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Since their inception in 1979, the Linz Seminars on Fuzzy Set Theory have
emphasized the development of mathematical aspects of fuzzy sets by bringing
together researchers in fuzzy sets and established mathematicians whose work
outside the fuzzy setting can provide directions for further research. The philos-
ophy of the seminar has always been to keep it deliberately small and intimate
so that informal critical discussions remain central.

LINZ 2010 will be the 31st seminar carrying on this tradition and is de-
voted to the theme “Lattice-Valued Logic and its Applications”. The goal of the
seminar is to present and discuss recent advances of mathematical fuzzy logic
(understood in the broader framework of lattice-valued logics) and concentrate
on its applications in various areas of computer science, linguistics, and philos-
ophy.

A large number of highly interesting contributions were submitted for pos-
sible presentation at LINZ 2010. In order to maintain the traditional spirit of
the Linz Seminars — no parallel sessions and enough room for discussions —
we selected those twenty-six submissions which, in our opinion, fitted best to
the focus of this seminar. This volume contains the abstracts of this impressive
selection. These regular contributions are complemented by six invited plenary
talks, some of which are intended to give new ideas and impulses from outside
the traditional Linz Seminar community.

Petr Cintula
Erich Peter Klement

Lawrence N. Stout
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The impact of adding a constant

Matthias Baaz and Oliver Fasching

Institute of Discrete Mathematics and Geometry
Vienna University of Technology, Vienna, Austria

{baaz,fasching}@logic.at

Abstract. We consider an extension of [0,1]-Gödel logic by a unary operator o
that adds a constant r ∈ [0, 1] fixed for every interpretation. We show that the
set of formulas in propositional logic valid for all r is axiomatizable by a Hilbert-
Frege system although entailment in this logic is not compact. This is achieved by
evaluating the formula under finitely many linear orders. Moreover, we prove—
contrary to the case without o—that validity in the corresponding first-order logic
is not r. e.

We consider a language LP
o that comprises a countably infinite set of propo-

sitional variables, connectives ⊥, ⊃, ∧, ∨ with their usual arities as well as a
unary connective o. The semantics of propositional Gödel logics with o in LP

o is
determined by Gödel r-interpretations I; here r ∈ [0, 1] and I maps formulas
to [0, 1] such that

I(A ∧B) = min{I(A), I(B)},
I(A ∨B) = max{I(A), I(B)},
I(o(A)) = min{1, r + I(A)},

I(⊥) = 0,

I(A ⊃ B) =

{
1 if I(A) ≤ I(B),
I(B) if I(A) > I(B).

A formula A is valid if I(A) = 1 holds for all Gödel r-interpretations I, r ∈
[0, 1]. We introduce the well-known abbreviations> := ⊥ ⊃ ⊥,¬A := A ⊃ ⊥,
A ≺ B := (B ⊃ A) ⊃ B, A ↔ B := (A ⊃ B) ∧ (B ⊃ A) and define the
o-powers o0 A := A, on+1 A := on o A. We have then, e. g.,

I(A ≺ B) =

{
1 if I(A) < I(B) or I(A) = I(B) = 1,
I(B) if I(A) ≥ I(B).

We write R 
 S and say R entails S if for all r ∈ [0, 1] holds that, whenever
I is an r-interpretation such that I(A) = 1 for all A ∈ R, we have I(A) = 1
for all A ∈ S.

One immediately observes that the entailment relation is not compact for
LP

o since for R := {ok x ⊃ y; k ∈ N} and S := {y ∨ ¬ o⊥}, we have R 
 S
but for any finite E ⊆ R we have E 6
 S.
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Nevertheless, the set of validities is clearly decidable since this problem can
be translated into, e. g., the deciable theory of real closed fields. In this paper,
we focus on the axiomatization in a Hilbert-Frege style.

Dummett [1] proved that the set of valid formulas in propositional Gödel
logic (without o) is axiomatized by the Hilbert-Frege style proof system (GPL)
that consists of the axiom schema of linearity (LIN) A ⊃ B ∨ B ⊃ A added
e. g. to the following system (IPL), which axiomatizes propositional intuitionis-
tic logic:

A ⊃ (B ⊃ A), modus ponens: A A⊃B
B ,

(A ∧B) ⊃ A, (A ⊃ (B ⊃ C)) ⊃ (A ⊃ B) ⊃ (A ⊃ C),
(A ∧B) ⊃ B, (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C)),
A ⊃ (A ∨B), A ⊃ (B ⊃ (A ∧B)),
B ⊃ (A ∨B), ⊥ ⊃ A.

One can prove that the set of valid formulas in propositional Gödel logics with
o is given by (GPL) plus the following simple axiom schemata:
¬ o⊥ ∨ (A ≺ o A), (A ⊃ B) ⊃ (o A ⊃ o B), (o A ⊃ o B) ⊃ ((A ⊃ B) ∨ o A),
¬ o⊥ ⊃ (o A ↔ A), (A ≺ B) ⊃ (o A ≺ o B), (o A ≺ o B) ⊃ ((A ≺ B) ∨ o A)

The proof employs Dummett’s idea to use chains, i. e. linear orderings of propo-
sitional variables and their o-powers w. r. t. ≺ and ↔, to evaluate the given for-
mula; cf. also [2]. The proof also reveals how to construct a finite counter-model
to a formula if it is not valid. A consequence is that this logic is the intersection
of the finitely valued logics when only those r ∈ [0, 1] are considered where all
operations are defined.

First-order Gödel logics with o uses predicate symbols and quantifiers ∀, ∃
with the usual semantics

I(∀xA(x)) = inf{I(A(u)); u ∈ |I|},
I(∃xA(x)) = sup{I(A(u)); u ∈ |I|}.

For the sake of simplicity, we consider here only the function-free fragment.

Theorem 1. Then there is an effective embedding A 7→ Ae from formulas in
classical first-order predicate logic to first-order Gödel logics with o such that
the following conditions are equivalent for any closed classical formula A:

1. There is a classical interpretation I′ such that I′(A) = 0 and |I′| is finite.
2. There is r ∈ (0, 1] and a Gödel r-interpretation I such that I(Ae) < 1.

We use a variant of Scarpellini’s [3] embedding of classical logic into Łukasiewicz
logic to show the non-enumerability of the set of the valid formulas. The imme-
diate consequence is that first-order Gödel logics with o is not r. e.

12



We will also discuss what happens if the logics discussed above are extended
with the projection operator 4 where

I(4A) =

{
1 if I(A) = 1,

0 if I(A) = 0.
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Extending Cantor–Łukasiewicz set theory with classes

Libor Běhounek

Institute of Computer Science
Academy of Sciences of the Czech Republic, Prague, Czech Republic

behounek@cs.cas.cz

As conjectured by Skolem [8] and proved by White [10], naı̈ve set theory with
the unrestricted axiom schema of comprehension, which is inconsistent over
classical logic due to Russell’s paradox, turns out to be consistent over infinite-
valued Łukasiewicz logic. Hájek [5, 3] studied the theory under the name Cantor–
Łukasiewicz set theory (denoted by CŁ further on)1 and showed several negative
results on arithmetic over CŁ. Additionally, some basic constructions (such as
kernels of fuzzy sets) are in general undefinable in CŁ on pain of contradic-
tion, as any bivalent or finitely-valued operator makes it possible to reproduce
Russell’s paradox. These facts cast serious doubts on Skolem’s conjecture that
a large part of mathematics could be formalized in the theory.

Here I suggest to remedy the drawbacks of CŁ by extending the theory
with classes, in a similar manner as von Neumann–Bernays–Gödel’s classical
set theory NBG extends Zermelo–Fraenkel’s ZF. Besides a few observations
on the features and expressive power of the resulting theory CŁC, I discuss
its motivational aspects and compare it with two set theories with classes over
classical logic (NBG and Vopěnka’s [9] AST).

1 Cantor–Łukasiewicz Set Theory with Classes

Cantor–Łukasiewicz set theory CŁ is a theory over first-order Łukasiewicz infinite-
valued logic Ł∀ (see, e.g., [4]) with the only primitive predicate ∈ and the
set comprehension terms {x | ϕ(x)} governed by the comprehension axioms
y ∈ {x | ϕ(x)} ↔ ϕ(y), for all formulae ϕ. The extension CŁC of CŁ by
classes can be defined as follows:

Definition 1. CŁC is a theory over two-sorted first-order Łukasiewicz logic
with the connective 4 (Ł∀4, see, e.g., [4]). The language of CŁC consists
of:

1 In [5] and several follow-up articles, the theory is denoted by CŁ0, while CŁ denotes a certain
inconsistent extension of CŁ0. For notational simplicity, we shall use the name CŁ for Hájek’s
CŁ0, since the inconsistent theory is of a very limited interest.
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– The sort of variables for sets (lowercase letters)
– The sort of variables for classes (uppercase letters)
– The primitive membership predicate ∈ between sets (set membership predi-

cate, or set-in-set membership)
– The primitive predicate of membership of sets in classes (class membership

predicate, or set-in-class membership, denoted also by ∈, as the two are
always distinguishable by the type of arguments)

– Set comprehension terms {x | ϕ} (of the set sort) for any set formula (see
below) ϕ

– Class comprehension terms [x | ϕ] (of the class sort) for any formula ϕ of
CŁC

Set formulae are those that contain no 4 nor any class term. The axioms of
CŁC are the following, for any set formula ϕ and any formula ψ:

– Set comprehension axioms: ϕ(y) ↔ y ∈ {x | ϕ(x)}
– Class comprehension axioms: y ∈ [x | ψ(x)] ↔ ψ(y)
– Class extensionality axioms: (∀x)4(x ∈ A ↔ x ∈ B) → (ψ(A) ↔
ψ(B))

Classes of CŁC are intended to represent crisp or fuzzy subsets of models
of CŁ: class comprehension axioms ensure the existence of any class delimited
by a property expressible in the language of CŁC. Notice that the logical vocab-
ulary of CŁC contains the connective 4, which allows us, i.a., to speak about
crisp collections of objects in models. Unrestricted set comprehension, however,
only applies to set formulae, in which 4 is forbidden. In fact, the set fragment
of CŁC coincides with CŁ:

Theorem 1. CŁC is a conservative extension of CŁ (therefore is consistent).

Proof. Every model M of CŁ can be extended to a model M ′ of CŁC by inter-
preting class variables as ranging over fuzzy classes of set-objects (i.e., mem-
bership functions from the universe of M to the algebra of truth values) and
realizing the set-in-class membership predicate accordingly (namely, defining
the values of set-in-class membership as the degrees provided by these mem-
bership functions): the validity of the axioms of CŁC in M ′ is easily seen. The
conservativeness then follows (by the strong completeness of Ł∀ and Ł∀4, see,
e.g., [6]) from the fact that the truth values of set formulae only regard the el-
ements of M (as set formulae cannot contain class terms and the semantics is
compositional).

It can be seen that the axioms for classes are the same as those of Henkin-
style monadic second-order fuzzy logic Ł∀, analogous to that of [1, §3]. CŁC
can thus be understood as a fuzzy class theory over the universe of CŁ.
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Even though a hierarchy of higher-order classes over the CŁ-universe could
be introduced in the same way as in [1, §5], many classes of classes (e.g., the par-
tition of Theorem 2(5) below) can be encoded in a rather standard way (cf. [9,
§I.5–6] for AST) by first-order relations,2 understanding a (class) binary re-
lation R together with a class A as encoding the class K of classes X with
X ∈ K ≡df (∃i ∈ A)(X = [j | Rij]). Obviously, tuples (or set-indexed sys-
tems) of classes and usual higher-order class operations (e.g., class intersection
or union) can be encoded in CŁC as well.

2 Extensionality and intensionality

In CŁC, classes are construed as extensional (i.e., determined by their mem-
bership functions), as they are intended to represent (crisp or fuzzy) collections
of objects in models. The axiom of class extensionality indeed ensures that any
two classes with the same membership function (i.e., with the same degrees of
membership of all elements) are intersubstitutable salva veritate. Since inter-
substitutivity (which in Ł∀4 is a crisp relation) can be regarded as the logical
identity (as factoring a model of CŁC by the intersubstitutivity relation does not
change the truth values of formulae), we can define:

Definition 2. In CŁC, we define: A = B ≡df (∀x)4(x ∈ A↔ x ∈ B).

On the other hand, CŁ-sets are not extensional. Recall from [5] that two
different set equalities are introduced in CŁ: the provably crisp Leibniz equal-
ity = and the (provably fuzzy) extensional equality ≈ (denoted by =e in [5]
and its follow-ups), defined as x = y ≡df (∀u)(x ∈ u ↔ y ∈ u) and
x ≈ y ≡df (∀u)(u ∈ x ↔ u ∈ y). Leibniz equality ensures intersubstitu-
tivity salva veritate (so it can be identified with the logical identity predicate),
while extensional equality (which will be also called co-extensionality further
on) does not (though it is also a fuzzy equivalence relation). Leibniz equality
implies extensional equality, x = y → x ≈ y, but it is inconsistent to assume
x = y ↔ x ≈ y in CŁ. Hájek has actually proved in [3] that there are infinitely
many set terms which are all provably co-extensional with (e.g.) ∅ =df {x | 0}
while being Leibniz non-identical.

Even though CŁ-sets are not extensional, in CŁC we can define their exten-
sions, i.e., the classes of their elements:

Definition 3. In CŁC we define the extension of a set x as the class Extx =df

[q | q ∈ x].

2 See [5] for handling ordered pairs in CŁ.
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The definitions of extension and co-extensionality can be extended to classes by
setting ExtA =df A; A ≈ x ≡df (∀q)(q ∈ A ↔ q ∈ x) and analogously for
x ≈ A and A ≈ B. The following observations are easily obtained:

Theorem 2. CŁC proves:

1. A = B ↔4(A ≈ B), by the axiom of class extensionality3

2. x ≈ y ↔ Extx ≈ Ext y, and similarly for A ≈ x and A ≈ B

3. Ext {x | ϕ} = [x | ϕ]
4. ≈ is a fuzzy equivalence relation which partitions the set universe into fuzzy

blocks {x}≈ =df {q | q ≈ x} that satisfy {x}≈ ≈ {y}≈ ↔ x ≈ y and
x ∈ {x}≈

5. The crisp equivalence relation of full co-extensionality 4(x ≈ y) partitions
the set universe into crisp class blocks [x]≈ =df [q | 4(q ≈ x)]

In contrast to NBG or AST, it is not the case in CŁC that all sets are classes
and only some classes are sets. Nevertheless, every set is in CŁC fully co-
extensional with a class (namely, its extension), and only some classes are fully
co-extensional with sets. This motivates the following definition of (im)proper
classes in CŁC:

Definition 4. In CŁC, we say that a class A is proper if ¬(∃x)4(x ≈ A), and
improper (or a set extension) if (∃x)4(a ≈ A).

Examples of improper classes are the empty class Λ =df [x | 0], the universal
class V = [x | 1], and generally Extx for any set x. By Yatabe’s overspill
theorem [11], an example of a proper class is the class FN of standard natural
numbers (similarly as in AST;4 details are omitted here for space restrictions).

Though not yet proved for CŁ, a claim analogous to one valid for naı̈ve set
theory over the logic BCK (see [7]) has been conjectured by Terui:5

CŁ ` {x | ϕ} = {x | ψ} iff ϕ and ψ are syntactically identical

Even though this feature might be viewed as a defect that trivializes CŁ, it
would nevertheless make a good sense in CŁC, as it would make the distinc-
tion in CŁC between sets and classes parallel Frege’s [2] distinction between
Sinn (sense, or intension) and Bedeutung (meaning, or extension): indeed, the
extensional CŁC-class [x | ϕ(x)] represents the collection of instances of the

3 Though only x = y →4(x ≈ y) is provable for sets by Hájek’s result of [3] cited above.
4 Although the theories differ in that AST has, so to speak, a ‘strange’ structure of classes over

‘common’ finite sets, while CŁC has ‘common’ fuzzy classes over a ‘strange’ structure of
sets.

5 Yatabe, pers. comm.
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property ϕ(x)—or its extension; while the intensional CŁC-set {x | ϕ(x)} rep-
resents (by Terui’s conjecture, exactly; otherwise partly) the way the property ϕ
is defined—i.e., its sense (or intension). Thus it is not counter-intuitive if, e.g.,
CŁ proves {x | ϕ ∨ ψ} 6= {x | ψ ∨ ϕ}, as the two sets, though co-extensional,
are presented in different ways. (Arguably, this is a desired feature in naı̈ve set
theories.)

3 On the motivation of CŁC

It may be objected that classes destroy the appealing simplicity of the full com-
prehension principle in CŁ. Nevertheless, they only represent fuzzy or crisp
classes that are anyway present in the models of CŁ, and they make it possible
to handle many natural constructions (such as kernels of fuzzy sets, including,
e.g., FN and Ker(ω) as models of arithmetic) within the theory. The features of
CŁC (the existence of a universal set, the distinction between intensional sets
and extensional classes, the properness of the class of standard natural numbers,
etc.) suggest that CŁ-sets may provide a sufficiently rich ground structure for a
mathematically non-trivial class theory over CŁ.
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Matrices over residuated lattices, related structures, and
applications

Radim Belohlavek
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This talk will provide an overview of past and current research in structures re-
lated to matrices with entries from complete residuated lattices (alternatively, to
binary fuzzy relations with complete residuated lattices as the structures of truth
degrees). In particular, the talk will provide an overview of closure and interior
structures associated to such matrices and their applications in data analysis. The
topics and results covered in this talk include Galois connections, closure and
interior operators, induced by the matrices, their axiomatic descriptions, their
representation by ordinary Galois connections, closure and interior operators,
the lattices of fixpoints of the associated operators, and some other topics.

A particular attention will be paid to the application of the presented struc-
tures to formal concept analysis of data with fuzzy attributes and to further top-
ics of theoretical interest which arise in the context of this application, such
as sublattices of the fixpoints and particular data dependencies called attribute
implications.

The last part of the talk will provide on overview of a recent application of
the presented structures in factor analysis of binary data and data with fuzzy
attributes. We will present the problem of factor analysis, the role of fixpoints of
the operators discussed, basic complexity results about the problem, an approx-
imation algorithm for factorization, its experimental evaluation, and illustrative
examples.
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Abstract. In this contribution we will show that satisfiability and validity of con-
cepts in the Fuzzy Description Logic (FDL) based on infinite-valued Product
Logic with universal and existential quantifiers (which are not interdefinable) are
decidable problems. We give an algorithm that reduces the problem of satisfiabil-
ity (and validity) of concepts in our FDL to a semantic consequence problem, with
finite number of hypothesis, on infinite-valued propositional Product Logic. The
proof makes use of a special kind of interpretations, here called quasi-witnessed,
that are particularly adequate for the infinite-valued Product Logic.

1 Introduction

For each one of three basic continuous t-norms (minimum, Łukasiewicz and
product) a propositional and a first order logical system have been studied in the
literature. In this paper we only deal with logics given by the standard semantics
in the fuzzy tradition, and not by the general semantics (cf. [1]). The language
of these logics takes as primitive connectives the multiplicative conjunction �,
its residuum implication → and the falsum constant ⊥; while the intended se-
mantics of � is the corresponding t-norm ?, the semantics of → is given by the
residuum of the t-norm (i.e., by x ⇒ y := max{z ∈ [0, 1] : x ? z ≤ y}) and
⊥ is interpreted as 0. It is well known that simply using these three connectives
we can define a new constant > as well as new connectives ∧ and ∨ whose
intended semantics are 1 and the lattice operations over [0, 1] with its natural
order; and it is common to introduce a negation ¬ defined by ¬ϕ := ϕ → ⊥.
Complete (for finite theories) Hilbert style axiomatizations for the propositional
logics defined by the three basic continuous t-norms can be found in [1]; it is
also proved there that the problem of a formula being valid in these logics is, in
the three cases, NP-complete. On the other hand, the behaviour of the first order
logics introduced by these three t-norms is not so nice: while in the minimum
case a recursively axiomatizable logic is obtained, this is not true for the other
two: Łukasiewicz t-norm introduces a Π2-complete logic and product t-norm is
even worst introducing a not arithmetical one.

Since classical Description Logic (DL) ALC can be seen as a fragment of
first order classical logic, Hájek proposed in [2] to introduce the fuzzy version,
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one for each t-norm, of this DL as a fragment of its first order fuzzy logic. In
this paper we will use the notation ?−ALE to denote the fuzzy DL defined by
Hájek using the t-norm ?. Concepts in these fuzzy DLs are recursively defined
from a fix set of concept names and a fix set of role names.

Definition 1. The set of concepts is the smallest set such that:

1. every concept name A is a concept,
2. ⊥ and > are concepts,
3. if C,D are concepts and R is a role name, then C �D, C → D, ∀R.C and
∃R.C are concepts.

Definition 2. Let ? be a t-norm and let⇒ be its residuum. Then, an ?-interpretation
I = (∆I , ·I) consists on a crisp set ∆I (called the domain of I) and an inter-
pretation function ·I , which maps every concept C to a function CI : ∆I →
[0, 1], every role name R to a function RI : ∆I ×∆I → [0, 1] and such that,
for every concepts C,D, every role name R and every element a ∈ ∆I , it holds
that:

⊥I(a) = 0
>I(a) = 1

(C �D)I(a) = CI(a) ? DI(a)
(C → D)I(a) = CI(a) ⇒ DI(a)

(∀R.C)I(a) = inf{RI(a, b) ⇒ CI(b) : b ∈ ∆I}
(∃R.C)I(a) = sup{RI(a, b) ? CI(b) : b ∈ ∆I}

In his paper, Hájek defines a concept C to be 1-satisfiable in ?−ALE if
there is some interpretation I and object a ∈ ∆I such that CI(a) = 1. This
definition can be generalized in the obvious way to r-satisfiability (for every
r ∈ [0, 1]). Analogously, Hájek also defines a concept C to be valid in ?−ALE
if for every interpretation I and object a ∈ ∆I , CI(a) = 1. We will write Sat?

r

and Val? to denote the set of concepts that are, respectively, r-satisfiable and
valid in ?−ALE .

The main result in [2] says that if ? is Łukasiewicz t-norm, then the sets Sat?
1

and Val? are decidable; an easy consequence of this fact is that for every r ∈ Q∩
[0, 1], Sat?

r is also decidable. The proof consists on two claims. The first claim
is a general one: for every t-norm, the problems of 1-satisfiability and validity
in finite interpretations are decidable problems. This is proved using a reduction
of the problem to the propositional fuzzy logic given by the corresponding t-
norm; the idea behind this reduction is the fact that finite interpretations can be
codified using a finite number of propositional formulas. The second claim is a
particular one of Łukasiewicz: for every r ∈ [0, 1], a concept is r-satisfiable iff
it is r satisfiable in some finite interpretation. The proof of this fact is based on
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the notion of witnessed interpretation (see [2]): using the definition it is trivial
that concepts r-satisfiable in a witnessed interpretation are also r-satisfiable in
a finite interpretation; and in the case of Łukasiewicz t-norm it is well known
that first order formulas (in particular this applies to concepts) r-satisfiable are
r-satisfiable in a witnessed interpretation.

2 Main Result

In the rest of the contribution we will focus on the product t-norm, thus from
now on ? will always refer to the product t-norm.

Theorem 1 (Product Case). For every r ∈ [0, 1], the set Satr is decidable; and
the set Val is also decidable.

Thus, although the first order logic is non arithmetical we prove that ?−ALE
is much more tractable. The proof of this result follows the same pattern than
Hájek’s one reducing the problem to a consequence problem in the propositional
fuzzy logic (of product t-norm this time), but in this occasion we cannot use
witnessed interpretations. The reason is that there are concepts, like

∀R.A u ¬∀R.(A�A) and ¬∀R.A u ¬∃R.¬A

which are 1-satisfiable, but never in a witnessed interpretation.

3 Sketch of the Proof

First of all we notice that for every r, s ∈ (0, 1), Satr = Sats. This is an
immediate consequence of the fact that for every l ∈ R+, the function x 7−→ xl

is an automorphism of the standard product algebra. We will use the notation
Sati to indicate the set of concepts that are intermediately satisfiable (i.e., 0.5
satisfiable). Therefore, we only need to show the decidability of the sets Sat0,
Sat1, Sati and Val. Moreover, using that

– C ∈ Sat0 iff ¬C ∈ Sat1,
– C ∈ Sati iff C t ¬C 6∈ Val,

it follows that it would be enough to prove that Sat1 and Val are decidable.
The proof is based on two steps. The first step tells us that in the product case

it is enough to consider quasi-witnessed interpretations (called closed models in
[4]). Since our semantics is the standard one and not the general one, we point
out that we cannot directly use the results from [4]. However, we can prove
Proposition 1 similarly to [1, Theorem 5.4.30] (in the product case all primitive
connectives are continuous except for ⇒ in the point (0, 0)).
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Definition 3. An ?−interpretation I is quasi-witnessed when it satisfies

(wit∃) for every conceptC, every role nameR and every a ∈ ∆I there is some
b ∈ ∆I such that

(∃R.C)I(a) = RI(a, b) ? CI(b),

(qwit∀) for every concept C, every role name R and every a ∈ ∆I either
(∀R.C)I(a) = 0 or there is some b ∈ ∆I such that

(∀R.C)I(a) = RI(a, b) ⇒ CI(b).

Proposition 1. Let ϕ be a first order formula and let r ∈ [0, 1]. The following
statements are equivalent:

1. ϕ is satisfiable with truth value r in a first-order interpretation over Π ,
2. ϕ is satisfiable with truth value r in a first-order interpretation over a 1-

generated subalgebra of Π .

Since the 1-generated subalgebra (unique up to isomorphism) of Π is or-
der discrete (all non-zero elements have a predecessor), we get the following
corollary.

Corollary 1. Let C be a concept and let r ∈ [0, 1]. The following statements
are equivalent:

1. C is satisfiable with truth value r in a Π-interpretation,
2. C is satisfiable with truth value r in a quasi-witnessed Π-interpretation.

The second step of the proof consists on proving that r-satisfiability in a
quasi-witnessed Π-interpretation is decidable, and this is proved by a reduction
to the propositional product logic |=Π with variables

Prop := {pR(a,b) : R is a role name and a, b ∈ Ind} ∪

{pC(a) : C is a concept and a ∈ Ind},

where Ind is a fix infinite set {an : n ∈ ω}. Next step in the proof is an algorithm
(it will be explained in the talk) that converts every conceptC into two finite sets
TC of YC of propositional formulas (with variables over Prop), and that satisfies
the following condition.

Proposition 2. Let C be a concept, and let TC and YC be the two finite sets
associated. For every r ∈ [0, 1], the following statements are equivalent:

24



1. C is satisfiable with truth value r in a quasi-witnessed Π-interpretation,
2. there is some propositional evaluation e over the setProp such that e(pC(a0)) =
r, e[TC ] = 1, and e[ψ] 6= 1 for every ψ ∈ YC .

We can now finish the proof of Theorem 1 because Proposition 2 tells us
that

– C ∈ Sat1 iff {pr(C(a0))} ∪ pr(TC) 6|=Π
∨
pr(YC),

– C ∈ Val iff pr(TC) |=Π pr(C(a0)) ∨
∨
pr(YC).

Hence, we have a reduction of these problems to the semantic consequence
problem, with a finite number of hypothesis, in the propositional product logic;
which it is known [3, Theorem 3] to be in PSPACE.
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Classical logic and many non-classical logics have a disjunction connective,
which sometimes is primitive in the presentation or sometimes might be defin-
able by using a formula in two variables. In this talk we will investigate the rôle
of disjunction in the proofs of some important properties of these logics, namely
completeness with respect to particular algebraic semantics. We will show that
some of these proofs can be carried out as well when disjunction in neither
primitive nor definable by a single formula, but definable by a (possibly param-
eterized and infinite) set of formulae, as it happens in some natural examples. In
this short abstract we give the basic definitions of the kinds of disjunctions we
study, the classes of logics they define, and point to the results we will present
about them.

First we need to introduce some notation to deal with some generalized no-
tions of disjunction connectives. Indeed, given a parameterized set of formulae
∇(p, q,−→r ) we define:

ϕ∇ψ =
⋃
{∇(ϕ,ψ,−→α ) | −→α ∈ Fm≤ω

L },

where Fm≤ω
L denotes the set of all sequences of formulae in the language L.

When there are no parameters in the set∇(p, q) and it is unitary, we write ϕ∨ψ
instead of ϕ∇ψ.

Definition 1. Let L be a logic and ∇ a (parameterized) set of formulae in two
variables. We say that ∇ is a (p-)protodisjunction if it satisfies:

(PD) ϕ `L ϕ∇ψ and ψ `L ϕ∇ψ

A (p-)protodisjunction ∇ is called a (p-)disjunction whenever it satisfies the
Proof by Cases Property, PCP for short:
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If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ∇ψ `L χ.

A weak (p-)disjunction satisfies just a weak form of the Proof by Cases
Property (wPCP for short): if ϕ `L χ and ψ `L χ, then ϕ∇ψ `L χ. All weak
(p-)disjunctions in a given logic are mutually interderivable:

Lemma 1. Let L be a propositional logic and ∇,∇′ parameterized sets of for-
mulae. Assume that ∇ is a weak p-disjunction in L. Then: ∇′ is a weak p-
disjunction in L iff ϕ∇ψ a`L ϕ∇′ψ.

This level of generality is actually needed as shown by the following exam-
ples:

1. Let G be Gödel-Dummett logic (see [3]) and G→ its purely implicational
fragment. Then the finite set {(p→ q) → q, (q → p) → p} is a disjunction
in G→. We can prove that no single formula can define a weak disjunction
in this logic.

2. Consider the logic FL of all pointed residuated lattices (see [4] for more
details). This logic has lattice connectives ∧ and ∨, truth-constants 1 and
0, and a non-commutative conjunction & with left and right residua de-
noted respectively as \ and /. Given formulae α, ϕ, one defines the left
conjugate and the right conjugate of ϕ with respect to α respectively as
λα(ϕ) = (α\ϕ&α) ∧ 1 and ρα(ϕ) = (α&ϕ/α) ∧ 1. An iterated conju-
gate of ϕ with respect to the formulae α1, . . . , αn is a composition γ(ϕ) =
γα1(γα2(. . . γαn(ϕ))) where γαi ∈ {λαi , ραi} for every i. With this nota-
tion, a p-disjunction for this logic can be defined by the following infinite
set with parameters:

ϕ∇ψ = {γ1(ϕ ∧ 1) ∨ γ2(ψ ∧ 1) | where γ1, γ2 are iterated conjugates}

Interestingly enough, the lattice connective ∨ is a protodisjunction but not
a weak disjunction in FL. Moreover, we can prove that there is no finite set
of formulae defining a weak disjunction in this logic. In contrast, when we
consider the logic FLe, obtained as the axiomatic extension of FL adding
the commutativity axiom for &, the p-disjunction can be simplified to a
disjunction connective given by just one formula: (ϕ∧1)∨ (ψ∧1). Finally,
when we add the weakening law and get to FLew, making 1 the top element
in each algebra, the lattice connective ∨ becomes a disjunction.

We study the relation between proof by cases and other properties a dis-
junction is expected to satisfy: commutativity, idempotency and associativity
(which, however, are typically also satisfied by conjunction connectives, whereas
(PD) and (w)PCP are typically satisfied only by disjunction connectives).
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Lemma 2. Let L be a logic and ∇ a p-protodisjunction. If ∇ satisfies wPCP,
then it also satisfies the following conditions:

(C) ϕ∇ψ `L ψ∇ϕ
(I) ϕ∇ϕ `L ϕ
(A) ϕ∇(ψ∇χ) a`L (ϕ∇ψ)∇χ

We can show that there are logics with a protodisjunction satisfying the
conditions (C), (I) and (A) which is not a weak disjunction.3

Definition 2. We call a logic (weakly) (p-)disjunctional if it has a (weak) (p-
)disjunction. We add the prefix ‘finitely’ if the (weak) disjunction is definable by
a finite set. Furthermore, we call a logic (weakly) disjunctive if it has a (weak)
disjunction given by a single parameter-free formula.

The logics mentioned above and some other natural examples show the sep-
aration of most of these classes of logics.

Finally, we present a stronger notion of disjunction: a disjunction whose
interpretation in the algebraic counterpart of the logic is the supremum w.r.t.
the order relation in the algebras. Of course, this idea makes sense only if∇ is a
parameter-free singleton; let us use∨ instead of∇ in this case. We need the pres-
ence of a good generalized implication in the language: a weak p-implication in
the sense of [2].

Definition 3. Let L be a logic,⇒ a weak p-implication, and ∨ a formula in two
variables. We say that ∨ is a lattice protodisjunction for ⇒ if:

(∨1) `L ϕ⇒ ϕ ∨ ψ
(∨2) `L ψ ⇒ ϕ ∨ ψ
(∨3) ϕ⇒ χ, ψ ⇒ χ `L ϕ ∨ ψ ⇒ χ

We say that ∨ is a lattice disjunction for ⇒ (resp. lattice weak disjunction
for ⇒) if it also has the PCP (resp. the wPCP).

By combining (∨1), (∨2), (∨3), and the reflexivity and transitivity of ⇒,
we can easily show that any lattice protodisjunction for⇒ satisfies the following
stronger versions of the properties (C), (I), and (A):

(iC) `L ϕ ∨ ψ ⇒ ψ ∨ ϕ
(iI) `L ϕ ∨ ϕ⇒ ϕ
(iA) `L (ϕ ∨ ψ) ∨ χ⇒ ϕ ∨ (ψ ∨ χ) and `L ϕ ∨ (ψ ∨ χ) ⇒ (ϕ ∨ ψ) ∨ χ

3 We can also show the independence of the conditions (C), (I) and (A) of protodisjunctions
by several (artificial) examples. Let us just mention a natural example: any substructural non-
contractive involutive logic (e.g. linear logic or Łukasiewicz infinite-valued logic) has the
multiplicative disjunction ⊕ which satisfies conditions (PD), (C), and (A) but not (I).
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The classes of lattice protodisjunctions and disjunctions are mutually incompa-
rable: on one hand, recall that the protodisjunction ∨ of the logic FLe (or even
FL) is not a disjunction and observe that it is clearly a lattice protodisjunction
for →. On the other hand, consider the expansion of FLe with a connective
� defined in each algebra as �x = 1 for x ≥ 1 and ⊥ otherwise. Then clearly
�(p∨q) is a disjunction (since �(p∨q) a` p∨q) but is not a lattice disjunction
for →.

We use the aforementioned notions of disjunction to obtain a number of
results concerning completeness of logics w.r.t. particular algebraic semantics
and axiomatization of logics with good completeness properties:

– A characterization of implicational semilinear logics defined in [2], that is,
logics with a weak p-implication such that it defines a class of totally or-
dered algebras which is a complete semantics for the logic. This captures
and characterizes, to a large extent, the notion of fuzzy logic.

– Axiomatization of the weakest semilinear logic above a given logic.
– Characterization of logics complete with respect to a class of densely or-

dered algebras.
– Given a class K of algebras, we characterize strong completeness and finite

strong completeness properties of a logic L w.r.t. K in terms of embedding
properties, generalizing results in [1].

