [4]. In both cases, different
RL-representations/Gradual sets can yield the same fuzzy set.

RL-numbers arise in a natural way as measures on RL-representations and are identical to Gradual
numbers, except in the way they are summarized as fuzzy subsets of numbers, as just explained.

3 Comparison

From the point of view of representation, as explained in [3,2,4], fuzzy numbers are in fact fuzzy
intervals, so their semantics is that of the extension of intervals to the case of fuzzy information. A
fuzzy interval represented by a Gradual/RL-representation yields an interval in each level of L. This
notion is interpreted in [2, 4] as a crisp interval of Gradual numbers. The notion of RL-interval is that
of a RL-representation in which we have an interval in each level L without the nested requirement of
fuzzy sets.

From the point of view of arithmetic, arithmetic of fuzzy numbers has several well-known prob-
lems coming from the fact that they are extending a crisp arithmetic of intervals, that does not verify
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all the ordinary properties of arithmetic of numbers [4]. As it is well known, imprecision grows in ev-
ery calculation. An important problem arises in the case of fuzzy integers when employing the usual
Extension Principle for arithmetics, since counterintuitive results may be obtained. For example, as
indicated in [4], the difference between a fuzzy integer and itself yields in general a fuzzy set cen-
tered around O and not the crisp value 0. But, even worst, some intuitive results of operations between
fuzzy integers are not fuzzy integers, because convexity is lost. For example, if we multiply a fuzzy
integer with support between 2 and 4 by the crisp number 2, we obtain a fuzzy integer with support
between 4 and 8 in which odd numbers are in the support. This is clearly counterintuitive [1]. On
the contrary, the arithmetic of Gradual/RL-numbers allows the fuzziness to diminish along operations
(even to the extent that the operation between non-crisp Gradual/RL-numbers can be a crisp number
[7]), and all the arithmetic properties are preserved. In [6, 7] we propose a measure of fuzziness for
Gradual/RL-numbers. Remarkably, this imprecision can be bounded simply by fixing L.

As noted in [2,4,7], fuzzy intervals combine both fuzziness (in that the representation varies
from one level to another) and imprecision (in that in each level we have an interval in general,
and not a single value). Hence, Gradual/RL-numbers are better suited for representing imprecise real
quantities and, in particular, to extend the notion of measure to the case of fuzzy sets (or, in general,
RL-representations). Fuzzy numbers (intervals) are not, as already noted for cardinality of fuzzy sets
in [1] and can be found in early proposals for fuzzy cardinality like that in [8]. On his turn, fuzzy
intervals are the natural extension to the case of fuzzy information of the notion of interval and what
it represents, in particular an useful tool for representing restrictions.

Finally, let us note that fuzzy numbers (intervals) are easier to interpret and understand for a
human user. This is very important since in many applications, input and/or output of the systems is
provided by/to an human expert.

We conclude that fuzzy numbers and Gradual/RL-numbers are different but complementary. All
are useful, but for different purposes; they have the same usefulness as intervals and numbers, respec-
tively, in the crisp case. More specifically we propose the following:

— Gradual/RL-numbers are the correct choice for extending measures (cardinality, probability of
fuzzy events, etc.) to the case of fuzzy information represented by either fuzzy sets, in particular,
or RL-representations in general. Any such measure on a fuzzy set should assign a Gradual/RL-
number when the (possibly fuzzy) set/event we want to measure is well known (possibly by a
representation as a fuzzy set).

— Fuzzy numbers (intervals) are an useful, correct, intuitive way to define fuzzy restrictions with
semantics of fuzzy interval like “around x” or “approximately between x and y”. This is useful in
two different situations:

e when the imprecise quantity we want to represent is ill-known, for example if it is a measure
provided by a human as the answer to a question “what is the probability ...”, or if the (possibly
fuzzy) set/event we want to measure is not well known, like in the case of imprecise proba-
bilities. This case has to deal with the well-known problems of arithmetic of fuzzy intervals,
and

e when providing meaningful information to a human. Fuzzy intervals are better suited than
Gradual/RL-numbers for this purpose. In this sense, a lot of work about approximation of a
Gradual/RL-number by a fuzzy interval remain to be done. A suitable approach for that can
be to first summarize the Gradual/RL-number as a fuzzy subset of numbers (not necessarily
a fuzzy number), and then to approximate that fuzzy subset by a fuzzy number. Different
proposals for the first step can be found in [4, 7]. An approach for the second step is suggested
in [7] on the basis of a previous work and will be studied in the future.
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Finally, following the first of our conclusions, probability and statistics based on RL-numbers

have been introduced in [5]. On the basis of the ideas of RL-representations, we perform statistical
inference and tests in each level independently. A future work for us is to study in deep this research
avenue.
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A fuzzy implication is an extension of the classical binary implication which plays important roles in
fuzzy set theory [3], [8], [10], [11] as well as in many applications such as fuzzy morphology in image
processing [6], [7], [9] and association rules in data mining [13].

A fuzzy implication is defined as a [0, 1]> — [0, 1] mapping I which satisfies the four axioms:

FA:

SI:

DF:
DT:

the first place antitonicity:

(V(x1,%2,) € [0, 1)1 < x2 = I(x1,) > I(x2,Y));

the second place isotonicity:

(V(x,y1,32) € [0, 1101 < y2 = 1(x,31) <I(x,y2));
dominance of falsity of antecedent: (Vx € [0, 1])(/(0,x) = 1);
dominance of truth of consequent: (Vx € [0,1])(/(x,1) = 1).

