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Since their inception in 1979, the Linz Seminars on Fuzzy Set Theory have
emphasized the development of mathematical aspects of fuzzy sets by bringing
together researchers in fuzzy sets and established mathematicians whose work
outside the fuzzy setting can provide directions for further research. The philos-
ophy of the seminar has always been to keep it deliberately small and intimate
so that informal critical discussions remain central.

LINZ 2016 will be the 36th seminar carrying on this tradition and is devoted
to the theme “Functional Equations and Inequalities”. The goal of the seminar
is to present and to discuss recent advances on (algebraic) functional equations
and inequalities and their applications in pure and applied mathematics, with
special emphasis on many-valued logics, multicriteria decision aid and prefer-
ence modelling.

A considerable amount of interesting contributions were submitted for pos-
sible presentation at LINZ 2016 and subsequently reviewed by PC members.
This volume contains the abstracts of the accepted contributions. These regular
contributions are complemented by five invited plenary talks, some of which
are intended to give new ideas and impulses from outside the traditional Linz
Seminar community.
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Construction of flipping-invariant functions
in higher dimensions

José De Jesús Arias Garcı́a1, Hans De Meyer2, and Bernard De Baets1

1 KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics
Ghent University, Gent, Belgium

{josedejesus.ariasgarcia,bernard.debaets}@ugent.be
2 Department of Applied Mathematics, Computer Science and Statistics

Ghent University, Gent, Belgium
{hansdemeyer}@ugent.be

Recently, there have been several studies of transformations called ‘flippings’, which
map n-copulas to n-copulas. The resulting transforms can be thought of as the multi-
variate cumulative distribution functions of random vectors that are obtained by replac-
ing (called flipping) each of the original random variables from a given subset of the
random vector by a countermonotonic counterpart. It is important to note that if all
the variables are flipped, the resulting transform is the well-known survival n-copula
(for more details, see [9]). In the bivariate case, these transformations have been stud-
ied from the algebraic point of view in [7], and have been further generalized to binary
aggregation functions in [2, 3]. In the multivariate case, these operations have been stud-
ied in [5] for n-copulas, while in [4] the authors have studied the case of multivariate
aggregation functions.

Inspired by the above results and the notion of invariant copula (i.e., a copula that
coincides with one of its transforms [8]), we present two methods to construct flipping-
invariant copulas in higher dimensions, given a lower-dimensional marginal copula.
Both methods are partially based on an associative extension of an aggregation function,
although not in the way that it is usually done, as it can be easily seen that there is
no associative solution to the Frank functional equation in the n-dimensional case for
n ě 3 (see [1, 5]).

In the first method, we construct a 3-dimensional function that is flipping invariant,
starting from a bivariate flipping-invariant symmetric copula. We show that if the func-
tion that is obtained by this transformation is increasing, then it is a 3-quasi-copula.
We also present some numerical examples of this method for well-known families of
flipping-invariant 2-copulas, such as the Frank copula family and the Farlie-Gumbel-
Morgenstern copula family. In the second method, we construct a 3-dimensional aggre-
gation function that it is flipping invariant in the last variable starting from an arbitrary
2-copula. We study some properties of the aggregation function that is obtained by this
transformation, as well as conditions that guarantee that it is a 3-(quasi)-copula. Finally,
we discuss several possible generalizations of both methods in higher dimensions.

Acknowledgement. The first author is supported by the “Consejo Nacional de Ciencia
y Tecnologı́a” (México) grant number 382963.
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Functional equations related to
the distributivity of fuzzy implications

Michał Baczyński and Wanda Niemyska

Institute of Mathematics
University of Silesia, Katowice, Poland

{michal.baczynski,wniemyska}@us.edu.pl

Abstract. In this contribution we discuss solutions of different functional equa-
tions, which appear during the investigations connected with the distributivity of
fuzzy implications.

In classical logic conjunction distributes over disjunction and disjunction distributes
over conjunction. Moreover, implication is left-distributive over conjunction and dis-
junction:

p→ (q ∧ r) ≡ (p→ q) ∧ (p→ r),

p→ (q ∨ r) ≡ (p→ q) ∨ (p→ r).

At the same time it is neither right-distributive over conjunction nor over disjunction.
However, the following two equalities, that are kind of right-distributivity of implica-
tions, hold:

(p ∧ q)→ r ≡ (p→ r) ∨ (q → r), (1)
(p ∨ q)→ r ≡ (p→ r) ∧ (q → r).