– We solve several open problems (e.g. necessity of using 4 in axiomatizing
MTL∼) and give alternative proof of theorems (e.g. showing that the logic
PŁ′ is complete w.r.t. chains) from fuzzy logic literature.
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1 From Predicate Transformers to Interchange Systems

In the 1970s, Edsger Dijkstra was concerned with improving the quality of
computer programs; perhaps more exactly, he was interested in improving the
methodologies which programmers used to develop programs [4]. An outcome
of his efforts was the development of predicate transformer semantics, a formal
method for studying program semantics.

In developing his ideas, Dijkstra proposed some radical shifts in how pro-
grammers could/should think about programs and about developing programs.
Instead of thinking in terms of individual values, he felt a programmer should
think of properties of values. Also, instead of focusing on inputs, a programmer
should focus on outputs.

Thus, a programmer considers what property she or he wants or needs in
the output, and then the programmer transforms this predicate for outputs into
a corresponding predicate for inputs. This predicate transformer process asso-
ciates with the desired output predicate an input predicate so that if an input
value satisfies the associated input predicate, then the program will produce an
output value that will have the desired output property. The output predicate is
called a postcondition predicate, and the associated input predicate is called a
precondition predicate. Once an associated input predicate is chosen, then any
more restrictive input predicate would also work to produce an output value with
the desired property. Dijkstra called the most general or largest input predicate
which would produce the desired output the weakest precondition predicate.

One can associate with each input or output predicate a subset of the set of
inputs or the set of outputs, respectively. Predicate transformers can be easily
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understood if one thinks of a program as a (partial) function and thinks of the
function as a set of ordered pairs. If, for example, X is the set of inputs and Y
is the set of outputs, then a program is a function p : X → Y . If we let Q be a
postcondition predicate, then the corresponding weakest precondition predicate
is

{x ∈ X | p(x) ∈ Q}

In this deterministic setting, predicate transformer semantics is straightforward.
If P is the set of predicates for X , Q is the set of predicates for Y , and Q ∈ Q,
then we can define the predicate transformer to be p← : Q → P such that

p←(Q) = {x ∈ X | p(x) ∈ Q}

Predicate transformer semantics becomes more interesting when one works in
a nondeterministic setting, i.e., when one allows programs to be relations from
X to Y . Then for a given postcondition, it is not immediately clear what the
corresponding (weakest) precondition should be.

Two standard approaches for handling nondeterminism are angelic and de-
monic. The motivation for the two terms comes from the nature of nondeter-
minism. For a given input there is often a choice for the corresponding output.
However, for a given execution of a program with a given input we assume that
only one of the possible outputs will be produced. When a postcondition Q is
chosen, there may be input values x such that some corresponding outputs will
be in Q and some will not be, i.e., sometimes the output will satisfy the post-
condition predicate and sometimes the output will not satisfy the postcondition
predicate. Expressed mathematically, if r : X → Y is a nondeterministic pro-
gram and if Q ⊂ Y is a postcondition predicate, then there may exist x ∈ X
such that for xr = {y ∈ Y | (x, y) ∈ r}

xr ∩Q 6= ∅ but xr 6⊂ Q

Hence, depending on the choice of output y ∈ xr, the postcondition Q will or
will not be satisfied. Thus, should x be in the postcondition associated with Q
or not? Using angelic semantics, x is in the corresponding precondition because
one assumes an “angelic” choice will be made by selecting an output in Q.
Using demonic semantics, x is not in the corresponding semantics because one
assumes a “demonic” choice would be made to select an output not in Q. Since
when using predicate transformers, one always wants to get an output in Q, we
have the following two definitions.

Let r←a : Q → P be the angelic predicate transformer for r : X → Y . Then
for Q ∈ Q,

r←a (Q) = {x ∈ X |xr ∩Q 6= ∅}
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Let r←d : Q → P be the demonic predicate transformer for r : X → Y . Then
for Q ∈ Q,

r←d (Q) = {x ∈ X |xr ⊂ Q}

There are naturally occurring situations when one would want to expand
the possible outputs to include lattice-valued variations. In some cases, these
variations themselves could produce the the relational nature (as opposed to the
functional nature) of the program. In other cases, the lattice-valued variations
would be in addition to the the relational or multifunctional nature of the orig-
inal program. An example of the latter would be a security system which itself
includes multiple activities. For example, when a security system is activated, it
may be due to potential harm to computers, to a company’s in-house software,
or to company data. Thus, there is a natural relational or multifunctional nature
of the problem. Additionally, depending on the nature and severity of the se-
curity threat, there may be a practical needs for lattice-valued responses. If, for
example, the threat is minimal, it would probably not be fiscally responsible to
respond by imposing the highest level of security measures. Thus, we want to
consider possible definitions for lattice-valued predicate transformers.

In what follows, we consider lattice-valued angelic and demonic predicate
transformers, and in the development, we try to understand predicate transform-
ers in a topological systems setting. To do this, we review how programming
semantics may be viewed in a topological setting. In the 1980s, M. Smyth [5]
and others began thinking of the sets of predicates as topologies. In order to use
the predicates to reason about programs, there needs to be a logical structure
associated with the collections of predicates. This logical structure may be de-
veloped in terms of affirmative finite observations [8]. Thus, if a statement is
true, we want to be able to determine this in finite time.

Of course, we want our logic to support finite conjunctions and disjunctions.
Thus, thinking of predicates as subsets, we want the collection of predicate sub-
sets to be closed under finite intersections and finite unions. A natural follow-up
question is whether the collection of predicate subsets could or should be closed
under arbitrary intersections and arbitrary unions. Working with our logic of af-
firmative finite observations, we can consider having the collection of predicate
subsets closed under infinite unions because if an element is in an infinite union,
then it is in, at least, one of the sets, and as soon as one of the sets containing
the element is processed, we can stop processing. However, there is a problem
with closure under infinite intersections because if an element is in an infinite
intersection, this fact can only be verified by processing all the infinite subsets,
and this can not happen in finite time.

The empty set and the whole set can also be considered predicates in our
affirmative and finitely observable logic because no element is in the empty set
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and all elements are in the whole set. Thus, it is natural to think of the collection
of predicates as a topology.

We modify our notation slightly, and replace r : X → Y with R : X →
℘(Y ) where for x ∈ X , R(x) = xr. Thus, our program is a function R from the
set of inputs to the powerset of outputs. We would like to look at the predicate
transformers in a topological systems setting; see [8].

Definition 1. A topological system is an ordered triple (X, A, |=), where (X, A) ∈
|Set× Loc| and |= is a satisfaction relation on (X, A) , meaning that |= is a
relation from X to A such that both the following join and meet interchange
laws respectively hold:

if S is a subset of A, then x |=
∨

S iff ∃ a ∈ S, x |= a,

if S is a finite subset of A, then x |=
∧

S iff ∀a ∈ S, x |= a.

It should be noted that given a topological space (X, T ), the ordered triple
(X, T,∈) is a topological system with |= taken as the membership relationship.

Continuous functions between topological systems are ordered pairs

(f, ϕ) : (X, A, |=1) → (Y, B, |=2)

where f : X → Y is a set function and ϕ : A → B is a localic morphism
satisfying the condition that for all x ∈ X and all b ∈ B,

f (x) |=2 b if and only if x |=1 ϕop (b) .

When this last condition is satisfied, we say that the interchange property holds.
Vickers [8] developed topological systems, in part, to create a more nat-

ural setting for studying and applying topological ideas in computer science
applications. Thus, it is appropriate to try to understand predicate transform-
ers in a topological systems setting. We begin with a generalization; we start
with (X, T,∈), where X is the set of input values and where T is the lattice of
predicates on X .

For the codomain for the angelic predicate transformer, we propose (℘(Y ),W, |=a),
where W is the lattice of predicates on Y and where |=a is a satisfaction relation
on ℘(Y ) i.e., |=a ⊂ ℘(Y )×W such that for N ∈ ℘(Y ) and V ∈ W

N |=aV ⇔ N ∩ V 6= ∅

For the codomain for the demonic predicate transformer, we propose (℘(Y ),W, |=d),
where |=d is a satisfaction relation on ℘(Y ) such that for N ∈ ℘(Y ) and V ∈ W

N |=dV ⇔ N ⊂ V
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The proposed continuous function for the angelic case is

(R,ϕa) : (X, T,∈) → (℘(Y ),W, |=a)

where ϕop
a : W → T such that for V ∈ W

ϕop
a (V ) = {x ∈ X |xr ∩ V 6= ∅}

Similarly, the proposed continuous function for the angelic case is

(R,ϕd) : (X, T,∈) → (℘(Y ),W, |=d)

where ϕop
d : W → T such that for V ∈ W

ϕop
d (V ) = {x ∈ X|xr ⊂ V }

For both (R,ϕa) and (R,ϕd), the morphism interchange property holds.
For example, for x ∈ X and V ∈ W ,

x ∈ ϕop
a (V ) ⇔ xr ∩ V 6= ∅

⇔ R(x) ∩ V 6= ∅

⇔ R(x)|=aV

Though discussing angelic and demonic predicate transformers in the con-
text of topological systems is in the spirit of [8], beginning with (Y, W,∈) a
topological system does not imply that either (℘(Y ),W, |=a) or (℘(Y ),W, |=d)
is a topological system. Further, neither ϕa nor ϕd need be a localic morphism.
Thus, in keeping with the motivation behind [8], we generalize topological sys-
tems and their continuous functions to interchange systems and a morphism
interchange property.

An interchange system is a triple (X, A, |=) where X is a set, A is a struc-
tured set, and |= is a relation from X to A, i.e., |=⊂ X × A. Further, the
relation |= must satisfy properties so that the structure of A may be trans-
ferred to the powerset of A. Morphisms between interchange systems are pairs
(f, g) : (X, A, |=1) → (Y, B, |=2) such that f : X → Y is a set function,
g : A → B is a function such that gop : B → A is a concrete structure preserv-
ing map, and for each x ∈ X and each b ∈ B,

x|=1g
op(b) ⇔ f(x)|=2b

When this last biconditional holds, we say that the pair (f, g) satisfies the mor-
phism interchange property.
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What exactly is the predicate transformer interchange system setting? Said
differently, what structure is imposed upon or is needed for (℘(Y ),Q, |=) to
be considered a viable predicate transformer interchange system codomain? In
addition to the basic interchange and morphism interchange properties, we have
the following. For the angelic case, |=a is closed under arbitrary unions, and ϕop

a

preserves arbitrary unions. For the demonic case, |=d is closed under arbitrary
intersections, and ϕop

d preserves arbitrary intersections.
We have considered the interchange systems (℘(Y ),W, |=a) and (℘(Y ),W, |=d).

We now want to address a related question. If we begin with a topological sys-
tem (X, A, |=), can we in a “natural” way define angelic and/or demonic in-
terchange systems on the powerset (℘(X), A, |=′). Note that although we are
trying to “lift” from X to ℘(X) and we are modifying our satisfaction relation,
we are not changing the A.

For C ∈ ℘(X) and a ∈ A, define (℘(X), A, |=∃) such that

C|=∃a iff ∃x ∈ C, x |= a

and define (℘(X), A, |=∀) such that

C|=∀a iff ∀x ∈ C, x |= a

For C ∈ ℘(X) and S ⊂ A,

C|=∃
∨

S ⇔ ∃a ∈ S, C|=∃a

Therefore, (℘(X), A, |=∃) has characteristics of (℘(Y ),W, |=a); |=∃ interchanges
arbitrary joins.

The situation is similar for (℘(X), A, |=∀). For S⊂A and for C ∈ ℘(X),

C|=∀
∧

S ⇔ ∀a ∈ S, C|=∀A

Thus, (℘(X), A, |=∀) has the characteristics of (℘(Y ),W, |=d); |=∀ interchanges
arbitrary meets.

2 Lattice-Valued Extensions of Transformers and Systems

It was seen in the previous section that predicate transformers give rise to in-
terchange morphisms between interchange systems. This section outlines how
each of these ideas can be reformulated in a lattice-valued context, and, further,
these lattice-valued extensions relate to each other in a way that extends the
relationship of the previous section to a lattice-valued setting.
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We first tackle the matter of generalizing multifunctions and the associated
angelic and demonic predicate transformers. Throughout this discussion, L is
a frame and associated Heyting implication is denoted →. Let X, Y be sets.
In this section we regard a nondeterministic program not as a multifunction
R : X → Y, but equivalently as a function R : X → ℘ (Y ). In this way,
the L-valued counterpart is obvious: an L-valued multirelation is a mapping
R : X → LY which associates with each input from X an L-valued (post-
condition) predicate on the set Y of outputs. This sets up our discussion of
L-valued nondeterminism even though we are expressing it using functions..

Using powerset-valued mappings to represent multifunctions, the previous
section respectively defined for each R : X → ℘ (Y ) the associated angelic and
demonic predicate transformers

ϕop
a : ℘ (Y ) → ℘ (X) by ϕop

a (Q) = {x ∈ X : R (x) ∩Q 6= ∅} ,

ϕop
d : ℘ (Y ) → ℘ (X) by ϕop

d (Q) = {x ∈ X : R (x) ⊂ Q} .

For the L-valued case, we respectively define for each R : X → LY the associ-
ated L-valued angelic and demonic predicate transformers

ϕop
a : LY → LX by ϕop

a (q) (x) =
∨
y∈Y

(R (x) (y) ∧ q (y)) ,

ϕop
d : LY → LX by ϕop

d (q) (x) =
∧
y∈Y

(R (x) (y) → q (y)) ,

where we have abused the notation by using the same variations on ϕ as before,
counting on context to keep matters clear. We also use in the sequel the notation
ϕa and ϕd for the non-concrete morphisms from LX to LY

It is convenient to have the fibre-map GX : ℘ (X) → LX defined by
GX (A) = χA, where this map assumes that L is a consistent frame, in which
case GX is an order-embedding.

Theorem 1. The following hold for R : X → LY :

1. Let L be consistent. Then it is the case that ϕop
a ◦ GY = GX ◦ ϕop

a , ϕop
d ◦

GY = GX ◦ ϕop
d . Restated, the L-valued predicate transformers extend the

traditional predicate transformers.
2. The L-valued ϕop

a preserves arbitrary joins.
3. The L-valued ϕop

d preserves arbitrary meets.

Statements (2) and (3) of the theorem justify the monikers “angelic” and
“demonic” for the L-valued transformers: in the traditional setting angelic trans-
formers preserve arbitrary unions and demonic transformers preserve arbitrary
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intersections; and indeed, in the traditional setting any map between families
of predicates which preserves arbitrary unions [intersections] is termed angelic
[demonic, respectively].

Now given an L-valued nondeterministic program R : X → LY and a
family Q ⊂ LY of L-valued predicates on the output set Y, we use R and Q
to construct associated L-valued interchange systems and L-interchange mor-
phisms similarly to the previous section.

We begin by putting

Pa ≡ (ϕop
a )→ (Q) = {ϕop

a (q) : q ∈ Q} ,

Pd ≡
(
ϕop

d

)→ (Q) =
{
ϕop

d (q) : q ∈ Q
}

.

Then Pa,Pd ⊂ LX are families of predicates on X; in fact, Pa [Pd] is a com-
plete join [meet] semi-lattice of LX—see the Lemma below.

Now to complete the construction of the L-valued “angelic” and “demonic”
interchange systems which respectively use (X,Pa) , (X,Pd) as the ground ob-
jects, we define respectively the following angelic and demonic L-valued satis-
faction relations:

|=a: X × Pa → L by |=a (x, p) = p (x) ,

|=d: X × Pd → L by |=d (x, p) = p (x) ,

With the the L-valued angelic interchange system (X,Pa, |=a) and demonic
interchange system

(
X,Pd, |=d

)
in hand, we next consider the corresponding

L-valued angelic and demonic interchange systems which use
(
LY ,Q

)
as the

ground object by respectively defining the following angelic and demonic L-
valued satisfaction relations:

|=a: LY ×Q → L by |=a (b, q) =
∨

y∈Y (b (y) ∧ q (y)) ,

|=d: LY ×Q → L by |=d (b, q) =
∧

y∈Y (b (y) → q (y)) .

These constructions yield L-valued interchange systems
(
LY ,Q, |=a

)
and

(
LY ,Q, |=d

)
.

More generally, we have the following notion:

Definition 2. Let L be a frame. An L-valued interchange system (X,A, |=) isatriple,
where (X,A) is a ground object from Set×PoSetop and the (L-valued) sat-
isfaction relation |= is a relation from X toA, i.e., |= : X × A → L is a
mapping.

Lemma 1. It follows that |=a and |=a satisfy the join-interchange law, i.e.,:

|=a

x,
∨
γ∈Γ

pγ

 =
∨
γ∈Γ

|=a (x, pγ) ,
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|=a

x,
∨
γ∈Γ

pγ

 =
∨
γ∈Γ

|=a (x, pγ) ;

and it follows that |=d and |=d both satisfy the meet-interchange law, i.e.,

|=d

x,
∧
γ∈Γ

pγ

 =
∧
γ∈Γ

|=d (x, pγ) ,

|=d

x,
∧
γ∈Γ

pγ

 =
∧
γ∈Γ

|=d (x, pγ) .

We need the following definition.

Definition 3. Let (f, ϕ) : (X,A) → (Y,B) be a morphism in Set×PoSetop.
Then (f, ϕ) : (X,A, |=) → (Y,B, |=) is an interchange morphism from (X,A, |=)
to (Y,B, |=) if the following interchange condition holds:

∀x ∈ X, ∀b ∈ B, |= (x, ϕop (b)) = |= (f (x) , b) .

Theorem 2. The following hold:

1. The pair (R, ϕa) is an interchange morphism from (X,Pa, |=a) to
(
LY ,Q, |=a

)
.

2. The pair (R, ϕd) is an interchange morphism from
(
X,Pd, |=d

)
to

(
LY ,Q, |=d

)
.

Finally, we note that in [2, 3, 6, 7] topological systems were extended to L-
topological systems, and that approach to fuzzification can be applied directly to
the interchange systems and morphisms constructed in the last section without
first fuzzifying the multifunction and predicate transformers as above. And as
we will see, in a “soft way”, we achieve the constructions essentially done in the
paragraphs above, which more or less says that the “diagram of constructions”
modeling this abstract commutes.

To the explore that the claim of the previous paragraph, let R : X → ℘ (Y )
be a multifunction written as a mapping and let Q ⊂ ℘ (Y ) be a family of
traditional attributes on Y . Recall that from Section 1 we respectively have the
angelic and demonic systems

(X,Pa,∈) , (X,Pd, ∈) ,

where in this crisp context Pa and Pd are defined as the subfamilies of ℘ (X)
which are respectively the images of the traditional angelic ϕop

a and demonic
ϕop

d . The fuzzification approach of [2, 6] defines the L-valued extension of ∈ in
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each case to be precisely |=a and |=d . Further, the interchange condition for
each morphism generated by R : X → ℘ (Y ) , namely

x ∈ ϕop
a (V ) ⇔ R (x) |=a V, x ∈ ϕop

d (V ) ⇔ R (x) |=d V,

respectively, extends to the L-valued case à la [2, 6] to say

|=a (x, ϕop
a (q)) = |=a (R (x) , q) , |=d

(
x, ϕop

d (q)
)

= |=d (R (x) , q) ,

which are precisely the conditions satisfied by the L-valued interchange mor-
phisms of the Theorem just above.

To sum up, the above considerations in combination with Statement (1) of
Theorem 1 above mean that the fuzzification scheme of [2, 3, 6, 7] as applied to
Section 1 yields the same interchange systems and interchange morphisms as
the fuzzification scheme of the earlier part of this Section yields when applied
to Section 1.
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In 1946, R.T. Cox [3] tried to justify the notion of probability as a measure of
belief from first principles. Relying on the Boolean algebra structure of events,
he proposed three basic postulates on a degree of belief g(A|B) ∈ [0, 1], where
A,B are events A,B in an Boolean algebra S.

1. g(A ∩ C|B) = F (g(A|C ∩B), g(C|B)) (if C ∩B 6= ∅);
2. g(Ac|B) = n(g(A|B)), B 6= ∅, where Ac is the complement to A.
3. Function F is twice differentiable, with continuous second derivative and

function n is twice differentiable.

On this basis, Cox claimed that g(A|B) must be isomorphic to a probabil-
ity measure. This alleged result has been used ad nauseam in various areas such
as statistics, decision theory and artificial intelligence to justify probability mea-
sures as the only reasonable way of representing belief by numbers. For instance
Jaynes [10] emphatically asserts this result as one building block of his proba-
bility theory, just requiring function F to be strictly increasing in both places.
Paris[7] proves one version of this theorem. More recently Joe Halpern[8, 9] has
shown that Cox result does not hold on finite sets, and even requires the addition
of technical postulates in the infinite setting in order to be restored. Postulate 3
is not sufficient, and need to be completed. Hence probability theory does not
follow from the Boolean setting of events.

There are commonsense objections to this setting, one for each postulate.
Postulate 3 is clearly technical hence the most debatable from an intuitive point
of view. Against postulate 2 it can be objected that in the presence of incomplete
information the conditional belief in an event need not be computed from the
conditional belief of the opposite event. This postulates fails in most uncertainty
theories, such as imprecise probability, evidence and possibility theory, and this
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is what makes them attractive. As to the basic postulate 1, the reason why Cox
writes it is because he knows the form of Bayes conditioning as the quotient of
two probabilities.

Another way of understanding conditional probability is to see it as the prob-
ability of a conditional event. This is the view pioneered by De Finetti[4] and
pursued by Coletti and Scozzafava [2]. De Finetti justifies conditional probabil-
ity based on a betting scheme tolerating the possibility of conditioning on an
event of zero probability. It is possible to generalize conditional probability à la
De Finetti to other uncertainty measures [1].

There is yet another stream of literature on conditional events A|B, initiated
by Goodman and Nguyen [6], viewing them as pairs of Boolean events of the
form (A ∩ B,A ∪ Bc) corresponding to conjunction and material implication
respectively. The underlying idea is to distinguish between examples A ∩ B of
a rule ”if B then A” and counterexamples Ac ∩ B. It is clear that conditional
probability P (A|B) can then be written in the form h(P (A ∩ B), P (A ∪ Bc))
with h(x, y) = x

x+1−y , where x ≤ y. So an alternative setting to Cox problem,
which sounds as natural as his own, is to find monotonic set functions g, and
continuous functions h : U → [0, 1], where U := {(x, y) ∈ [0, 1]2|x ≤ y},
n : [0, 1] → [0, 1] such that:

1. g(A|B) = h(g(A ∩B), g(A ∪Bc))
2. g(Ac|B) = n(g(A|B)), B 6= ∅ (the only Cox postulate we keep, having

probability measures in mind).
3. Function F is monotonic increasing in both places and function n is mono-

tonic decreasing.
4. g((A|B)|C) = g(A|B ∩ C), if B ∩ C 6= ∅.

The last axiom is very natural as it says that the conditioning event is the
conjunction of all pieces of evidence collected so far. For capacities that do not
obey postulate 2, the two sets of axioms clearly lead to two distinct forms of
conditioning. For instance, the expression g(A∩B)

g(A∩B)+1−g(A∪Bc) induced by the

second framework does not reduce to the form g(A∩B)
g(B) enforced by Cox frame-

work. The first kind of conditioning (using our set of axioms) is in agreement
with imprecise probability theory and robust statistics, while the one induced
by the Cox framework is more in line with Dempster rule of conditioning with
belief functions [11]. The two conditioning rules also differ in possibility theory
[5].

The following properties can be requested for function h:

1. h(0, x) = 0 for x ∈ [0, 1[ (since g(∅|B) = 0);
2. h(x, 1) = 1 for x ∈]0, 1](since g(A|B) = 1 if B ⊆ A);
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3. h(x, x) = x for all x ∈ [0, 1]
(since if B = S, g(A|B) = g(A) = g(A ∩B) = g(A ∪Bc)) ;

4. h(x, y) = 1− h(1− y, 1− x) for all (x, y) ∈ U \ {(0, 1)}, from autocon-
jugation of g, choosing n(x) = 1− x.

Therefore, there exists an idempotent symmetric sum h′ : [0, 1]2 → [0, 1]
such that the restriction of h′ to U is h, and h′ possesses the listed properties.

According to Silvert [12], there exists a binary operation ∗ on [0, 1] such
that

h′(x, y) =
x ∗ y

x ∗ y + (1− x) ∗ (1− y)
.

Obviously, we have h′(0, x) = 0 if and only if 0 ∗ x = 0 for all x ∈ [0, 1[.
Notice that, using such an operation ∗, h′(x, 1) = 1 is automatically satisfied
for x ∈]0, 1]. Moreover choosing ∗ to be the minimum yields the h function
found from usual probabilistic conditioning.

The additional reduction of iterated conditioning axiom 4 is instrumental
for further restricting the choice of function h. In particular it enforces the usual
conditioning definition for probability measures.

This presentation will show preliminary results obtained on this problem,
which for the most part remains open.
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The talk will begin remembering results on papers [22, 15, 16] where the authors
model uncertainty measures as fuzzy modalities on a many-valued residuated
logics. the basic idea is that uncertainty measures is not a truth degree but could
be interpreted as a truth degree of the fuzzy sentence ”the probability of ϕ”.
The main properties being that the language does not allow nested modalities
and their semantic is not defined as generalized Kripke models in strict sense.
We will give the example of probabilities (possibilities, belief functions) over
classical propositions and its generalizations to uncertainty measures on many-
valued (fuzzy) propositions.

But the main goal of the talk is modal many-valued fuzzy logics defined
by Kripke models and some applications. Modal many-valued logics is a topic
that has deserved few attention until the nineties. The first known papers are
the papers [12, 13] of Fitting where the author defines a modal system over a
logic of a finite Heyting algebra and give a complete axiomatization of them.
In its late paper Fitting justify it in a very nice an elegant semantics based on
a multi-agent system each one using classical logic and having a preference re-
lation. He defined the modal operators based on semantics and his definitions
is the ones used in later papers on the topic as generalizations modal opera-
tors on many-valued systems based on Kripke semantics (with many-valued
worlds and many-valued accessibility relations). In these approaches Modal
many-valued language is built taking the language of the many-valued logic
(∧,∨,&,→&,¬&, 0, 1) plus at least one the usual modal operators (necessity
� and possibility ♦) and its semantic is defined by generalized Kripke models
taking many-valued evaluation in each world w ∈ W and many-valued acces-
sibility relations S : W × W → [0, 1]. The evaluation of modal operators are
given (following Fitting [12, 13]) by

– V (�ϕ, w) =
∧
{R(w,w′) → V (ϕ, w′) : w′ ∈ W}.
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– V (♦ϕ, w) =
∨
{R(w,w′)&V (ϕ, w′) : w′ ∈ W}.

There are different attempts and approaches to motivate and study modal
logic formalisms based on Kripke semantics to the many-valued setting. Roughly
speaking we can classify the approaches in three groups depending how the
corresponding Kripke frames look like, in the sense of how many-valuedness
affects the worlds and the accesibility relations. Next we describe these three
groups and comment about our work in each of them.

A first group (see e.g. [5, 10, 28]) is formed by those logical systems whose
class of Kripke frames are such that their worlds are classical (i.e. they follow
the rules of classical logic) but their accessibility relations are many-valued,
with values in some suitable lattice A. In such a case, the usual approach to
capture the many-valuedness of an accessibility relation R : W × W → A is
by considering the induced set of classical accessibility relations {Ra | a ∈ A}
defined by the different level-cuts of R, i.e. 〈w,w′〉 ∈ Ra iff R(w,w′) ≥ a. At
the syntactical level, one then introduces as many (classical) necessity operators
�a (or possibility operators ♦a) as elements a of the lattice A, interpreted by
(classical) relations Ra. Therefore, in this kind of approach, one is led to a multi-
modal language but where (both modal and non modal) formulas are Boolean
in each world.

In this setting we will present as example the similarity-based reasoning de-
veloped in [8–10, 6, 11]. The starting point is the paper by Ruspini [27] about a
possible semantics for fuzzy set theory. He develops the idea that we could rep-
resent a fuzzy concept by its set of prototypical elements (which will have fully
membership to the corresponding fuzzy set) together with a similarity relation
giving the degree of similarity of each element of the universe to the closest pro-
totype. This degree is taken then as the membership to the fuzzy set. From this
basic idea, we will see three graded entailments (approximate, proximity and
strong) that can be represented in a multi-modal systems with frames where the
(graded) accessibility is given by a fuzzy similarity relation on pairs of worlds,
and for which we have proved completeness in several cases [7].

A second group of approaches are the ones whose corresponding Kripke
frames have many-valued worlds, evaluating propositional variables in a suit-
able lattice of truth-values A, but with classical accessibility relations (see e.g.
[23, 20, 24]). In this case, we have languages with only one necessity and/or
possibility operator (�,♦), but whose truth-evaluation rules in the worlds is
many-valued, so modal (and non-modal formulas) are many-valued.

Finally, a third group of approaches are fully many-valued, in the sense that
in their Kripke frames, both worlds and accessibility relations are many-valued,
again over a suitable lattice A. In that case, some approaches (like [12, 13, 25,
4]) have a language with a single necessity/possibility operator (�,♦), and some
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(like [26, 2]) consider a multi-modal language with a family of indexed opera-
tors �a and ♦a for each a ∈ A, interpreted in the Kripke models via the level-
cuts Ra of a many-valued accessibility relations R. Actually, these two kinds of
approaches are not always equivalent, in the sense that the operator � and the
set of operators {�a | a ∈ A} are not always interdefinable (or analogously
with the possibility operators).

In this setting we will present recent results a summary [2, 4] on minimum
modal many-valued logic over the logic of a finite residuated lattice and modal
Gödel logic respectively.

Next we will sketch what Fuzzy description logic could be following the
proposal of Hájek in [18, 19] and developed in [14]. Finally we propose a re-
search proposal which main goal to be the study of n-graded Description Logics
(depending of the underlying logic and the expressiveness of the description
language we want), a topic for which we have at hand many results: canonical
completeness of first order finite-valued residuated logic, modal many-valued
results, decidability results and many possible reasoning algorithms.
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Since antiquity the seeming inadequacy of simple logical principles in face of
vague predicates has puzzled philosophers and logicians, as witnessed by the
well known sorites paradox (see, e.g., [20]). My favorite version of the paradox
seems to prove that I will stay forever young: Nobody will deny (1) that I was
young immediately after birth. Moreover, it seems reasonable to accept (2) that
when I am young at time t then I am also young at time t + ε, where ε, say, is
a millisecond. But then iterated applications of instantiation and modus ponens
(starting with an instance of t immediately after my birth) allow me to conclude
that (3) I am young now and will stay young in future.

The standard reaction of proponents of fuzzy logic as a logic for reasoning
with vague predicates is to point out that the paradox can be resolved by assum-
ing that the inductive premise (2) of a sorites argument is not absolutely true,
but only true to some (high) degree. Modifying also modus ponens accordingly
then blocks the derivation of 3 from 1 and 2. However, most philosophers and
linguists, but also many logicians that have dealt with the sorites paradox and
with reasoning under vagueness in general have pointed out that the proposed
solution via degrees of truth comes at a very high price. Not only do we have
to forsake the clarity and simplicity of classical logic, but, by solving one prob-
lem in a particular way, we only seem to have created a host of new problems.
To name just a few: How should one understand degrees of truth? How to argue
that a certain choice of many-valued truth functions for connectives is adequate?
Why should one insist on truth functionality at all? What are the criteria for the
adequateness of such a ‘fuzzy model’, in particular with respect to observed
linguistic behavior?

The prolific and lively debate on adequate models of reasoning under vague-
ness in analytic philosophy has resulted in a number of competing theories that
explicitly reject degrees of truth as a basic notion: epistemicism maintains that
vagueness is a particular form of ignorance (e.g., [20, 17]); supervaluationism,
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which comes in various different versions (e.g., [7, 18, 11, 19]), refers to a space
of precisifications that has to be taken into account in inferences involving vague
predicates; contextualism emphasizes the role of rapidly changing conversa-
tional records in determining the acceptability of vague statements (e.g., [15,
14]); pragmatistic theories seek to model reasoning under vagueness by way of
language choices (e.g., [1]). Indeed, until recently, no systematic defense of a
fuzzy logic based theory of vagueness, that could compete with the rich and
thoroughgoing analysis of various problems and concepts offered by the cited
philosophers (or by linguistic accounts of vagueness for that matter) has been
attempted. However, with the appearance of Vagueness and Degrees of Truth by
Nicholas J.J. Smith [16] a well presented, densely argued, multi-layered theory
of vagueness involving deductive fuzzy logic is now on record.

In our presentation we briefly want to assess the state of the art in the on-
going debate on theories of vagueness in analytic philosophy. In particular, we
will review some central aspects of Smith’s degree based theory, called ‘fuzzy
plurivaluationism.’ This account of vagueness does indeed refer to t-norm based
fuzzy logics, as propagated and developed by Petr Hájek [10] and many col-
leagues since almost two decades. However, it has to be emphasized that fuzzy
plurivaluationism does not amount to a straightforward vindication of mathe-
matical fuzzy logic as a formalism for reasoning under vagueness. Rather Smith
convincingly mitigates a number of difficulties with degree based models of
vagueness by augmenting fuzzy models with a kind of nondeterministic evalua-
tion referring to whole sets of permissible models, instead of focusing on single
intended models. In this manner essential features of supervaluationism — for
which Smith prefers to use the term plurivaluationism — are combined with
truth functional fuzzy logics.

In the second part of the presentation we want to advertise our preferred ap-
proach to interpet linearly ordered ‘degrees of truth’ and to justify corresponding
truth functions. This approach has been initiated by Robin Giles already in the
1970s [9, 8], who in turn refers to Paul Lorenzen’s dialogue game based char-
acterization of constructive reasoning [12]. A central feature of Giles’s model
of reasoning is the separation of (1) the analysis of logical connectives and (2)
the interpretation of ‘fuzzy’ atomic assertions. To this aim the stepwise reduc-
tion of logically complex assertions to their atomic components (1) is guided by
Lorenzen-style dialogue rules that regulate idealized debates between a propo-
nent and an opponent of an assertion. As for 2, the two players agree to pay a
fixed amount of money to the opposing player for each incorrect statement they
make. The (in)correctness of stating an atomic sentence p is decided by an ele-
mentary (yes/no) experiment Ep associated with p. ‘Fuzziness’ arises from the
stipulation that the experiments may be dispersive, i.e., yield different results
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upon repetition; only a fixed success probability is known for Ep. Giles demon-
strated that an initial statement F can be asserted by the proponent without
having to expect a loss of money, independently of the probabilities assigned to
the elementary experiments, if and only if F is valid in Łukasiewicz logic Ł∞.

We will indicate how Giles’s betting cum dialogue game scenario can be
generalized to characterize also the two other fundamental t-norm based fuzzy
logics, namely Product logic P and Gödel logic G [3, 5]. Moreover, we will
point out that winning strategies in dialogue games are systematically related to
cut-free proofs in so-called hypersequent systems [6, 3]. Finally, this presents
an opportunity to allude also to very recent results that aim at a characteri-
zation of the family of logics that can be extracted from particularly simple
and transparant variants of Giles’s game. This family turns out to include, be-
sides Ł∞, Abelian logic A [13, 2], cancellative hoop logic CHL [4], and all
finite valued Łukasiewicz logics Łn, but not neither Product logic P nor Gödel
logic G.
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Abstract. Residuated lattices arise naturally in many contexts, including alge-
bra, logic and linguistics [10]. I this talk I will survey some of the basic results
about residuated lattices and their applications and outline some recent research
directions.