Besides these four defining axioms, there are many other potential properties of a fuzzy implication
to fulfill certain requirements among which the following eight axioms are widely proposed in the
literature [1], [2], [4], [5], [8], [12]:

NT:
EP:
OP:
SN:
CB:
ID:
CP:

CO:

neutrality of truth: (Vx € [0, 1])(I(1,x) = x);

exchange principle: (V(x,y,z) € [0, 1)U (x,1(y,z)) = I(y,1(x,2)));

ordering principle: (V(x,y) € [0, 1)) (x,y) = 1 & x <y);

(Vx € ]0,1])((x,0) defines a strong negation);

consequent boundary: (¥(x,y) € [0, 112 (x,y) > );

identity: (Vx € [0, 1])(/(x,x) = 1);

contrapositive principle: (V(x,y) € [0,1]%)(I(x,y) = I(N(y),N(x))), where N is a strong fuzzy
negation;

continuity: / is a continuous mapping.

Many authors have worked on different fuzzy implications with different axioms and have found
out some interrelationship between these eight axioms [1], [2], [S], [8]. But the results are far from
complete. Our aim of this work is to determine a full view of the interrelationship between these eight
axioms. The result helps us to determine a classification on the class of fuzzy implications.
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1 Introduction

This paper continues our study of a (possible) single framework in which to treat both variable-basis
fuzzy topological spaces in the sense of [18] and the respective algebraic structures underlying their
topologies. Originally suggested by both localic theory and fuzzy set theory, the problem has a long
history.

In 1959 D. Papert and S. Papert constructed an adjunction between the categories Top of topo-
logical spaces and Frm“” the dual of the category Frm of frames [13]. The adjunction was described
more succinctly by J. Isbell in [8], where he introduced the name locale for the objects of Frm°? and
considered the category Loc of locales as a substitute for Top. In 1982 P. Johnstone gave a coherent
statement to localic theory in his famous book “Stone Spaces” [9]. Using the logic of finite observa-
tions S. Vickers introduced in [27] the notion of fopological system to get a single framework in which
to treat both spaces and locales.

On the other hand, the pioneering papers of C. L. Chang [2] and R. Lowen [11] started the the-
ory of fixed-basis fuzzy topological spaces. In 1983 S. E. Rodabaugh introduced the category FUZZ
of variable-basis fuzzy topological spaces [15]. Since then it is known as the category C-Top of
variable-basis lattice-valued topological spaces [18, 19]. Both fixed- and variable-basis topologies in-
duced many researchers to study their properties [5—7,16-21]. In particular, in [4] J. T. Denniston
and S. E. Rodabaugh considered functorial relationships between lattice-valued topology and topo-
logical systems. Using fuzzy topological spaces and crisp topological systems they encountered some
problems. This manuscript aims at providing another approach to the question.

In a series of papers [22,24,26] we studied the categories of fixed- as well as variable-basis
topological spaces over an arbitrary variety of algebras generalizing the approaches of C. L. Chang
(resp. R. Lowen) and S. E. Rodabaugh. The basic point of our investigations was an attempt to do
fuzzy mathematics with non-ordered structures. The motivation for the problem was provided by [23],
where we introduced the notion of fuzzy object in a concrete category (A, U ) over X as an U-structured

arrow X > UA. The new notion not only generalizes the standard ones used in the literature, but also
provides a wide range of new (sometimes even unexpected) examples and applications in the field of
algebra and topology [23]. In particular, our definition does not require A to be a lattice or even to be
ordered.

In [25] we introduced the notion of variable-basis topological system over an arbitrary variety of
algebras. By analogy with J. T. Denniston and S. E. Rodabaugh we considered functorial relationships
between the categories of variable-basis topological spaces and variable-basis topological systems. In
particular, we constructed a full embedding of the former category into the latter one. Our slogan was:
while considering fuzzy topological spaces, one should consider fuzzy topological systems.

We also showed that unlike the category of variable-basis topological spaces which is topological
over its ground category, the category of variable-basis topological systems has that property iff the
respective underlying functor is an isomorphism and posed the question on the nature of the latter
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category (i.e., whether it is algebraic). It is the purpose of the current paper to answer the question
(partly) in the affirmative, thereby providing a full embedding of topology into algebra.

The necessary categorical background can be found in [1, 12]. For algebraic notions we recom-
mend [3, 12]. It is expected from the reader to be acquainted with basic concepts of category theory,
e.g., with that of an adjoint situation.

2 Variable-basis topological spaces

In this section we recall from [24] the definition of the category of variable-basis topological spaces
over an arbitrary variety of algebras. Notice that our definition generalizes (in fact goes in line with)
the respective one of S. E. Rodabaugh [18, 19]. Start by recalling the concept of variety [3, 12].