We can rewrite the above four classical tautologies in fuzzy logic to obtain the following
functional equations, called the distributivity equations for multivalued implications:

I(x,C1(y, z)) = C2(I(x, y), I(x, z)), (D1)
I(x,D1(y, z)) = D2(I(x, y), I(x, z)), (D2)
I(C(x, y), z) = D(I(x, z), I(y, z)), (D3)
I(D(x, y), z) = C(I(x, z), I(y, z)), (D4)

that are satisfied for all x, y, z ∈ [0, 1], where I is some generalization of the classical
implication, C, C1, C2 are some generalizations of the classical conjunction and D,
D1, D2 are some generalizations of the classical disjunction. We can define and study
those equations in any lattice L = (L,6L) instead of the unit interval [0, 1] with regular
order ,,6” on the real line, as well.

From the functional equation’s point of view J. Aczél was probably the one that
studied right-distributivity first (see [1, Section 7.1.3, Th. 6]). He characterized solu-
tions of the functional equation (D3) in the case when C = D, among functions I that
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are bounded from below and functions C that are continuous, strictly increasing, asso-
ciative and have neutral element. The importance of these equations in fuzzy logic has
been introduced by Combs and Andrews [17], wherein they exploit the classical tau-
tology (1) in their inference mechanism towards reduction in the complexity of fuzzy
“IF-THEN” rules. Subsequently, there were many discussions in [15, 16, 18, 20], most
of them pointing out the need for a theoretical investigation required for employing
such equations, as concluded by Dick and Kandel [18], “Future work on this issue will
require an examination of the properties of various combinations of fuzzy unions, in-
tersections and implications” or by Mendel and Liang [20], “We think that what this all
means is that we have to look past the mathematics of IRC⇔URC and inquire whether
what we are doing when we replace IRC by URC makes sense.”

We can divide the investigations on these distributivity equations into two streams:
first, in which the implication I is given and second, when all other operations except
the implication I are given. In the first group the most important article has been written
by Trillas and Alsina [26], where Eq. (D3) has been investigated for three main families
of fuzzy implications (S-implications, R-implications and QL-implications) — here C
is an unknown t-norm and D is an unknown t-conorm. In particular, they showed that
in the case of S-implications and R-implications, Eq. (D3) holds if and only if T = min
and S = max. In a similar way Balasubramaniam and Rao [14] considered the other
equations for different types of fuzzy implications.

From the other side, Eq. (D1) with C1 = C2 the product t-norm is one of the char-
acteristic properties in the class of fuzzy implications introduced by Türksen et al. [19].
This equation has been considered also by Baczyński in [2, 3] along with other equa-
tions (like contrapositive symmetry), and he has characterized fuzzy implications I in
the case when C1 = C2 is a strict t-norm. It should be noted here that this equation,
when C1 = C2 is a nilpotent t-norm, has been also investigated by Qin and Yang [23]
(also with contrapositive symmetry). Baczyński and Jayaram in [8, 4] have examined
solutions of Eq. (D2), when D1, D2 are continuous, Archimedean t-conorms and I is
an unknown function. In [6] one can find solutions of Eqs. (D3) and (D4), when C (re-
spectively D) is a continuous, Archimedean t-norm (respectively t-conorm). Recently
published papers [22, 7, 21] weaken the assumptions and consider only continuous t-
norms and/or t-conorms.

The above equations are also considered for other types of fuzzy connectives.
Eq. (D3) has been studied by Ruiz-Aguilera and Torrens in [24] for the major part
of known classes of uninorms with continuous underlying t-norm and t-conorm and for
strong implications derived from uninorms, while in [25], they also studied Eq. (D3),
but with the assumption that I is a residual implication derived from a given uninorm.
Of course in this case C is a conjunctive uninorm, while D is a disjunctive uninorm.
These investigations were continued by one of the author in [5], where he considered
all above equations for representable uninorms.