A residuated lattice is a lattice-ordered monoid for which multiplication is resid-
uated on both sides, and is often expanded by an additional constant.

The algebraic example of residuated lattices that initiated their independent
study is that of the lattice of (two sided) ideals of a ring with unit, under usual
multiplication of ideals. This lattice is actually bounded, with the ring itself
serving as both the top and as the multiplicative identity (the residuated lat-
tice is integral), and modular, but it is neither distributive in general, nor is the
multiplication commutative.It was in this context that Ward and Dilworth [18]
defined what under the more general definition of Blount and Tsinakis [4] we
now refer to as integral and commutative residuated lattices. A related example
is formed by the submodules over an integral domain of the associated field of
fractions.

A much simpler algebraic example is that of the powerset of a monoid,
under the element-wise operation on the subsets. Also, a natural example is that
of binary relations on a set, or more generally (the reduct of) a relation algebra.
Actually, the powerset construction works even if the original structure is only
a partial monoid, and if we consider a Brandt groupoid we obtain an example of
a relation algebra. In that sense these two examples are related. If we stipulate
that the monoid of a residuated lattice is a group then we obtain as examples all
lattice-ordered groups [1].

Residuated lattices arise also very naturally in logic, where implication is
modeled by the residual operation(s) [11]. As a consequence, Boolean algebras
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and Heyting algebras, algebraic models of propositional classical and intuition-
istic logic, respectively, are examples of residuated lattices, the latter being ex-
actly the ones for which multiplication is the meet operation in the lattice. Alge-
braic models of other non-classical, including fuzzy, logics are also residuated
lattices. Thus, as examples we have MV-algebras [5], related to Łukasiewicz in-
finitely valued logic, BL-algebras [15], related to Hájek basic logic, models of
relevance logic, as well models of certain fragments of linear logic.

Complete residuated lattices are definitionally equivalent to quantales [17]
(or to frames/locales if multiplication is the same as meet). The correspond-
ing categories are not, however, the same, as we consider different fundamental
operations and thus different (homo)morphisms. Partly in this form, residuated
lattices can also be applied for solving the isomorphism problem in abstract al-
gebraic logic, by considering modules over quantales (or quantaloids, to include
π-institutions); the residuation operations are however used explicitly in this ap-
plication. Finally, residuated lattices and certain of their reducts/subvarieties are
considered in linguistics in relation to Lambek’s calculus.

Even though residuated lattices include a wide and diverse range of exam-
ples, they possess interesting properties and are amenable to fruitful mathemat-
ical study, which yields results to various applications [4, 10]. These include
the investigation of global properties of substructural non-classical logics, in-
cluding a study of maximally consistent such [7] and the axiomatization of the
intersection of two such logics [6]. Also, they provide to tools for analyzing the
structure of (generalized) MV and BL-algebras [2, 13, 9].

A relatively recent research direction is the development of relational se-
mantics for substructural logics. These provide representation theorems for resid-
uated lattices and connect directly algebra with proof theory [3]. Residuated
frames [12, 8] can be used to recast proof-theoretic ideas in a general setting
from which algebraic results can be obtained. Time permitting, I will also men-
tion some recent results about generalizations of relation algebras, viewed as
expansions of residuated lattices.

References

1. M. Anderson and T. Feil, Lattice-Ordered Groups: an introduction, D. Reidel Publishing
Company, 1988.

2. P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis, Cancellative Residuated Lattices,
Algebra Univers., 50 (1) (2003), 83-106.

3. A. Ciabattoni, N. Galatos and K. Terui, From axioms to analytic rules in nonclassical logics,
Proceedings of LICS’08, 229-240, 2008.

4. K. Blount and C. Tsinakis, The structure of Residuated Lattices, Internat. J. Algebra Com-
put., 13(4) (2003), 437–461.

54



5. R. Cignoli, I. D’Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning,
Trends in Logic—Studia Logica Library, 7. Kluwer Academic Publishers, Dordrecht, 2000.

6. N. Galatos, Equational bases for joins of residuated-lattice varieties, Studia Logica 76
(2004), 227–240.

7. N. Galatos, Minimal varieties of residuated lattices, Algebra Universalis 52(2) (2005), 215-
239.

8. N. Galatos and P. Jipsen, Residuated frames with applications to decidability, accepted in
the Transactions of the AMS.

9. N. Galatos and P. Jipsen, A survey of GBL-algebras, to appear.
10. N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated lattices: an algebraic glimpse

at substructural logics, Studies in Logic and the Foundations of Mathematics 151, Elsevier,
2007.

11. N. Galatos and H. Ono, Algebraization, parametrized local deduction theorem and interpo-
lation for substructural logics over FL, Studia Logica 83 (2006), 279–308.

12. N. Galatos and H. Ono, Cut elimination and strong separation for substructural logics: an
algebraic approach, to appear in Annals of Pure and Applied Logic.

13. N. Galatos and C. Tsinakis, Generalized MV-algebras, J. Algebra 283(1) (2005), 254–291.
14. N. Galatos and C. Tsinakis, Equivalence of closure operators: an order-theoretic and cate-

gorical perspective, Journal of Symbolic Logic 74(3) (2009), 780–810.
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1 Introduction

Without any influence by or relationship to L.A. Zadeh and his seminal paper
[6] the German mathematician D. Klaua presented in his papers [2, 3] from 1965
onwards two versions for a cumulative hierarchy of many-valued sets.

This paper offers a closer look at the first one of these approaches by Klaua
which since its presentation in [2, 4] never has been discussed any more. Our
main emphasis shall be (i) on an interesting simultaneous inductive definition
of a graded membership and a graded identity relation, and (ii) on some disad-
vantages which may be the main reason to abandon this approach.

2 Boolean Valued Models for Set Theory

For later reference we have to mention a type of Boolean interpretations for the
language of ZF set theory which has been introduced by D. Scott and R. Solovay
in 1967 for the purpose of independence proofs in set theory, cf. e.g. [5, 1]. The
first-order language of ZF has the predicate symbols =,∈.

An inductive definition through the ordinals is used to define for a fixed
complete Boolean algebra B (with carrier B) a sequence of sets V B

α by

V B
α =def

{
u ∈ dom(u)B | (∃∃ ξ < α)(dom(u) ⊆ V B

ξ )
}

(1)

for each ordinal α. And the “union” of all these sets V B
α becomes the universe

of discourse V B of an B-interpretation VB:

V B =def {u | ∃∃ ξ(u ∈ V B
ξ )} . (2)

What remains to be determined to get a B-interpretation VB for ZF set theory
completed are the B-valued relations which correspond to the predicate symbols
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=,∈ of the language of ZF:

[[ a ∈̂ b ]] =def sup
u∈dom(b)

(
b(u) ∗ [[ a =̂ u ]]

)
, (3)

[[ a =̂ b ]] =def inf
u∈dom(a)

(
a(u) � [[u ∈̂ b ]]

)
∗ inf

v∈dom(b)

(
b(v) � [[ v ∈̂ a ]]

)
(4)

for all a, b ∈ V B.
Here ∗ is the Boolean conjunction, i.e. the meet operation, and � the Boolean

implication function, i.e. relative pseudocomplement.

3 Klaua’s first universe of fuzzy sets

For the first one of his hierarchies, D. Klaua [2, 4] made a, not really important,
restriction: his hierarchy did have only ω levels.

He started from some infinite (crisp) set U of objects with a graded identity
relation ≡, i.e. a relation which is reflexive, symmetric and &L-transitive for
the Łukasiewicz arithmetic conjunction &L and its associated implication →L,
defined by the Łukasiewicz t-norm ∗L and their residuation operation �L. This
means he assumes

|= x ≡ x , |= x ≡ y →L y ≡ x

together with
|= x ≡ y &L y ≡ z →L x ≡ z .

Then he forms, with reference to the standard (crisp) power set operation P the
hierarchy

V ∗
U (0) = U × {0} , V ∗

U (n + 1) = P(V ∗
U (n))× {1} , V ∗

U =
⋃
n<ω

V ∗
U (n) .

The members of EU = V ∗
U \ V ∗

U (0) are Klaua’s many-valued sets, the members
of V ∗

U (0) his urelements.
It is completely inessential for the construction of this hierarchy V ∗

U that the
construction proceeds only through the members of ω. This construction could
proceed through all the ordinals to yield a more extended hierarchy V̂ ∗

U with the
same set V ∗

U (0) of urelements.
Additionally let us call the many-valued sets from V∅ the pure sets.
We prove that there is a canonical embedding V̂ ∗

∅ 7→ V̂ ∗∗
∅ ⊆ V B, of the pure

sets of the universes V ∗
U into each one of the Boolean valued universes V B.
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4 Graded membership and graded identity

For this kind of set theoretic universe V ∗
U Klaua introduces a graded, i.e. many-

valued identity predicate =w together with a graded membership predicate ∈w

and a graded inclusion jw. By simultaneous induction on the rank ordering of
this hierarchy these predicates may be defined as follows:

[[x =w y ]] =


[[ pr1(x) ≡ pr1(y) ]] , if x, y ∈ V ∗

U (0)
0 , if x, y are of different rank
[[x jw y ∧ y jw x ]] , if x, y ∈ EU are of equal rank

with
[[x ∈w y ]] = sup

v∈pr1(y)
[[x =w v ]] for all y ∈ EU (5)

and
[[x jw y ]] = inf

u∈pr1(x)
[[u ∈w y ]] for all x, y ∈ EU . (6)

All these constructions can be done with reference to any MTL-algebra and its
operations u,t, ∗,� in place of min,max, ∗L,�L.

Proposition 1. Over the common part V̂ ∗∗
∅ ⊆ V B of all the universes of Boolean

valued sets, Klaua’s version of graded interpretations ∈w,=w of membership
and equality coincides with the Scott/Solovay version ∈̂, =̂.

Historically it is interesting to recognize that the famous simultaneous def-
inition of Boolean valued versions ∈̂, =̂ of membership and equality, given by
D. Scott and R. Solovay in 1967, has been foreshadowed in essential structural
details by the Klaua paper [2] in 1965.

5 Properties of this graded identity

Proposition 2. For arbitrary x, y, z ∈ V̂ ∗
U one has over any MTL-algebra M:

|= z =w x & x ∈w y → z ∈w y , (7)

and over any BL-algebra M:

|= x ∈w y & y =w z → x ∈w z . (8)

Theorem 1. For fuzzy sets a, b ∈ EU one has over any MTL-algebra M:

|= a =w b ↔ ∀z(z ∈w a ↔ z ∈w b) , (9)

and over any BL-algebra M also:

|= a =w b ↔ ∀z(a ∈w z ↔ b ∈w z) . (10)
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Over BL-algebras this gives the interesting coincidence

|= ∀z(z ∈w a ↔ z ∈w b) ↔ a =w b ↔ ∀z(a ∈w z ↔ b ∈w z)

and thus indicates that this simultaneous definition of =w,∈w offers a suitable
set theoretic setting.

6 Disadvantages of comprehension

Unfortunately the approch of [2, 4] does not allow to prove suitable generalized
versions at least of all the comprehension axioms of ZF.

As already mentioned in [2, 4], it is e.g. impossible to prove the existence of
a suitable intersection. Particularly does one have

6|= ∃x∀z(z ∈w x ↔ z ∈w a ∧ z ∈w b) .

The crucial point here is that the universe V̂ ∗
U does not have sufficiently many

objects: this will be explained in more detail.
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Residuated structures are among the most frequently considered algebras in
many valued mathematics and logics. The main character of these structures
consists in a partially ordered set with a pair of operations ⊗ and → that form
an adjunction, according to the fundamental models of conjunction and impli-
cation in (many-valued) logics. Sometimes these algebras are approached from
the point of view of one of the two terms of the adjunction above mentioned.
The present contribution deals with the approach based on the point of view of
implicative algebras (see [2]) renamed weak extended-order algebras (shortly
w-eo algebras) and denoted (L,→,>) in [1]; in fact the binary operation → is
nothing but an extension of a partial order in L with greatest element >, in the
sense that for all a, b ∈ L the following equivalence

a→ b = > ⇔ a ≤ b

holds. These are (2, 0)-algebras characterized by the conditions

– a→ a = a→ > = >
– if a→ b = b→ a = > then a = b
– if a→ b = b→ c = > then a→ c = >.

Every integral residuated structure (i.e. having the greatest element > as an, at
least one sided, unit) can be handled by such an approach that has shown to al-
low important comprehension, discussion and development of the fundamental
properties that most frequently are assumed in residuated structures.
Usually the only motivation of the conditions required in residuated structures
depends on what is needed in their application fields; on the contrary, extended
order algebras introduced and studied in [1] aim to motivate and justify in their
own structure the commonly asked requirements such as order-completeness,
associativity, commutativity and symmetry.
It is noteworthy that just like every lattice-structure on a set L is completely de-
termined by the underlying order relation ≤ in L, it can be seen, since [1], that
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the properties and even the existence of an integral residuated structure on the
upper bounded poset (L,≤,>) are determined by the way the order relation is
extended to get an implication in L with true value >.

The fundamental result that every extended-order algebra (w-eo algebra
whose implication is antitonic in the first and isotonic in the second argument)
can be embedded in its MacNeille completion allows to consider the complete-
ness condition a not too strong assumption, which is very important in most ap-
plications. Moreover it is possible to recognize since the first step of extending
the order relation of (L,≤,>) whether the obtained implication→ originates a
complete residuated structure, in particular a product ⊗, and which properties
they have. Particular attention is devoted to associativity, commutativity and
symmetry (as a good substitute of commutativity) of the product with a critical
view of their motivation.
The relevance of these properties toward the algebraic operations correspond-
ing to the fundamental connectives of implication, negation, conjunction and
disjunction is discussed. It becomes clear that commutativity is not a fundamen-
tal condition, which is a quite established acquirement, while symmetry (which
leads to a product distributive over joins in both arguments, having > as a unit)
is much better motivated.
In fact, if one assumes, as it is quite natural, that the implication → satisfy
left and right distributivity conditions in the first and in the second argument,
respectively, then these conditions are preserved by the MacNeille completion
and provide an isotonic and an antitonic Galois connection involving→.
The first one generates the adjoint product-conjunction that is distibutive over
joins on the right side and has > as a right unit. The second one determines a
further implication related to→ by the equivalence

a ≤ b→ c ⇔ b ≤ a c.

(L,→,>) is symmetrical if and only if (L, ,>) is a w-eo algebra that induces
the same order on L. Equivalently, (L,→,>) is symmetrical if and only if the
product is distributive over joins in both arguments and has > as a unit, which
motivates the chosen terminology.

But the main efforts of this work tend to exploit the possibility of dropping
the associativity assumption, which is instead a well established requirement in
all the approaches to structures related to logical connectives, including residu-
ated lattices, quantales, t-norms and (monoidal) closed categories.
So, from the starting point of the implication of a suitable extended-order alge-
bra we deduce operations corresponding to conjunction, negation and disjunc-
tion and discuss their properties, without assuming up to some point commu-
tativity, associativity and even symmetry. Of course, under the assumption of
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symmetry, without commutativity, there are different, though related, negations
and disjunctions; relevant properties of the latter ones depend more heavily on
the involutive character of the negations than on the assumption of associativity.

The effective power of associativity turns out rather to allow the ”strong”
version of several properties, provided that those are satisfied in their ”weak”
version: examples are given in [1].
As a relevant example, if (L,→,>) is complete with a distributive implication,
the adjoint product ⊗ and the dual implication  can be obtained which are
related to→ by ”weak” conditions expressed by the equivalences

(i) a→ (b→ c) = > ⇔ (b⊗ a)→ c = >
(ii) a (b→ c) = > ⇔ b→ (a c) = >.

Then it can be seen that the associativity assumption is equivalent to ask that the
”strong” version of (i) and (ii) are satisfied; more precisely, the following are
equivalent

1. (L,→,>) is associative
2. for all a, b, c ∈ L: a→ (b→ c) = (b⊗ a)→ c
3. for all a, b, c ∈ L: a (b→ c) = b→ (a c).
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This will be a survey of some attempts to generalize axiomatic systems of the
arithmetic of natural number (like Peano and Robinson arithmetic) by investi-
gating them or their analogs in the frame of fuzzy predicate logic. First there
are results on adding to classical Peano arithmetic a truth predicate Tr and the
schema ϕ ≡ Tr(ϕ̄) where ϕ̄ is a code (Gödel number) of the formula ϕ. Clas-
sically it is contradictory but over Łukasiewicz logic it is consistent. Second
some fuzzy axiom systems for addition and multiplication of natural numbers
will be presented that are extremely weak but still essentially undecidable: each
consistent axiomatizable extension of such a theory is undecidable (and hence
incomplete, thus the famous Gödel’s second incompleteness theorem holds for
them). No deep knowledge of metamathematics of arithmetic will be assumed
to be known.
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Abstract. There are many examples in the literature that suggest that indistin-
guishability is intransitive, despite the fact that the indistinguishability relation
is typically taken to be an equivalence relation (and thus transitive). It is shown
that if the uncertainty perception and the question of when an agent reports that
two things are indistinguishable are both carefully modeled, the problems disap-
pear, and indistinguishability can indeed be taken to be an equivalence relation.
Moreover, this model also suggests a logic of vagueness that seems to solve many
of the problems related to vagueness discussed in the philosophical literature. In
particular, it is shown here how the logic can handle the sorites paradox.

1 Introduction

While it seems that indistinguishability should be an equivalence relation and
thus, in particular, transitive, there are many examples in the literature that sug-
gest otherwise. For example, tasters cannot distinguish a cup of coffee with one
grain of sugar from one without sugar, nor, more generally, a cup with n + 1
grains of sugar from one with n grains of sugar. But they can certainly distin-
guish a cup with 1,000 grains of sugar from one with no sugar at all.

These intransitivities in indistinguishability lead to intransitivities in pref-
erence. For example, consider someone who prefers coffee with a teaspoon of
sugar to one with no sugar. Since she cannot distinguish a cup with n grains
from a cup with n + 1 grains, she is clearly indifferent between them. Yet, if
a teaspoon of sugar is 1,000 grains, then she clearly prefers a cup with 1,000
grains to a cup with no sugar.

There is a strong intuition that the indistinguishability relation should be
transitive, as should the relation of equivalence on preferences. Indeed, transi-
tivity is implicit in our use of the word “equivalence” to describe the relation on

? Work supported in part by NSF under grant CTC-0208535, by ONR under grants N00014-00-
1-03-41 and N00014-01-10-511, by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the ONR under grant N00014-01-1-0795, and by AFOSR
under grant F49620-02-1-0101. A preliminary version of this paper appears in Principles of
Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference
(KR 2004).
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preferences. Moreover, it is this intuition that forms the basis of the partitional
model for knowledge used in game theory (see, e.g., [1]) and in the distributed
systems community [5]. On the other hand, besides the obvious experimental
observations, there have been arguments going back to at least Poincaré [18]
that the physical world is not transitive in this sense. In this paper, I try to recon-
cile our intuitions about indistinguishability with the experimental observations,
in a way that seems (at least to me) both intuitively appealing and psycholog-
ically plausible. I then go on to apply the ideas developed to the problem of
vagueness.

To understand the vagueness problem, consider the well-known sorites para-
dox: If n + 1 grains of sand make a heap, then so do n. But 1,000,000 grains
of sand are clearly a heap, and 1 grain of sand does not constitute a heap. Let
Heap to be a predicate such that Heap(n) holds if n grains of sand arranged in a
pyramidal shape make a heap. What is the extension of Heap? That is, for what
subset of natural numbers does Heap hold? Is this even well defined? Clearly
the set of numbers for which Heap holds is upward closed: if n grains of sand is
a heap, then surely n+ 1 grains of sand is a heap. Similarly, the set of grains of
sand which are not a heap is downward closed: if n grains of sand is not a heap,
then n−1 grains of sand is not a heap. However, there is a fuzzy middle ground,
which is in part the reason for the paradox. The relationship of the vagueness
of Heap to indistinguishability should be clear: n grains of sand are indistin-
guishable from n+ 1 grains. Indeed, just as Heap is a vague predicate, so is the
predicate Sweet, where Sweet(n) holds if a cup of coffee with n grains of sugar
is sweet. So it is not surprising that an approach to dealing with intransitivity
has something to say about vagueness.

The rest of this paper is organized as follows. In Section 2 I discuss my
solution to the intransitivity problem. In Section 3, I show how this solution
can be applied to the problem of vagueness. There is a huge literature on the
vagueness problem. Perhaps the best-known approach in the AI literature in-
volves fuzzy logic, but fuzzy logic represents only a small part of the picture;
the number of recent book-length treatments, including [15, 16, 21, 23], give a
sense of the activity in the area. I formalize the intuitions discussed in Section 2
using a logic for reasoning about vague propositions, provide a sound a com-
plete axiomatization for the logic, and show how it can deal with problems like
the sorites paradox. I compare my approach to vagueness to some of the leading
alternatives in Section 4. Finally, I conclude with some discussion in Section 5.
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2 Intransitivity

Clearly part of the explanation for the apparent intransitivity in the sugar ex-
ample involves differences that are too small to be detected. But this can’t be
the whole story. To understand the issues, imagine a robot with a simple sensor
for sweetness. The robot “drinks” a cup of coffee and measures how sweet it
is. Further imagine that the robot’s sensor is sensitive only at the 10-grain level.
Formally, this means that a cup with 0–9 grains results in a sensor reading of
0, 10–19 grains results in a sensor reading of 1, and so on. If the situation were
indeed that simple, then indistinguishability would in fact be an equivalence re-
lation. All cups of coffee with 0–9 grains of sugar would be indistinguishable,
as would cups of coffee with 10–19 grains, and so on. However, in this simple
setting, a cup of coffee with 9 grains of sugar would be distinguishable from
cups with 10 grains.

To recover intransitivity requires two more steps. The first involves drop-
ping the assumption that the number of grains of sugar uniquely determines the
reading of the sensor. There are many reasons to drop this assumption. For one
thing, the robot’s sensor may not be completely reliable; for example, 12 grains
of sugar may occasionally lead to a reading of 0; 8 grains may lead to a reading
of 1. A second reason is that the reading may depend in part on the robot’s state.
After drinking three cups of sweet coffee, the robot’s perception of sweetness
may be dulled somewhat, and a cup with 112 grains of sugar may result in a
reading of 10. A third reason may be due to problems in the robot’s vision sys-
tem, so that the robot may “read” 1 when the sensor actually says 2. It is easy to
imagine other reasons; the details do not matter here. All that matters is what is
done about this indeterminacy. This leads to the second step of my “solution”.

To simplify the rest of the discussion, assume that the “indeterminacy” is
less than 4 grains of sugar, so that if there are actually n grains of sugar, the
sensor reading is between b(n− 4)/10c and b(n+ 4)/10c.1 It follows that two
cups of coffee with the same number of grains may result in readings that are
not the same, but they will be at most one apart. Moreover, two cups of coffee
which differ by one grain of sugar will also result in readings that differ by at
most one.

The robot is asked to compare the sweetness of cups, not sensor readings.
Thus, we must ask when the robot reports two cups of coffee as being of equiv-
alent sweetness. Given the indeterminacy of the reading, it seems reasonable
that two cups of sugar that result in a sensor reading that differ by no more than
one are reported as indistinguishable, since they could have come from cups
of coffee with the same number of grains of sugar. It is immediate that reports

1 bxc, the floor of x, is the largest integer less than or equal to x. Thus, for example, b3.2c = 3.
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of indistinguishability will be intransitive, even if the sweetness readings them-
selves clearly determine an equivalence relation. Indeed, if the number of grains
in two cups of coffee differs by one, then the two cups will be reported as equiv-
alent. But if the number of grains differs by at least eighteen, then they will be
reported as inequivalent.

Of course, I would like to argue that what applies to robots applies to people
as well. The “indistinguishability problem” comes from confounding reports
of perceptions with the perceptions themselves. Reports of relative sweetness
(and, more generally, reports about perceptions) exhibit intransitivity; there are
cases when, given three cups of sugar, say a, b, and c, an agent will report
that a and b are equivalent in sweetness, as are b and c, but will report that c
is sweeter than a. Nevertheless, the underlying “perceived sweetness” relation
can be taken to be transitive. But what exactly is “perceived sweetness”? To
make sense of this, we must assume that an agent has some internal analogue
of a sensor; the perceived sweetness is then the sensor reading. (Of course, the
“sensor reading” might well correspond to the firing of certain neurons.) Note
that, in general, the perceived sweetness of a cup of coffee will depend on more
than just the number of grains of sugar in the cup; it will also depend on the
agent’s subjective state just before drinking the coffee and perhaps some other
factors. Thus, rather than considering a Sweeter-Than relation where Sweeter-
Than(n, n′) holds if a cup of coffee with n grains is reported as sweeter than one
with n′ grains of sugar, we should consider a Sweeter-Than′ relation, where
Sweeter-Than′((c, w), (c′, w′)) holds if cup of coffee c tried by the agent in
world w (where the world includes the time, features of the agent’s state such as
how many cups of coffee she has had recently, and whatever other features are
relevant to the agent’s perception) is perceived as sweet as cup of coffee c′ tried
by the agent in world w′. The latter relation is transitive almost by definition;
the former relation may not even be well defined. For some pairs (n, n′), an
agent may sometimes report a cup of n grains of sugar to be sweeter than one
with n′, and at other times report a cup with n′ grains of sugar to be sweeter
than (or indistinguishable from) one with n grains. It is perfectly consistent to
have intransitivities in reports of sweetness although there is no intransitivity in
actual perceptions.

3 Vagueness

The term “vagueness” has been used somewhat vaguely in the literature. A com-
mon interpretation has been to take a term is said to be vague if its use varies
both between and within speakers. (According to Williamson [23], this interpre-
tation of vagueness goes back at least to Peirce [17], and was also used by Black

67



[3] and Hempel [13].) In the language of the previous section, this would make
P vague if, for some a, some agents may report P (a) while others may report
¬P (a) and, indeed, the same agent may sometimes report P (a) and sometimes
¬P (a). While this is a consequence of vagueness, it does not seem to quite cap-
ture the notion. For example, agents may disagree as a result of one of them
making a silly mistake; for similar reasons, an agent may give different answers
at different times as a result of having made what he later feels is a silly mistake
the first time. We would not want to call a predicate vague in this case.2 I return
to this issue in Section 3. For now, rather than trying to give a precise definition
of vagueness, I present a formal logic of vagueness, that allows us to reason
about vague and context-sensitive notions, without trying to distinguish them.

3.1 A Modal Logic of Vagueness: Syntax and Semantics

To reason about vagueness, I consider a modal logic LDR
n with two families

of modal operators: R1, . . . , Rn, where Riϕ is interpreted as “agent i reports
ϕ”, and D1, . . . , Dn, where Diϕ is interpreted as “according to agent i, ϕ is
definitely the case”. For simplicity, I consider only a propositional logic; there
are no difficulties extending the syntax and semantics to the first-order case. As
the notation makes clear, I allow multiple agents, since some issues regarding
vagueness (in particular, the fact that different agents may interpret a vague
predicate differently) are best considered in a multi-agent setting.

Start with a (possibly infinite) set of primitive propositions. More compli-
cated formulas are formed by closing off under conjunction, negation, and the
modal operators R1, . . . , Rn and D1, . . . , Dn.

A vagueness structure M has the form (W,P1, . . . , Pn, π1, . . . , πn), where
Pi is a nonempty subset of W for i = 1, . . . , n, and πi is an interpretation,
which associates with each primitive proposition a subset of W . Intuitively, Pi

consists of the worlds that agent i initially considers plausible. For those used
to thinking probabilistically, the worlds in Pi can be thought of as those that
have prior probability greater than ε according to agent i, for some fixed ε ≥ 0.3

A simple class of models is obtained by taking Pi = W for i = 1, . . . , n;
however, as we shall see, in the case of multiple agents, there are advantages to
allowing Pi 6= W . Turning to the truth assignments πi, note that it is somewhat

2 I thank Zoltan Szabo for pointing out this example.
3 In general, the worlds that an agent considers plausible depends on the agent’s subjective state.

That is why I have been careful here to say that Pi consists of the worlds that agent i initially
considers plausible. Pi should be thought of as modeling the agent i’s prior beliefs, before
learning whatever information led to the agent i to its actual subjective state. It should shortly
become clear how the model takes into account the fact that the agent’s set of plausible worlds
changes according to the agent’s subjective state.
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nonstandard in modal logic to have a different truth assignment for each agent;
this different truth assignment is intended to capture the intuition that the truth
of formulas like Sweet is, to some extent, dependent on the agent, and not just
on objective features of the world.

I assume that W ⊆ O × S1 × . . . Sn, where O is a set of objective states,
and Si is a set of subjective states for agent i. Thus, worlds have the form
(o, s1, . . . , sn). Agent i’s subjective state si represents i’s perception of the
world and everything else about the agent’s makeup that determines the agent’s
report. For example, in the case of the robot with a sensor, o could be the actual
number of grains of sugar in a cup of coffee and si could be the reading on
the robot’s sensor. Similarly, if the formula in question was Thin(TW) (“Tim
Williamson is thin”, a formula often considered in [23]), then o could represent
the actual dimensions of TW, and si could represent the agent’s perceptions.
Note that si could also include information about other features of the situation,
such as the relevant reference group. (Notions of thinness are clearly somewhat
culture dependent and change over time; what counts as thin might be very dif-
ferent if TW is a sumo wrestler.) In addition, si could include the agent’s cutoff
points for deciding what counts as thin, or what counts as red. In the case of
the robot discussed in Section 2, the subjective state could include its rule for
deciding when to report something as sweet.4

If p is a primitive proposition then, intuitively, (o, s1, . . . , sn) ∈ πi(p) if i
would consider p true if i knew exactly what the objective situation was (i.e.,
if i knew o), given i’s possibly subjective judgment of what counts as “p-ness”.
Given this intuition, it should be clear that all that should matter in this eval-
uation is the objective part of the world, o, and (possibly) agent i’s subjective
state, si. In the case of the robot, whether (o, s1, . . . , sn) ∈ πi(Sweet) clearly
depends on how many grains of sugar are in the cup of coffee, and may also de-
pend on the robot’s perception of sweetness and its cutoff points for sweetness,
but does not depend on other robots’ perceptions of sweetness. Note that the
robot may give different answers in two different subjective states, even if the
objective state is the same and the robot knows the objective state, since both its
perceptions of sweetness and its cutoff point for sweetness may be different in
the two subjective states.

I write w ∼i w
′ if w and w′ agree on agent i’s subjective state, and I write

w ∼o w
′ if w and w′ agree on the objective part of the state. Intuitively, the ∼i

relation can be viewed as describing the worlds that agent i considers possible.

4 This partition of the world into objective state and subjective states is based on the “runs and
systems” framework introduced in [11] (see [5] for motivation and discussion). The framework
has been used to analyze problems ranging from distributed computing [5] to game theory [9]
to belief revision [7]. More recently, it has been applied to the Sleeping Beauty problem [10].
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Put another way, if w ∼i w
′, then i cannot distinguish w from w′, given his

current information. Note that the indistinguishability relation is transitive (in-
deed, it is an equivalence relation), in keeping with the discussion in Section 2.
I assume that πi depends only on the objective part of the state and i’s subjec-
tive state, so that if w ∈ πi(p) for a primitive proposition p, and w ∼i w

′ and
w ∼o w

′, then w′ ∈ πi(p). Note that j’s state (for j 6= i) has no effect on i’s de-
termination of the truth of p. There may be some primitive propositions whose
truth depends only on the objective part of the state (for example, Crowd(n),
which holds if there are at least n people in a stadium at a given time, is such
a proposition). If p is such an objective proposition, then πi(p) = πj(p) for all
agents i and j, and, if w ∼o w

′, then w ∈ πi(p) iff w′ ∈ πi(p).
I next define what it means for a formula to be true. The truth of formulas

is relative to both the agent and the world. I write (M,w, i) |= ϕ if ϕ is true
according to agent i in world w. In the case of a primitive proposition p,

(M,w, i) |= p iff w ∈ πi(p).

I define |= for other formulas by induction. For conjunction and negation, the
definitions are standard:

(M,w, i) |= ¬ϕ iff (M,w, i) 6|= ϕ;
(M,w, i) |= ϕ ∧ ψ iff (M,w, i) |= ϕ and (M,w, i) |= ψ.

In the semantics for negation, I have implicitly assumed that, given the ob-
jective situation and agent i’s subjective state, agent i is prepared to say, for
every primitive proposition p, whether or not p holds. Thus, if w /∈ πi(p), so
that agent i would not consider p true given i’s subjective state in w if i knew
the objective situation at w, then I am assuming that i would consider ¬p true
in this world. This assumption is being made mainly for ease of exposition. It
would be easy to modify the approach to allow agent i to say (given the objec-
tive state and i’s subjective state), either “p holds”, “p does not hold”, or “I am
not prepared to say whether p holds or p does not hold”.5 However, what I am
explicitly avoiding here is taking a fuzzy-logic like approach of saying some-
thing like “p is true to degree .3”. While the notion of degree of truth is certainly
intuitively appealing, it has other problems. The most obvious in this context is
where the .3 is coming from. Even if p is vague, the notion “p is true to degree
.3” is precise. It is not clear that introducing a continuum of precise propositions

5 The resulting logic would still be two-valued; the primitive proposition p would be replaced by
a family of three primitive propositions, py , pn, and p?, corresponding to “p holds”, “p does
not hold”, and “I am not prepared to say whether p holds or does not hold”, with a semantic
requirement (which becomes an axiom in the complete axiomatization) stipulating that exactly
one proposition in each such family holds at each world.
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to replace the vague proposition p really solves the problem of vagueness. Hav-
ing said that, there is a natural connection between the approach I am about to
present and fuzzy logic; see Section 4.2.

Next, I consider the semantics for the modal operators Rj , j = 1, . . . , n.
Recall that Rjϕ is interpreted as “agent j reports ϕ”. Formally, I take Rjϕ
to be true if ϕ is true at all plausible states j considers possible. Thus, taking
Rj(w) = {w′ : w ∼j w

′},

(M,w, i) |= Rjϕ iff (M,w′, j) |= ϕ for all w′ ∈ Rj(w) ∩ Pj .

The use of Pj allows reports to be mistaken. That is, we may have (M,w, i) |=
¬ϕ ∧Rjϕ if w /∈ Pj .

Note that, in evaluating Rjϕ from i’s point of view at world w, we evaluate
the truth of ϕ according to j at all worlds w′ that j considers possible at w
(i.e., those worlds w′ ∈ Rj(w) ∩ Pj). Thus, the truth of Rjϕ at world w is
independent of i; all agents agree on the truth value of Rjϕ at w. This may
seem a little strange at first, since it implicitly assumes that all agents “know” the
worlds w′ that j considers possible at w and j’s interpretation of ϕj at w′. But
this is a standard concern in all multi-agent logics of knowledge and belief, and
is dealt with the same way in all of them: i’s uncertainty about j’s interpretation
or about the worlds that j considers possible is modeled by having other worlds
w’ that i considers possible at w where the worlds that j considers possible
and/or j’s interpretation is different from w.