Definition 1. Let Q = (ny)ycp be a (possibly proper) class of cardinal numbers. An Q-algebra is
o
a pair (A,(0))ren) (denoted by A) consisting of a set A and a family of maps A™ X A An Q-

homomorphism (A4, (@) )5ex) ERN (B, (00F)ren) is a map A L, B such that f oy = &% o . Alg(Q) is
the category of Q-algebras and Q-homomorphisms. Let M (resp. ‘E) be the class of Q-homomorphisms
with injective (resp. surjective) underlying maps. A variety of Q-algebras (also called a variety) is a
full subcategory of Alg(Q) closed under the formation of products, M -subobjects (subalgebras) and
‘E-quotients (homomorphic images). The objects (resp. morphisms) of a variety will be referred to as
algebras (resp. homomorphisms).

The categories Frm, SFrm, Quant and SQuant of frames, semiframes, quantales and semi-
quantales (popular in lattice-valued topology) are varieties [19].
Fix a variety A and an algebra Q. Given a set X, QX the Q-powerset of X is an algebra with oper-

ations lifted point-wise from Q, i.e., (coQX(<p,~>nk))(x) = coQ((pi( ))n,)- Every map X Ly provides
the standard image and preimage operators on the respective powersets P(X) EAN P(Y)and P(Y ) I

‘P(X). Moreover, there exists the Zadeh preimage operator Q¥ o, QX defined by fQ (p)=pofIl7,

19, 28]. On the other hand, every homomorphlsm A %5 B can be lifted to a map AX £, BX defined by

g%.(p) = gop. Both Q e, 0¥ and A¥ £ BX are homomorphisms.

For convenience sake from now on we use the following notations [4, 18, 19]. The dual of the cat-
egory A is denoted by LoA (the “Lo” comes from “localic”). Its objects (resp. morphisms) are called
localic algebras (resp. homomorphisms). Given a localic homomorphism @, the respective homomor-
phism is denoted by ¢°” and vice versa.

Let (X,A) — 9, (Y,B) be a Set x LoA-morphism. There exists the Rodabaugh preimage oper-

ator BY L2, AX defined by (f,9)~(p) = 9 o po f [4,16-211. Since fi~ o (¢”)Y, = (£,0)~
(9°P)X, o f5~, (f,@)~ is a homomorphism. By analogy with [18, 19] we introduce the category of
variable-basis topological spaces.

Definition 2. Given a subcategory C of LoA, C-Top is the category, the objects of which (called

C-topological spaces or C-spaces) are triples (X,A,T), where (X,A) is a Set x C-object and T is
a subalgebra of AX. Morphisms (X,A,T) —— 4, (Y,B,0) are Set x C-morphisms (X,A) — b, (Y,B)
such that ((f,9) )7 (0) C t (continuity). The forgetful functor C-Top L Set x C s |(X,A,1T) —> ),

(v,B,0)| = (x,4) L% (v, ).
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In this paper we restrict ourselves to the case C = LoA, calling LoA-spaces by spaces and LoA-
continuity by continuity.

3 Variable-basis topological systems

This section introduces our main category of study, i.e., the category of variable-basis topological
systems [25]. Its definition generalizes the respective one of S. Vickers [27].

Definition 3. Given a subcategory C of LoA, C-TopSys is the category, the objects of which (called
C-topological systems or C-systems) are tuples D = (ptD,XD,QD, =), where (ptD,XD,QD) is a

Set x C x C-object and ptD x QD 5 YD is a map (called ¥ D-satisfaction relation on (ptD,QD))

_ — Z op Q op
such that for every x € ptD, QD £, YD is a homomorphism. Morphisms D =Rt ) R1))

D, are Set x C x C-morphisms (ptDy,XD;,QDy) EN (ptD2,LXD,,QD5) such that for every x €
ptD; and every d € QD,, Xf(=,(ptf(x),d)) = =,(x,Qf(d)) (continuity). The forgetful functor

C-TopSys " Set x C x C is |D; > Ds| = (ptD1,£D1,2D,) L (ptD,£D5,2D»).

In this paper we restrict ourselves to the case C = LoA, calling LoA-systems by systems and
LoA-continuity by continuity.

Definition 4. Q-TopSys is the subcategory of LoA-TopSys with objects all systems D with XD = Q
and morphisms all system morphisms f such that X f = 1p.

Lemma 1. The subcategory Q-TopSys is full iff A(Q,Q) = {1p}. If I is an initial object in A, then
I-TopSys is full.

Since 2 = {L, T} is an initial object in Frm, the full subcategory 2-TopSys of Loc-TopSys
is isomorphic to the category TopSys of S. Vickers. Given a set K, the subcategory K-TopSys of
LoSet-TopSys is isomorphic to the category Chu(Set, K) of Chu spaces over K [14]. K-TopSys is full
iff K is the empty set or a singleton.

4 Topological spaces versus topological systems

In this section we show that the category LoA-Top is isomorphic to a full regular mono-coreflective
subcategory of the category LoA-TopSys.

Lemma 2. There exists a full embedding LOA-TOPCL LoA-TopSys given by the formula

(f:9)

«—\op
Er((X,4,7) L2 (v,B,0)) = (X A1, )=,) LEVD T,

Y,B,0,}=,)
where |=,(z,p) = p(2).