What is really interesting from mathematical point of view is that many of the im-
portant results obtained in the above mentioned articles are connected with different
functional equations. Our main goal of this contribution is to discuss solutions of the
following functional equations, which appear during the investigations connected with
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the distributivity of fuzzy implications:

F (min(x+ y, r1)) = min(F (x) + F (y), r2), x, y ∈ [0, r1]

f(m1(x+ y)) = m2(f(x) + f(y)), x, y ∈ [0, r1],

g(u1 + v1, u2 + v2) = g(u1, u2) + g(v1, v2), (u1, u2), (v1, v2) ∈ L∞,

h(xc(y)) = h(x) + h(xy), x, y ∈ (0,∞),

k(min(j(y), 1)) = min(k(x) + k(xy), 1), x ∈ [0, 1], y ∈ (0, 1],

where:

– F : [0, r1]→ [0, r2], for some r1, r2 ∈ (0,∞];
– f : [0, r1]→ [0, r2], for some constants r1, r2 that may be finite or infinite, and for

functions m2 that may be injective or not;
– g : L∞ → [−∞,∞], for L∞ = {(u1, u2) ∈ [−∞,∞]2 | u1 ≤ u2};
– h, c : (0,∞)→ (0,∞) and function h is continuous or is a bijection;
– k : [0, 1]→ [0, 1], g : (0, 1]→ [1,∞) and function k is continuous.

Many of newly discussed results have been obtained by the authors in collaboration
with R. Ger, M. E. Kuczma or T. Szostok. Part of them have been already published
either in scientific journals (see [13]) or in refereed proceedings (see [12, 9–11]).

References

1. J. Aczél. Lectures on functional equations and their applications, volume 19 of Mathematics
in science and engineering. Academic Press, New York, 1966.
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4. M. Baczyński. On the distributivity of fuzzy implications over continuous and Archimedean
triangular conorms. Fuzzy Sets and Systems, 161(10):1406–1419, 2010.
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Functional equations in decision analysis
under Cumulative Prospect Theory

Jacek Chudziak
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Abstract. We present some natural problems, stemming from decision analysis
under Cumulative Prospect Theory, leading to functional equations and inequali-
ties.

1 Introduction

The classical model of decision making under risk, namely the Expected Utility model,
is founded on a system of axioms. This fact lead many to believe that this is the only
appropriate tool for the decision making under risk. However, this classical model has
been violated by observed behaviors (e.g. the Allais paradox). Several authors presented
the alternative versions of the Expected Utility models which explain the paradoxes.
One of them, namely the Cumulative Prospect Theory, has been created by Tversky
and Kahneman [11]. It is based on experiments carried out by Tversky and Kahneman,
showing that, making decisions under risk, people set a reference point and consider the
lower outcomes as losses and larger ones as gains. Furthermore, people distort proba-
bilities and, in general, the probabilities of gains and losses are distorted in a different
way. It turns out that many problems, having their origins in the Cumulative Prospect
Theory, lead to functional equations and inequalities. In this talk we present some exam-
ples of such problems and their solutions. Several applications of functional equations
and inequalities in various problems stemming from the Expected Utility Theory can
be found in a survey paper [1].

2 Choquet integral

Assume that L∞(Ω,Σ, P ) is a family of bounded random variables on a probability
space (Ω,Σ, P ). Let g : [0, 1]→ [0, 1] be a distortion function, that is a non-decreasing
function with g(0) = 0 and g(1) = 1. For X ∈ L∞(Ω,Σ, P ), the Choquet integral
related to g is defined as follows

Eg(X) =

∫ 0

−∞
(g(P (X > t))− 1) dt+

∫ ∞

0

g(P (X > t)) dt.

The Choquet integral has several interesting properties. In particular, it is additive for
comonotonic risks, positively homogeneous and monotone. For more details concerning
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the properties of the Choquet integral we refer to [4]. Under the Cumulative Prospect
Theory a preference relation � of a decision maker is represented in the following way

X � Y ⇔ Eghu(X) ≤ Eghu(Y ),

where u : R→ R is a strictly increasing and continuous function with u(0) = 0, called
a value function, and Egh is the generalized Choquet integral related to the distortion
functions g (for gains) and h (for losses), defined as follows

Egh(X) = Eg(max{X, 0})− Eh(max{−X, 0}).