Of course, for a particular formula ϕ, an agent may neither report ϕ nor ¬ϕ.
An agent may not be willing to say either that TW is thin or that TW is not
thin. Note that, effectively, the set of plausible states according to agent j given
the agent’s subjective state in world w can be viewed as the worlds in Pj that
are indistinguishable to agent j from w. Essentially, the agent j is updating the
worlds that she initially considers plausible by intersecting them with the worlds
she considers possible, given her subjective state at world w.

Note that, in general, agents can give conflicting reports; that is, a formula
such as Rip ∧ Rj¬p is consistent. This can happen, for example, if Pi and Pj

are disjoint, or if πi(p) is disjoint from πj(p). However, if agents i and j both
consider all worlds possible and agree on their interpretation of all primitive
propositions, then they cannot give conflicting reports.

Finally, ϕ is definitely true at state w if the truth of ϕ is determined by the
objective state at w:

(M,w, i) |= Djϕ iff (M,w′, j) |= ϕ for all w′ such that w ∼o w
′.
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A formula is said to be agent-independent if its truth is independent of the
agent. That is, ϕ is agent-independent if, for all worlds w,

(M,w, i) |= ϕ iff (M,w, j) |= ϕ.

As we observed earlier, objective primitive propositions (whose truth depends
only on the objective part of a world) are agent-independent; it is easy to see
that formulas of the form Djϕ and Rjϕ are as well. If ϕ is agent-independent,
then I often write (M,w) |= ϕ rather than (M,w, i) |= ϕ.

3.2 A Modal Logic of Vagueness: Axiomatization and Complexity

It is easy to see that Rj satisfies the axioms and rules of the modal logic KD45.6

It is also easy to see that Dj satisfies the axioms of KD45. It would seem that,
in fact, Dj should satisfy the axioms of S5, since its semantics is determined by
∼j , which is an equivalence relation. This is not quite true. The problem is with
the so-called truth axiom of S5, which, in this context, would say that anything
that is definitely true according to agent j is true. This would be true if there
were only one agent, but is not true with many agents, because of the different
πi operators.

To see the problem, suppose that p is a primitive proposition. It is easy to see
that (M,w, i) |= Dip ⇒ p for all worlds w. However, it is not necessarily the
case that (M,w, i) |= Djp⇒ p if i 6= j. Just because, according to agent i, p is
definitely true according to agent j, it does not follow that p is true according to
agent i. What is true in general is that Djϕ⇒ ϕ is valid for agent-independent
formulas. Unfortunately, agent independence is a semantic property. To cap-
ture this observation as an axiom, we need a syntactic condition sufficient to
ensure that a formula is necessarily agent independent. I observed earlier that
formulas of the form Rjϕ and Djϕ are agent-independent. It is immediate that
Boolean combination of such formulas are also agent-independent. Say that a
formula is necessarily agent-independent if it is a Boolean combination of for-
mulas of the formRjϕ andDj′ϕ′ (where the agents in the subscripts may be the
same or different). Thus, for example, (¬R1D2p ∧ D1p) ∨ R2p is necessarily
agent-independent. Clearly, whether a formula is necessarily agent-independent
depends only on the syntactic form of the formula. Moreover,Djϕ⇒ ϕ is valid
for formulas that are necessarily agent-independent. However, this axiom does
not capture the fact that (M,w, i) |= Diϕ ⇒ ϕ for all worlds w. Indeed, this

6 For modal logicians, perhaps the easiest way to see this is to observe a relation Rj on worlds
can be defined consisting of all pairs (w, w′) such that w ∼j w′ and w′ ∈ Pj . This relation,
which characterizes the modal operator Rj , is easily seen to be Euclidean and transitive, and
thus determines a modal operator satisfying the axioms of KD45.
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fact is not directly expressible in the logic, but something somewhat similar is.
For arbitrary formulas ϕ1, . . . , ϕn, note that at least one of Diϕ1 ⇒ ϕ1, . . . ,
Dnϕn ⇒ ϕn must be true respect to each triple (M,w, i), i = 1, . . . , n. Thus,
the formula (D1ϕ1 ⇒ ϕ1)∨ . . .∨ (Dnϕn ⇒ ϕn) is valid. This additional prop-
erty turns out to be exactly what is needed to provide a complete axiomatization.

Let AX be the axiom system that consists of the following axioms Taut,
R1–R4, and D1–D6, and rules of inference NecR, NecD, and MP:

Taut. All instances of propositional tautologies.
R1. Rj(ϕ⇒ ψ) ⇒ (Rjϕ⇒ Rjψ).
R2. Rjϕ⇒ RjRjϕ.
R3. ¬Rjϕ⇒ Rj¬Rjϕ.
R4. ¬Rj(false).
D1. Dj(ϕ⇒ ψ) ⇒ (Djϕ⇒ Djψ).
D2. Djϕ⇒ DjDjϕ.
D3. ¬Djϕ⇒ Dj¬Djϕ.
D4. ¬Dj(false).
D5. Djϕ⇒ ϕ if ϕ is necessarily agent-independent.
D6. (D1ϕ1 ⇒ ϕ1) ∨ . . . ∨ (Dnϕn ⇒ ϕn).
NecR. From ϕ infer Rjϕ.
NecD. From ϕ infer Djϕ.
MP. From ϕ and ϕ⇒ ψ infer ψ.

Using standard techniques of modal logic, it is can be shown that AX character-
izes LDR

n .

Theorem 1. AX is a sound and complete axiomatization with respect to vague-
ness structures for the language LDR

n .

This shows that the semantics that I have given implicitly assumes that
agents have perfect introspection and are logically omniscient. Introspection and
logical omniscience are both strong requirements. There are standard techniques
in modal logic that make it possible to give semantics to Rj that is appropriate
for non-introspective agents. With more effort, it is also possible to avoid logical
omniscience. (See, for example, the discussion of logical omniscience in [5].) In
any case, very little of my treatment of vagueness depends on these properties
of Rj .

The complexity of the validity and satisfiability problem for the LDR
n can

also be determined using standard techniques.

Theorem 2. For all n ≥ 1, determining the problem of determining the validity
(or satisfiability) of formulas in LDR

n is PSPACE-complete.
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Proof: The validity and satisfiability problems for KD45 and S5 in the case of
two or more agents is known to be PSPACE-complete [12]. The modal opera-
tors Rj and Dj act essentially like KD45 and S5 operators, respectively. Thus,
even if there is only one agent, there are two modal operators, and a straight-
forward modification of the lower bound argument in [12] gives the PSPACE
lower bound. The techniques of [12] also give the upper bound, for any number
of agents.

3.3 Capturing Vagueness and the Sorites Paradox

Although I have described this logic as one for capturing features of vagueness,
the question still remains as to what it means to say that a proposition ϕ is
vague. I suggested earlier that a common view has been to take ϕ to be vague if,
in some situations, some agents report ϕ while others report ¬ϕ, or if the same
agent may sometimes report ϕ and sometimes report ¬ϕ in the same situation.
Both intuitions can be captured in the logic. As we have seen, it is perfectly
consistent that (M,w) |= Riϕ ∧Rj¬ϕ if i 6= j; that is, the logic makes it easy
to express that two agents may report different things regarding ϕ. Expressing
the second intuition requires a little more care; it is certainly not consistent to
have (M,w) |= Rjϕ∧Rj¬ϕ. However, a more reasonable interpretation of the
second intuition is to say that in the same objective situation, an agent imay both
report ϕ and report ¬ϕ. It is consistent that there are two worlds w and w′ such
that w ∼o w

′, (M,w) |= Rjϕ, and (M,w′) |= Rj¬ϕ. In the case of one agent,
under this interpretation, ϕ is taken to be vague if (M,w) |= ¬Dj¬Rjϕ ∧
¬Dj¬Rj¬ϕ. It is easy to show that, as a consequence, (M,w) |= ¬DjRjϕ.
This statement just says that the objective world does not determine an agent’s
report. In particular, a formula such as ϕ ∧ ¬DjRjϕ is consistent; if ϕ is true
then an agent will not necessarily report it as true. This can be viewed as one of
the hallmarks of vagueness. I return to this point in Section 4.5.

While I take the consistency of formulas such as Riϕ ∧ Rj¬ϕ and ϕ ∧
¬DjRjϕ to be a characteristic feature of a vague predicate ϕ, I do not view this
as the definition of vagueness. For example, if ϕ is the statement “there are 25
children playing in the room”, then an agent j may not notice all 25, and hence
not report there are 25 children in the room. Moreover, if agent i observes all
25 children, and thus reports that there are 25 children, agent i and agent j’s
reports differ. Hence neither Rjϕ nor DjRjϕ may hold, although “there are 25
children in the room” would not typically be taken to be vague. Similarly, if ψ is
a context-sensitive statement such as “TW is the leftmost person in the lineup”,
then an agent i might report ϕ to be true in some states although not in others,
although ψ is not at all vague.

74



Having borderline cases has often been taken to be a defining characteristic
of vague predicates. Since I am considering a two-valued logic, propositions do
not have borderline cases: at every world, either ϕ is true or it is false. How-
ever, it is not the case that ϕ is either definitely true or false. That is, there are
borderline cases between Dϕ and D¬ϕ. But the fact that neither Dϕ and D¬ϕ
holds cannot be taken to be a definition of vagueness either; an agent may be
uncertain about the number of children in a room (and thus not be prepared to
say that it is definitely 25 or definitely not 25), even though the statement “there
are 25 children in a room” is not vague.

I believe that perhaps the best characterization of vagueness is that vague
predicates satisfy sorites-like paradoxes. Very roughly speaking, a unary predi-
cate P is vague if there exist N domain elements d1, . . . , dN , all of which differ
slightly in some dimension relevant to P , such that

1. there is common agreement that P (d1);
2. there is common agreement that ¬P (dN );
3. there is common agreement that if P (dj), then P (dj′) for j′ < j; and
4. there is common agreement that if ¬P (dj), then ¬P (dj′) for j′ > j.

We may also want to add a fifth condition, which is meant to capture the intuition
of “borderline cases”:

5. For some intermediate domain elements d in the sequence (that is, for some
domain elements dj with 1 < j < N ), an agent finds it difficult to categorize
dj as satisfying P or ¬P .

These conditions are indeed very rough. For example, to make them precise,
one would have to make clear what it means for a dimension to be “relevant”.
But even ignoring that, there are some subtleties involved in these statements,
subtleties that the logic I have introduced can help clarify. What does it mean
that there is “common agreement that P (d1)”? It seems reasonable to say that
this means, in a state that includes domain element d1, all agents would re-
port P (d1). With only one agent in the picture, we can get an analogue to this
statement: in all states that include d1, the agent would report P (d1). That is,
we would expect DiRiP (d1) to hold for all agents i in all models that include
d1 where P is given the intended interpretation. (Note that these statements all
make sense even if there is no objective truth to the statement P (d) for any do-
main element d.) The second statement can be expressed in the logic in a similar
way. Perhaps the most reasonable interpretation of the third statement is that if
an agent iwould report P (dj) in a particular situation, then he would also report
P (dj′) for j′ > j in the same situation; similarly for the fourth statement. If we
take the difficulty of categorizing o as meaning that in some circumstances the
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agent i reports P (o) and in some circumstances he reports ¬P (o), then the fifth
statement becomes ¬DiRiP (o) ∧ ¬DiRi¬P (o).

Although this rough definition applies only to unary predicates, it should
be clear that it can be modified to deal with predicates of arbitrary arity. The
definition presumes a reasonably large number of domain elements. I do not
believe that vagueness is an issue if there are only three domain elements. On the
other hand, I interpret “domain element” somewhat liberally here. For example,
suppose that I have a car in my driveway, and I keep chipping pieces away from
it until eventually (after a large but finite number of chips) it becomes a pile of
metal shards. Initially it is a car; at the end, it is not. I would be comfortable
taking the domain here to include a different element denoting the car after
n chips, for the various values of n. We can then consider whether the “Car”
predicate applies to each one.7

With this background, let us now see how the framework can deal with the
sorites paradox. The sorites paradox is typically formalized as follows:

1. Heap(1,000,000).
2. ∀n > 1(Heap(n) ⇒ Heap(n− 1)).
3. ¬Heap(1).

It is hard to argue with statements 1 and 3, so the obvious place to look for a
problem is in statement 2, the inductive step. And, indeed, most authors have,
for various reasons, rejected this step (see, for example, [4, 21, 23] for typical
discussions). As I suggested in the introduction, it appears that rejecting the
inductive step requires committing to the existence of an n such that n grains of
sand is a heap and n− 1 is not. While I too reject the inductive step, it does not
follow that there is such an n in the framework I have introduced here, because I
do not assume an objective notion of heap (whose extension is the set of natural
numbers n such that n grains of sands form a heap). What constitutes a heap in
my framework depends not only on the objective aspects of the world (i.e., the
number of grains of sand), but also on the agent and her subjective state.

To be somewhat more formal, assume for simplicity that there is only one
agent. Consider models where the objective part of the world includes the num-
ber of grains of sand in a particular pile of sand being observed by the agent, and
the agent’s subjective state includes how many times the agent has been asked
whether a particular pile of sand constitutes a heap. What I have in mind here
is that sand is repeatedly added to or removed from the pile, and each time this
is done, the agent is asked “Is this a heap?”. Of course, the objective part of the
world may also include the shape of the pile and the lighting conditions, while
the agent’s subjective state may include things like the agent’s sense perception

7 I thank Zoltan Szabo for pointing out this example.

76



of the pile under some suitable representation. Exactly what is included in the
objective and subjective parts of the world do not matter for this analysis.

In this setup, rather than being interested in whether a pile of n grains of sand
constitutes a heap, we are interested in the question of whether, when viewing
a pile of n grains of sand, the agent would report that it is a heap. That is, we
are interested in the formula Pile(n) ⇒ R(Heap), which I hereafter abbreviate
as S(n). The formula Pile(n) is true at a world w if, according to the objective
component ofw, there are in fact n grains of sand in the pile. Note that Pile is not
a vague predicate at all, but an objective statement about the number of grains
of sand present.8 By way of contrast, the truth of Heap at world w depends on
both the objective situation in w (how many grains of sand there actually are)
and the agent’s subjective state in w.

There is no harm in restricting to models where S(1, 000, 000) holds in all
worlds and S(1) is false in all worlds where the pile actually does consist of
one grain of sand. If there are actually 1,000,000 grains of sand in the pile,
then the agent’s subjective state is surely such that she would report that there
is a heap; and if there is actually only one grain of sand, then the agent would
surely report that there is not a heap. We would get the paradox if the inductive
step, ∀n > 1(S(n) ⇒ S(n − 1)), holds in all worlds. However, it does not,
for reasons that have nothing to do with vagueness. Note that in each world,
Pile(n) holds for exactly one value of n. Consider a world w where there is 1
grain of sand in the pile and take n = 2. Then S(2) holds vacuously (because
its antecedent Pile(2) is false), while S(1) is false, since in a world with 1 grain
of sand, by assumption, the agent reports that there is not a heap.

The problem here is that the inductive statement ∀n > 1(S(n) ⇒ S(n −
1)) does not correctly capture the intended inductive argument. Really what we
mean is more like “if there are n grains of sand and the agent reports a heap,
then when one grain of sand is removed, the agent will still report a heap”.

Note that removing a grain of sand changes both the objective and subjective
components of the world. It changes the objective component because there is
one less grain of sand; it changes the subjective component even if the agent’s
sense impression of the pile remains the same, because the agent has been asked
one more question regarding piles of sand. The change in the agent’s subjective
state may not be uniquely determined, since the agent’s perception of a pile
of n − 1 grains of sand is not necessarily always the same. But even if it is
uniquely determined, the rest of my analysis holds. In any case, given that the
world changes, a reasonable reinterpretation of the inductive statement might
be “For all worlds w, if there are n grains of sand in the pile in w, and the

8 While I am not assuming that the agent knows the number of grains of sand present, it would
actually not affect my analysis at all if the agent was told the exact number.
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agent reports that there is a heap in w, then the agent would report that there is
a heap in all the worlds that may result after removing one grain of sand.” This
reinterpretation of the inductive hypothesis cannot be expressed in the logic, but
the logic could easily be extended with dynamic-logic like operators so as to be
able to express it, using a formula such as

Pile(n) ∧R(Heap) ⇒ [remove 1 grain](Pile(n− 1) ∧R(Heap).

Indeed, with this way of expressing the inductive step, there is no need to in-
clude Pile(n) or Pile(n − 1) in the formula; it suffices to write R(Heap) ⇒
[remove 1 grain]R(Heap).

Is this revised inductive step valid? Again, it is not hard to see that it is
not. Consider a world where there is a pile of 1,000,000 grains of sand, and
the agent is asked for the first time whether this is a heap. By assumption, the
agent reports that it is. As more and more grains of sand are removed, at some
point the agent (assuming that she has the patience to stick around for all the
questions) is bound to say that it is no longer a heap.9

Graff [8] points out that a solution to the sorites paradox that denies the truth
of the inductive step must deal with three problems:

– The semantic question: If the inductive step is not true, is its negation true?
If so, then is there a sharp boundary where the inductive step fails? If not,
then what revision of classical logic must be made to accommodate this
fact?

– The epistemological question: If the inductive step is not true, why are we
unable to say which one of its instances is not true?

– The psychological question: If the inductive step is not true, then why are
we so inclined to accept it?

I claim that the solution I have presented here handles the first two problems
easily, and suggests a plausible solution for the third. For the semantic question,
as I have observed, although the inductive argument fails, there is no fixed n at
which it fails. The n at which it fails may depend on the person and (even in
the case that there is only one person in the picture), may depend on the state
of that person. The answer that someone gives to the question the first time it
is asked may be different from the answer given the kth time it is asked, even
if all objective features of the world remain the same. The logic has this feature

9 There may well be an in-between period where the agent is uncomfortable about having to
decide whether the pile is a heap. As I observed earlier, the semantics implicitly assumes that
the agent is willing to answer all questions with a “Yes” or “No”, but it is easy to modify
things so as to allow “I’m not prepared to say”. The problem of vagueness still remains: At
what point does the agent first start to say “I’m not prepared to say”?
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despite being two-valued (although it extends classical logic both by allowing
modal operators and allowing the truth of a formula to depend on the agent).

The answer to the epistemological question is essentially the same as that
for the semantic question. We cannot say at which n the induction fails because
there is no fixed n at which it fails. The n depends on features on the subjective
state of the person being asked (for example, how many she has been asked
before). Note that this claim that can be confirmed easily experimentally. We
can ask different people a series of questions and see when their answer change
from “heap” to “not heap”. We can also ask the same person such a series of
questions, with different starting points (so that different numbers of questions
have been asked at the point when, say, a pile of 10,000 grains is reached).
Clearly, the change will not always come at the same value of n in all these
cases.

A convincing answer to the psychological question requires a deeper un-
derstanding of how people answer questions involving universal quantification.
One possible answer may be that if a statement of the form ∀xϕ(x) is true for
“almost all” instances of x, then people are inclined to accept ∀xϕ(x). To test
this would require making precise what “almost all” means. But even if this
could be made precise, it seems to me that this is not quite how people deal
with universals. For example, suppose we are interested not in whether there is
a heap, but whether there is at least one grain of sand. Consider the statement
“For all worlds w, if there is more than one grain of sand in the pile in w, then
there is more than one grain of sand after removing one grain of sand.” I do not
think that people would be inclined to accept this statement. If we are interested
in worlds where there can be up to 1,000,000 grains of sand, the statement is
certainly true for almost all of them. Nevertheless, it would be rejected because
it is so easy to think of a counterexample.

Thus, it seems that for someone to accept a statement of the form ∀xϕ(x), it
does not suffice that there exist very few counterexamples. It must be difficult to
think of counterexamples. To the extent that this is true, the question is then why
people find it hard to think of counterexamples to the statement “For all worlds
w, if there are n grains of sand in the pile in w, and the agent reports that there
is a heap in w, then the agent would report that there is a heap in all the worlds
that may result after removing one grain of sand.” Note that the quantification
here is over worlds, not over n. Part of the problem is that it is hard to enumer-
ate the worlds systematically, since a world includes both the objective state and
the agent’s subjective state. (Note that, although I focused on the case where the
agent’s subjective state consisted only of the number of times the question has
been asked, it is far from clear that the agent would make this restriction when
asked the question.) I conjecture that, when looking for counterexamples, peo-
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ple implicitly consider only worlds where they are asked the question the first
time. I admit that this is only a conjecture, but it does not seem so implausible.
After all, in practice, people are not asked a series of sorites questions. They are
typically asked only once. Moreover, it does not immediately leap to mind that
the response might depend on how many times the question has been asked. It
would be interesting to actually test what situations people consider focus on
when trying to answer the universal. In any case, if this conjecture is true, my
solution to the psychological question rests on another assumption that should
be easy to test, and is one I alluded to earlier: whatever people answer the first
time they are asked the question, they will continue to give the same answer
after one grain of sand is removed. People rarely change their mind between the
first and second question in a sorites series.

Unlike the answers to the semantic and epistemological questions, which
are essentially matters of logic, the answer to the psychological question is one
that requires psychological experiments to verify. But I claim that this is as it
should be.

4 Relations to Other Approaches

In this section I consider how the approach to vagueness sketched in the previous
section is related to other approaches to vagueness that have been discussed
in the literature. As I said earlier, there is a huge literature on the vagueness
problem, so I focus here on approaches that are somewhat in the same spirit as
mine.

4.1 Context-Dependent Approaches

My approach for dealing with the sorites paradox is perhaps closest to what
Graff [8] has called context-dependent approaches, where the truth of a vague
predicate depends on context. The “context” in my approach can be viewed as
a combination of the objective state and the agent’s subjective state. Although a
number of papers have been written on this approach (see, for example, [8, 14,
20]), perhaps the closest in spirit to mine is that of Raffman [19].

In discussing sorites-like paradoxes, Raffmman considers a sequence of col-
ors going gradually from red to orange, and assumes that to deal with questions
like “if patch n is red, then so is patch n − 1”, the agent makes pairwise judg-
ments. She observes that it seems reasonable that an agent will always place
patches n and n + 1, judged at the same time, in same category (both red, say,
or both orange). However, it is plausible that patch n will be assigned different
colors when paired with n − 1 than when paired with n + 1. This observation
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(which I agree is likely to be true) is easily accommodated in the framework
that I have presented here: If the agent’s subjective state includes the perception
of two adjacent color patches, and she is asked to assign both a color, then she
will almost surely assign both the same color. Raffman also observes that the
color judgment may depend on the colors that have already been seen as well
as other random features (for example, how tired/bored the agent is), although
she does not consider the specific approach to the sorites paradox that I do (i.e.,
the interpretation of the inductive step of the paradox as “if, the first time I am
asked, I report that P (n) holds, then I will also report that P (n − 1) holds if
asked immediately afterwards”).

However, none of the context-dependent approaches use a model that ex-
plicitly distinguishes the objective features of the world from the subjective fea-
tures of a world. Thus, they cannot deal with the interplay of the “definitely”
and “reports that” operators, which plays a significant role in my approach. By
and large, they also seem to ignore issues of higher-order vagueness, which are
well dealt with by this interplay (see Section 4.4).

4.2 Fuzzy Logic

Fuzzy logic [24] seems like a natural approach to dealing with vagueness, since
it does not require a predicate be necessarily true or false; rather, it can be true
to a certain degree. As I suggested earlier, this does not immediately resolve
the problem of vagueness, since a statement like “this cup of coffee is sweet to
degree .8” is itself a crisp statement, when the intuition suggests it should also
be vague.

Although I have based my approach on a two-valued logic, there is a rather
natural connection between my approach and fuzzy logic. We can take the de-
gree of truth of a formula ϕ in world w to be the fraction of agents i such that
(M,w, i) |= ϕ. We expect that, in most worlds, the degree of truth of a formula
will be close to either 0 or 1. We can have meaningful communication precisely
because there is a large degree of agreement in how agents interpret subjective
notions thinness, tallness, sweetness.

Note that the degree of truth of ϕ in (o, s1, . . . , sn) does not depend just
on o, since s1, . . . , sn are not deterministic functions of o. But if we assume
that each objective situation o determines a probability distribution on tuples
(s1, . . . , sn) then, if n is large, for many predicates of interest (e.g., Thin,
Sweet, Tall), I expect that, as an empirical matter, the distribution will be nor-
mally distributed with a very small variance. In this case, the degree of truth of
such a predicate P in an objective situation o can be taken to be the expected
degree of truth of P , taken over all worlds (o, s1, . . . , sn) whose first component
is o.
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This discussion shows that my approach to vagueness is compatible with
assigning a degree of truth in the interval [0, 1] to vague propositions, as is done
in fuzzy logic. Moreover non-vague propositions (called crisp in the fuzzy logic
literature) get degree of truth either 0 or 1. However, while this is a way of giving
a natural interpretation to degrees of truth, and it supports the degree of truth of
¬ϕ being 1 minus the degree of truth of ϕ, as is done in fuzzy logic, it does not
support the semantics for ∧ typically taken in fuzzy logic, where the degree of
truth of ϕ ∧ ψ is taken to be the minimum of the degree of truth of ϕ and the
degree of truth of ψ. Indeed, under my interpretation of degree of truth, there is
no functional connection between the degree of truth of ϕ, ψ, and ϕ ∧ ψ

4.3 Supervaluations

The D operator also has close relations to the notion of supervaluations [6, 22].
Roughly speaking, the intuition behind supervaluations is that language is not
completely precise. There are various ways of “extending” a world to make it
precise. A formula is then taken to be true at a world w under this approach if
it is true under all ways of extending the world. Both the Rj and Di operators
have some of the flavor of supervaluations. If we consider just the objective
component of a world o, there are various ways of extending it with subjective
components (s1, . . . , sn). Diϕ is true at an objective world o if (M,w, i) |= ϕ
for all worlds w that extend o. (Note that the truth of Djϕ depends only on the
objective component of a world.) Similarly, given just a subjective component
sj of a world, Rjϕ is true of sj if (M,w, i) |= ϕ for all worlds that extend
si. Not surprisingly, properties of supervaluations can be expressed using Rj

or Dj . Bennett [2] has defined a modal logic that formalizes the supervaluation
approach.

4.4 Higher-Order Vagueness

In many approaches towards vagueness, there has been discussion of higher-
order vagueness (see, for example, [6, 23]). In the context of the supervaluation
approach, we can say that Dϕ (“definitely ϕ”) holds at a world w if ϕ is true in
all extensions of w. Then Dϕ is not vague; at each world, either Dϕ or ¬Dϕ
(and D¬Dϕ) is true (in the supervaluation sense). But using this semantics
for definitely, it seems that there is a problem. For under this semantics, “defi-
nitely ϕ” implies “definitely definitely ϕ” (for essentially the same reasons that
Diϕ⇒ DiDiϕ in the semantics that I have given). But, goes the argument, this
does not allow the statement “This is definitely red” to be vague. A rather awk-
ward approach is taken to dealing with this by Fine [6] (see also [23]), which
allows different levels of interpretation.
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I claim that the real problem is that higher-order vagueness should not be
represented using the modal operatorD in isolation. Rather, a combination ofD
andR should be used. It is not interesting particularly to ask when it is definitely
the case that it is definitely the case that something is red. This is indeed true
exactly if it is definitely red. What is more interesting is when it is definitely the
case that agent i would report that an object is definitely red. This is represented
by the formula DiRiDiRed. We can iterate and ask when i would report that
it is definitely the case that he would report that it is definitely the case that he
would report it is definitely red, i.e., when DiRiDiRiDiRed holds, and so on.
It is easy to see that DiRip does not imply DiRiDiRip; lower-order vagueness
does not imply higher-order vagueness. Since I have assumed that agents are
introspective, it can be shown that higher-order vagueness implies lower-order
vagueness. In particular, DiRiDiRiϕ does imply DiRiϕ. (This follows using
the fact that Diϕ⇒ ϕ and RiRiϕ⇒ Riϕ are both valid.) The bottom line here
is that by separating the R and D operators in this way, issues of higher-order
vagueness become far less vague.

4.5 Williamson’s Approach

One of the leading approaches to vagueness in the recent literature is that of
Williamson; see [23, Chapters 7 and 8] for an introduction. Williamson con-
siders an epistemic approach, viewing vagueness as ignorance. Very roughly
speaking, he uses “know” where I use “report”. However, he insists that it can-
not be the case that if you know something, then you know that you know it,
whereas my notion of reporting has the property that Ri implies RiRi. It is in-
structive to examine the example that Williamson uses to argue that you cannot
know what you know, to see where his argument breaks down in the framework
I have presented.

Williamson considers a situation where you look at a crowd and do not know
the number of people in it. He makes what seem to be a number of reasonable
assumptions. Among them is the following:

I know that if there are exactly n people, then I do not know that there
are not exactly n− 1 people.

This may not hold in my framework. This is perhaps easier to see if we think of
a robot with sensors. If there are n grains of sugar in the cup, it is possible that a
sensor reading compatible with n grains will preclude there being n− 1 grains.
For example, suppose that, as in Section 2, there are n grains of sugar, and the
robot’s sensor reading is between b(n − 4)/10c and b(n + 4)/10c. If there are
in fact 16 grains of sugar, then the sensor reading could be 2 (= b(16+4)/10c).
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But if the robot knows how its sensor works, then if its sensor reading is 2, then
it knows that if there are exactly 16 grains of sand, then (it knows that) there are
not exactly 15 grains of sugar. Of course, it is possible to change the semantics
of Ri so as to validate Williamson’s assumptions. But this point seems to be
orthogonal to dealing with vagueness.

Quite apart from his treatment of epistemic matters, Williamson seems to
implicitly assume that there is an objective notion of what I have been calling
subjectively vague notions, such as red, sweet, and thin. This is captured by what
he calls the supervenience thesis, which roughly says that if two worlds agree
on their objective part, then they must agree on how they interpret what I have
called subjective propositions. Williamson focuses on the example of thinness,
in which case his notion of supervenience implies that “If x has exactly the same
physical measurements in a possible situation s as y has in a possible situation
t, then x is thin in s if and only if y is thin in t” [23, p. 203]. I have rejected
this viewpoint here, since, for me, whether x is thin depends also on the agent’s
subjective state. Indeed, rejecting this viewpoint is a central component of my
approach to intransitivity and vagueness.

Despite these differences, there is one significant point of contact between
Williamson’s approach and that presented here. Williamson suggests modeling
vagueness using a modal operator C for clarity. Formally, he takes a model
M to be a quadruple (W,µ, α, π), where W is a set of worlds and π is an
interpretation as above (Williamson seems to implicitly assume that there is a
single agent), where µ is a metric on W (so that µ is a symmetric function
mapping W ×W to [0,∞) such that µ(w,w′) = 0 iff w = w′ and µ(w1, w2)+
µ(w2, w3) ≤ µ(w1, w3)), and α is a non-negative real number. The semantics
of formulas is defined in the usual way; the one interesting clause is that for C:

(M,w) |= Cϕ iff (M,w′) |= ϕ for all w′ such that µ(w,w′) ≤ α.

Thus, Cϕ is true at a world w if ϕ is true at all worlds within α of w.
The intuition for this model is perhaps best illustrated by considering it in

the framework discussed in the previous section, assuming that there is only
one proposition, say Tall(TW), and one agent. Suppose that Tall(TW) is taken
to hold if TW is above some threshold height t∗. Since Tall(TW) is the only
primitive proposition, we can take the objective part of a world to be determined
by the actual height of TW. For simplicity, assume that the agent’s subjective
state is determined by the agent’s subjective estimate of TW’s height (perhaps
as a result of a measurement). Thus, a world can be taken to be a tuple (t, t′),
where t is TW’s height and t′ is the agent’s subjective estimate of the height.
Suppose that the agent’s estimate is within α/2 of TW’s actual height, so that
the set W of possible worlds consists of all pairs (t, t′) such that |t− t′| ≤ α/2.
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Assume that all worlds are plausible (so that P = W ). It is then easy to check
that (M, (t, t′)) |= DR(Tall(TW)) iff t ≥ t∗ + α. That is, the agent will
definitely say that TW is Tall iff TW’s true height is at least α more than the
threshold t∗ for tallness, since in such worlds, the agent’s subjective estimate of
TW’s height is guaranteed to be at least t∗ + α/2.

To connect this to Williamson’s model, suppose that the metric µ is such that
µ((t, t′), (u, u′)) = |t−u|; that is, the distance between worlds is taken to be the
difference between TW’s actual height in these worlds. Then it is immediate that
(M, (t, t′)) |= C(Tall(TW)) iff t ≥ t∗ + α. In fact, a more general statement
is true. By definition, (M, (t, t′)) |= Cϕ iff (M, (u, u′)) |= ϕ for all (u, u′) ∈
W such that |t − u| ≤ α. It is easy to check that (M, (t, t′)) |= DRϕ iff
(M, (u, u′)) |= ϕ for all (u, u′) ∈ W such that |t − u′| ≤ α/2. Finally, a
straightforward calculation shows that, for a fixed t,

{u : ∃u′((u, u′) ∈W, |t− u| ≤ α)} = {u : ∃u′((u, u′) ∈W, |t− u′| ≤ α/2)}.

Thus, if ϕ is a formula whose truth depends just on the objective part of the
world (as is the case for Tall(TW) as I have defined it) then (M, (t, t′)) |= Cϕ
iff (M, (t, t′) |= DRϕ.

Williamson suggests that a proposition ϕ should be taken to be vague if
ϕ ∧ ¬Cϕ is satisfiable. In Section 3.3, I suggested that ϕ ∧ ¬DRϕ could be
taken as one of the hallmarks of vagueness. Thus, I can capture much the same
intuition for vagueness as Williamson by usingDR instead ofC, without having
to make what seem to me unwarranted epistemic assumptions.

5 Discussion

I have introduced what seems to me a natural approach to dealing with intran-
sitivity of preference and vagueness. Although various pieces of the approach
have certainly appeared elsewhere, it seems that this particular packaging of
the pieces is novel. The approach leads to a straightforward logic of vagueness,
while avoiding many of the problems that have plagued other approaches. In
particular, it gives what I would argue is a clean solution to the semantic, epis-
temic, and psychological problems associated with vagueness, while being able
to deal with higher-order vagueness.

Acknowledgments: I’d like to thank Kees van Deemter, Delia Graff, Rohit Parikh,
Riccardo Pucella, Zoltan Szabo, and Tim Williamson for comments on a previ-
ous draft of the paper, and a reviewer for finding an error in a previous version.
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Uniform spaces and quasi-uniform spaces in L-valued setting can be found in
[3–8]. Garcia et. al. [10] introduced uniform spaces in a unifying framework of
GL-monoid to include both Lowen Uniformity and Hutton type uniformities.
Our interest lies on some generalisations not considered in the earlier setups.

The setting of the paper is a fuzzy lattice L (L, ≤,
∧

,
∨

, ′) with order
reversing involution. We refer to [1, 4, 9] for basic definitions.