Proof. For continuity of E7(f, @) notice that =, (x, (f,9)” (p)) = =, (x,9Popo f) =¢°Popo f(x) =
0P (=, (f(x),p)). As for fullness, given any continuous Er(X,A,T) EX Er(Y,B,0), (Qf(p))(x) =
1, Qf(p) = Lf (F,(ptf(x),p)) = (Ef o poptf)(x) = ((ptf, (Zf)") " (p))(x), ie.. Qf(p) =
(ptf,(Zf)°?). Therefore (X,A,1) GLAENT), (Y,B,0) is continuous and Er(pt f,(Lf)")=f. O
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Lemma 3. There exists a functor LoA-TopSys Spat, LoA-Top with

e
spat(Dy L Dy) = (ptD1, 2Dy, 1) LLEDD (0D, $Ds,0)

where T = {}=,(—,b)|b € QD }.

Proof. By analogy with S. Vickers we call |=,(—,b) the extent of b. To show that SpatD is a space
we notice that

(@5 (= (=) ) () = OFP (= (3,0 ) = =y (6, 022 (b)) = (1= (=, 2P ({B3)))) (),

As for continuity of Spat f, given the extent of some d € QD,, ((ptf,(Zf)") " (E,(—,d)))(x) =
(Bf o =y (=,d) optf) (x) = Zf (= (ptf (%), d)) = =, (x, 2f (d)) = (F1 (=, 2f (d))) (x). O

Lemmas 2 and 3 provide the following theorem.

Theorem 1. The functor Spat is a right-adjoint-left-inverse of the functor Ert.

Proof. Every system D has a map QD 2 {E(=,b)|b € QD} defined by ®(b) = |=(—,b). Since ®

is a coequalizer of the homomorphisms Ker® — B with ;(b;,b,) = b, it is a regular epimorphism
2

. . . e=(1pp,1xp,PP) .

in A. Moreover, straightforward computations show that E7 SpatD D provides an E7-

(co-universal) map for D. O

Corollary 1. The category LoA-Top is isomorphic to a full regular mono-coreflective subcategory of
the category LoA-TopSys.

5 Embedding topology into algebra

The previous section provided the (full) embedding LOA—TOpCi) LoA-TopSys. With a little effort
one can see that the category LoA-Top is topological over its ground category [24]. On the other hand,
the category LoA-TopSys is topological over its ground category iff the forgetful functor | — | is an
isomorphism [25]. The following theorem explains the reason.

Theorem 2. The forgetful functor | — | of the category LoA-TopSys creates isomorphisms and is
adjoint but the category itself is (Epi, Mono-Source)-factorizable, therefore, (LoA-TopSys,| — |) is
essentially algebraic. If A-epimorphisms are onto, then | — | preserves extremal epimorphisms and
thus the category in question is algebraic.

Notice that epimorphisms are onto neither in the category Frm of frames nor in the category
Quant of quantales [10] (unfortunately, we can not say anything on epimorphisms in the category
SQuant of semi-quantales). It is still an open question whether the functor | — | preserves extremal
epimorphisms. The only result obtained so far is as follows.

Lemma 4. Given an extremal epimorphism Dy = D, in LoA-TopSys, both pte and Le are extremal
epimorphisms in the respective categories.

Lemma 2 and Theorem 2 provide the (full) embedding of the (topological) category LoA-Top
into the essentially algebraic category LoA-TopSys, i.e., an embedding of “topology” into “algebra”.
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On the link between chance and truth

Claudio Sossai

ISIB-CNR
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The starting point for fuzzy set theory and many formalizations of fuzzy logic is the idea of substitut-
ing the usual two truth values with many truth values.

In any case the concept of truth remains at the root of the mathematical description of fuzzy
systems.

To address the argument of the seminar I would like to analyze the following question: is truth a
primitive concept?

In my presentation I will try to show that chance is a more primitive concept, witness the fact
that we can recover truth starting from chance but not viceversa. This fact has some interesting con-
sequences. Let me start from an interesting story.

When Goedel arrives at Princeton (1940) he has in his suitcase almost all his logical works that
will be published in the future. Therefore after his arrival in the USA his main interest is philosophical.

What remains of this work two articles ready to be published and thousands of pages of philo-
sophical notes.

Almost nothing of this material has been published by the author. As reported by Goedel one of
the motivations is that he was unable to give a logical formalization to this material.

Without entering in the complex and often obscure metaphysics left by Goedel, for the porpoise
of these notes it is sufficient to say that his system was based on one fundamental assumption: chance
does not exist.

At Princeton Goedel encounters very often Einstein, that was involved in problems very close
the the fundamental assumption made by Goedel. In fact Einstein was searching for a deterministic
completion of quantum theory.

Both failed in their attempts, because Goedel was not able to obtain a clear and formal representa-
tion of his ideas, while Bell and Kochen-Specker theorems show that Einstein’s hypothesis is wrong.
Nonetheless I believe that the open problem they left us is very interesting, and its investigation can
give us some insights on the meaning of the concept of truth value.

To start the analysis let me mention some aspects of the work on a stochastic semantics of logic,
more precisely a stochastic interpretation of proof semantics of linear logic. The interested reader can
find all the technical details at the following address: http://www.isib.cnr.it/infor/papers/stat.pdf.

In the stochastic semantics for logic every formula is interpreted into a coherent sets of observables
(trajectories of a suitable stochastic process). Let X be the set of possible observables of a formula
0. It is assumed that to every observable x it is associated a statistical measure 6 over the possible
outcomes.