Note that If x < 0 < y, p ∈ [0, 1] and a random variable X takes the values x and y
with probabilities P (X = x) = 1− p and P (X = y) = p, then

Egh(X) = g(1− p)u(y) + h(p)u(x). (1)

3 Properties of the Premium Principles under Cumulative
Prospect Theory

Consider an insurance company having the initial wealth w, a value function u and the
probability distortion functions g (for gains) and h (for losses). The company covers
a risk treated as a non-negative random variable. Roughly speaking, a premium princi-
ple is a rule for assigning a premium to an insured risk. One of the frequently applied
methods of pricing insurance contracts is the Principle of Equivalent Utility. Under the
Expected Utility Theory a premium H(X) for risk X is a solution of the equation

u(w) = E[u(w +H(X)−X)]. (2)

A solution H(X) of (1) in the case w = 0 is called the zero utility principle. Equation
(2) has the following interpretation: a value of H(X) is such that the insurer is indiffer-
ent between not accepting and accepting the insurance risk. The Principle of Equivalent
Utility under the Rank Dependent Utility Theory has been considered in [5]. In a recent
paper [7] a modification of the Principle of Equivalent Utility adjusted to the Cumula-
tive Prospect Theory has been introduced. This approach leads to the equation

u(w) = Egh[u(w +H(X)−X)]. (3)

In [7] several properties of the premium have been considered. One of them is a posi-
tive homogeneity. Let us recall that, for any a > 0, a premium principle H is said to be
a-homogeneous provided H(aX) = aH(X) for all feasible risks X . A premium prin-
ciple H is said to be positively homogeneous if it is a-homogeneous for every a > 0.
Let, for every x > 0 and p ∈ [0, 1], (x, p) denotes the random variable X such that
P (X = 0) = 1 − p and P (X = x) = p. Furthermore, let X2 := {(x, p) : x > 0, p ∈
[0, 1]}. It can be proved that H(x, p) ∈ [0, x] for x > 0 and p ∈ [0, 1]. Therefore,
making use of (1), from (3) we derive that

g(1− p)u(H((x, p))) + h(p)u((H((x, p))− x)) = 0 for x > 0, p ∈ [0, 1].
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Moreover, if a1, a2 ∈ (0,∞) \ {1}, a1 6= a2 and H is ai-homogeneous for i ∈ {1, 2},
then for x > 0, p ∈ [0, 1] and i ∈ {1, 2}, we get

g(1− p)u(aiH((x, p))) + h(p)u(ai(H((x, p))− x)) = 0.

Solving this system of functional equations we obtain the following result (cf. [3]).

Theorem 1. Assume that a1, a2 ∈ (0,∞) \ {1} are such that ln a1
ln a2

is irrational and
g(1 − p)h(p) > 0 for p ∈ (0, 1). If (3) holds for w = 0 and H is ai-homogeneous for
i ∈ {1, 2} and every X ∈ X2, then there exist b, c, d > 0 such that

u(x) =

{
−b(−x)d for x ∈ (−∞, 0),
cxd for x ∈ [0,∞).

(4)

Moreover, if (3) holds also for some w > 0 then

h(p) = 1− g(1− p) for p ∈ [0, 1] (5)

and there exists an a > 0 such that

u(x) = ax for x ∈ R. (6)

If (3) holds forw = 0 and u is of the form (4) with some b, c, d > 0, thenH is positively
homogeneous.

A similar problem under the Expected Utility Theory has been investigated in [10].

4 A class of risk measures under Cumulative Prospect Theory

Assume that u : R→ R is a value function and g, h are probability distortion functions
for gains and losses, respectively. From the properties of the generalized Choquet inte-
gral and the value function u it follows that, for every X ∈ L∞(Ω,Σ, P ), there exists
a unique C(X) ∈ R such that

u(C(X)) = Eghu(X). (7)

So, the decision maker is indifferent between playing the lottery X and obtaining the
amount C(X) for sure. A functional C : L∞(Ω,Σ, P ) → R defined in this way
is called the certainty equivalent. A functional ρ := −C is a risk measure, which is
closely related to the important notion of the insurance mathematics, namely the Mean-
Value Premium Principle. More details on this premium principle under Cumulative
Prospect Theory can be found in [8]. In view of (7), we get

ρ(X) = −u−1(Eghu(X)) for X ∈ L∞(Ω,Σ, P ). (8)