1 L-semi uniformity

We introduce an L-semi-pseudo-metric on LX as a generalization of L- fuzzy
p. metric [9] as follows:

Definition 1. An L-semi-pseudo-metric on LX is a mapping P : LX × LX →
[0, +∞] satisfying the axioms

(SEM 1) B ⊆ A ⇒ P (A, B) = 0,
B 6= 0 ⇒ P (0, B) = +∞.

(SEM 2) P (A, B) ≤ P (A, C) + P (C, B).
(SEM 3) A, B 6= 0 ⇒ P (A, B) =

⋃
d∈β∗(B)

⋂
e∈β∗(A) P (e, d).

(SEM 4) “P (A, C) < r ⇒ C ⊆ B” ⇔ “P (B′, D) < r ⇒ D ⊆ A′”.
(SEM 5) A ⊆ B ⇒ P (B, C) ≤ P (A, C).

Definition 2. A mapping int : LX → LX is an interior operator on LX , if it
fulfills the following conditions:

(IO1) int(1
¯
) = 1

¯
.

(IO2) int(A) ⊆ A, ∀A ∈ LX .
(IO3) int(A

⋂
B) = int(A)

⋂
int(B), ∀A,B ∈ LX .

LX together with an interior operator ‘int’ shall be called an interior
space.
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An interior operator ‘int’ is an L-topological interior operator if it further satis-
fies:

(IO4) int(int(A)) = int(A), ∀A ∈ LX .

Definition 3. Semi diagonal of LX ⊗ LX is a mapping ∆ : LX → LX such
that ∆(A) = A.

Definition 4. Let U ∗ be the collection of all maps U : LX → LX which sat-
isfy:

s1) ∆ ⊆ U .
s2) U(

⋃
λ Vλ) =

⋃
λ U(Vλ), Vλ ∈ LX .

For any U ∈ U ∗, we say (xα, yβ) ∈ U ⇔ yβ ∈ U(xα), where xα, yβ ∈ LX .

The following definition is from [4]:

Definition 5. For any U ∈ U ∗, U r(xα) =
⋂
{yβ | U(y′β) ⊆ x′

α}.

Then U r ∈ U ∗ and (U r)r = U . If U = U r, then U is symmetric.
Further, the following notions are introduced:

Definition 6. An L-semi-quasi-uniformity U on LX is a non empty subfamily
of U ∗ satisfy the following:

(SQ1) U
⋂

U ∈ U , ∀U, V ∈ U .
(SQ2) If V ∈ U ∗ such that U ⊆ V , for some U ∈ U , then V ∈ U .

Definition 7. We shall call a non-empty subfamily B of U ∗ to be a base for
some L-semi-quasi-uniformity U , if for any U ∈ U , there is B ∈ B such that
B ⊆ U .

A non-empty subfamily B of U ∗ is a base for some L-semi-quasi-uniformity
U , if it satisfies the following:

(SQ1′) For any U, V ∈ B, there is W ∈ B such that W ⊆ U
⋂

V .

Definition 8. We shall say that a base B for an L- semi-quasi-uniformity U
on LX is an L- semi-uniformity if it satisfies the following:

(SQ3) For any B ∈ B implies Br ∈ B.

The collection of symmetric members of U is a base for U .
The following definition was proposed in [2]:

Definition 9. We say that a base B for an L-semi-quasi-uniformity on LX is
an L-local quasi-uniformity iff ∀ U ∈ B and ∀ xα ∈ LX there exists V ∈ B
such that V ◦ V (xα) ⊆ U(xα). If U is an L-semi-quasi-uniformity which is
L-local quasi-uniformity, we shall call U to be an L-local quasi-uniformity.
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Proposition 1. [4] Let i : LX → LX be an L-topological interior operator.
Then F = {V ∈ LX | i(V ) = V } is an L-topology and i(V ) is the interior of
V in (LX , F).

Theorem 1. Let (LX ,U ) be an L-semi-quasi-uniform space and B be any
base for U . The mapping int : LX → LX defined by, int(A) =

⋃
{xα | ∃ V ∈

B s.t. V (xα) ⊆ A}, is an interior operator on LX .

Every L-semi-quasi-uniformity therefore generates an interior space.

Lemma 1. Let (LX ,U ) be an L-semi-quasi-uniform space. Then ‘ int’ is an
L-topological interior operator under the following condition:

For any U ∈ U and xα ∈ LX , there exists V ∈ U such that to each
yβ ∈ V (xα) there corresponds W ∈ U with W (yβ) ⊆ U(xα).

Now by proposition 1 we have the following:

Theorem 2. Every L-semi-quasi-uniformity with condition in lemma 1 gener-
ates an L-topological space.

Definition 10. The interior operator generated by an L- semi-quasi-uniformity
U is the interior operator generated by int.

In particular, for any xα ∈ LX , Nxα = {U(xα) | U ∈ U } is the neighborhood
system at xα in the generating interior space. If the family {Nxα | xα ∈ LX} is
a neighborhood system for some L-topology F, we say that F is the L-topology
generated by U .

It now follows that “Every L-local quasi-uniformity is an L-semi-quasi-uniformity
with condition given in lemma 1.” We then have the following result:

Theorem 3. Every L-local quasi-uniform space generates an L-topological
space.

Remark 1. The converse of the theorem 3 is also true.

Definition 11. Let (LX ,U ) and (LY ,V ) be L-semi-uniform spaces, a function
f : (LX ,U ) → (LY ,V ) is L-semi-uniformly continuous iff for every V ∈ V ,
there exists U ∈ U such that f̂(U) ⊆ V , where f̂(xα, yβ) = (f(xα), f(yβ)).

The following result shall follow:

Theorem 4. Fuzzy L-semi-uniformly continuous functions on L-semi-uniform
spaces are continuous with respect to the relative interior spaces.
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2 L-semi-pseudo metrization

For any L-semi-pseudo-metric space (LX , P ) and 0 < s, the mapping Us :
LX → LX defined by,

Us(A) =
⋃
{C ∈ LX | P (A, C) < s}, ∀A ∈ LX

satisfies the condition (s1) and (s2) and that for any s, t satisfying 0 < s < t
implies Us ⊆ Ut.
The following result now follows:

Theorem 5. Every L-semi-pseudo-metric induces an L-semi-uniformity.

Now calling an L-semi-uniform space (LX , U ) to be L-semi-pseudo-metrizable
if there is an L-semi-pseudo-metric inducing the same interior operator gener-
ated by U , we have the following:

Theorem 6. An L-semi-uniform space (IX ,U ) is an L-semi-pseudo metric iff
U has a countable base.
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The purpose of this talk is to explain that enriched categories over quantaloids
form a categorical basis for many valued mathematics. The point of departure
are two arguments:

Argument 1. Mathematical structures beyond the Special Adjoint Functor The-
orem have usually a poor structure — e.g. Birkhoff-Neumann logic for quantum
mechanics.

Argument 2. The mathematical meaning of transitivity is composition.

If we put these arguments together, then quantaloids are the natural categorical
basis for algebraic as well as topological structures in many valued mathematics.
In fact quantaloids are enriched categories over the monoidal closed category s`
of complete lattices with arbitrary join preserving maps. It is interesting to note
that quantales induce quantaloids in at least four different ways — this means
that quantales themselves do not uniquely determine the categorical basis for
many valued mathematics. Hence various seemly unrelated mathematical struc-
tures appear as Q-categories (cf. [2, 3, 12]) where Q is a quantaloid induced by
a quantale in one or another way:

1. Preorder sets are 2-categories (where the quantaloid Q is induced by the
Boolean algebra 2).

2. Partially ordered sets are separated 2-categories.
3. Non-symmetric metric spaces are separated Q-categories where Q is in-

duced by [0, 1] provided with the usual multiplication (see [8]).
4. Ω-sets are symmetricQ-categories whereQ is induced by a frame Ω (cf. [12]).
5. M -valued sets are symmetric Q-categories where Q is induced by a com-

mutative strictly two-sided quantale M (cf. [5]).

Moreover, in the non-commutative setting (e.g. the quantale is given by the spec-
trum of non-commutative C∗-algebras) pre-Q-sets are Q-categories where the
objects of Q are given by all stable elements of Q (cf. [6]). If the underlying
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quantaloid is involutive, then the symmetrization process of pre-Q-sets holds.
Hence pre-Q-sets generate quite naturally Q-sets which form a basis for sheaf
theory on quantales (cf. [7]).
Finally, the filter monad exists on the category Cat(Q) of Q-categories. Hence
Cat(Q) has topological space objects.
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It was proved in [3] that there are only two atoms in the subvariety lattice of
cancellative residuated lattices. The first one is the variety of Abelian `-groups
CLG which is known to be generated by the additive `-group of integers Z (due
to Weinberg [6]). The second atom CLG− is the variety generated by the nega-
tive cone Z− of Z (see [3]). The negative cone Z− is a residuated chain whose
monoidal reduct is 1-generated. In this talk we will study residuated chains with
a slightly more complex structure than Z−, namely the residuated chains arising
on 2-generated submonoids of Z−. However, it turns out that the investigation of
such algebras looks unfamiliar because it needs a lot of notions which are dual
to well-known notions for natural numbers. Due to this fact we formulate the re-
sults in the dual term-wise equivalent setting. More precisely, we will consider
all dually residuated chains arising on 2-generated submonoids of natural num-
bers. Then we will describe a mutual position of varieties generated by these
chains. As a consequence we find out which of them generate a cover of CLG−.

A dual integral commutavive residuated lattice (shortly dual ICRL) is an
algebra L = 〈L,∧,∨,+, .−, 0〉, where 〈L,∧,∨, 0〉 is a lattice with a bottom
element 0, 〈L,+, 0〉 is a commutative monoid and for all x, y, z ∈ L we have

x + y ≥ z iff x ≥ z .− y .

It is easy to see that the dual ICRLs are term-wise equivalent to integral commu-
tative residuated lattices. We say that a dual ICRL is cancellative if its monoidal

? The work of the author was partly supported by the grant No. ICC/08/E018 of the Czech
Science Foundation (part of the ESF EUROCORES project LogICCC FP006 “LoMoReVI”)
and partly by the Institutional Research Plan AV0Z10300504.
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reduct is cancellative, i.e., if it satisfies the identity (x + y) .− y ≈ x. A dual
ICRL is called divisible if the join is definable as x∨y ≈ (y .− x)+x. By N we
denote the dual of Z−, i.e., N = 〈N,∧,∨,+, .−, 0〉, where x .− y = (x−y)∨0.
Note that N is cancellative and divisible.

Let a, b ∈ N. Then M(a, b) = 〈M(a, b),∧,∨,+, .−, 0〉 is the dual ICRL
living on M(a, b), i.e., ∧,∨ induce the usual order on N and

x .− y = min{z ∈ M(a, b) | z ≥ x− y} .

It is clear that if a, b are not coprime then M(a, b) ∼= M(a/d, b/d) for
d = gcd(a, b) since .− is fully determined by the monoidal operation and the
order. Thus we consider only coprime generators a, b. Let a, b ∈ N such that
a < b. It is obvious that a ∈ {0, 1} implies M(a, b) ∼= N. Thus we exclude also
these possibilities. The following is the set of interesting generators:

Gen = {〈a, b〉 ∈ N2 | 1 < a < b, a, b coprime} .

Proposition 1. For each 〈a, b〉 ∈ Gen the algebra M(a, b) is a simple, non-
divisible, cancellative, dual ICRL.

Let A be an algebra. Then V(A) denotes the variety generated by A. Given
〈a, b〉, 〈c, d〉 ∈ Gen, it is possible to find identities which hold in M(a, b) and do
not hold in M(c, d) provided that 〈a, b〉 6= 〈c, d〉. Thus we obtain the following
theorem.

Theorem 1. Let 〈a, b〉, 〈c, d〉 be two different pairs from the set Gen. Then
V(M(a, b)) 6= V(M(c, d)).

In order to describe the mutual position of varieties V(M(a, b)) in the subva-
riety lattice, we need to characterize subalgebras of M(a, b). Let 〈a, b〉 ∈ Gen.
Then the remainder on integer division of b by a is denoted ρa(b). We will show
that the proper nontrivial subalgebras of M(a, b) are isomorphic to N if a is
prime or ρa(b) 6= 1. In the remaining cases (i.e., a is not prime and ρa(b) = 1)
the subalgebras of M(a, b) are completely determined by the divisors of a.

Theorem 2. Let 〈a, b〉 ∈ Gen. If a is prime or ρa(b) 6= 1 then each nontrivial
proper subalgebra of M(a, b) is isomorphic to N.

Theorem 3. Let 〈a, b〉 ∈ Gen such that ρa(b) = 1. For each divisor d of a
there is a nontrivial subalgebra of M(a, b) isomorphic to M(a/d, b) and each
nontrivial subalgebra of M(a, b) is isomorphic to M(a/d, b) for a divisor d of
a.

Using the latter theorems and Jónsson’s lemma, it is possible to prove that
some of the algebras M(a, b) generate an almost minimal variety.
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Theorem 4. Let 〈a, b〉 ∈ Gen. If a is prime or ρa(b) 6= 1, then V(M(a, b)) is a
cover of V(N).

Thus there are infinitely many covers of V(N) among varieties V(M(a, b))
for 〈a, b〉 ∈ Gen. In fact, the remaining varieties of this type do not generate
covers of V(N). We will prove it by describing their mutual position in the
subvariety lattice.

Theorem 5. Let 〈a, b〉, 〈c, d〉 ∈ Gen such that ρa(b) = ρc(d) = 1. Then we
have V(M(c, d)) ⊆ V(M(a, b)) iff c divides a and d = b.

Using the latter theorem, we obtain also the converse of Theorem 4.

Theorem 6. Let 〈a, b〉 ∈ Gen. Then V(M(a, b)) is a cover of V(N) iff a is
prime or ρa(b) 6= 1.
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1 Introduction and preliminaries

Residuated lattices and substructural logics are subjects of intense investigation.
Algebraic semantics of substructural logics are classes of residuated lattices.
We shall investigate involutive FLe-algebras in this paper, and will establish
structural description for some subclasses.

For any binary operation ∗◦ (on a poset) which is commutative and non-decreasing
one can define its residuum→∗◦ by x∗◦y ≤ z ⇐⇒ x→∗◦ z ≥ y . The displayed
equivalence is often referred to as adjointness conditions. If →∗◦ exists, it has an
equivalent description, namely, →∗◦ is the unique binary operation on the poset
such that we have x →∗◦ y = max{z | x ∗◦ z ≤ y}. Let C = 〈X,≤,⊥,>〉 be
a bounded poset. A involution over C is an order reversing bijection on X such
that its composition by itself is the identity map of X . Involutions are continuous
in the order topology of C. T-conorms (resp. t-norms) over C are commutative
monoids on X with unit element ⊥ (resp. >). T-conorms and t-norms are duals
of one another. That is, for any involution ′ and t-conorm ⊕ over C, the op-
eration � on X defined by x�y = (x′ ⊕ y′)′ is a t-norm over C. Vice versa,
for any involution ′ and t-norm � over C, the operation ⊕ on X defined by
x ⊕ y = (x′ � y′)′ is a t-conorm over C. Uninorms over C [6, 1] are commuta-
tive monoids on X with unit element e (which may be different from ⊥ and >).
Every uninorm over C has an underlying t-norm � and t-conorm ⊕ acting on
the subdomains [⊥, e] and [e,>], respectively. That is, for any uninorm ∗◦ over
C, its restriction to [⊥, e] is a t-norm over [⊥, e], and its restriction to [e,>] is a
t-conorm over [e,>].

Definition 1. U = 〈X, ∗◦,≤,⊥,>, e, f, 〉 is called an involutive FLe-algebra if

1. C = 〈X,≤,⊥,>〉 is a bounded poset,
2. ∗◦ is a uninorm over C with neutral element e,
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3. for every x ∈ X , x→∗◦ f = max{z ∈ X | x ∗◦ z ≤ f} exists, and
4. for every x ∈ X , we have (x→∗◦ f)→∗◦ f = x.

We will call ∗◦ an involutive uninorm. It is not difficult to see that every involutive
uninorm is residuated (see [5]) and hence ∗◦ is isotone (see [4]). Therefore,
′ : X → X given by

x′ = x→∗◦ f

is an order-reversing involution. Denote

X+ = {x ∈ X | x ≥ e} and X− = {x ∈ X | x ≤ e}.

If C is linearly ordered, we call U an involutive FLe-chain. U is called finite if
X is a finite set.

2 General Observations

Lemma 1. In any involutive FLe-algebra U = 〈X, ∗◦,≤,⊥,>, e, f, 〉, for x, y ∈
X the following statements hold true:

1.
f ′ = e, (1)

x ∗◦ y =
(
x→∗◦ y′

)′, (2)

⊥ ∗◦X = ⊥, 1 (3)

> ∗◦ [e,>] = >, (4)

(x→∗◦ ⊥) ∗◦ (x→∗◦ ⊥)′ = ⊥. (5)

If ⊥ < x→∗◦ ⊥ then
x→∗◦ ⊥ 6≤ f. (6)

If x ≤ x→∗◦ ⊥ then
(x→∗◦ ⊥)′ ≤ x→∗◦ ⊥. (7)

2. Assume e ≥ f . Then we have

x′ ∗◦ y′ ≤ (x ∗◦ y)′. (8)

If in addition c ≤ f , c is idempotent then
(a) U has a subalgebra on [c, c′],

1 A shorter notation for⊥∗◦x = ⊥ for x ∈ X . Complex multiplication will be used extensively
in the sequel.
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(b) for x ≥ c we have

(x→∗◦ c) ∗◦ (x→∗◦ c)′ = c, (9)

(c) if c ≤ x ≤ x→∗◦ c then

(x→∗◦ c)′ ≤ x→∗◦ c. (10)

Theorem 1. Let 〈X, ∗◦,≤,⊥,>, e, f, 〉 be an involutive FLe-algebra, ⊗ its un-
derlying t-norm and ⊕ its underlying t-conorm acting on X+ and X−, respec-
tively. Then ⊗ and ⊕ uniquely determine ∗◦ on X+ ×X− via

x ∗◦ y =
{

(x→⊕ y′)′, if x ≤ y′

(y →⊗ x′)′, if x > y′
(11)

Corollary 1. If there are no elements in X which are incomparable with e in
an involutive FLe-algebra 〈X, ∗◦,≤,⊥,>, e, f, 〉 then the underlying t-norm and
t-conorm of ∗◦ uniquely determine ∗◦.

Theorem 1 motivates the following construction:

Definition 2. Let X1 and X2 be two partially ordered sets such that the ordi-
nal sum os〈X1, X2〉 of X1 and X2 (that is putting X1 under X2 so to say) is
bounded and has an order reversing involution ′. Let ⊗ be a t-norm on X1, ⊕
be a t-conorm on X2. Denote

U⊕⊗ = 〈os〈X1, X2〉, ∗◦,≤,⊥,>, e, f〉

where

x∗◦y =


x⊗ y if x, y ∈ X1

x⊕ y if x, y ∈ X2

(x→⊕ y′)′ if (x ∈ X2, y ∈ X1, and x ≤ y′) or (y ∈ X2, x ∈ X1, and x ≤ y′)
(y →⊗ x′)′ if (x ∈ X2, y ∈ X1, and x > y′) or (y ∈ X2, x ∈ X1, and x > y′)

.

(12)

In general ∗◦ given in (12) will not be an involutive uninorm. But if ∗◦ is any
involutive uninorm with underlying t-norm ⊗ and underlying t-conorm ⊕ then,
by Corollary 1, ∗◦ must have the form (12).

After the above general structural description we will focus on which pair of a
t-norm and a conorm is suitable for defining an involutive uninorm via (12).
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3 Finite involutive FLe-chains

Definition 3. Consider a finite involutive FLe-chain U and denote the cardi-
nality of its universe by n. Clearly, U is order-isomorphic to a finite involutive
FLe-chain with universe {1, 2, . . . , n} ⊂ N, denote it by 〈{1, 2, . . . , n}, ∗◦,≤
, 1, n, e, f〉. Call e − f the rank of U . It is easy to see that the rank is well-
defined.

Standing assumption: Because of the order-isomorphism which was mentioned
in Definition 3, without loss of generality, in the sequel we will consider finite
involutive FLe-chains solely on the universe {1, 2, . . . , n},2 and will employ the
shorter notation

Un = 〈{1, 2, . . . , n}, ∗◦,≤, e, f〉.3

Lemma 2. Let Un be any finite involutive FLe-chain.

1. We have
f = n + 1− e.4 (13)

2. We have that rank(Un) is necessarily even if n is odd, and vice versa.
3. If e 6= 1 then 2 ∗◦ 2 ∈ {1, 2}.
4. If n ≥ 3, rank(Un) ≥ 0, and 2 ∗◦ 2 = 2 then 〈{2, . . . , n − 1}, ∗◦,≤, e, f〉 is

a subalgebra of Un.

Definition 4. Let ⊗ be a t-norm on {1, 2, . . . , e}, ⊕ be a t-conorm on {e, e +
1, . . . , n}, and let x′ = n + 1− x for x ∈ {1, 2, . . . , n}. Denote

U⊕⊗ = 〈{1, 2, . . . , n}, ∗◦,≤, e, f〉

where

x∗◦y =


x⊗ y if x, y ≤ e
x⊕ y if x, y ≥ e
(x→⊕ y′)′ if (x ≥ e, y ≤ e, and x ≤ y′) or (y ≥ e, x ≤ e, and x ≤ y′)
(y →⊗ x′)′ if (x ≥ e, y ≤ e, and x > y′) or (y ≥ e, x ≤ e, and x > y′)

.

(14)

2 Here n being any natural number n ≥ 1.
3 Without writing the top and the bottom elements.
4 Here and in the sequel + and − refer to addition and subtraction of natural numbers, respec-

tively.
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Consider a finite involutive FLe-chain Un = 〈{1, 2, . . . , n}, ∗◦,≤, e, f〉 and de-
note its underlying t-norm (which acts on {1, 2, . . . , e}) and its underlying t-
conorm (which acts on {e, e + 1, . . . , n}) by ⊗ and ⊕, respectively. By Corol-
lary 1 we have Un = U⊕⊗ (given in Definition 2).

Below we give a characterization for the pairs of a t-norm and a conorm which
are suitable for defining an involutive uninorm via (12) provided that the rank
of the finite algebra is 0, 1, or 2.

Theorem 2. We have that ∗◦ is the monoidal operation of a finite involutive FLe-
chain with rank 0 (resp. rank 1) iff n is odd (resp. n is even) and

x ∗◦ y =
{

min(x, y) if x ≤ y′

max(x, y), if x > y′
(15)

Definition 5. Call a finite involutive FLe-algebra 〈{1, 2, . . . , n}, ∗◦,≤, e, f, 〉 >⊥-
indecomposable if it has no subalgebra on [2, . . . , n − 1]. Call an involutive
FLe-algebra simple if it has no proper subalgebra.

Theorem 3. There is a one-to-one correspondence between>⊥-indecomposable
involutive uninorms with rank 2 on n-element chains and conorm operations on
n−1

2 -element chains given as follows:
Let � be the t-norm operation on {1, 2, . . . , n+3

2 } given by

x� y =
{

1 if x, y < n+3
2

min(x, y) otherwise
. (16)

1. For any involutive uninorm on {1, . . . , n} with rank = 2, its underlying
t-norm is equal to �.

2. For any conorm operation ⊕ on {n+3
2 , n+3

2 + 1, . . . , n}, the monoidal op-
eration of U⊕� given in Definition 4 is an involutive uninorm on {1, . . . , n}
with rank = 2.

Corollary 2. Denote Cn the number of conorm operations on an n-element
chain. The number of>⊥-indecomposable involutive uninorms on an n-element
chain with rank 2 equals to Cn−1

2
. The number of involutive uninorms on an n-

element chain with rank 2 equals to

n−1
2∑

i=1

Ci.
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4 Involutive uninorms on [0, 1] with e = f

Definition 6. For any commutative residuated lattice on a complete and dense
chain 〈X,≤,⊕,→⊕, 1〉, define ⊕• : X ×X → X by x⊕• y = inf{u⊕ v | u >
x, v > y}, and call it the skewed pair of ⊕. For any commutative co-residuated
chain 〈X,≤,⊕•,→⊕•, 1〉, define ⊕ : X ×X → X by x⊕ y = sup{u⊕• v | u <
x, v < y}, and call it the skewed pair of ⊕. Call (⊕,⊕•) a skew pair.

Definition 7. Let (L2,≤) be a complete, dense chain and L1 ⊆ L2. Let (L1,⊕,→⊕
,≤,>) be a commutative residuated lattice on a complete and dense chain, and
let ′ be an order reversing involution on L2. The operation � is said to be dual
to ⊕ with respect to ′ if � is a binary operation on (L1)′ = {x′ | x ∈ L1} given
by x�y = (x′ ⊕ y′)′. We say that the operation�• is skew dual to the residuated
operation ⊕ with respect to ′ if �• is the dual of the skewed pair of ⊕.

Theorem 4. [5] Any involutive uninorm on [0, 1] with e = f can be represented
by (11) where its undelying t-norm and t-conorm are skew-duals.
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4. U. Höhle, Commutative residuated l-monoids, in: Topological and Algebraic Structures in
Fuzzy Sets, A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, (E.P.
Klement, S. E. Rodabaugh, eds.), Trends in Logic, vol 20. Kluwer Academic Publishers,
Dordrecht, 2003, 53–106.

5. S. Jenei, Structural description of a class of involutive uninorms via skew symmetrization,
Journal of Logic and Computation, doi:10.1093/logcom/exp060

6. R. R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems, Vol. 80
(1996), 111–120.

101



T-actions on bounded lattices

Funda Karacal1 and M. Nesibe Kesicioğlu2
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T-norms were introduced by Schweizer and Sklar [14] in the framework of prob-
abilistic metric spaces. Several authors have studied with t-norms on bounded
lattices. For more detail, we refer [2], [7], [8], [9], [10], [12], [13].

In this paper, we introduce an action of a bounded lattice on a partially or-
dered set. Later on, we define a new order on a partially ordered set by using this
action. In particular, when we suppose that the bounded lattice and the partially
ordered set are the same sets and the function is a t-norm T , we show that this
function is an action function again. So, this action is called a t-action and the
order on the bounded lattice is denoted by �T .

In our contribution, we focus to determine that the subset of the bounded
lattice is a lattice with respect to �T under some special circumstances. Using
this idea, we obtain some new conclusions. Especially, we show that the set of
all idempotent elements of t-norm T is a complete lattice with respect to �T .

Definition 1. Let L be a bounded lattice and (S,≤) be a partially ordered set.
Let T be a t-norm on L. An action of L on S is a function λ : L × S −→ S
such that for all x ∈ S, `1, `2 ∈ L

a1. λ(1, x) = x

a2. λ(T (`1, `2), x) = λ(`1, λ(`2, x))
a3. If `1 ≤ `2, then λ(`1, x) ≤ λ(`2, x)

Typically, we will not mention λ and we will write `x instead of λ(`, x).
Now, let us define the following binary relation on S:

x � y :⇔ ∃` ∈ L such that `y = x

Proposition 1. The binary relation � is a partially ordered relation on S.
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Example 1. Let L be a bounded lattice, T be a t-norm on L and S = L. Then

λ : L× L −→ L

(`, x) 7−→ λ(`, x) := T (`, x)

is an action on L. The action obtained this way is called t-action on L. Denote
by �T the order constructed from t-action on L and have as follows:

x �T y :⇔ ∃` ∈ L : T (`, y) = x.

Generally, in this study, we will take S = L and investigate t-actions.

Proposition 2. Let L be a bounded lattice, T be a t-norm on L and λ be an
action on S = L. Then T = λ. Hence T is unique t-action on L.

Example 2. Let L = [0, 1] and TnM be nilpotent minimum t-norm on [0, 1].
Then, (L,�T nM ) is a meet-semilattice, but not a join-semilattice.

Proposition 3. Let L be a lattice and T be any t-norm on L. If a �T b for
a, b ∈ L, then T (a, c) �T T (b, c) for every c ∈ L.

Proposition 4. Let (L,≤) be a bounded lattice and T be a t-norm on L. If
(L,�T ) is a chain, then T is a divisible t-norm; i.e, ≤=�T .

Theorem 1. Let L be a complete lattice and T be any t-norm on L. Then a ∧T

b = T (a, b) for every a, b ∈ HT and
∨

T {aτ |τ ∈ Q} =
∨
{aτ |τ ∈ Q} for every

{aτ |τ ∈ Q} ⊆ HT . (HT ,�T ) is a complete lattice.
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Many-valued propositional logics work with binary operations acting on the
sets of truth values. Most often, a lattice (L,≤, 0, 1) of truth values and mono-
tone extensions of the classical Boolean operations (conjunction, disjunction,
implication, . . . ) are considered [16]. Restricting ourselves to fuzzy logics and
extensions of the Boolean conjunction, the standard lattice ([0, 1],≤, 0, 1) and a
monotone extension C : [0, 1]2 → [0, 1], called conjunctor, of the Boolean con-
junction are used. Depending on the type of conjunctor to be studied, additional
properties of C may be required, leading to special classes of fuzzy logics. Con-
junctors are not only used in logics, but also (maybe under different names and
with additional properties) in other mathematical fields.

Unfortunately, in general no universally accepted terminology is available,
and different names for the same object often indicate the area of origin for
these names. In the field of aggregation functions [17], conjunctors are binary
aggregation functions with annihilator 0. We briefly summarize some classes
of well-known conjunctors characterized by special properties, including some
important results (for more information see [8]).

(i) Conjunctors with neutral element 1, i.e., satisfying C(1, x) = C(x, 1) = x
for all x ∈ [0, 1], are called semicopulas [3] (but also weak t-norms [32] or,
simply, conjunctors [34]).

(ii) An associative semicopula is called a pseudo-t-norm [12]. Note that the class
of sup- (or inf-)closures of pseudo-t-norms equals the class of semicopu-
las [9].

(iii) A most important class of conjunctors is the class of triangular norms (t-
norms) introduced in [29]. Triangular norms are associative commutative
semicopulas (see the monographs [1, 20, 30] or [21–23]). From [23, Corol-
lary 3.3] (which is based on [26]) we know that a function T : [0, 1] →
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[0, 1] is a continuous t-norm if and only if there is a family (]aα, eα[ )α∈A

of non-empty, pairwise disjoint open subintervals of [0, 1] and a family
hα : [aα, eα] → [0,∞] of continuous, strictly decreasing functions with
hα(eα) = 0 for each α ∈ A such that for all (x, y) ∈ [0, 1]2

T (x, y) =

{
h−1

α (min(hα(x) + hα(y), hα(aα))) if (x, y) ∈ [aα, eα]2 ,
min(x, y) otherwise.

Consequently, a continuous t-norm T : [0, 1]2 → [0, 1] satisfies T (x, x) < x
for all x ∈ ]0, 1[ if and only if there is a strictly decreasing continuous
function t : [0, 1] → [0,∞] with t(1) = 0 (a so-called additive generator of
T ) such that

T (x, y) = t−1(min(t(x) + t(y), t(0))). (1)

Such t-norms are called continuous Archimedean t-norms.
(iv) Copulas [31] are supermodular semicopulas, i.e., they satisfy

C(x ∨ y) + C(x ∧ y) ≥ C(x) + C(y) (2)

for all x,y ∈ [0, 1]2, and they play an important role in probability theory
(for details see [28]). Recall that associative copulas are exactly 1-Lipschitz
t-norms. If they are also Archimedean, this property is equivalent to the
convexity of the corresponding additive generator [27].

(v) 1-Lipschitz conjunctors, i.e., conjunctors satisfying

|C(x, y)− C(x∗, y∗)| ≤ |x− x∗|+ |y − y∗| (3)

for all (x, y), (x∗, y∗) ∈ [0, 1]2, are called quasi-copulas [2, 15]. The class
of sup- (or inf-)closures of quasi-copulas equals the class of copulas.

(vi) Associative commutative conjunctors with neutral element e ∈ ]0, 1[ are
called conjunctive uninorms [13]. A conjunctive uninorm U : [0, 1]2 →
[0, 1] which is cancellative on ]0, 1[2 and continuous on [0, 1]2\{(0, 1), (1, 0)}
is generated by a strictly increasing bijection u : [0, 1] → [−∞,∞] via
U(x, y) = u−1(u(x) + u(y)), using the convention ∞ + (−∞) = −∞.
Such uninorms are called representable.

Remark 1. (i) Continuous t-norms are the conjunctors in BL-logics [18], left-
continuous t-norms model conjunction in MTL-logics [11], and pseudo-t-
norms play a key role in pseudo-BL-algebras [5, 6]. Representable uninorms
were used in [14] as models for a conjunction.

(ii) Copulas provide the link between the marginal distributions of a random
vector and its joint distribution [31] (“conjunction” of marginal distribu-
tions), and quasi-copulas are important for the construction of preference
structures [4].
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(iii) In [25] the one-to-one correspondence between fuzzy equivalence relations
and fuzzy partitions based on a conjunctor C was investigated. Although
usually C was required to be a t-norm (see, e.g., [19]), and the use of semi-
copulas was proposed in [33], only in [25] it was shown that for a sound
axiomatics of C-based fuzzy equivalence relations and of C-based fuzzy
partitions we need
• a conjunctor C satisfying max(C(x, 1), C(1, x)) = x for all x ∈ [0, 1]

in the case of fuzzy equivalence relations;
• a conjunctor C satisfying, for all x ∈ [0, 1], C(1, x) = x and the exis-

tence of y ∈ [0, 1] such that C(x, 1) ≤ y and C(y, 1) ≤ x in the case of
fuzzy partitions;

• a commutative semicopula C if a one-to-one correspondence between
C-based fuzzy equivalence relations and C-based fuzzy partitions is re-
quired.

An interesting generalization of convex functions in one variable to higher
dimensions called ultramodular functions was proposed in [24]. We will study
this concept in the framework of conjunctors.

Definition 1. A conjunctor C : [0, 1]2 → [0, 1] is called ultramodular if for all
x,y, z ∈ [0, 1]2 with x + y + z ∈ [0, 1]2 we have

C(x + y + z) + C(x) ≥ C(x + y) + C(x + z). (4)

Proposition 1. (i) An aggregation function C : [0, 1]2 → [0, 1] is a supermod-
ular conjunctor if and only if there is a copula K : [0, 1]2 → [0, 1] and
non-decreasing functions f, g : [0, 1] → [0, 1] satisfying f(1) = g(1) = 1
and K(f(0), g(0)) = 0 such that, for all (x, y) ∈ [0, 1]2, C(x, y) =
K(f(x), g(y)) (see [10]).

(ii) An aggregation function C : [0, 1]2 → [0, 1] is an ultramodular conjunctor
if and only if all of its one-dimensional sections are convex and if there is
a copula K : [0, 1]2 → [0, 1] such that, for all (x, y) ∈ [0, 1]2, C(x, y) =
K(C(x, 1), C(1, y)).

Note that, for each ultramodular copula K : [0, 1]2 → [0, 1] and for all non-
decreasing convex functions ϕ,ψ : [0, 1] → [0, 1] satisfying ϕ(0) = ψ(0) = 0
and ϕ(1) = ψ(1) = 1, the function C : [0, 1]2 → [0, 1] given by C(x, y) =
K(ϕ(x), ψ(y)) is an ultramodular conjunctor. The ultramodular copulas form a
convex compact set with smallest element W (lower Fréchet-Hoeffding bound)
and greatest element Π (product).