For instance for an atomic formula P a coherent set of observables has the form {x: 6¥ =%},
where X is the available observable. For this reason the interpretation of logic depends on the observed
data i.e. the trajectories Xy, ..., X, ... relative to the atomic formulae Py, ..., P, ... Changing the available
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observables X7, ..., X, the interpretation changes. Therefore we can say that the interpretation of logic
is generated by random choices.

In logic, there are two different semantics: the interpretation of formulae (truth-valued semantics)
and the interpretation of proofs (coherent spaces, A-calculus). In stochastic semantics the two aspects
are unified, we can start from the interpretation of formulae, interpreted into sets of available observ-
ables, and obtain a semantics where also proofs can be interpreted, again into sets of observables of
the proven formula.

The important property, i.e. validity of stochastic semantics, is that, while the interpretation of
formulae always depend on random choices, i.e. the available observable, for proofs random choices
are irrelevant.

More precisely it is proved that if ¢ is a provable formula then the interpretation of a proof 1 of
0 does not depend on the observables used to interpret the proven formula and 7 is represented by a
true formula in a suitable topos of presheaves. It is also shown that a true-formula in this topos is a
time-uncertainty invariant property, i.e. a property that remains true if time passes and information
changes due to randomness.

Let us assume that mathematics is reliable, i.e. that mathematics is able to forecast events that
have not yet been observed. There are a lot of examples of this fact.

Under this hypothesis we can assume that the laws of mathematics respects some important sym-
metries of the universe. Due to the fact that the laws of mathematics are chance invariants, as the
validity theorem shows, we can assume that also the symmetries of universe are chance invariants,
therefore we can conclude in accordance with the ideas of Einstein (and Goedel) that ”God does not
play dice with the universe”.

What remains to understand is why and where Einstein and Goedel were wrong, and here truth-
values enter into play.

Both of them negate the importance and existence of chance.

I believe that this is the root of their error.

To explain this point let me use the following metaphor.

If you have a sphere you can easily recover its center of symmetry: a point in the space. But if
you have a point in the space it is impossible to recover the sphere that has that point as its center of
symmetry. Therefore if we want to reconstruct the sphere from its center the only way is to reduce the
sphere to its center, i.e. to negate its existence. Using the above metaphor let me explain how truth can
be seen as the center of the sphere and chance the sphere itself.

We have seen that proofs and computations (due to the Curry-Howard isomorphism) are chance
invariant.

Note that in the statistical interpretation of logic there is only one atomic formula that has a chance
independent interpretation: 1 that is interpreted by the trivial stochastic process (the one described
by the trivial filtration whose algebras are always equal to {0,Q}). Moreover, in the truth-valued
semantics of linear logic a formula ¢ is true iff 1 belongs to its truth value.

From this, by completeness theorem, also truth is a chance invariant, it does not depend on chance
like observables, hence it does not vary due to time and uncertainty changes.

Therefore we can characterize truth starting from chance: truth is a chance-invariant, but it is
impossible to describe chance starting from truth, simply because truth, being a chance-invariant, has
no explicit link with random choices.

For every atomic proposition different from 1, different observables define different interpreta-
tions. Therefore, in stochastic semantics, an atomic proposition can never be true, and its interpretation
depends always on random choices that generate the available observable x.
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The possibility of describing the link between proofs and chance invariants is based on the fact that
the interpretation of formulae depends on random choices, in fact we must make logic vary depending
on random choices to describe the invariants of this variability (the laws of chance).

If we use the concept of truth in the interpretation of logic it is impossible to describe the symme-
tries of chance because using truth we cannot reconstruct the variability of the processes governed by
chance.

Therefore, I believe that both Einstein and Goedel missed the starting point: we must start from
the analysis of the variability of chance-dependent systems to describe the symmetries that allow us
to understand why ”God does not play dice with the universe”.
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Aggregation in topological spaces

Milan Stehlik
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Using a notion of a Lipschiz continous function (see [4]) we can define aggregation operator on the
support which is a topological space. If the underlying space is metrizable we can obtain a wide
range of aggregation operators. For instance we can get operators as studied by [3] where classical
Euclidean geometry and topology play a crucial role. Or we can simply put support to be a metric
fractal with Haussdorf dimension between 1 and 2, getting the copula with fractal support (as given
by [2]). However, when support is not metrizable, the problem is more complicated. And varies from
T2, regular and fully normal topological space ( such aggregation is discussed by [5]) to a topological
fractal. For the construction of copulas on the latter one, only partial answers exist until now. And these
complexities will be particularly discussed. For instance, for construction of Haussdorf dimension in
topological space one can employ the Neuman canonical bornological structure (see [1]). Furhermore,
we will need a topological contractivity and adequate iterating functions system. The applications of
the given structures in reliability and modeling of systems with observations suffering from spatial
deformations and stochastic loads will be also presented.
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The partial-algebra method for the representation
of algebras related to fuzzy logics
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1 Introduction

The reconstruction of a partially ordered group from a partial subalgebra of it, has been a popular
topic within the field of quantum structures. This is amazing; in order to develop a reasonable theory,
properties have to be assumed which exclude the most interesting examples from quantum theory.

The situation is different in fuzzy logics. The mentioned additional properties fit perfectly; assum-
ing them, leads directly into the realm of algebras corresponding to fuzzy logics. A broader interest in
the topic did not develop, though. The machinery of universal algebra is at most partially applicable
to partial algebras.