It is widely accepted that a risk measure should have the following properties:
(M) monotonicity: X ≤ Y ⇒ ρ(Y ) ≤ ρ(X),
(TI) translation invariance: ρ(X +m) = ρ(X)−m for m ∈ R,
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(PH) positive homogeneity: ρ(λX) = λρ(X) for λ ≥ 0,
(S) subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Any risk measure satisfying these conditions is called coherent (cf. [2]). The properties
of ρ in the case where g(p) = h(p) = p for p ∈ [0, 1] have been investigated in [9].
The case where u(x) = x for x ∈ R has been studied in [6]. Note that as the Choquet
integral and so the generalized Choquet integral, are monotone and the value function
u is strictly increasing, for every probability distortion functions g and h, the risk mea-
sure ρ defined by (8), has the property (M). It is clear that the problems of translation
invariance, positive homogeneity and subadditivity of ρ can be expressed in terms of
functional equations and inequalities. Solving them we obtain the following results.

Theorem 2. A risk measure ρ defined by (8) satisfies (TI) if and only if (5) holds and u
is either of the form (6) with some a > 0, or

u(x) = b(ecx − 1) for x ∈ R
with some b, c ∈ R such that bc > 0.

Theorem 3. A risk measure ρ defined by (8) satisfies (PH) if and only if u is of the form
(4) with some b, c, d > 0.

Theorem 4. A risk measure ρ defined by (8) is coherent if and only if g is convex, (5)
holds and u is of the form (6) with some a > 0, that is

ρ(X) = −EgX for X ∈ L∞(Ω,Σ, P )

with a convex probability distortion function g.
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The mathematical formalism of quantum theory has inspired the development of
different forms of non-classical logics, called quantum logics. In many cases the seman-
tic characterizations of these logics are based on special classes of algebraic structures
defined in a Hilbert-space environment. The prototypical example of quantum logic
(created by Birkhoff and von Neumann) can be semantically characterized by referring
to the class of all Hilbert-space lattices, whose support is the set P(H) of all projec-
tions of a Hilbert space H. The question whether the class of all Hilbert-space lattices
can be axiomatized by a set of equations is still open. What is known is that the va-
riety of all orthomodular lattices (which gives rise to a semantic characterization of a
logic often termed “orthodox quantum logic”) does not represent a faithful abstraction
from the class of all Hilbert-space lattices. A characteristic example of an equation that
holds in all Hilbert-space lattices, being possibly violated in orthomodular lattices is the
orthoarguesian law.

Interesting generalizations of Birkhoff and von Neumann’s quantum logic are the
so called unsharp (or fuzzy) quantum logics that can be semantically characterized by
referring to different classes of algebraic structures whose support is the set of all effects
of a Hilbert space. According to the standard interpretation of the quantum formalism,
any projection P ∈ P(H) represents a sharp physical event to which any possible
state of a physical system S (associated with the space H) assigns a probability-value.
Such events are called “sharp” because they satisfy the non-contradiction principle:
P ∧ P⊥ = O (the infimum between P and its orthogonal projection P⊥ is the null
projection O). Effects, instead, represent unsharp physical events that may violate the
non-contradiction principle. The set E(H) of all effects of a Hilbert space H is de-
fined as the largest set of linear bounded operators E for which a Born-probability can
be defined. In other words, for any density operator ρ of H (representing a possible
state of a physical system S whose associated Hilbert space is H), we have: Tr(ρE) ∈
[0, 1] (where Tr is the trace-functional). The number Tr(ρE) represents the proba-
bility that a quantum system S in state ρ verifies the physical event represented by the
effect E. Of course, E(H) properly includes P(H). Let D(H) represent the set of all
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density operators ofH. A natural partial order relation� can be defined on the set E(H)
in terms of the notion of Born-probability: E � F := ∀ρ ∈ D(H)[Tr(ρE) ≤ Tr(ρF )].
The partial order� induces two different algebraic structures on the two sets P(H) and
E(H). While (P(H), �, O, I) (bounded by the null projection O and by the identity
projection I ) is a complete lattice, the structure (E(H), �, O, I) is a bounded poset that
is not a lattice. Taking for granted that effects do not have a lattice-structure, different
kinds of algebraic structures have been induced on the set E(H), giving rise to different
forms of unsharp quantum logics [2].