Proposition 2. (i) A semicopula C : [0, 1]2 → [0, 1] is ultramodular if and
only if it is a copula with convex one-dimensional sections.
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(ii) If C : [0, 1]2 → [0, 1] is an ultramodular associative semicopula then it is
an Archimedean copula and, provided that its additive generator t : [0, 1] →
[0,∞] is two times differentiable, 1

t′ is non-increasing and convex.

If we denote by T the set of all additive generators of continuous Archimedean
t-norms, then for each t : [0, 1] → [0,∞] in T the function Ct : [0, 1]2 → [0, 1]
given by

Ct(x, y) =

{
0 if x = 0,

x · t−1
(
min

(
t(0), t(y)

x

))
otherwise,

(5)

is a semicopula. Because of [7], Ct is a copula if and only if t is convex.

Proposition 3. Suppose that t ∈ T is two times differentiable and that 1
t′ is

non-increasing and convex. Then Ct given by (5) is an ultramodular copula.

Example 1. Define t1, t2 : [0, 1] → [0,∞] by t1(x) = − log x and t2(x) =
1
x − 1. Then, for (x, y) ∈ ]0, 1]× [0, 1] we have

Ct1(x, y) = x · y
1
x and Ct2(x, y) =

x2y

1− y + xy
.

Both Ct1 and Ct2 are ultramodular copulas, but only t1 satisfies the hypotheses
of Proposition 3 (note that 1

t′2
is concave).
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31. A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ.

Paris, 8:229–231, 1959.
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Abstract. Bilattices have proven again and again to be extremely rich structures
from a logical point of view. As a matter of fact, even if we fix the canonical
notion of many-valued entailment and consider the smallest non-trivial bilattice,
distinct logics may be defined according to the chosen ontological or epistemo-
logical reading of the underlying truth-values. This note will explore the conse-
quence relations of two very natural variants of Belnap’s well-known 4-valued
logic, and delve into their interrelationship. The strategy will be that of reformu-
lating those logics using only two ‘logical values’, by way of uniform classic-like
semantical and proof-theoretical frameworks, with the help of which such logics
can be more easily compared to each other.

1 Introduction

Consider the order-bilattice (V,≤1,≤2) where V = {t,>,⊥, f}, the ‘truth or-
der’≤1 has t as its greatest element and f as its least element, as well as interme-
diate mutually incomparable elements > and ⊥, and the ‘information order’ ≤2

has > as its greatest element and ⊥ as its least element, as well as intermediate
mutually incomparable elements t and f . Construing V as a set of ‘truth-values’,
we may consider the algebraic structures Li = (V,∧i,∨i,¬i), for i = 1, 2,
where ∧i (resp. ∨i) denotes the meet (resp. join) under ≤i, and ¬i is an order-
reversing involution for ≤i having the intermediate elements, in each case, as
fixed-points. It is easy to see that these algebraic structures are ‘interlaced’, i.e.,
the operators of L1 (resp. L2) are all monotone with respect to ≤2 (resp. ≤1).
Even stronger than that, all distributive laws hold between the two meets and
the two joins. Morever, ¬1 (called ‘negation’) and ¬2 (called ‘conflation’) ob-
viously commute, that is, ¬1¬2x = ¬2¬1x. To make the above structures more
expressive we will also add their least and upper bounds as zero-ary operators.
The result will be a strongly symmetric bidimensional structure:

B = (V,∧1,∧2,∨1,∨2,¬1,¬2, t,>,⊥, f)

Let Γ ∪∆ be a collection of formulas from the term algebra TB correspond-
ing to the structureB, and let Hom denote the set of all homomorphisms from TB
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into B. This is known as a ‘truth-functional interpretation’, and the meaning of
each operator is said to be fixed by a ‘truth-table’. The canonical notion of en-
tailment |= over the above mentioned truth order assumes some partition of the
truth-values V into sets D (called ‘designated values’) and U (called ‘undes-
ignated values’), and Γ |= ∆ is said to hold iff, for every v ∈ Hom, either
v(Γ ) ∩ U 6= ∅ or v(∆) ∩ D 6= ∅. One should notice that such notion is re-
markably sensitive to the choice of designated / undesignated values. There are
at least three such choices, though, that would seem to make immediate sense
from the viewpoint of the truth order:
[Vb] Db = {t,>,⊥} and Ub = {f}

[Ve`] De` = {t,>} and Ue` = {⊥, f}
[Vn] Dn = {t} and Un = {>,⊥, f}

Choice [Ve`] has in fact been intensely investigated in the literature, and the
corresponding entailment relation, |=e`, is known to be adequate for the so-
called ‘first-degree entailment’. It is both paraconsistent and paracomplete. On
the other hand, the entailment relation |=b, that corresponds to [Vb] is paracon-
sistent but not paracomplete, and the exact opposite is the case for the entailment
relation |=n, that corresponds to [Vn]. A reasonable rationale for the choice [Vb],
according to the ordinary ‘truth-degree interpretation’, is that one might be deal-
ing with vague states-of-affairs in which some values should not be ascertained
to be ‘false’, yet they are ‘not quite true’. Analogously, for [Vn], there may be
other kinds of inexact states-of-affairs in which some values should not be as-
certained to be ‘true’, yet they are ‘not quite false’.

The present study will show in more detail what do such entailment relations
have in common, and how do they differ from each other. The comparison will
be made simpler when we recast the logics involved in terms of semantics and
proof-systems that mention only two logical values or two syntactic labels, as it
happens in classical logic.

2 A Closer Look at the Logical Operators

From the semantical point of view, a logical operator & called conjunction is
often used to internalize at the object-language level a collection of properties
that we attribute to the meta-linguistic ‘and’, such as:

[and1] v(α&β) ∈ D ⇒ v(α) ∈ D and v(β) ∈ D
[and2] v(α&β) ∈ D ⇐ v(α) ∈ D and v(β) ∈ D
Similarly, a logical operator || called disjunction is often used to internalize
properties that we attribute to the meta-linguistic ‘or’, such as:
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[or1] v(α || β) ∈ D ⇒ v(α) ∈ D or v(β) ∈ D
[or2] v(α || β) ∈ D ⇐ v(α) ∈ D or v(β) ∈ D
Obviously, the use of a classical meta-language together with the above as-
sumed partition of the truth-values in two classes allows us to immediately
rewrite [and2] and [or2] as:

[and2] v(α&β) ∈ U ⇒ v(α) ∈ U or v(β) ∈ U
[or2] v(α || β) ∈ U ⇒ v(α) ∈ U and v(β) ∈ U

As it turns out, according to |=e`, each operator ∧i enjoys properties [and1] and
[and2], and each operator ∨i enjoys properties [or1] and [or2], for i = 1, 2.
However, according to either |=b or |=n, this only holds good for i = 1, that
is, for the logical operators defined according to the truth-order ≤1. Indeed, for
both the latter entailment relations, on what concerns the operators defined ac-
cording to the information order ≤2, it can easily be checked that ∧2 enjoys
property [and2] but fails property [and1], while ∨2 enjoys property [or1] but
fails property [or2]. One can also argue (having more space!) that ¬2 only be-
haves like a real negation according to |=e`, but not according to |=b or to |=n.
This much for the similarities between |=b and |=n. To properly understand how
they differ, we will concentrate in what follows in the case of |=b, as |=n may
be seen to produce entirely dual results.

It’s not overemphasizing to insist here that a quick look at the truth-tables
of ∧2, with an eye at its behavior according to the entailment relations |=b

and |=n will not immediately reveal what inferences are to be validated by one
of these relations, and not by the other. . . It is equally far from obvious that
the proof systems to be extracted from those truth-tables will be somehow com-
parable, as they might make some syntactic use of the specific partitions of Vb

and Vn. . . How should one proceed, then, for the comparison?

3 An Alternative Bivalent Semantics and an Adequate
Proof-System for It

Let’s now leave behind the idea that semantics should be presented truth-func-
tionally in terms of a set of homomorphisms between two similar algebras, and
start instead just from a set of two ‘logical values’ V2 = {1, 0}, partitioned
into D2 = {1} and U2 = {0}. A bivalent semantics Sem, now, will be just a
collection of ‘bivaluation’ mappings of the form b : TB −→ V2. Given any such
collection of mappings, again, a canonical notion of entailment can be defined as
usual: Γ |= ∆ iff, for every b ∈ Sem, either b(Γ )∩U2 6= ∅ or b(∆)∩D2 6= ∅.

To constructively provide a bivalent characterization of the values in Vb,
one should be able to distinguish between the many truth-values in Db, and in
particular between the two intermediate values. That can be done, though, if one
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finds a one-variable formula θ(p) such that, given some v1, v2 ∈ Hom such that
v1(p) = > and v2(p) = ⊥, we have that v1(θ(p)) ∈ Ub yet v2(θ(p)) ∈ Db.
This way we can map each ‘algebraic value’ in Db into the ‘logical value’ 1, the
only truth-value that belongs to D2, while still being able to ‘tell the difference’
when we are dealing with each of them. As it happens, the language of B is
indeed sufficiently expressive to ‘separate’ these two values: just consider the
formula θ1(p) as f ∧2 p, and notice that v1(θ1(p)) ∈ Ub when v1(p) = >, but
v2(θ1(p)) ∈ Db when v2(p) = ⊥. Clearly, the joint combination of p with ¬1p
and with θ1(p) can help in distinguishing each pair of truth-values from Db, and
we shall make use of that in what follows.

The following result consists exactly in providing a way of writing down
a bivalent description of the initial 4-valued truth-tables of B from the point
of view of |=b. Because there are many operators and the full description is
therefore quite long, we will leave it to an Appendix.

Theorem 1. A sound and complete bivalent semantics for the paraconsistent
logic behind choice [Vb] is given by the collection Semb

2 of all bivaluations that
respect all the clauses that can be found in the Appendix. ut

To wit, the above theorem guarantees that Γ |=Semb
2

∆ iff Γ |=b ∆.
If the mentioned clauses on bivaluations do not look as if they’re defining

an actual decision procedure for inferences related to |=b, this might be just the
time to directly use them to formulate instead an analytic proof system that will
do the job. This can indeed be done in the following way.

Theorem 2. A sound and complete collection of tableau rules for the logic be-
hind choice [Vb] is given by reading the bivalent clauses used in Theorem 1 (see
Appendix) as two-signed tableau rules, in an appropriate way, namely:

– each expression of the form b(ϕ) = w is rewritten as a signed formula w:ϕ;
– a ‘⇒’ separates the head of a tableau rule (to the left) from its conclusions (to the right);
– each ‘,’ is understood as separating nodes (signed formulas) from the same branch;
– an ‘|’ at the right of a ‘⇒’ demarcates bifurcations in the output of a given rule;
– an expression of the form ‘h1, . . . , hn ⇒ >’ denotes a closure rule. ut

The class of rules that results from the above is clearly ‘classic-like’. How-
ever, differently from what happens in the case of usual tableau systems for clas-
sical propositional logic, the blind application of such rules to test the validity of
a given inference might not be terminating, if rules are chosen in a particularly
unfortunate order. To fix that, and guarantee that the tableau system will indeed
be analytic, one had better attach to it a convenient ‘proof strategy’. Basically,
the problem resides in the case where more than one rule is applicable to the
same head. This might happen here if we recall that a formula of the form θ1(α)
is actually just an abbreviation for f ∧2 α. So, if a node of the form w:θ1(�(−→α ))
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needs to be analyzed, one should decide whether it will be better to apply to it
the rule biv[∧2]〈w〉 or the rule biv[θ1�]〈w〉. Our proof strategy in this case will
choose to always apply biv[θ1�]〈w〉 first, as it will guarantee that a certain non-
canonical measure of complexity keeps decreasing. Moreover, according to this
same proof strategy, for nodes of the form w:θ1(p) or w:¬p, where p is an atom,
no further rule should be applied.

Now, the reformulation of |=n in terms of a bivalent semantics and the as-
sociation of an analytic proof system for the corresponding logic can be done
in exactly the same way as we did for |=b, and the same can be done also for
|=e`. It will be a completely automatic task, then, to use the classic-like proof
system associated, say, to |=n in order to test the validity of theorems and rules
of the logic given, say, by |=b. Moreover, the introduction of a suitable impli-
cation into B can simplify the above tasks, in making the underlying language
even more expressive. The full paper will show details of all the above, and
also show how much of the deeper interest behind the 4-valued approach can be
thoroughly retained in the present classic-like bivalent / two-signed approach.

Appendix

Here one can find the exhaustive bivalent description of the 4-valued logic that
corresponds to choice [Vb] and its associated entailment relation |=b.

In the meta-linguistic notation below, a ‘,’ replaces an ‘and’, a ‘|’ replaces
an ‘or’, a ‘⇒’ replaces an ‘if-then’ assertion, and a ‘>’ represents the absurd,
so that a clause such as biv[C2] should be read as saying that states b(α) =
0 and b(θ1(α)) = 1 cannot simultaneously obtain, for any bivaluation b and
formula α.

The expressions α and β, below, denote arbitrary formulas from TB.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[∧1]〈1〉 b(α ∧1 β) = 1 ⇒
(b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 1)

| (b(α) = 1 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

biv[∧1]〈0〉 b(α ∧1 β) = 0 ⇒
(b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

115



biv[¬1∧1]〈1〉 b(¬1(α ∧1 β)) = 1 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)
| (b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

biv[¬1∧1]〈0〉 b(¬1(α ∧1 β)) = 0 ⇒
b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1

biv[θ1∧1]〈1〉 b(θ1(α ∧1 β)) = 1 ⇒ b(α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(θ1(β)) = 1

biv[θ1∧1]〈0〉 b(θ1(α ∧1 β)) = 0 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(¬1β) = 1 , b(θ1(β)) = 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[∧2]〈1〉 b(α ∧2 β) = 1 ⇒
(b(α) = 1 , b(β) = 1)

| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)
| (b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

biv[∧2]〈0〉 b(α ∧2 β) = 0 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

| (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)
| (b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

biv[¬1∧2]〈1〉 b(¬1(α ∧2 β)) = 1 ⇒
(b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)
| (b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 0)

biv[¬1∧2]〈0〉 b(¬1(α ∧2 β)) = 0 ⇒
(b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)

| (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)

biv[θ1∧2]〈1〉 b(θ1(α ∧2 β)) = 1 ⇒
(b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 1)

| (b(α) = 1 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)
| (b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

biv[θ1∧2]〈0〉 b(θ1(α ∧2 β)) = 0 ⇒
(b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

| (b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)
| (b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[∨1]〈1〉 b(α ∨1 β) = 1 ⇒ (b(α) = 1 | b(β) = 1)

biv[∨1]〈0〉 b(α ∨1 β) = 0 ⇒
(b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)
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biv[¬1∨1]〈1〉 b(¬1(α ∨1 β)) = 1 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)
| (b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

biv[¬1∨1]〈0〉 b(¬1(α ∨1 β)) = 0 ⇒
(b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1)

| (b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

biv[θ1∨1]〈1〉 b(θ1(α ∨1 β)) = 1 ⇒
(b(α) = 1 , b(θ1(α)) = 1)

| (b(β) = 1 , b(θ1(β)) = 1)

biv[θ1∨1]〈0〉 b(θ1(α ∨1 β)) = 0 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[∨2]〈1〉 b(α ∨2 β) = 1 ⇒
(b(α) = 1 , b(β) = 1)

| (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0)
| (b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)

biv[∨2]〈0〉 b(α ∨2 β) = 0 ⇒
(b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

| (b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 0 , b(¬1β) = 1 , b(θ1(β)) = 0)

biv[¬1∨2]〈1〉 b(¬1(α ∨2 β)) = 1 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(¬1β) = 1 , b(θ1(β)) = 0)
| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 1 , b(θ1(β)) = 1)

biv[¬1∨2]〈0〉 b(¬1(α ∨2 β)) = 0 ⇒
(b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1 , b(β) = 1 , b(θ1(β)) = 1)

| (b(α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(¬1β) = 0 , b(θ1(β)) = 1)

biv[θ1∨2]〈1〉 b(θ1(α ∨2 β)) = 1 ⇒
(b(α) = 1 , b(θ1(α)) = 1 , b(β) = 1 , b(θ1(β)) = 1)

biv[θ1∨2]〈0〉 b(θ1(α ∨2 β)) = 0 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(¬1β) = 1 , b(θ1(β)) = 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[¬1]〈1〉 b(¬1α) = 1 ⇒ b(α) = 1 | (b(α) = 0 , b(θ1(α)) = 0)

biv[¬1]〈0〉 b(¬1α) = 0 ⇒ (b(α) = 1 , b(θ1(α)) = 1)

biv[¬1¬1]〈1〉 b(¬1¬1α) = 1 ⇒ b(α) = 1

biv[¬1¬1]〈0〉 b(¬1¬1α) = 0 ⇒ b(α) = 0
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biv[θ1¬1]〈1〉 b(θ1(¬1α)) = 1 ⇒
(b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)

biv[θ1¬1]〈0〉 b(θ1(¬1α)) = 1 ⇒
(b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
biv[¬2]〈1〉 b(¬2α) = 1 ⇒ b(α) = 1

biv[¬2]〈0〉 b(¬2α) = 0 ⇒ b(α) = 0

biv[¬1¬2]〈1〉 b(¬2α) = 1 ⇒
(b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)

biv[¬1¬2]〈0〉 b(¬2α) = 0 ⇒ (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1)

biv[θ1¬2]〈1〉 b(θ1(¬2α)) = 1 ⇒
(b(α) = 0 , b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 1)

biv[θ1¬2]〈0〉 b(θ1(¬2α)) = 1 ⇒
(b(α) = 1 , b(¬1α) = 1 , b(θ1(α)) = 0)

| (b(α) = 1 , b(¬1α) = 0 , b(θ1(α)) = 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[t] b(t) = 0 ⇒ >
biv[¬1t] b(¬1t) = 1 ⇒ >
biv[θ1t] b(θ1(t)) = 0 ⇒ >

biv[>] b(>) = 0 ⇒ >
biv[¬1>] b(¬1>) = 0 ⇒ >
biv[θ1>] b(θ1(>)) = 1 ⇒ >

biv[⊥] b(⊥) = 0 ⇒ >
biv[¬1⊥] b(¬1⊥) = 0 ⇒ >
biv[θ1⊥] b(θ1(⊥)) = 0 ⇒ >

biv[f ] b(f) = 1 ⇒ >
biv[¬1f ] b(¬1f) = 0 ⇒ >
biv[θ1f ] b(θ1(f)) = 1 ⇒ >

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biv[C0] (b(α) = 0 , b(α) = 1) ⇒ >
biv[C1] (b(α) = 0 , b(¬1α) = 0) ⇒ >
biv[C2] (b(α) = 0 , b(θ1(α)) = 1) ⇒ >
biv[C3] (b(¬1α) = 0 , b(θ1(α)) = 0) ⇒ >
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1 Introduction

Our aim is to explore relationships between many-valued logic (see, e.g., [8,
9, 2]) and fuzzy topology (see, e.g., [13, 3, 7]) from the viewpoint of duality
theory (see, e.g., [10]). In particular we consdier fuzzy topological dualities for
the algebras of Łukasiewicz n-valued logic Łc

n with truth constants and for the
algebras of modal Łukasiewicz n-valued logic MŁc

n with truth constants, where
MŁc

n is based on modal Łukasiewicz n-valued logic (without truth constants
except 0, 1) in [14] (modal many-valued logic is considered also in [5]). We
emphasize that fuzzy topology naturally arises in the context of many-valued
logic.

Stone duality for Boolean algebras (see, e.g., [10]) is one of the most im-
portant results in algebraic logic and states that there is a categorical duality
between Boolean algebras (i.e., the algebras of classical propositional logic)
and Boolean spaces (i.e., zero-dimensional compact Hausdorff spaces). Since
both many-valued logic and fuzzy topology can be considered as based on the
same idea that there are more than two truth values, it is natural to expect that
there is a duality between the algebras of many-valued logic and “fuzzy Boolean
spaces.” Stone duality for Boolean algebras was extended to Jónsson-Tarski du-
ality (see, e.g., [1]) between modal algebras and relational spaces (or descriptive
general frames), which is another classical theorem in duality theory. Thus, it
is also natural to expect that there is a duality between the algebras of modal
many-valued logic and “fuzzy relational spaces.”

We realize the above expectations in the cases of Łc
n and MŁc

n. We first
develop a categorical duality between the algebras of Łc

n and n-fuzzy Boolean
spaces (see Definition 9), which is a generalization of Stone duality for Boolean
algebras to the n-valued case via fuzzy topology. This duality is developed based
on the following insights:

1. The spectrum of an algebra of Łc
n (i.e., the set of prime n-filters of it) can be

naturally equipped with a certain n-fuzzy topology, where n-filter is deduc-
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tive filter in the sense of [6] and its primeness is defined in the usual way
(i.e., by the condition that x ∨ y ∈ P implies either x ∈ P or y ∈ P ).

2. The notion of clopen subset of Boolean space in Stone duality for Boolean
algebras corresponds to that of continuous function from n-fuzzy Boolean
space to n (= {0, 1/(n − 1), 2/(n − 1), ..., 1}) equipped with the n-fuzzy
discrete topology in the duality for the algebras of Łc

n. This means that the
zero-dimensionality of n-fuzzy topological spaces is defined in terms of
continuous function into n (see Definition 8).

Moreover, based on the duality for the algebras of Łc
n, we develop a categorical

duality between the algebras of MŁc
n and n-fuzzy relational spaces (see Defini-

tion 12), which is a generalization of Jónsson-Tarski duality for modal algebras
to the n-valued case via fuzzy topology. Note that an n-fuzzy relational space
is also defined in terms of continuous functions into n (see Definition 12).

There have been some studies on dualities for algebras of many-valued log-
ics (see, e.g., [4, 11, 12, 14]). However, they are based on the ordinary topol-
ogy and therefore do not reveal relationships between many-valued logic and
fuzzy topology. By the results in this paper, we can notice that fuzzy topological
spaces naturally arise as spectrums of algebras of some many-valued logics and
that there are categorical dualities connecting fuzzy topology and those many-
valued logics which generalize Stone and Jónsson-Tarski dualities via fuzzy
topology.

2 Fuzzy topological duality for algebras of Łc
n

Definition 1. Let n denote {0, 1/(n−1), 2/(n−1), ..., 1}. We equip n with all
constants r ∈ n and the operations (∧,∨, ∗, ℘,→, (-)⊥) defined as follows:

x ∧ y = min(x, y);
x ∨ y = max(x, y);
x ∗ y = max(0, x+ y − 1);
x ℘ y = min(1, x+ y);
x→ y = min(1, 1− (x− y));

x⊥ = 1− x.

Let nS denote the set of all functions from S to n. Operations (∧,∨, ∗, ℘,→
, (-)⊥, r ∈ n) on nS are defined pointwise (r ∈ n is considered as a constant
function on S whose value is always r).

Definition 2 ([3, 7]). For a set S and a subset O of nS , (S,O) is an (stratified)
n-fuzzy space iff the following hold:
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1. r ∈ O for any r ∈ n;
2. if µ1, µ2 ∈ O then µ1 ∧ µ2 ∈ O;
3. if µi ∈ O for i ∈ I then

∨
i∈I µi ∈ O,

Then, we call O the n-fuzzy topology of (S,O), and an element of O an open
n-fuzzy set on (S,O). An n-fuzzy set λ on S is a closed n-fuzzy set on (S,O) iff
λ = µ⊥ for some open n-fuzzy set µ on (S,O).

Definition 3. Let S1 and S2 be n-fuzzy spaces. Then, a function f : S1 → S2

is continuous iff, for any open n-fuzzy set µ on S2, f−1(µ), which is defined as
µ ◦ f , is an open n-fuzzy set on S1.

Definition 4. Let (S,O) be an n-fuzzy space. Then, an open basis B of (S,O)
is a subset of O such that the following holds: (i) B is closed under ∧; (ii) for
any µ ∈ O, there are µi ∈ B for i ∈ I with µ =

∨
i∈I µi.

Definition 5. An n-fuzzy space S is Kolmogorov iff, for any x, y ∈ S with
x 6= y, there is an open n-fuzzy set µ on S with µ(x) 6= µ(y).

Definition 6. Let 1 denote the constant function on S whose value is always 1.
Then, S is compact iff, if 1 =

∨
i∈I µi for open n-fuzzy sets µi on S, then there

is a finite subset J of I such that 1 =
∨

i∈J µi.

We equip n with the discrete n-fuzzy topology (i.e., nS).

Definition 7. Let S be an n-fuzzy space. Then, Cont(S) is defined as the set
of all continuous functions from S to n. We endow Cont(S) with the pointwise
operations (∧,∨, ∗, ℘,→, (-)⊥, r ∈ n).

Definition 8. For an n-fuzzy space S, S is zero-dimensional iff Cont(S) forms
an open basis of S.

Definition 9. For an n-fuzzy space S, S is an n-fuzzy Boolean space iff S is
zero-dimensional, compact and Kolmogorov.

The following theorem is a main result. A homomorphism of algebras of
Łc

n is defined as a function which preserves all the operations (∧,∨, ∗, ℘,→
, (-)⊥, r ∈ n).

Theorem 1. The category of algebras of Łc
n and their homomorphisms is dually

equivalent to the category of n-fuzzy Boolean spaces and continuous functions.
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3 Fuzzy topological duality for algebras of MŁc
n

As in [14, 5], we define modal Łukasiewicz n-valued logic MŁc
n with truth con-

stants by using a many-valued version of Kripke semantics. The connectives of
MŁc

n are a unary connective � plus those of Łc
n (i.e., ∧,∨, ∗, ℘,→, (-)⊥, r ∈ n).

Form� denotes the set of formulas of MŁc
n.

Definition 10. Let (W,R) be a Kripke frame (i.e., R is a relation on a set W ).
Then, e is a Kripke n-valuation on (W,R) iff e is a function from W ×Form�

to n which satisfies: For each w ∈W and ϕ,ψ ∈ Form�,

1. e(w,�ϕ) =
∧
{e(w′, ϕ) ; wRw′};

2. e(w,ϕ@ψ) = e(w,ϕ)@e(w,ψ) for @ = ∧,∨, ∗, ℘,→;
3. e(w,ϕ⊥) = (e(w,ϕ))⊥;
4. e(w, r) = r for r ∈ n.

Then, (W,R, e) is called an n-valued Kripke model. Define MŁc
n as the set of

all those formulas ϕ ∈ Form� such that e(w,ϕ) = 1 for any n-valued Kripke
model (W,R, e) and any w ∈W .

Definition 11. Let (S,R) be a Kripke frame and f a function from S to n.
Define �Rf : S → n by (�Rf)(x) =

∧
{f(y) ; xRy}.

For a Kripke frame (S,R) and an n-fuzzy set µ on S, an n-fuzzy setR−1[µ]
on S is defined by R−1[µ](x) =

∨
{µ(y) ; xRy} for x ∈ S.

Definition 12. An n-fuzzy relational space is defined as a tuple (S,R) such that
S is an n-fuzzy Boolean space and that a relation R on S satisfies the following
conditions:

1. if ∀f ∈ Cont(S)((�Rf)(x) = 1 ⇒ f(y) = 1) then xRy;
2. if µ ∈ Cont(S), then R−1[µ] ∈ Cont(S).

Definition 13. A continuous bounded morphism f : (S1, R1) → (S2, R2) be-
tween n-fuzzy relational spaces is defined as a continuous function f : S1 → S2

which satisfies the following conditions:

1. if xR1y then f(x)R2f(y);
2. if f(x1)R2x2 then there is y1 ∈ S1 such that x1R1y1 and f(y1) = x2.

The following theorem is the other main result. A homomorphism of al-
gebras of MŁc

n is defined as a function which preserves all the operations:
∧,∨, ∗, ℘,→, (-)⊥, r ∈ n and �.

Theorem 2. The category of algebras of MŁc
n and their homomorphisms is

dually equivalent to the category of n-fuzzy relational spaces and continuous
bounded morphisms.
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Decidability problems – ascertaining whether or not an effective method exists
for determining membership of a given class – have long played a prominent
role in both logic and algebra, bridging the gap between abstract presentations
and computational methods. Perhaps most significant are the decidability of va-
lidity for a given logic and (which amounts to the same thing for algebraizable
logics) the equational theory of some class of algebras. Intriguingly, to address
such problems for lattice-valued logics, in particular, substructural and fuzzy
logics based on classes of residuated lattices, methods from both fields – logic
and algebra – appear to be essential.

On the one hand, syntactic approaches – typically involving cut-elimination
for Gentzen systems – have been used to prove decidability for the full Lambek
calculus, fragments of linear logic, and relevance logics, as well as interesting
classes of algebras such as distributive residuated lattices and lattice ordered
abelian groups (see, e.g., [5, 9]). On the other hand, algebraic methods such as
establishing the (strong) finite model property or finite embeddability property,
have been used to prove decidability for a wide range of logics and classes of
algebras obeying some kind of integrality (weakening) or idempotency (contrac-
tion) conditions (see, e.g., [1, 5]) . The intention of this talk is to describe both
the syntactic and algebraic approaches to establishing decidability, illustrated
with examples of lattice-valued logics taken from a wide range of sources.

Recall that a pointed commutative residuated lattice (PCRL for short) is an
algebra A = 〈A,∧,∨, ·,→, 1, 0〉 such that: 〈A,∧,∨〉 is a lattice; 〈A, ·, 1〉 is a
commutative monoid; and x · y ≤ z iff x ≤ y → z for all x, y, z ∈ A. Also,
¬x = x → 0; x0 = 1; and xn+1 = x · xn for n ∈ N. A is integral if x ≤ 1 for
all x ∈ A; idempotent if x = x2 for all x ∈ A; and involutive if ¬¬x = x for all
x ∈ A. The following lattice-valued logics, all based on classes of (expanded)
PCRLs, will be considered in this talk:

– Nelson’s constructive logic with strong negation. It has been shown by Spinks
and Veroff in [10] that the variety of Nelson algebras, algebraic semantics
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for constructive logic with strong negation N, is term-equivalent to the vari-
ety of Nelson residuated lattices: integral involutive PCRLs satisfying

((x2 → y) ∧ ((¬y)2 → ¬x)) → (x → y) ≈ 1.

A sequent calculus is obtained for this variety in [7] by extending a system
(essentially InFLew or AMALL, see, e.g., [5]) for integral involutive PCRLs
with a single structural rule. Using the translation of [10], this is then also a
calculus for the logic N that provides, among other things, a new and easy
proof of decidability, and can be extended to obtain calculi and decidabil-
ity proofs for logics such as nilpotent minimum logic NM and Łukasiewicz
three-valued logic Ł3.

– Casari’s comparative logics. Some logics, not fuzzy in the sense of being
characterized by chains, nevertheless have certain “fuzzy features”. In par-
ticular, logics for comparative reasoning introduced by Casari in the 1980s
provide an alternative truth degree semantics for modeling vagueness [4].
Algebras for these logics, called lattice-ordered pregroups, have degrees of
both truth and falsity related by an involutive negation, and (possibly) in-
termediate degrees between. In the language of residuated lattices, they are
involutive PCRLs satisfying

0 ≈ 0 · 0 and x → x ≈ 1.

Decidability is established for Casari’s basic comparative logic (and some
variants) in [6] by combining a sequent calculus for linear logic without ex-
ponentials (InFLe or MALL) with a hypersequent calculus for lattice-ordered
abelian groups.

– Gödel modal logics. In the general framework of Bou et al. [2], fuzzy modal
logics can be based on Kripke models where the accessibility relation be-
tween worlds are either Boolean-valued (crisp) or many-valued (fuzzy) and
propositional connectives operate as usual for a fixed logic at an individual
world, while the values of formulas �ϕ and ♦ϕ are based on the values
of ϕ at accessible (to some degree) worlds. Axiomatizations for Gödel “K”
modal logics with the � or the ♦ modality (so far not both) have been pro-
vided by Caicedo and Rodrı́guez in [3]. In particular, the algebras of the
fragments with � (which coincide) are term-equivalent to integral idempo-
tent PCRLs expanded with a unary operator � satisfying:

�(x ∧ y) = �x ∧�y; 1 ≈ �1; ¬¬�x ≤ �¬¬x.
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A proof-theoretic proof of decidability for this logic, indeed PSPACE-com-
pleteness, is given in [8], subsequently extended to the (different) diamond
fragments.
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Mathematical logic has been for many years developed on the basis of impli-
cation as the main connective. In eighties, another direction has been initiated
which is called equational logic (see [5, 6]). The emphasis in it lays in the style
of proofs in which substitution of equals for equals, instead of modus ponens
is used. Thus, equality, or equivalence, assumes an important role instead. Re-
cently, a new book developing classical boolean logic on the basis of equiva-
lence as the main (not sole) connective (see [15]) has been published. Besides
others, the logic in this book is developed in “equational style”, which means
that proofs proceed as sequences of equations (in fact, equivalences) using equa-
tional style axioms and special inference rules (without modus ponens). The
motivation there stems from the algorithmic approach. The idea of equational
style of logic, however, is much older and goes to G. W. Leibnitz (cf. [2]). Let
us also recall the the type theory (higher order logic) of L. Henkin in [9] who
developed it using identity as a sole connective.

This brought an idea whether also fuzzy logic could be developed on the
basis of fuzzy equality as the principal connective, where by fuzzy equality we
mean, in fact, a fuzzy equivalence, thus generalizing classical equivalence.

In this case, there are two possibilities for the choice of the necessary al-
gebraic structure of truth values. First, we can take it to be a residuated lattice
(cf., e.g., [7]). The residuum → operation is a natural interpretation of impli-
cation. This is a primary connective while the equivalence is interpreted by a
biresiduation a ↔ b = (a → b) ∧ (b → a) is a derived operation.

It would be, however, unnatural to interpret the basic connective (in our case
the fuzzy equality) by a derived operation. Therefore a special kind of algebra
called EQ-algebra (see [10, 13]) has been introduced, in which fuzzy equality is
the basic operation and implication is derived from it. Let us recall this algebra.

Definition 1. EQ-algebra E is an algebra of type (2, 2, 2, 0), i.e.

E = 〈E,∧,⊗,∼,1〉 ,

where for all a, b, c, d ∈ E:
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(E1) 〈E,∧,1〉 is a commutative idempotent monoid (i.e. ∧-semilattice with
top element 1). We put a ≤ b iff a ∧ b = a, as usual.

(E2) 〈E,⊗,1〉 is a commutative monoid and ⊗ is isotone w.r.t. ≤ .
(E3) a ∼ a = 1 ,
(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) ,
(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) ,
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a ,
(E7) (a ∧ b) ∼ a ≤ (a ∧ b ∧ c) ∼ (a ∧ c) ,
(E8) a⊗ b ≤ a ∼ b .

The operation ∧ is called meet (infimum), ⊗ is called product and ∼ is a fuzzy
equality. Notice, that EQ-algebra has been generalized later (⊗ needs not be
either commutative or associative) and it is called by semicopula-based EQ-
algebra (see [4]) in more detail).