With this contribution, we are going to give an overview of results concerning the representation of
partial algebas by po-groups, and to demonstrate the benefit for the development of a structure theory
for algebras occurring in fuzzy logics. In particular, we exhibit how easy it can be — in principle — to
construct a group from a partial algebra, and how close the scope of this representation theory is to
the context of fuzzy logics.

2 How the partial algebras arise

We are interested in an analysis of the algebraic semantics of fuzzy logics. Our general motivation
has been to understand more clearly what fuzzy logics actually “talk”” about. Such an analysis is not
of a purely academic interest, but might help us to understand why fuzzy logics are successful in
applications like medical decision support.

We consider residuated lattices, understood in accordance with [11], except that we add integrality
to the definition. Taking the order reversed to what is common in logics, where stronger statements cor-
respond to smaller elements of the algebra in use, a residuated lattice is an algebra (L; A, V,$, 0, @,0)
such that (i) (L; A\, V,0) is a lattice with 0, (ii) (L; ®,0) is a monoid, and (iii) for any a,b,c € L,a <b®¢
ifandonly ifa©b < cifandonlyifa®c < b.

We define the partial operation + on a residuated lattice L as follows: For a,b € L, put

a+b=a®b if aisthe smallest element x such thatxdb=a®b
and b is the smallest element y such thata®y=a$ b,

and if this condition is not fulfilled, we let a + b undefined.

Note that for any a € L, a+ 0 is always defined, and in fact, it may happen no other sums exist.
However, it is the very nature of residuated lattices that enough such sums exist that the total operation
@ is uniquely determined by +. Namely, note that for any pair a,b € L, we may find elements ' < a
and b’ < b such that ' + 0’ is defined and equals a & b; take ' = (a®b) @b and b' = (a®b)Qd'. It
follows that

a®b = max{d +b" d <a,b' <b,and d' +b' is defined}.
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In other words, if we know the structure of the partial algebra (L; A, V,+,0), we know the structure of
the residuated lattice from which we started.

3 What basic properties the partial algebras have

The transition from a residuated lattice (L;A,V,®,0,,0) to the partial algebra (L;A,V,+,0), is
certainly reasonable only if the new structure has some interesting properties not shared with the
original one. The key property obtained is cancellativity: a4+c¢ =b+c or c+a = c+ b implies a = b.
We note that if cancellativity does already hold in the original algebra, the transition is trivial, a case
which has been dealt with in [8].

Generalizing a remark in [15], we may state the following.

Theorem 1. Let (L;\,V,+,0) be the partial algebra associated to a residuated lattice. Then, for any
a,b,c € L, the following properties hold:

(P1) (L;A,V,0) is a lower-bounded lattice.

(P2) + is a partial binary operation such that:
(i) If (a+b) +c and a+ (b+ c) are both defined, then (a+b) +c=a+ (b+c);
(i1)) a+0=04+a=a.

(P3) Ifa+ c and b+ c are both defined, then a < b if and only ifa+c < b+c.
If c+ a and c + b are both defined, then a < b if and only if c+a < c+b.

Condition (P3) expresses the cancellativity, even in a sharpened form.

One should be aware of what in general does not hold. Namely, only a weak version of associativ-
ity holds; the existence of (a+b) +c and a+ (b+c) is not assumed to be equivalent. Furthermore, the
partial order need not be the natural one; a < b does not necessarily mean thata+x=>b, or x+a = b,
for some x.

4 How the representation works

Dealing with a cancellative operation, we naturally ask if it is possible to isomorphically embed the
partial algebra (L;A,V,+,0) into the positive cone of some lattice-ordered group (G;A,V,+,0). To
determine the exactly required algebraic properties of the algebra is impossible, but already known
sufficient conditions cover a number of cases. Let us describe the situation where the construction
works the smoothest.

Namely, let us assume that L does have the properties mentioned at the end of the last section, that
is, fulfils the stronger form of associativity, and is naturally ordered w.r.t. +. Then L is what has been
called a generalized pseudoeffect algebra, or GPE-algebra for short [5].

A further, crucial property of L is automatic: the Riesz decomposition property (RDPy), saying
that if a < b +c, then a = b’ + ¢’ for some b’ < b and ¢’ < c. We may proceed as follows:

— Let G(L) be the group freely generated by L, subject to the conditions a + b = c if this equality
holds in L.
— Let C(L) be the subsemigroup generated by the range of the natural embedding of L into G(L).

That’s all. Under the conditions mentioned, L does not collaps; we may consider L as a subset of G(L).
Furthermore, G (L) becomes a lattice-ordered group by taking C(L) as its positive cone; L is located
within the latter. The lattice operations performed in L and in G(L), coincide.
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5 Where the method is applicable

In the indicated, or slightly modified, way, we may derive

(i) Mundici’s representation theorem of MV-algebras [12];
(i) Dvurecenskij’s representation theorem of pseudo-MV algebras [2]; see [4];
(iii)) Bosbach’s representation theorem of cone algebras [1]; see [16].

It is furthermore not difficult to include an additional product, to represent

(iv) LII-algebras [7]; see [13];
(v) PL-, PE’-, and PL’ 5-algebras [9]; see [13].