Strangely enough, for a long time, the logical approaches to unsharp quantum the-
ory have completely neglected an alternative possibility of defining on E(H) a some-
what natural partial order that (unlike �) gives rise to a lattice-structure [6, ?]. As is
well known, according to the quantum formalism the observables of a system S are
mathematically represented as self-adjoint operators of the Hilbert space H associated
to S. At the same time, self-adoint operators of H can be equivalently represented
as spectral families (maps M : R 7→ P(H) that satisfy the following conditions: 1)
λ ≤ µ ⇒ M(λ) � M(µ); 2) M(λ) =

∧
µ>λM(µ); 3)

∧
λ∈RM(λ) = O and∨

λ∈RM(λ) = I). One can prove that any spectral family M (of a space H) uniquely
determines a self-adjoint operator AM ; vice versa, any self-adjoint operator A uniquely
determines a spectral family MA. On this basis, the spectral partial order �S (on the
set E(H)) can be defined as follows:

E �S F := ∀λ ∈ R[MF (λ) �ME(λ)].

We have: 1) ∀E,F ∈ E(H)[E �S F ⇒ E � F ], but generally not the other way
around; 2) ∀P,Q ∈ P(H)[P �S Q⇔ P � Q] (for sharp events, �S and � coincide);
3) the structure (E(H), �S , ′, O, I) (whereE′ = I−E) is an involutive bounded lattice
that is regular (E∧SE′ �S F∨SF ′, where ∧S and ∨S are the lattice-theoretic infimum
and supremum) and paraorthomodular (E �S F and E′∧S F = O⇒ E = F ). In the
class of all abstract regular involutive bounded lattices, paraorthomodularity cannot be
expressed as an equation. Consequently, the class of all paraorthomodular regular invo-
lutive bounded lattices is not a variety (unlike the class of all orthomodular ortholattices,
for which orthomodularity and paraorthomodularity are equivalent properties).

A different approach to quantum logic has been developed in the framework of
quantum computational logics, inspired by the theory of quantum computation [3].
While sharp and unsharp quantum logics refer to possible structures of physical events,
the basic objects of quantum computational logics are pieces of quantum information:
possible states of quantum systems that can store the information in question. The sim-
plest piece of quantum information is a qubit: a unit-vector of the space C2 that can
be represented as a superposition |ψ〉 = c0|0〉 + c1|1〉. The vectors |0〉 = (1, 0) and
|1〉 = (0, 1) (the two elements of the canonical basis of C2) represent, in this frame-
work, the two classical bits or (equivalently) the two classical truth-values. It is in-
teresting to consider a “many-valued generalization” of qubits, represented by qudits:
unit-vectors living in a space Cd (where d ≥ 2)[5]. The elements of the canonical
basis of Cd can be regarded as different truth-values: |0〉 = | 0

d−1 〉 = (1, 0, . . . , 0),
| 1
d−1 〉 = (0, 1, 0, . . . , 0), | 2

d−1 〉 = (0, 0, 1, 0, . . . , 0),......, |1〉 = |d−1d−1 〉 = (0, . . . , 0, 1).
While |0〉 and |1〉 represent the truth-values truth and falsity, all other basis-elements
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correspond to intermediate truth-values. In this framework, any piece of quantum in-
formation can be identified with a density operator ρ living in a tensor-product space
H(n)
d = Cd ⊗ . . .⊗ Cd︸ ︷︷ ︸

n−times

(with n ≥ 1). The canonical basis ofH(n)
d (whose elements are

called d-registers) is the following set:
{
|x1, . . . , xn〉 : |x1〉, . . . , |xn〉 are elements of the canonical basis of Cd

}

(where |x1, . . . , xn〉 is an abbreviation for the tensor product |x1〉 ⊗ . . . ⊗ |xn〉). A
quregister of H(n)

d is a pure state, represented by a unit-vector |ψ〉 or (equivalently) by
the corresponding density operator P|ψ〉 (the projection-operator that projects over the
closed subspace determined by |ψ〉).