Formal many-valued logic built on EQ-algebras called EQ-logic1 has been
introduced in [14]. The basic connectives of it are equivalence ≡, conjunction
∧∧∧ and fusion &&&. Implication is defined as

A⇒⇒⇒ B := (A∧∧∧B) ≡ A. (1)

A more detailed investigation showed that the structure of truth values for EQ-
logic must be “good” to be strong enough. It means that the property a ∼ 1 = a
must hold in it.

In this paper we continue the work on EQ-logics, both propositional as well
as predicate first order ones. The goal is to show a possible direction in the devel-
opment of mathematical fuzzy logics, in which axioms are formed as identities.
We focus on three types of propositional EQ-logics — basic, involutive and pre-
linear one and prove completeness of each of them. We also provide proofs of
basic properties in equational style.

The basic EQ-logic seems to be the simplest logic definable on the basis of
EQ-algebras. It has the following axioms:

(EQ1) (A ≡ >) ≡ A

(EQ2) A∧∧∧B ≡ B ∧∧∧A

(EQ3) (A∧∧∧B)∧∧∧ C ≡ A∧∧∧ (B ∧∧∧ C)
(EQ4) A∧∧∧A ≡ A

(EQ5) A∧∧∧ > ≡ A

(EQ6) A&&&> ≡ A

(EQ7) >&&&A ≡ A

(EQ8a) ((A∧∧∧B)&&&C)⇒⇒⇒ (B &&&C)

1 The term “fuzzy equational logic” has been introduced in [1] in a much narrower meaning.
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(EQ8b) (C &&&(A∧∧∧B))⇒⇒⇒ (C &&&B)
(EQ8) ((A∧∧∧B) ≡ C)&&&(D ≡ A)⇒⇒⇒ (C ≡ (D ∧∧∧B))
(EQ9) (A ≡ B)&&&(C ≡ D)⇒⇒⇒ (A ≡ C) ≡ (D ≡ B)

(EQ10) (A⇒⇒⇒ (B ∧∧∧ C))⇒⇒⇒ (A⇒⇒⇒ B)
(EQ11) (A⇒⇒⇒ B)⇒⇒⇒ ((A∧∧∧ C)⇒⇒⇒ B)

(> is logical truth). The following are inference rules:

(EA)
A,A ≡ B

B
(L)

B ≡ C

A[p := B] ≡ A[p := C]

By A[p := B] we denote a formula resulting from A by replacing all occur-
rences of a propositional variable p in A by the formula B. The rule (EA) is the
equanimity rule and (L) is the Leibnitz rule (cf. [15]). Semantics of this logic is
formed by good semicopula-based EQ-algebras.

Involutive EQ-logic (IEQ-logic), unlike basic EQ-logic, contains falsity ⊥
and is characterized by the property of double negation. The truth, negation and
disjunction are defined as follows:

> := ⊥ ≡ ⊥,

¬A := A ≡ ⊥,

A∨∨∨B := ¬¬¬(¬¬¬A∧∧∧¬¬¬B).

Axioms of IEQ-logic are (EQ2)–(EQ11) and the following:

(EQ13) (A&&&B)&&&C ≡ A&&&(B &&&C),
(EQ14) (A∧∧∧ ⊥) ≡ ⊥,
(EQ15) ¬¬¬¬¬¬A ≡ A.

Semantics is formed by non-commutative involutive EQ-algebras (IEQ-algebras
are EQ-algebras with ¬¬a = a where ¬a = a ∼ 0).

The third class of the considered EQ-logics is prelinear EQ-logic. Its axioms
are (EQ1)–(EQ14) plus

(EQ16) (A⇒⇒⇒ B)∨∨∨ (D⇒⇒⇒ (D&&&(C ⇒⇒⇒ (B ⇒⇒⇒ A)&&&C))),

where the disjunction ∨∨∨ is defined as

A∨∨∨B := ((A⇒⇒⇒ B)⇒⇒⇒ B) ∧ ((B ⇒⇒⇒ A)⇒⇒⇒ A).

Semantics is formed by good non-commutative prelinear EQ-algebras (prelinear
EQ-algebras are EQ-algebras with prelinear property, see [3]).
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EQ-logics lie even deeper than the MTL-algebra-based (core) fuzzy logics
(cf. [8]). Our results raise some interesting philosophical questions. For exam-
ple, (fuzzy) equality seem to be a more fundamental (and simpler) concept than
(fuzzy) implication. Our results may shed light on the long-existing question
regarding the essence of implication. Another question: why are the mentioned
“goodness axiom” and, at least, “separateness” (a ∼ b = 1 iff a = b) necessary
in logic, even though the general character of equality does not enforce them?
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1 Introduction

The aim of this contribution is twofold: to help in formalization and unifica-
tion of tools and methods used in the theory of fuzzy relation equations, and to
propose a theory which generalizes the theory of linear spaces. As it is known
from the literature, there are at least two types of systems of fuzzy relation
equations which differ in types of composition [2, 1, 6, 7]. However, there are
similar, but in some sense dual results about their solvability, and about struc-
tures of their solution sets. On the other hand, there is a profound theory of
linear spaces where the problem of solvability of systems of linear equations
is entirely solved. Thus, our motivation was to find a proper generalization of
the theory of linear spaces which can be a theoretical platform for analysis of
systems of fuzzy relation equations.

We discovered that the theory of Galois connections can be successfully
used in characterization of solvability and solutions sets of systems of linear-like
equations in semilinear spaces. If solvability is connected with characterization
of vectors of right-hand sides then there exists a Galois connection between a
set of admissible right-hand sides and a solutions set. Moreover, on the basis of
this theory, two types of systems of linear-like equations in semilinear spaces
are dual, so that only one of them should be investigated.

2 Idempotent Semilinear Spaces

We recall that a linear (vector) space is a special case of a module over a ring,
i.e. a linear space is a unitary module over a field [8]. In this contribution, we
will be dealing with a unitary semimodule over a commutative semiring [5, 3]
which will be called a semilinear space. Moreover, our semilinear space will be
an idempotent structure with respect to its main operation.

Definition 1. Let R = (R,+, ·, 0, 1) be a commutative semiring and V =
(V,+, 0̄) a commutative monoid. We say that V is a (left) semilinear space over
R if an external (left) multiplication λ : x̄ 7→ λx̄ where λ ∈ R and x̄ ∈ V is
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defined. Moreover, the following mutual properties are fulfilled for all x̄, ȳ ∈ V
and λ, µ ∈ R:

(SLS1) λ(x̄ + ȳ) = λx̄ + λȳ,
(SLS2) (λ + µ)x̄ = λx̄ + µx̄,
(SLS3) (λ · µ)x̄ = λ(µx̄),
(SLS4) 1x̄ = x̄,
(SLS5) λ0̄ = 0̄.

Since only left semilinear spaces will be considered, we will omit the word
“left” in the name of this structure. Moreover we will simply write a semilin-
ear space instead of a semilinear space over R if R is clear from the context.
Elements of a semilinear space will be distinguished by overline.

Example 1. Let R = (R,+, ·, 0, 1) be a commutative semiring. Denote Rn

(n ≥ 1) the set of n-dimensional vectors whose components are elements of R,
i.e. Rn = {x̄ = (x1, . . . , xn) | x1 ∈ R, . . . , xn ∈ R}. Let 0̄ = (0, . . . , 0) and

x̄ + ȳ = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn).

Then Rn = (Rn,+, 0̄) is a commutative monoid. For any λ ∈ R, let us define
external multiplication λx̄ by

λx̄ = λ(x1, . . . , xn) = (λ · x1, . . . , λ · xn).

Then Rn is a semilinear space over R.

Semilinear spaceRn, n ≥ 1, (see Example 1) will be called vectorial semilinear
space over R.

Definition 2. Semilinear space V overR is called idempotent if both operations
+ in V and R are idempotent.

Let V = (V,+, 0̄) be an idempotent semilinear space. Then

x̄ ≤ ȳ ⇐⇒ x̄ + ȳ = ȳ, (1)

is the natural order on V . Thence, (V,≤) is a bounded ∨-semilattice where
x̄ ∨ ȳ = x̄ + ȳ = sup{x̄, ȳ} and 0̄ is a bottom element.

It may happen (see Example 2 below) that two idempotent semilinear spaces
V1 = (V,+1, 0̄1) and V2 = (V,+2, 0̄2) with the same support V determine dual
(or reverse) natural orders ≤1 and ≤2 on V , i.e.

x̄ ≤1 ȳ ⇐⇒ ȳ ≤2 x̄.
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In this case, ≤2 is used to be denoted as ≥1. With respect to ≤1, (V2,≥1) is a
∧-semilattice with the top element 0̄2 where x̄ ∧ ȳ = x̄ +2 ȳ = inf{x̄, ȳ}. We
will call V1 a ∨-semilinear space, and V2 a ∧-semilinear space. Moreover, if V1

and V2 are idempotent semilinear spaces over the same semiring then we will
call them dual. It is easy to see that for dual semilinear spaces, the Principle of
Duality for ordered sets holds true.

Example 2. Let L = (L,∨,∧, ∗,→, 0, 1) be an integral, residuated, commuta-
tive l-monoid and L∨ = (L,∨, ∗, 0, 1) a commutative ∨-semiring. Ln (n ≥ 1)
is a set of n-dimensional vectors as in Example 1.

1. Algebra Ln
∨ = (Ln,∨, 0̄) is an idempotent commutative monoid where 0̄ =

(0, . . . , 0) ∈ Ln, and for any x̄, ȳ ∈ Ln,

x̄ ∨ ȳ = (x1, . . . , xn) ∨ (y1, . . . , yn) = (x1 ∨ y1, . . . , xn ∨ yn).

The order on Ln
∨ is determined by ∨ so that x̄ ≤ ȳ if and only if x1 ≤

y1, . . . , xn ≤ yn. For any λ ∈ L, let us define external multiplication λx̄ by

λx̄ = λ(x1, . . . , xn) = (λ ∗ x1, . . . , λ ∗ xn).

Then Ln
∨ is an (idempotent) ∨-semilinear space over L∨.

2. Algebra Ln
∧ = (Ln,∧, 1̄) is an idempotent commutative monoid where 1̄ =

(1, . . . , 1) ∈ Ln, and for any x̄, ȳ ∈ Ln,

(x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn).

The natural order on Ln
∧ is determined by ∧, and it is dual to ≤ which was

introduced on Ln in the case 1. above. We will denote the natural order onLn
∧

by≤d so that x̄ ≤d ȳ if and only if x̄ ≥ ȳ or if and only if x1 ≥ y1, . . . , xn ≥
yn. For any λ ∈ L, let us define external multiplication λ�x̄ by

λ�(x1, . . . , xn) = (λ�x1, . . . , λ�xn).

Then Ln
∧ is an (idempotent) ∧-semilinear space over L∨.

∨-semilinear space Ln
∨ and ∧-semilinear space Ln

∧ are dual.

2.1 Galois Connections in Semilinear Spaces

Two dual idempotent semilinear spaces can be connected by Galois connections.

Theorem 1. (i) Let Ln
∨ be a ∨-semilinear space, and Ln

∧ be a ∧-semilinear
space, both over L∨. Then for each λ ∈ L, mappings x̄ 7→ λx̄ and ȳ 7→
λ�ȳ establish a Galois connection between (Ln

∨,≤) and (Ln
∧,≤d).
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(ii) Let Lm
∨ , m ≥ 1, be a ∨-semilinear space, and Ln

∧, n ≥ 1, a ∧-semilinear
space, both over L∨. Then for each n × m matrix A = (aij) with com-
ponents from L, mappings hA : Lm → Ln and gA : Ln → Lm given
by

hA(x̄)i = ai1 ∗ x1 ∨ · · · ∨ aim ∗ xm, i = 1, . . . , n, (2)

and

gA(ȳ)j = (a1j → y1) ∧ · · · ∧ (anj → yn), j = 1, . . . ,m, (3)

establish a Galois connection between (Ln
∨,≤) and (Ln

∧,≤d).

3 Systems of Equations in Semilinear Spaces Lm
∨ and Ln

∧

3.1 System of Equations in Semilinear Space Lm
∨

Let Lm
∨ where m ≥ 1 be a ∨-semilinear space over L∨, and Ln

∧ where n ≥ 1
be a ∧-semilinear space over L∨. Let n × m matrix A = (aij), vector b̄ =
(b1, . . . , bn) ∈ Ln, and vector d̄ = (b1, . . . , dm) ∈ Lm have components from
L. The following systems of equations

a11 ∗ x1 ∨ · · · ∨ a1m ∗ xm = b1,

. . . . . . . . . . . . . . . . . . . . . . . (4)

an1 ∗ x1 ∨ · · · ∨ anm ∗ xm = bn,

and

(a11 → y1) ∧ · · · ∧ (an1 → yn) = d1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

(a1m → y1) ∧ · · · ∧ (anm → yn) = dm,

are considered with respect to unknown vectors x̄ = (x1 . . . , xm) ∈ Lm and
ȳ = (y1 . . . , yn) ∈ Ln. By (2) and (3), systems (4) and (5) can be represented
respectively as follows:

hA(x̄) = b̄.

and

gA(ȳ) = d̄.
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3.2 Solvability in terms of Galois Connection

Below, we will give some results about system (4), its solvability and solutions.
By the Principle of Duality for dual semilinear spaces, similar but dual results
can be proved for system (5).

Let system (4) be specified by n × m matrix A and vector b̄ ∈ Ln. Then
solvability of (4) depends on a relationship between A and b̄. We can prove the
following

Theorem 2. Let A be a given matrix, and hA and gA establish a Galois connec-
tion between semilinear spaces Lm

∨ and Ln
∧. Then system (4) is solvable if and

only if b̄ is a closed element of Ln
∧ with respect to the closure operator gA ◦ hA,

or if and only if
b̄ = hA(gA(b̄)).

Corollary 1. Let the conditions of Theorem 2 be fulfilled. Then b̄ is a closed
element of Ln

∧ with respect to gA ◦ hA if and only if there exists x̄ ∈ Lm such
that hA(x̄) = b̄.

Theorem 3. Let A be a given matrix, gA ◦ hA a closure operator on Ln
∧. The

set of closed elements of Ln
∧ with respect to gA ◦ hA is a semilinear subspace of

Ln
∨.

Theorem 4. Let system (4) be specified by n×m matrix A and vector b̄ ∈ Ln.
Moreover, let b̄ be a closed element of Ln

∧ with respect to gA ◦ hA. Then gA(b̄)
is a solution of system (4).
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The semantical part of the monoidal t-norm based logic (MTL) [3] is repre-
sented by MTL-algebras. MTL-algebras are lattice-based, however,it is known
that each one is a subdirect product of MTL-chains [3]. Therefore, in order to
investigate their monoidal operations, it is usually sufficient to focus on integral
tomonoids. In this paper, we intend to investigate tomonoids, more specifically,
we intend to give a visual interpretation of their associativity.

We recall that amagma[2] is an algebraic structure(M, ∗) on a setM
where∗ : M ×M → M is a binary operation. Atotally ordered magma, or a
togmafor short, is a structure(M, ∗,≤) where(M,≤) is a chain and(M, ∗) is
a magma with the operation∗ isotone with respect to≤. A monoidis a structure
(M, ∗, 1) where(M, ∗) is a magma,∗ is an associative operation, and1 is a
neutral element of∗. A totally ordered monoid, or a tomonoidfor short, is a
structure(M, ∗, 1,≤) where(M, ∗, 1) is a monoid and(M, ∗,≤) is a togma. A
tomonoid isintegral if the neutral element is also the top element. Aquasigroup
is a magma(M, ∗) in which the equationsa ∗ x = b andy ∗ a = b have unique
solutionsx, y for everya andb in M . Finally, a loop is a structure(M, ∗, 1)
where(M, ∗) is a quasigroup and1 is a neutral element of∗.

In our approach, we are inspired by web geometry [1]. This branch ofdif-
ferential geometry offers several concepts and tools which are knownto charac-
terize algebraic properties ofloopsin a surprisingly transparent geometric way.
Web geometry introduces the notion of a3-web(Figure 1) which is (in our sim-
pler case) a system of three families of foliations of the plane such that eachpair
of them defines local coordinates. Important 3-webs are theregular ones; they
are homeomorphic images of webs where all foliations are systems of parallel

⋆ Milan Petŕık was supported by the Grant Agency of the Czech Republic under Project
P202/10/1826, Peter Sarkoci was supported by the grant APVV 0012-07 and by the grant
VEGA 1/0080/10.
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a) b)

Fig. 1. Illustration of a 3-web in a two-dimesional plane: a) a 3-web which satisfiesthe Reide-
meister closure condition and b) a 3-web which violates it.

lines. Web geometry defines variousclosure conditionswhich characterize reg-
ularity of 3-webs. Namely, it is theReidemeister closure condition[6] which is
illustrated in Figure 1-a. The algebraic structures, which are closely related to
3-webs, are quasigroups and loops. Taking a quasigroup(M, ∗) we can easily
define a 3-web onM ×M by three families of curves given by the equations
x = a, y = b, andx∗y = c, respectively, for fixeda, b, c ∈ M . In the other way
round, having a 3-web defined on a planeΩ, defining a pointp ∈ Ω, and denot-
ing two families of foliations as coordinates and one as “level sets”, an operation
can be defined on the set of “level sets”. It can be shown that this operation is
a loop; it is called alocal loop. Regularity of 3-webs are closely related to the
algebraic properties of the corresponding local loops. Namely, associative loops
(i.e., groups) are characterized by the Reidemeister closure condition (and their
3-webs are known to be regular).

Loops are, however, very specific structures and the tools describedabove
cannot be used directly in the case of tomonoids. Nevertheless, still there are
some similarities (the neutral element, for example) and this approach can be
adopted also for tomonoids as we will show in the sequel.

First, we define the tools which we will be using in order to investigate the
geometry of tomonoids. Let(M, ∗,≤) be a togma. Arectangle(Figure 2-a) is
a set of four pointsP = {a, b} × {c, d} ⊂ M ×M . Note that the order of the
coordinates does not play a role here. Let(u, v) ∈ M ×M , and let

P = {a, b} × {c, d} ⊂ M ×M ,

R = {e, f} × {g, h} ⊂ M ×M
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Fig. 2. Illustration of a togma(M, ∗,≤) expressed by the system of its level sets. a) a rectangle
P{a, b} × {c, d}, b) a pair of equivalent restanglesP ≅ R, c) a pair of(u, v)-local rectangles
P, R; they are strongly aligned according to(u, v), i.e.,P ≃uv R, d) a pair of aligned rectangles
P ≈ R.

be two rectangles. A pair of rectanglesP, R is said to be(u, v)-local (Figure 2-
c) if d = v andf = u. (Easily, for a given pair of rectangles, there are up to four
distinct points according to which they can be considered as local.) We say that
the rectanglesP, R areequivalent(Figure 2-b) (and we denote it byP ≅ R) if
the functional values at the corresponding pairs of vertices are equal,i.e., if:

a ∗ c = e ∗ g ,

a ∗ d = e ∗ h ,

b ∗ c = f ∗ g ,

and b ∗ d = f ∗ h .

Beside≅, we define also three weaker relations on the set of rectangles. We
say that the rectanglesP, R arestrongly aligned according to(u, v) ∈ M ×M

(Figure 2-c) (denoted byP ≃uv R) if they are(u, v)-local and if

a ∗ v = e ∗ h ,

b ∗ c = u ∗ g ,

and b ∗ v = u ∗ h .

By other words, it is required that the functional values at the corresponding
pairs of vertices are equal except of the pair whereu or v does not appear.
Suppose thata ∗ c ≤ a ∗ d ≤ b ∗ c ≤ b ∗ d. We say that the rectanglesP, R are
aligned(Figure 2-d) (denoted byP ≈ R) if

a ∗ d = e ∗ h ,

b ∗ c = f ∗ g ,

and b ∗ d = f ∗ h ,
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i.e., if the functional values at the corresponding pairs of vertices are equal ex-
cept of the pair with the lowest functional value. Finally, we say that the rect-
anglesP, R areweakly aligned(denoted byP ∼ R) if the relationP ≅ R is
violated for at most one pair of vertices (it does not matter which one). Obvi-
ously, all the introduced relations are equivalences. Moreover,≅⊆≃uv⊆≈⊆∼
on the set of(u, v)-local rectangles.

The following result characterizes the associativity of a general tomonoid:

Proposition 1. Let (M, ∗, 1,≤) be a togma with a neutral element1. Then the
operation∗ is associative (andM is a tomonoid) if and only if

P ≃11 R ⇒ P ≅ R

for all (1, 1)-local rectanglesP, R ⊂ M ×M .

The togmas and tomonoids, where “continuity” plays a role, allow to for-
mulate stronger results:

Proposition 2. Let (M, ∗,≤) be a togma with∗ associative (i.e., a totally or-
dered semigroup). Let, for some fixedu, v ∈ M , the mappings

M → M : x 7→ x ∗ v ,

M → M : y 7→ u ∗ y

be bijective. Then, necessarily,

P ≃uv R⇒ P ≅ R

for all (u, v)-local rectanglesP, R ⊂ M ×M .

Corollary 1. Let (M, ∗, 1,≤) be a togma with a neutral element1. Let, more-
over, regardless ofu, v ∈ M , the mappings

M → M : x 7→ x ∗ v ,

M → M : y 7→ u ∗ y ,

are bijective. (Note that, in such a case,M is a totally ordered loop.) Then the
operation∗ is associative (andM is a totally ordered group) if and only if

P ∼ R⇒ P ≅ R

for all the rectanglesP, R ⊂ M ×M .

This result corresponds directly with the Reidemeister closure condition and
the result given by web geometry.
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Proposition 3. Let (M, ∗, 1,≤) be an integral tomonoid. Let the functions

M →↓{v} : x 7→ x ∗ v ,

M →↓{u} : y 7→ u ∗ y

be surjections for some fixedu, v ∈ M . Then, necessarily,

P ≃uv R⇒ P ≅ R

for all (u, v)-local rectanglesP, R ⊂↓{u}× ↓{v}.

The presented proposition requires that certain sections of the tomonoid are
surjections. Note that this requirement is a counterpart of the continuity (accord-
ing to the order topology) of the sections. The following result reveals the ge-
ometric properties of “continuous” integral tomonoids which are the monoidal
operations of BL-algebras [4, 5].

Corollary 2. Let (M, ∗, 1,≤) be a togma with a neutral element1 and let1 be
also the top element. Let, moreover,∗ be “continuous”, i.e., let the functions

M →↓{v} : x 7→ x ∗ v ,

M →↓{u} : y 7→ u ∗ y ,

be surjections for all fixedu, v ∈ M . Then the operation∗ is associative (and
M is an integral tomonoid) if and only if

P ≈ R⇒ P ≅ R

for all the rectanglesP, R ⊂ M ×M .
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Relatively uniform convergence of weighted sums of random elements taking
values in a σ-complete Banach lattice with the σ-property has been studied in
[2]. It has been shown that the usual assumptions of independent and identically
distributed random elements can be replaced by weaker conditions to obtain a
fruitful theory. The results obtained are new even for real valued random ele-
ments. We will provide a broader discussion on convergence of lattice valued
random elements.

We will provide the estimation methods based on method of moments and
lattice diffusion related annealing algorithms. The lattice moments of random
vectors has been introduced by [3]. The latter is based on a well known proper-
ties of atomic diffusion (see [4]) and could a competing estimation technique on
a lattice. We will relate such a method to the known least squares lattice method.

The applications of the given structures in reliability, artificial intelligence
and modeling of systems with observations suffering from spatial deformations
and stochastic loads will be also presented.
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1 Introduction

The paper sets forth in detail categorically-algebraic (catalg) foundations for the
operations of taking the image and preimage of (fuzzy) sets, coined as forward
and backward powerset operators. Motivated by an open question of S. E. Rod-
abaugh, we construct a monad on the category of sets, the algebras of which
generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next
step, we provide a direct lifting of the backward powerset operator using the
notion of categorical biproduct. The obtained framework is readily extended to
the variable-basis case, justifying the powerset theories currently popular in the
fuzzy community. At the end of the paper, our general variety-based setting pos-
tulates the requirements, under which a convenient variety-based powerset the-
ory can be developed, suitable for employment in all areas of fuzzy mathematics
dealing with fuzzy powersets, including fuzzy algebra, logic and topology.

2 Quantale modules

This section constructs a monad on the category Set of sets and maps, the alge-
bras of which generate the fixed-basis forward powerset operator of L. A. Zadeh [24],
answering the question of S. E. Rodabaugh [10, Open Question 6.17] on its ex-
istence.

Definition 1. Given a quantale Q, a (left) Q-module is a
∨

-semilattice A with
an action Q×A

∗−→ A such that

1. q ∗ (
∨
S) =

∨
s∈S(q ∗ s) for every q ∈ Q, S ⊆ A;

2. (
∨
S) ∗ a =

∨
s∈S(s ∗ a) for every a ∈ A, S ⊆ Q;

3. q1 ∗ (q2 ∗ a) = (q1 ⊗ q2) ∗ a for every q1, q2 ∈ Q, a ∈ A.

A Q-module homomorphism A
ϕ−→ B is a

∨
-preserving map such that ϕ(q ∗

a) = q ∗ ϕ(a) for every a ∈ A, q ∈ Q. (Q-Mod, | − |) is the construct of
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Q-modules and their homomorphisms. A Q-module A over a unital quantale
(Q, e) is called unital provided that e ∗ a = a for every a ∈ A. Given a unital
quantaleQ, UQ-Mod is the full subcategory ofQ-Mod of all unitalQ-modules.

Motivated by the category (U)R-Mod of (unital) left modules over a ring R
with identity [2], the topic provides a rich source for investigation [8, 9, 14, 20,
21].

Theorem 1. For every quantale Q, there exists a unital quantale Q[e] such that
the categories Q-Mod and UQ[e]-Mod are isomorphic.

Meta-mathematically restated, the category Q-Mod as an entity is redun-
dant in mathematics and therefore we restrict our attention to the case of unital
modules only.

Theorem 2. The underlying functor of UQ-Mod has a left adjoint.

Proof. Given a set X , the set QX of all maps X α−→ Q with the point-wise
structure is a unital Q-module. There exists a map X

ηX−−→ |QX |, (ηX(x))(y) =
e, if x = y; otherwise, (ηX(x))(y) = ⊥, which is the universal arrow since

α =
∨
x∈X(α(x) ∗ ηX(x)) for every α ∈ QX and thus, every map X

f−→ |A|

has a lift QX
f−→ A, f(α) =

∨
x∈X(α(x) ∗ f(x)). ut

Corollary 1. There exists an adjoint situation (η, ε) : F � | − | : UQ-Mod −→
Set.

The functor F of Corollary 1 lifts the fixed-basis forward powerset operator
of L. A. Zadeh, justifying its correctness without involving the technique of [10,
12, 13]. It provides the traditional forward powerset operator in case of Q =
{⊥,>}.

Definition 2. The adjoint situation of Corollary 1 induces a monad T = (T, η, µ)
on Set defined by T = | − |F , µ = | − |εF and called the Q-powerset monad,
providing the standard powerset monad for Q = {⊥,>}.

Theorem 3. The comparison functor UQ-Mod K−→ SetT is a concrete isomor-
phism and therefore UQ-Mod is a monadic construct.

Theorem 3 gives rise to a meta-mathematical result answering the above-
mentioned open question of S. E. Rodabaugh.

Meta-Theorem 1 Given a unital quantale Q, there exists a monad on Set, the
algebras of which generate the fixed-basis forward powerset operator in the
sense of L. A. Zadeh.
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The backward powerset operator can be lifted as well, the approach based
on the notion of categorical biproduct, the motivating push given by UQ-Mod.

Lemma 1. The category UQ-Mod has biproducts.

Proof. Let (Ai)i∈I be a set-indexed family of unital Q-modules, with the prod-
uct of their underlying sets P = (

∏
i∈I |Ai|, (πi)i∈I). The point-wise structure

on
∏
i∈I |Ai| gives a UQ-Mod-product. Given j ∈ I , define Aj

µj−→
∏
i∈I Ai,

µj(a) = (ai)i∈I with ai = a, if i = j; otherwise, ai = ⊥, and get a UQ-Mod-
sink C = ((µi)i∈I ,

∏
i∈I Ai). C is a coproduct of (Ai)i∈I since for every UQ-Mod-

sink T = (Ai
ϕi−→ B)i∈I , the map

∏
i∈I Ai

ϕ−→ B, ϕ((ai)i∈I) =
∨
i∈I ϕi(ai) is

the unique UQ-Mod-morphism such that ϕ ◦ C = T . ut

3 Quantaloids

The hom-sets of the category R-Mod can be supplied with the structure of an
abelian group, morphism composition acting distributively from the left and
from the right. In addition, this category has finite biproducts. It can be shown
that these two seemingly unrelated properties are linked. By Lemma 1, the cate-
gory UQ-Mod has set-indexed biproducts. This section shows that this gives an
extra property to the hom-set structure in question. We begin by introducing en-
riched categories, suitable for the new setting. The concept has taken its proper
place in mathematics quite a long time ago [14].

Definition 3. A quantaloid is a category Q with hom-sets being
∨

-semilattices,
composition of morphisms preserving

∨
in both variables.

Quantaloids are precisely the categories enriched in the category CSLat(
∨

)
[7].

Lemma 2. Every quantaloid is a pointed category, where the zero morphisms
are the bottom elements of the respective hom-sets.

The next result provides a generalization of [6, Proposition 40.12], replacing
finite biproducts (

⊕
) with the set-indexed ones.

Theorem 4. Every pointed category C with biproducts has a unique quantaloid
structure, given for every subset S ⊆ C(A,B) by each of the following formulas

A
W
S−−→ B = A

∆−→
⊕

s∈S A
[s]s∈S−−−→ B = A

〈s〉s∈S−−−−→
⊕

s∈S B
∇−→ B = A

∆−→⊕
s∈S A

L
s∈S s−−−−→

⊕
s∈S B

∇−→ B.

145



Corollary 2. If C is a pointed category with products or coproducts, then C
has biproducts iff there exists a unique quantaloid structure on C.

Thus, every pointed category with biproducts is a quantaloid, encoding the
non-categorical

∨
-semilattice structure on hom-sets with the categorical notion

of biproduct.

4 Functors induced by biproducts

This section shows two functors produced by biproducts, lifting the powerset
operators. To be in line with the results of [10–13], the functors have a specific
pattern.

Lemma 3. A subcategory C of a pointed category D with biproducts gives the
functors:

1. Set×C
(−)→−−−→ D, ((X,A)

(f,ϕ)−−−→ (Y,B))→ =
⊕

x∈X A
(f,ϕ)→−−−−→

⊕
y∈Y B,

(f, ϕ)→ ◦ µXx = µYf(x) ◦ ϕ for every x ∈ X . If y ∈ Y , πYy ◦ (f, ϕ)→ =
ϕ ◦ (

∨
{πXx | f(x) = y}).

2. Set × Cop (−)←−−−→ Dop, ((X,A)
(f,ϕ)−−−→ (Y,B))← =

⊕
y∈Y B

(f,ϕ)←−−−−→⊕
x∈X A with πXx ◦ (f, ϕ)← = ϕop ◦ πXf(x) for every x ∈ X . If y ∈ Y ,

(f, ϕ)← ◦ µYy =(
∨
{µXx | f(x)=y}) ◦ ϕop.

Moreover, for every pair A
ϕ−→ B

ψop

−−→ A of D-morphisms: ϕ ◦ ψop 6 1B and
1A 6 ψop ◦ ϕ iff (f, ϕ)→ ◦ (f, ψ)← 6 1L

y∈Y B and 1L
x∈X A 6 (f, ψ)← ◦

(f, ϕ)→ for every map X
f−→ Y . If (X,A)

(f,ϕ)−−−→ (Y,B) is a morphism in

Set×Cop (resp. Set×C) with X
f−→ Y bijective, then (f, ϕ)← = (f−1, ϕop)→

(resp. (f, ϕ)→ = (f−1, ϕop)←).

Corollary 3. An object of a pointed category D with biproducts gives the func-
tors:

1. Set
(−)→A−−−→ D, (X

f−→ Y )→A =
⊕

x∈X A
f→A−−→

⊕
y∈Y A, f→A ◦ µXx = µYf(x)

for every x ∈ X . If y ∈ Y , πYy ◦ f→A =
∨
{πXx | f(x) = y}.

2. Set
(−)←A−−−→ Dop, (X

f−→ Y )←A =
⊕

y∈Y A
f←A−−→

⊕
x∈X A, πXx ◦ f←A = πYf(x)

for every x ∈ X . If y ∈ Y , f←A ◦ µYy =
∨
{µXx | f(x) = y}.

Moreover, f→A ◦ f←A 6 1L
y∈Y A and 1L

x∈X A 6 f←A ◦ f→A for every map

X
f−→ Y . Given a bijective map X

f−→ Y , (f−1)←A = f→A and (f−1)→A = f←A .

The category UQ-Mod provides the crisp powerset operators as well as the
fuzzy approaches of L. A. Zadeh [24] and S. E. Rodabaugh [12].
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5 Copowers versus free objects in constructs

The last section, clarifying completely the nature of point-set lattice-theoretic
powerset theories, has left one important point untouched. We already know
two ways of obtaining the forward powerset operator: either through a monad
on Set (Meta-Theorem 1), or employing the technique of biproducts (Lemma 3).
Corollary 2 disguised the partial order on hom-sets of a given category through
biproducts. This section does the job for the Q-powerset monad. The result is
based on [1, Exercise 10R] running as follows.

Lemma 4. Let (C, | − |) be a construct with | − | representable by an object
A. For every C-object B and every set X , B is a free over X iff B is an Xth
copower of A.

Corollary 4. For a pointed construct (C, |− |) with biproducts, equivalent are:

1. C has an object A free over a singleton;
2. the underlying functor | − | is representable by A;
3. (−)→A is a left adjoint to | − |.

If C is an equationally presentable category of structured sets and structure-
preserving maps, then each of the above items implies equivalence of C to a
monadic construct.

The monad in question is generated by the fixed-basis forward powerset op-
erator of Corollary 3. How does it relate to the respective operator of L. A. Zadeh?

Lemma 5. Let (C, |−|) be a construct of structured sets and structure-preserving
maps which is a quantaloid. If C has an object A free over a singleton, then ev-
ery C-object B can be equipped with a

∨
-semilattice structure preserved by

C-morphisms. Moreover, given ϕ,ψ ∈ C(B,C), ϕ 6 ψ iff ϕ(b) 6 ψ(b) for
every b ∈ B.

Corollary 5. Let (C, |−|) be a pointed construct of structured sets and structure-
preserving maps, which has biproducts and an object A free over a singleton.

Given a map X
f−→ Y , (f→A (α))(y) =

∨
{α(x) | f(x) = y} for every α ∈ AX ,

y ∈ Y .

The results provide an important consequence which improves Meta-Theorem 1.