By similar methods, we get

(vi) aparticularly easy proof of the representation theorem for BL-algebras; see [14];
(vii) Dvurecenskij’s representation theorem for linearly ordered pseudo-BL algebras [3] as well as a
representation of their implicational subreducts; see [16].

6 How to extend the method

The po-group embedding method is not limited to the case in which the po-group is generated by
the partial algebra as indicated. As pointed out in [15], there are numerous further cases, found by
an inspection of left-continous t-norm algebras. As an example, let ® be the rotation-annihilation of
two Lukasiewicz t-norms [10], and let & be the corresponding t-conorm. Consider the lexicographical
product R X R of two copies of the naturally ordered reals; let

L={(a,h) € (Rx1xR)":1a=0,0<b<1
or0<a<1,b=0
ora=1,—-1<b<0},

and let + be the group addition restricted to those pairs in L whose sum is again in L. Then (L; A, V, 4+, (0,0))
is isomorphic to the partial algebra associated to the residuated lattice ([0, 1]; A, V,®,5,6,0), where
© is the dual of the residual implication of ©.
The question if there are reasonable conditions characterizing residuated lattices embeddable into
a po-group, offers a worthwile field of investigation.
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The problem of conditioning can be interpreted in two different ways. One possibility is to take up
the classical idea, i. e. defining the “conditional probability” of an event a, given another event b and
a probability P on a Boolean algebra LL of events, by

Pla|b)=" 5[‘,’(2)1’ )

if P(b)#0. (1)

Many researchers followed this line, see e. g. Kroupa [8]. He defined a “conditional state” of a, given
b and a state (additive measure) m on an MV-algebra L. with product -, by

m(a-b)
m(b)

and showed that m(. | b) is a state on L, fixing b. See also the paper [3], where Renyi’s axiomatic ap-
proach is extended. But let us emphasize that in all these papers (a | b) is not a well-defined object but
only a symbol used to define the conditional probability resp. state. This line will not be considered in
this talk.

m(a|b) =

if m(b)#0

In contrast to this approach, we follow the other very different approach of measure-free condi-
tioning in the sense of Goodman, Nguyen and Walker [5]. In a first step, they defined the “conditional
event a given b” for events a,b in a Boolean algebra LL as the lattice-interval

(a|b)=[anb, b'Ud]

and showed that the set of such conditionals forms a (semi-simple) MV-algebra, see [5], Section 4.3,
Theorem 1. In a second step, they extended a given uncertainty measure v on IL to an uncertainty
measure u on the set of the conditionals (a | b) by

p(a| b) =M(v(anb), v(b'Ua))

with respect to some given (mean value) function M. In a third step, they observed that for a probability

v = P the choice .

M =— if 0,1 2

(x,¥) Ty | (x,y) #(0,1) 2

leads to u(a | b) = P(a | b) from (1), i. e. that the uncertainty measure u assigned to the conditional
events is compatible with the classical conditional probability. See also the paper [4] in the context of

non-monotonic logic.
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Now, the purpose of this talk is twofold. In the first part, following this year’s first motto “Where
do we stand?”, we present briefly the generalizations of the three steps of measure-free conditioning
sketched above. All this was presented by the author in several talks since 1987 and in papers, par-
tially jointly with U. Hohle, see e. g. [7]. Replacing the Boolean algebra I by an MV-algebra, we
found that the conditionals form a Girard algebra. We used this name for a bounded, integral, residu-
ated, commutative /-monoid with involutory residual complement, see [6], because of some analogy
to Girard quantales, see [10], Chapter 6. Denoting by V, A the lattice operations, by Il the semigroup
operation, by ’ the residual complement and by LI the De Morgan dual, a Girard algebra results to be
an MV-algebra if and only if the divisibility property a(a’ Ub) = a A b holds, see [6], where LI,
resp. ' are Chang’s operations +,- resp. ~ from [1]. Furthermore, we found that the structure of a
Girard algebra is closed with respect to measure-free conditioning. But it remained open the problem
of how to extend the additivity of an uncertainty measure m on an MV-algebra to a measure extension
i on the resulting Girard algebra extension of conditionals. The additivity on M V-algebras has a clear
meaning, see e. g. [11] in the context of admissibility or [9] in the context of quantum theory, where
the name state is used. Problems concerning additivity on a Girard algebra IL were discussed in [12],
where we introduced the weak additivity of an uncertainty measure m on L if and only if m is
additive on all MV-subalgebras of L.

Therefore, in the second part of this talk and following this year’s second motto “Where do we
g0?”, we present the details of such extensions for finite MV-algebras as sketched in the following.
Let L be a finite MV-algebraand 4 : L — L x ... x L, an MV-algebra isomorphism to a finite prod-
uct of finite MV-chains L;, see e. g. [2], Proposition 3.6.5, where for the following it does not matter
whether the IL; are considered as Lukasiewicz’ MV-chains or not. Denote by I the canonical Girard
algebra extension {(a,b) € L x L :a < b} of L, see [7], and similar I; resp. (ILj x ... x LL,). Then
h(a) = (ay,...,a,) induces a Girard algebra isomorphism / : . — (IL; x ... x IL,,) given by (a,b) =
(h(a), h(b)). Furthermore, g: (Ly x ... x L,) — L; x...xL,, givenby g((ai, ...,a,), (b1,...,b,)) =
((a1,b1),...,(ay,by,)), is also a Girard algebra isomorphism. Then any MV-subalgebra M of I is
isomorphic to the product g(A(M)) = M x ... x M, of MV-chains M; which are the only MV-

subalgebras of L;. Now, any uncertainty measure m on L induces an uncertainty measure my; on
L; x...xL,, given by

my(ar,....,a,) =m(hY(ay,...,a,)) = m(a).