Meta-Theorem 2 Given an equationally presentable pointed construct of struc-
tured sets and structure-preserving maps, which has biproducts and an objectA
free over a singleton, there exists a monad on Set, the algebras of which gener-
ate the fixed-basis forward powerset operator (−)→A in the sense of L. A. Zadeh.
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6 Variety-based powerset operators and their induced theories

Following our trend on developing a purely catalg outlook on fuzzy mathemat-
ics [15, 16, 18, 19, 22], this section presents a new setting for powerset theories.
The cornerstone of the approach is the notion of algebra. The structure is to
be thought of as a set with a family of operations defined on it, satisfying cer-
tain identities, e.g., semigroup, monoid, group and also complete lattice, frame,
quantale.

Definition 4. Let Ω = (nλ)λ∈Λ be a class of cardinal numbers. An Ω-algebra

is a pair (A, (ωAλ )λ∈Λ) consisting of a set A and a family of maps Anλ
ωA

λ−−→ A

called nλ-ary operations onA. AnΩ-homomorphism (A, (ωAλ )λ∈Λ)
f−→ (B, (ωBλ )λ∈Λ)

is a map A
f−→ B such that f ◦ ωAλ = ωBλ ◦ fnλ . (Alg(Ω), | − |) is the

construct of Ω-algebras and Ω-homomorphisms. For M (resp. E) being the
class of Ω-homomorphisms with injective (resp. surjective) underlying maps, a
variety of Ω-algebras is a full subcategory of Alg(Ω) closed under products,
M-subobjects and E-quotients. The objects (resp. morphisms) of a variety are
called algebras (resp. homomorphisms). Given a variety A, its dual category is
denoted by LoA. Given an algebra A, SA is the subcategory of A with the only
morphism 1A. Given a subclass Ω′ ⊆ Ω, an Ω′-reduct of A is a pair (|| − ||,B),

where B is a variety of Ω′-algebras and A
||−||−−→ B is a concrete functor.

We introduce requirements on a variety A allowing to develop a fruitful
theory.

Definition 5. A variety A is called convenient provided that there exists an Ω′-
reduct B of A satisfying the following properties:

1. B is equationally presentable;
2. B is pointed and has biproducts;
3. B has an algebra free over a singleton.

Unlike the authors of [4, 10, 12, 13], we fix two ground categories instead of
one.

Definition 6. Given a convenient variety A, the ground categories for the variety-
based powerset theories are fixed to Set× A and Set× LoA.

The turning point in our theory is the definition of the powerset operators.

Definition 7. Given a subcategory C of a convenient variety A,
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1. the forward variety-based powerset operator w.r.t. C is the functor Set ×
C

(−)→C−−−→ B, ((X1, C1)
(f,ϕ)−−−→ (X2, C2))→C = ((X1, ||A1||)

(f,||ϕ||)−−−−→ (X2, ||A2||))→B
where (−)→B is the functor of Lemma 3(1);

2. the backward variety-based powerset operator w.r.t. C is the functor Set ×
Cop (−)←C−−−→ LoB, ((X1, C1)

(f,ϕ)−−−→ (X2, C2))←C = ((X1, ||A1||)
(f,||ϕ||)−−−−→

(X2, ||A2||))←B , where (−)←B is the functor of Lemma 3(2).

Some properties of the new functors make their use considerably easier.

Lemma 6. Given a subcategory C of a convenient variety A and a Set × Cop-

morphism (X1, C1)
(f,ϕ)−−−→ (X2, C2), ((X1, C1)

(f,ϕ)−−−→ (X2, C2))←C = CX2
2

(f,ϕ)←C−−−−→
CX1

1 with (f, ϕ)←C (β) = ϕop ◦ β ◦ f . (f, ϕ)←C is an A-homomorphism and thus,
the codomain of (−)←C is LoA.

Definition 8. Given a subcategory C of a convenient variety A, an operation
ωλ with nλ ∈ Ω \Ω′ is called

∨
C-compatible provided that every C-object C

satisfies the identity
∨
j∈J ω

A
λ (〈cij 〉nλ

)=ωAλ (〈
∨
j∈J cij 〉nλ

) for every {cij | i ∈
nλ, j ∈ J} ⊆ C. AW

C
is the subcategory of A with objects those of A, and

morphisms those
∨

-preserving maps |A1|
f−→ |A2| which are B-homomorp-

hisms and preserve
∨

C-compatible operations.

The condition of
∨

-compatibility is a rather restrictive one, e.g., the meet-
operation ∧ in Frm (frames) is not

∨
Frm-compatible.

Lemma 7. Given a subcategory C of a convenient variety A and a Set × C-

morphism (X1, C1)
(f,ϕ)−−−→ (X2, C2), ((X1, C1)

(f,ϕ)−−−→ (X2, C2))→C = CX1
1

(f,ϕ)→C−−−−→
CX2

2 with the property ((f, ϕ)→C (α))(x2) =
∨
{ϕ◦α(x1) | f(x1) = x2}. (f, ϕ)→C

is an AW
C
-morphism, and every operation ωλ, nλ ∈ Ω \Ω′ preserved by all

maps of the form (f, ϕ)→C is
∨

C-compatible, that fixes the codomain of (−)→C at
AW

C
.

All preliminaries done, we introduce variety-based powerset theories, taking
the approach of [13, Definition 3.5] as a good motivating example.

Definition 9. Given a subcategory C of a convenient variety A, a C-powerset
theory is the tuple P = (A,C, (−)→C , (−)←C ). The triple P = (A,C, (−)→C )
(resp. P = (A,C, (−)←C )) is called a forward (resp. backward) C-powerset
theory. The underlying theory of a C-powerset theory P is the tuple |P| =
(A,C, | − | ◦ (−)→C , | − | ◦ (−)←C ).

Example 1.
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1. P = (CSLat(
∨

),S2, (−)→S2
, (−)←S2

) is the standard crisp powerset theory.
2. ℘ = (CSLat(

∧
),S2, (−)→S2

, (−)←S2
) is a non-standard crisp powerset theory.

3. P = (Frm,SI , (−)→SI
, (−)←SI

) is the fixed-basis fuzzy approach of L. A. Zadeh.
4. P = (Quant,SL, (−)→SL

, (−)←SL
) is the fixed-basis L-fuzzy approach of

J. A. Goguen. The machinery can be generalized to an arbitrary convenient
variety A.

5. P = (SQuant,C, (−)→C , (−)←C ) is the variable-basis approach of S. E. Rod-
abaugh.

6. P = (FuzLat,FuzLat, (−)←FuzLat) is the variable-basis approach of P. Ek-
lund.

7. P = (A,C, (−)←C ) provides our former variety-based approach.

The backward part of the underlying theories produced by P and ℘ is the
same, whereas the forward one is essentially different justifying the next defini-
tion.

Definition 10. The dual Pop of a given powerset theory P is the theory obtained
from the dual partial order on hom-sets of the reduct B of the convenient variety
A.

Example 2. The powerset theories P and ℘ are dual.

Two important examples of the application of the new concept are provided
by the theories of variety-based topological spaces and systems [3, 5, 17, 23].
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Interval-valued logics
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In [5], the authors introduced Interval-Valued Monoidal Logic1 (IVML). Its lan-
guage is the language of Höhle’s Monoidal Logic (ML,[3]) enriched with two
unary connectives � and ♦, and a constant u. Its axioms are those of ML plus
15 new ones describing the behaviour of �, ♦ and u. The deduction rules are
modus ponens (MP, from φ and φ→ ψ infer ψ), generalization (G, from φ infer
�φ) and monotonicity of ♦ (M♦, from φ→ ψ infer ♦φ→ ♦ψ).
In some way, ML can be seen as a special case of IVML. Indeed, it can be
proven [7] that for all sets T ∪ {φ} of ML-formulae, T `ML φ iff {χ′|χ ∈
T} `IV ML φ

′ (where ψ′ is the IVML-formula obtained by substituting �p in ψ
for every proposition variable p in ψ).
IVML is sound and complete with respect to the variety of triangle algebras.
These are algebraic structures that describe interval-valued residuated lattices
(IVRLs): (closed) interval-valued bounded lattices endowed with a product and
implication that satisfy the residuation principle, such that the sublattice of ex-
act intervals (i.e., intervals consisting of one element) is closed under product
and implication. Table 1 shows to which mappings and interval in an IVRL the
connectives and constant in IVML correspond. Also the notations in triangle al-
gebras are included, in the second column. The soundness and completeness of

Table 1. Semantic meaning of �, ♦ and u.

IVML triangle algebra IVRL
� ν pv : [x, y] 7→ [x, x]
♦ µ ph : [x, y] 7→ [y, y]
u u [0, 1]

1 IVML was called Triangle Logic in [5], but was recently renamed [7].
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IVML w.r.t. triangle algebras and the connection between triangle algebras and
IVRLs explains why this logic was called interval-valued.
IVML (and its extensions) enjoys the following deduction theorem:
T ∪ {φ} `IV ML ψ iff there is an integer n such that T `IV ML (�φ)n → ψ.

Numerous extensions of IVML can be defined. One of them is Interval-
Valued Monoidal T-norm based Logic (IVMTL), which compares to IVML in
more or less the same way as MTL [2] compares to ML. IVMTL (introduced
in [6] under the name Pseudo-linear Triangle Logic) is IVML extended with
the axiom scheme (�φ → �ψ) ∨ (�ψ → �φ). The semantics of this logic
are pseudo-prelinear triangle algebras, i.e., triangle algebras in which the sub-
algebra of exact elements is an MTL-algebra. IVMTL and its extensions are
even pseudo-chain complete [6], which means that we can restrict its semantics
to pseudo-linear triangle algebras, i.e., triangle algebras in which the subalgebra
of exact elements is an MTL-chain. Recently it was proven [7] that IVMTL (and
all other interval-valued counterparts of fuzzy logics that satisfy the real-chain
embedding property [1, 4]) is even standard complete: we can further restrict the
semantics to triangle algebras on LI , which is a lattice on the set of subintervals
of the unit interval.

Remark that it is of course also possible to extend IVML with the axiom
scheme (φ → ψ) ∨ (ψ → φ). The resulting logic is sound and complete with
respect to prelinear triangle algebras. It was proven in [6] that prelinear triangle
algebras are exactly triangle algebras in which the subalgebra of exact elements
is a Boolean algebra. That is why we called this logic Interval-Valued Classical
Propositional Calculus (IVCPC). Using the pseudo-chain completeness in this
case shows that IVCPC is actually three-valued (because a (non-trivial) linear
Boolean algebra has two elements).
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(U. Höhle and E.P. Klement, eds.), Kluwer Academic Publishers, (1995), 53–106

4. S. Jenei, F. Montagna, A Proof of Standard Completeness for Esteva and Godo’s Logic MTL,
Studia Logica 70, (2002), 1–10

5. B. Van Gasse, C. Cornelis, G. Deschrijver, E.E. Kerre, Triangle algebras: A formal logic
approach to interval-valued residuated lattices, Fuzzy Sets and Systems 159, (2008), 1042–
1060

6. B. Van Gasse, C. Cornelis, G. Deschrijver, E.E. Kerre, The pseudo-linear semantics of
interval-valued fuzzy logics, Information Sciences 179, (2009), 717–728

7. B. Van Gasse, C. Cornelis, G. Deschrijver, E.E. Kerre, The standard completeness of
Interval-Valued Monoidal T-norm based Logic, submitted,

154
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Abstract. We introduce a logic for reasoning under uncertainty about properties
whose presence may vary between “false” and “true” continuously. Uncertainty is
understood in the sense of Dubois and Prade’s Possibilistic Logic. Graded prop-
erties are modelled in a Boolean algebra of regular open sets of a topological
space, in a way that properties with distinct but close degrees are not necessarily
interpreted by disjoint sets.

1 Introduction

In this note we present a logic for reasoning under uncertainty. In general, uncer-
tainty can be understood in many different ways [3]. Here, we treat uncertainty
according to the well-known approach of Dubois and Prade: up to inessential
notational differences, our framework is propositional Possibilistic Logic [1].
This choice provides us a calculus which is reasonably strong and in suitable
contexts well applicable.

We deal with graded implications, writtenα1, . . . , αk
d⇒ β. Here,α1, . . . , αk,

β denote crisp properties and are consequently modelled by elements of a Boolean
algebra. The value d ∈ [0, 1] expresses uncertainty in a quantitative way, the
background being a possibly insufficient amount of information. In our set-
ting, d is the degree to which the agent is able to tell from his knowledge that
α1 ∧ . . .∧αk ∧¬β can be excluded: d = 1 means sure exclusion, in which case
the implication clearly holds; d = 0 means not to assert anything; and any value
in between expresses a tendency.

Our concern is to formalise reasoning about properties which are not in all
situations clearly true or false. Such properties, commonly called “vague”, are
naturally modelled by fuzzy sets. We note that we do not intend to formalise
reasoning about vague properties themselves. We will rather deal with the case
that vague properties appear together with a degree of presence. Work closely
related to ours can be found in [2] and there is further ongoing work in this
direction.

We will shortly outline our approach, whose detailed description is in progress
[5]. We start with a finite collection of symbols ϕ, . . ., interpreted by fuzzy sets.
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They can be combined by the connectives ∧,∨,∼ interpreted by the pointwise
minimum, maximum, and standard negation, respectively. Next, such expres-
sions are endowed with an explicit degree of presence. For instance, the pair
(ϕ, t) means that the property modelled by ϕ holds to the degree t ∈ [0, 1].
(ϕ, t) is crisp, and as such it is formally treated in the framework of Possibilistic
Logic.

What makes our calculus specific is the interpretation of a pair (ϕ, t). Let ϕ
be interpreted by the fuzzy set u : S → [0, 1]. We might be tempted to associate
with (ϕ, t) the set [u]t = {s ∈ S : u(s) = t}. To axiomatise the resulting
logic is however difficult; in addition it is conceptually problematic to assume
an infinite, even uncountable, set of mutually exclusive situations.

We have to find an alternative solution. Intuitively speaking, we are guided
by the idea to model (ϕ, t), where t runs over the real unit interval, in a way
that the “smooth” transition between “ϕ” and “non-ϕ” is somehow reflected in
the model, and still there should no infinite set of mutually exclusive properties
involved. Our proposal is simple; we interpret (ϕ, s) and (ϕ, t) as overlapping if
s and t differs by less than some fixed value ζ. Our next, still provisorily solution
is associate with (ϕ, t) the larger set [u](t−ζ,t+ζ) = {s ∈ S : t − ζ < u(s) <
t + ζ}. To include the statement that ϕ is clearly false or true, we moreover
extend the set of syntactically usable truth values from [0, 1] to [−ζ, 1 + ζ].

We are already close to our actual definition, but modifications are still nec-
essary. Boolean operations between sets as shown would lead again to sets of the
form [u]t. However, once degrees of presence are modelled in a “tolerant” way
it would not make much sense still to have “point-like” interpretations available.

We opt for certain topological restrictions. Consider the case of a fuzzy set
like the one which models “having fever”:

0

0.2

0.4

0.6

0.8

1

36.5 37 37.5 38 38.5 39 39.5 40 40.5 41 41.5 42

u

W.r.t. the standard topologies, u is continuous. Furthermore for 0 < t < 1
the set [u]t has an empty interior, whereas [u](t−ζ,t+ζ) is open. Indeed, [u](t−ζ,t+ζ)

is even regular open, that is, the open interior of a closed set. Finally, the associ-
ated crisp properties are modelled by the closed sets [u]0, and [u]1, whose open
interiors are again regular open.

In what follows, we will not work with a Boolean algebra of subsets of S.
We rather assume that the universe S is a topological space. Let R(S) be the
set of all regular open sets of S; then (R(S);∩,∨,⊥ , ∅, S) is a Boolean algebra,
where, for A,B ∈ R(S), A ∨B = (A ∪B)−◦ and A⊥ = S\A−.
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The actual interpretation of (ϕ, t) will be an element of R(S), namely

[u]ζt = [u](t−ζ,t+ζ)′
−◦,

where R′ = {(r ∨ 0) ∧ 1 : r ∈ R} for R ⊆ [−ζ, 1 + ζ].

2 The logic IGζ

The logic IGζ is an extension of Possibilistic Logic to include graded properties.
Let us fix a ζ ∈ (0, 1

2).

Definition 1. Let M be a collection of continuous fuzzy sets over a T1-space S,
containing the constant 0 and constant 1 fuzzy sets and closed under pointwise
minimum, maximum, and standard negation. Assume furthermore that for u ∈
M and t ∈ (0, 1), the interior of [u]t is empty.

Let RM be the Boolean subalgebra of R(S) generated by [u]ζt , where u ∈
M and t ∈ [−ζ, 1 + ζ]. Let % : RM → [0, 1] be such that (i) %(1) = 0, (ii)
%(a) = 1 iff a = 0, and (iii) %(a ∨ b) = %(a) ∧ %(b).

The pair (M,ρ) is called a regular Kleene uncertainty algebra; % is called
a rejection function on RM .

The language of IGζ follows the two-layer concept. Let N ≥ 1. The grad-
able propositions are built up from symbolsϕ1, . . . , ϕN , 0̄, 1̄ by means of∧,∨,∼.
Graded propositions are of the form (ϕ, t), where ϕ is a gradable proposi-
tion and t ∈ [−ζ, 1 + ζ]. Finally, the propositions are Boolean combinations

of graded propositions, and implications are of the form α1, . . . , αk
d⇒ β for

propositions α1, . . . , αk, β and a value d ∈ [0, 1].
Let (M,%) be a regular Kleene uncertainty algebra. An evaluation v for IGζ

maps gradable propositions to M in the expected way; a graded proposition
(ϕ, t) is mapped to [v(ϕ)]ζt ; and the remaining propositions are mapped to RM

in the expected way. Finally, an implication α1, . . . , αk
d⇒ β is satisfied by v if

%(v(α1 ∧ . . . ∧ αk ∧ ¬β)) ≥ d.
We axiomatise IGζ as follows. The rules called basic in the sequel are those

of Possibilistic Logic [4].

Definition 2. The following are the basic rules of IGζ , where α, β, γ are propo-
sitions, Γ is a finite set of propositions, and c, d ∈ [0, 1]:

⊥ d⇒ α α
d⇒ α α

d⇒ > α,¬α d⇒ ⊥

α
0⇒ β

Γ
d⇒ α

Γ
c⇒ α

where c < d
Γ

c⇒ α α
d⇒ β

Γ
c∧d⇒ β
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Γ
d⇒ α

Γ, β
d⇒ α

Γ, α, β
d⇒ γ

Γ, α ∧ β d⇒ γ

Γ
c⇒ α Γ

d⇒ β

Γ
c∧d⇒ α ∧ β

Γ, α
c⇒ γ Γ, β

d⇒ γ

Γ, α ∨ β c∧d⇒ γ

Γ
d⇒ α

Γ
d⇒ α ∨ β

Γ
d⇒ β

Γ
d⇒ α ∨ β

α
d⇒ β

¬β d⇒ ¬α

¬α d⇒ β

¬β d⇒ α

α
d⇒ ¬β

β
d⇒ ¬α

The following are the fuzzy-set rules of IGζ , where φ, ψ are gradable propo-
sitions, α is a proposition, Γ is a finite set of propositions, and s, t ∈ [−ζ, 1+ζ]:

(φ, s) 1⇒ ¬(φ, t) where |s− t| ≥ 2ζ

(φ, s) 1⇒ (φ, t) where −ζ ≤ s ≤ t < ζ or 1− ζ < t ≤ s ≤ 1 + ζ

(φ, r) 1⇒ (φ, s) ∨ (φ, t) where s ≤ r ≤ t ≤ s + 2ζ

(φ, r), (φ, s) 1⇒ (φ, t) where r ≤ t ≤ s

¬(φ, s1), . . . ,¬(φ, sk)
1⇒ ⊥ where s1 < ζ; s2 − s1, . . . , sk − sk−1 ≤ 2ζ; sk > 1− ζ

Γ, (φ ∧ ψ, s ∧ t) 1⇒ α

Γ, (φ, s), (ψ, t) 1⇒ α

Γ,¬(φ ∧ ψ, t) 1⇒ α

Γ, (φ, r), (ψ, s) 1⇒ α
where r, s ≥ t + 2ζ

Γ,¬(φ ∧ ψ, t) 1⇒ α

Γ, (φ, s) 1⇒ α
where s + 2ζ ≤ t

Γ,¬(φ ∧ ψ, t) 1⇒ α

Γ, (ψ, s) 1⇒ α
where s + 2ζ ≤ t

Γ, (φ ∨ ψ, s ∨ t) 1⇒ α

Γ, (φ, s), (ψ, t) 1⇒ α

Γ,¬(φ ∨ ψ, t) 1⇒ α

Γ, (φ, r), (ψ, s) 1⇒ α
where r + 2ζ, s + 2ζ ≤ t

Γ,¬(φ ∨ ψ, t) 1⇒ α

Γ, (φ, s) 1⇒ α
where s ≥ t + 2ζ

Γ,¬(φ ∨ ψ, t) 1⇒ α

Γ, (ψ, s) 1⇒ α
where s ≥ t + 2ζ

Γ, (φ, c) 1⇒ α

Γ, (∼φ,∼c) 1⇒ α

Γ, (∼φ, c) 1⇒ α

Γ, (φ,∼c) 1⇒ α

A theory T is called consistent if T ` > d⇒ ⊥ implies d = 0.

Theorem 1. Let T be a consistent finite theory of IGζ and Γ e⇒ δ an implica-
tion of IGζ . T semantically entails Γ e⇒ δ if and only if T proves Γ e⇒ δ.
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We finally note that by means of an additional rule called the smoothness
rule we can achieve that the rejection function is, in a natural sense, continuous.
In this case, the rejection function is induced by a continuous function on the
universe. The additional extension is particularly useful for the application of
IGζ in the field of medical expert systems.
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Measure-free conditioning of events as elements of some suitable stuctured set
L works in two steps. In a first step, conditional events “a given b” are defined
in terms of the events a, b ∈ L as well-defined elements of some structured set.
In a second step, the uncertainty of such conditional events is expressed by el-
ements of the real unit interval as values of a suitable measure. Therefore, in
measure-free conditioning we look for the “measure of a conditional event (a
given b)” rather than for the “(conditional measure of an event a) given a fixed
event b”. The latter interpretation would be in the spirit of the classical approach
in probability theory without defining conditional events and, therefore, is not
considered here.

For events from a Boolean algebra L, Goodman, Nguyen and Walker de-
fined the conditional events as the lattice-intervals [a ∧ b, b → a] with b → a =
b′ ∨ a and showed that the set of such conditionals forms a (semi-simple) MV-
algebra, see [1], Section 4.3, Theorem 1. The author generalized this interval
based definition of conditional events

(a ‖ b) = [a ∧ b, b → a]

for events a, b from an MV-algebra L where now the residuation b → a = b′ta
is expressed by the dual semigroup operation t interpreted as “union”, and ob-
served that, vice versa, any interval can be written as conditional event, i.e.
[a, b] = (a ‖ b → a). For details and related topics see [6, 7]. In our joint papers
[2, 3] with Höhle, we introduced the canonical extension L̃ of the MV-algebra
L of events as the set of all pairs (a, b) of events a, b with a ≤ b equipped with
a “canonical” Girard algebra structure, so called because of some analogy to
Girard quantales from [5, 11]. All results for the canonical extension can be
rewritten for conditional events because, additionally to the above mentioned
one-to-one correspondence, the lattice-intervals can be identified with the pairs
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of its endpoints. In this sense the MV-algebra extension of any Boolean alge-
bra of events from [1] is obtained as corollary. Furthermore, on any Girard al-
gebra we introduced a conditioning operator | as a binary operation fulfilling
some “natural” axioms and we proved that the canonical extension of any MV-
algebra of events always admits such conditioning operators which lead to the
conditional events (a ‖ b) ∈ L̃.

Moreover, there are several classes of MV-algebras L which admit condi-
tioning operators |. In these cases, its values (a | b) ∈ L can also be considered
as conditional events, but they are special events.

In the second step of measure-free conditioning we start with an additive
measure (so-called state in [4]) m on an MV-algebra L of events. If L admits
a conditioning operator | then m can be applied directly to (a | b). Boolean
algebras L do not admit conditioning operators, but in [2] we proved that m
has a unique additive measure extension m̃ on the MV-algebra extension L̃ of
conditional events (a ‖ b). For non-Boolean MV-algebras L there do not exist
such additive measure extensions but only so-called weakly additive measure
extensions m̃ on the Girard algebra L̃ where the classical additivity property is
required only for all MV-subalgebras M of L̃, see [8]. In [9] we characterized
all weakly additive measures m̃ on the canonical extension L̃ of any finite MV-
chain L. In [10] we generalized these results to any finite MV-algebra.

The aim of this talk is to generalize the main results from [9] to any MV-
chain L and to apply them to conditional events (a ‖ b) ∈ L̃. Finally, in the
prominent case of the real unit interval L = [0, 1] with Łukasiewics’ MV-
algebra structure, these results are compared with the following three types of
conditional events (a | b) ∈ L where the conditioning operator | is induced by
the mean value functions Ci given by resp.

C1(α, β) =
β

1 + β − α
, C2(α, β) =

α + β

2
, C3(α, β) =


β if β ≤ 1

2

1
2 if α < 1

2 < β

α if 1
2 ≤ α


for α ≤ β.
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Abstract: This note outlines the main academic ideas, objectives and research 
work we have been working for the last 15 years on lattice-valued algebra, 
lattice-valued logic and reasoning systems. It also gives some potential 
application of this research topic into linguistic valued based information 
processing and decision making from the logical point of view. Moreover, it 
presents an overall framework of the research and development of lattice-
valued algebra and logic with some illustrated open problems in this topic.  

Keywords: lattice-valued logic; lattice implication algebra; linguistic truth-
valued algebra; linguistic truth-valued logic; decision making 

1   Introduction 

The logical foundation is vital for uncertainty reasoning from the symbolism point 
of view. It is analogous to the way in which classical logic provides a foundation for 
certain reasoning. As pointed out by Zagare ([1], p.103): “Without a logically 
consistent theoretical structure to explain them, empirical observations are 
impossible to evaluate; without a logically consistent theoretical structure to 
constrain them, original and creative theories are of limited utility; and without a 
logically consistent argument to support them, even entirely laudable conclusions… 
lose much of their intellectual force,” we can, only through an exploration of the 
underlying logic, ascertain the consistency and completeness of our analyses.  

Lattice-valued logic, e.g., [2, 3] and among others, as one of the most important 
many-valued logics, extends the chain-type truth-valued field to general lattice in 
which the truth-values are incompletely comparable with each other. Some 
researchers claim that chains can be applied in most cases, but very often the 
assumption is an oversimplification of reality due to the ignoring the incomparable 
elements. It is rather hard to directly provide the logical foundation to deal with 
incomparable information. In fact, relations in the real world are rarely linear. 
Incomparability is an important type of uncertainty often associated with human’s 
intelligent activities in practice. This raises an overall uncertainty of objects due to 
missing information, ambiguity or conflicting evaluations, but it is not easily 
handled through conventional methods because of its complexity. The lattice 
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structure is a useful and well-developed branch of abstract algebra for modelling the 
ordering relations in the real world, which is almost indispensable in explaining 
complex phenomena in an easy way [4, 5]. Hence, lattice-valued logic plays an 
important and promising research role that provides an alternative logical ground 
and approach to deal with both imprecision and incomparability. 

Based on the above-mentioned academic ideals, we have been investigating 
how to deal with the incomparability in the intelligent information processing from 
the symbolism point of view since 1993. We have closely followed our academic 
routine from lattice-valued logical algebra — lattice implication algebra (LIA), as 
well as the corresponding lattice valued logic systems, lattice-valued approximate 
reasoning theory, and to lattice-valued automated reasoning theory and methods (for 
more details we refer to [6] and references therein). One of the fundamental goals is 
to provide practical and efficient inference methods and algorithms based on 
scientific and reasonable logic systems for dealing with both imprecision and 
incomparability in the intelligent information processing. We briefly outline some of 
our recent research framework on how to use LIA and its logic and reasoning 
schemes into linguistic valued information processing and decision making in the 
following section. 

2   Application of LIA as a Linguistic Truth-Valued Algebra 

Human beings cannot be seen as a precision mechanism. They usually express world 
knowledge using natural language with full of vague and imprecise concepts. 
Words, in different natural languages, sometimes seem difficult to distinguish their 
boundary, but their meaning of common usage can be understood. Moreover, there 
are some “vague overlap districts” among some words, which cannot be strictly 
linearly ordered, e.g., highly true and slightly false are incomparable, and 
approximately true, possibly true, more or less true are also incomparable. One 
cannot collapse that structure into a linearly ordered structure, because then one 
would impose an ordering on them, which was originally not present. This means 
the set of linguistic values may not be strictly linearly ordered.  

Although there have been some investigations on the algebraic structure of 
linguistic truth values together with some applications in decision making and social 
science [7-10] and references therein, it still lacks a formalism for development of 
logic systems based on linguistic truth values, approximate reasoning and automated 
reasoning based on linguistic truth-valued logic systems. Among others, one of the 
key, substantial and also essential problems has not been paid sufficient attention, let 
alone be solved. That is, how to choose a comparatively appropriate linguistic truth-
valued algebraic structure, which can provide a comparatively appropriate 
interpretation for the logical formulae in linguistic truth value logic systems, and 
accordingly provide a strict theoretical foundation, as well as a convenient, practical, 
and effective underlying semantic structure to automated uncertain reasoning based 
on linguistic truth-valued logic, and various kinds of corresponding intelligent 
information processing systems. 
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To attain this goal we propose to characterize the set of linguistic truth-values 
by a lattice-valued algebra structure, specially taking the LIA structure as one of 
alternatives, i.e., use the LIA to construct the structure of linguistic value sets in 
natural language. We summarize the basic framework as follows. 

Definition 1 Let Lm, Ln be two LIAs and Lm={a1,…, am}: a1≤,…≤am, Ln={b1,…, 
bn}: b1≤,…≤bn, ai → aj = am∧(m-i+j), ai′= ai → a1, bk → bl = bn∧(n-k+l), bk′= bk → b1. 
Define the product of Lm and Ln as follows: Lm×Ln ={(a, b)| a∈Lm, b ∈Ln}. The 
operations on Lm×Ln are defined respectively as follows: (ai, bk)∨(aj, bl)=(ai∨aj, 
bk∨bl), (ai, bk)∧(aj, bl)=(ai∧aj, bk∧bl), (ai, bk)→(aj, bl)=(ai→aj, bk→bl), (ai, bj)′=(ai′, 
bj′). Then (Lm×Ln, ∨, ∧, →, ′, (a1, b1), (am, bn)) is a LIA, denoted by Lm×n. If n=2, its 
Hasse Diagram is depicted in Fig. 1. 

Example 1 (Lattice-valued algebra of linguistic 
terms with 18 elements modelled by LIA) Let a set of 
linguistic modifiers AD={Slightly (Sl for short), 
Somewhat (So), Rather (Ra), Almost (Al), Exactly 
(Ex), Quite (Qu), Very (Ve), Highly (Hi), Absolutely 
(Ab)} with the ordering relationship 
Sl<So<Ra<Al<Ex<Qu<Ve<Hi<Ab. We also define a 
set of meta truth values MT={True (Tr), False (Fa)}, 
where Fa<Tr. The set of linguistic values by 
combining AD and MT, denoted as L-LIA, forms a 
lattice with the boundary. And we define ∧, ∨, 
implication → and complement operation ′ on this 
lattice according to the LIA structure, which forms a 
linguistic truth-valued lattice implication algebra: 

Let a mapping f: L-LIA → L18=L9×L2 be defined 
as follows (L18 is defined as in Definition 1): f(Ab, Tr)= (a9, b2), f(Hi, Tr)= (a8, b2), 
f(Ve, Tr)= (a7, b2), f(Qu, Tr)= (a6, b2), f(Ex, Tr)= (a5, b2), f(Al, Tr)= (a4, b2), f(Ra, 
Tr)= (a3, b2), f(So, Tr)= (a3, b2), f(Sl, Tr)= (a1, b2), f(Sl, Fa)= (a9, b1), f(So, Fa)= (a8, 
b1), f(Ra, Fa)= (a7, b1), f(Al, Fa)= (a6, b1), f(Ex, Fa)= (a5, b1), f(Qu, Fa)= (a4, b1), 
f(Ve, Fa)= (a3, b1), f(Hi, Fa)= (a2, b1), f(Ab, Fa)= (a1, b1). Then f is a bijection. 
Denote its inverse mapping as f -1. In addition, if for any x, y∈L-LIA, x∨y= f-1(f(x) ∨ 
f(y)), x∧y= f-1(f(x) ∧ f(y)), x→y= f-1(f(x)→ f(y)), x′=f-1((f(x))′), then it is easy to prove 
that (L-LIA, ∨, ∧, →, ′)( still denoted as L) is a LIA, and L is isomorphic to L18, i.e., f 
is an isomorphic mapping from L onto L18. Notice that, for example, f(Hi, Tr)= (a8, 
b2) and f(Sl, Fa)= (a9, b1), and according to the Hasse diagram in Fig. 1 that (a8, b2) 
// (a9, b1) (// means incomparable), so does (Hi, Tr) and (Sl, Fa), i.e., Highly True // 
Slightly False, which intuitively is true knowing that both are incomparable in terms 
of their meanings in natural language. For the detailed work, we refer to [10]. 

In general, we conjecture that the domain of a linguistic-valued algebra (LA) 
can be represented as a lattice. Thus, a linguistic-valued logic is a logic in which the 
truth degree of an assertion is a linguistic value in LIA. A key insight behind the 
linguistic-valued logic scheme is that we can use natural language to express a logic 
in which the truth values of propositions are expressed as linguistic values in natural 

1 2( , )ma b−  

2( , )ma b  

2 2( , )a b  

1 2( , )a b  

2( , )ia b  

1 2( , )ia b−  

1( , )ma b  

1 1( , )ma b−  

2 1( , )a b  

1 1( , )a b  

1( , )ia b  

1 1( , )ia b−  

Fig. 1 Hasse Diagram of Lm×2 
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language terms such as true, very true, very false, and false, instead of a numerical 
scale. The lattice-valued logic system with truth-values in L-LIA is called linguistic 
truth-valued logic system, which leads to the linguistic truth approximate reasoning. 
It will be based on the direct reasoning in natural language which offers the 
advantage of not requiring the linguistic approximation step and the definition of the 
membership functions of the linguistic terms as in traditional fuzzy logic; also will 
treat vague information in its true format. In addition this proposed procedure has 
another advantage, i.e., the handling of incomparable linguistic terms in logical 
systems.  

Information aggregation is important in decision making systems. In [11], Yager 
discussed the effect of the importance degrees in the types of aggregation Max and 
Min and proposed a general specification of the requirements that any importance 
transformation function must satisfy in both types of aggregations. It has been 
proved that the implication operator in a LIA satisfied those conditions of the 
importance transformation function, they can be used to capture the transformation 
between the weights and the individual ratings in Min-type aggregation, this, 
actually, provides one direct application of L-LIA into the linguistic information 
aggregation and decision making.  

3   Conclusions 

The questions we proposed in Section 2 are still open, we believe that it is feasible 
and reasonable to use lattice-valued algebra and lattice-valued logic to establish 
strict linguistic truth-valued logic and various kinds of corresponding linguistic 
information processing systems, based on what have been done so far about lattice-
valued algebra, lattice-valued logic by different researches, certainly also relying on 
a continuous work on this direction.  
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