Abusing the notation, we will write also m instead of m;,.

By analogy abusing the notation, we obtain that an extension 772 on I induces measures /i on (IL; x ... x L,)
resp. L; x ... xL,, given by

m(a,b) =m((ay,...,a,),(by,...,by)) =m((a,by),...,(ay,by)).

Additionally, any additive measure m on LL results to be a convex combination of the unique measures
onthe IL;, 1. e.

v v
:Z.Ui'm(ai), ,UiZQZHi:l-
i=1 i=1

Then the weakly additive measure extensions s on L are determined by the values

ab:i m(a;,b
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for all (a;,b;) € M for each MV-subalgebra (MV-chain) M of ;. In [13] it is shown that
i(ai,bi) = M(m(a;), m(b;))

with respect to the mean value function

Y

M(x,y) = m )

which is completely different from that in (2).

Furthermore, the positive and negative results concerning strongly additive measure extensions from
[12,13] can be generalized.

Finally, all notions and results can be applied to conditional events, given by

(a|b)=(anb,b' Ua),

with the identification of a lattice interval [a,b] in IL with the element (a,b) of IL.
Several examples will illustrate the results.

It remains open the problem:

How to generalize the results from a finite to an arbitrary M V-algebra IL. ?
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Generalized quantifiers in logic and language
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The aim of this talk is to present the current state of generalized quantifier theory, in particular as it
applies to issues in natural language semantics. After a brief historical overview, I present the standard
model-theoretic notion of a quantifier, and some questions and results concerning the properties, ex-
pressive power, etc. of first-order logics with added generalized quantifiers. I then look at the subclass
of quantifiers that typically turn up in language, and their special properties. As illustrative examples
I choose (i) quantifiers and negation, (ii) monotonicity properties, and (iii) possessive quantifiers (as
in “At least one of most logicians’ papers deals with quantifiers”. Finally, some open questions and
ideas for research are sketched.
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Constructing t-norms from a given behaviour on
join-irreducible elements

Serife Yilmaz! and Bernard De Baets?

' Department of Mathematics
Karadeniz Technical University, 61080 Trabzon, Turkey
serife.yilmaz@ugent.be
2 Department of Applied Mathematics, Biometrics and Process Control
Ghent University, B-9000 Gent, Belgium
bernard.debaets@ugent.be

Triangular norms (t-norms for short) were originally studied in the theory of probabilistic metric
spaces in order to generalize the classical triangle inequality to this field [7, 12]. Later on, they played
an important role as interpretation of the conjunction in many-valued logics [4], in particular in fuzzy
logics [8]. An important class of t-norms is the class of sup-preserving t-norms which play a major
role, particularly in residuated lattices [4]. Triangular conorms are introduced as dual notion of tri-
angular norms [10]. There have been some construction methods of t-norms on various classes of
lattices [11,5,9, 6]. Some lattices can be generated by a class of elements: join- or meet-irreducible
elements and some others [1, 2]. In this contribution, we focus on constructing t-norms on complete
lattices from a given behavior on join-irreducible elements. We present the sup-extension method to
describe the behavior of a t-norm on a finite distributive lattice by means of join-irreducible elements
by the following theorem:

Theorem. Let L a finite distributive lattice and J(L)* = J(L) U {0,1}. If T is a t-norm on J(L)" ,
then the function T defined as follows:

Txy)=\/ \V Tk
jen(x)ken(y)
where n(x)={i € J(L)*|i <x}=J(L)*N | xforallx € L,isat-normon L.

We provide a method to construct t-conorms by carrying out the dual method on meet-irreducible
elements. We also obtain some inf-preserving t-conorms on principle ideals of a lattice from given inf-
preserving t-conorms. We show that if 7 is a t-norm on a complete lattice L and every join-irreducible
element of L is idempotent, then T = A. We give a method to construct t-norms on a product of dis-
tributive lattices L = L; X Lp X ... x L,. Giving a partititon of the set of join-irreducible elements of
L=1LyxLyx...xL,, we show that for a given t-norm on join-irreducible elements, the restriction to
each set that forms the partition is not necessarily a t-norm, but a t-subnorm. Moreover, we partition
the set of join-irreducible elements J (L") of a power of chains L, given in [13], into n sets such that

J1 ={(0,0,...,0,a) |ac L}
J,={(0,0,...,a,a) |ac L}

Jo1 ={(0,a,...,a,a)|ac L}
J,={(a,a,...,a,a) |ac L}.
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and provide a method to construct a t-norm from given t-norms on the parts of this partition. We
show that if L is finite, then the constructed t-norm is sup-preserving. In an interval valued lattice
L, the set Dy = {[x,x] | x € L} is called the diagonal of L [3]. Our last result on the characterization
of sup-preserving t-norms on LI" extends result of [3]: Any sup-preserving t-norm 7' on LI can be
characterized by its behaviour on J,, and T((0,...,0,1),(0,...,0,1)) if it is closed on the diagonal.
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