In any space H(n)
d , each truth-value | j

d−1 〉 determines a corresponding truth-value

projection P (n)
j

d−1

, whose range is the closed subspace spanned by the set of all d-registers

|x1, . . . , xn〉 whose last element |xn〉 is | j
d−1 〉. From an intuitive point of view, P (n)

j
d−1

represents the property “being true according to the truth-value | j
d−1 〉” (briefly, | j

d−1 〉-
truth ). On this basis, one can apply the Born-rule and define for any state ρ (ofH(n)

d ) the

probability that ρ satisfies the | j
d−1 〉-truth: p(d)j

d−1

(ρ) := Tr
(
ρP

(n)
j

d−1

)
. The probability

tout court of ρ can be then identified with the weighted mean of the probabilities of all
truth-value properties: p(d)(ρ) := 1

d−1
∑d−1
j=1 j p

(d)
j

d−1

(ρ). One can prove that: p(d)(ρ) =

Tr
(
ρ (I(n−1) ⊗ E)

)
, where I(n−1) is the identity operator of the space H(n−1)

d , while

E is the effect (of the space Cd) represented by the following matrix:



0 0 · · · 0
0 1
d−1 · · · 0

...
...

. . .
...

0 0 · · · 1




In the particular case where ρ corresponds to the qubit |ψ〉 = c0|0〉+ c1|1〉, we obtain:
p(2)(ρ) = |c1|2.

For any choice of a truth-value number d, one can naturally define a preorder-
relation on the set Dd of all density operators ρ living in some space H(n)

d : ρ �d
σ := p(d)(ρ) ≤ p(d)(ρ). This preorder plays an important role in the definition of
the logical-consequence relation for quantum computational logics.

Quantum information is processed by quantum logical gates (briefly, gates): uni-
tary quantum operations that transform density operators in a reversible way. Some
gates are called semiclassical, because they always transform d-registers (representing
classical information) into d-registers. Other gates are called genuine quantum gates,
because they can create quantum superposition from d-register inputs. Examples of the
first kind are: different forms of negation (the diametrical negation, an intuitionistic-
like negation, an anti-intuitionistic-like negation), different modal operators, different
forms of conjunction and disjunction (including a Łukasiewicz-like conjunction and dis-
junction). Examples of the second kind are: the Hadamard-gate and the square root of
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negation. Different choices of gate-systems (which refer to a given truth-value number
d) give rise to different quantum computational algebraic structures.
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Abstract. Convolution operations are a matter of interest in the context of in-
formation fusion. In this work, we develop an abstract theory for two particular
convolutions operations, join and meet, defined over the set of lattice functions.

1 Convolution operations

Classical integration-based convolution operations are frequently used in engineering,
in particular in fields such as signal and image processing and control theory. In other
fields, such as mathemematical morphology [1, 2] and fuzzy set theory [3, 4], different
convolution operations are in use. In both cases, a convolution operation ∗ is an opera-
tion that transforms two functions f, g : P −→ Q into a new one f ∗ g : P −→ Q.

Specifically, in this work we consider the set of functions from a bounded lattice L1

to a completely distributive lattice L2, namely, we consider the set

F = {f |f : L1 −→ L2}.

We define the operations t and u, called join and meet respectively, which are given
by, for all f1, f2 ∈ F :

f1 t f2(z) =
∨

x∨y=z
f1(x) ∧ f2(y) (1)

f1 u f2(z) =
∨

x∧y=z
f1(x) ∧ f2(y). (2)

The aim of the work is to develop an abstract theory of the algebraic structure gen-
erated by these two operations on F . Note that a similar study when L1 = [0, 1] and
L2 = [0, 1] can be found in [3]. However, when general lattices (instead of [0, 1]) are
considered, some properties such us idempotency do not hold. In order to ensure these
properties, some restrictions on the set of functions are required. In particular, the fol-
lowing classes of functions are considered:

(a) N = {f ∈ F |
∨

x∈L1

f(x) = 1} ;

27



(b) C = {f ∈ F | for all x1 ≤ x2 ≤ x3, f(x2) ≥ f(x1) ∧ f(x3)};
(c) I = {f ∈ F | for all x1, x2 ∈ L1,

f(x1 ∨ x2) ≥ f(x1) ∧ f(x2) and f(x1 ∧ x2) ≥ f(x1) ∧ f(x2)};
(d) S = {f ∈ F | there exists x∗ ∈ L1 such that f(x∗) = 1 and

for all x 6= x∗, f(x) = 0} .

Taking into account these sets of functions, the following can be stated.

Theorem 1. The join and meet operations given in Eqs. (1) and (2) generate a lattice
on any closed subset of C ∩ I ∩ N .

Note that it can be proven that C ∩ I ∩ N is not a closed set and consequently the
join and meet do not generate a lattice. However, we have the following result.

Proposition 1. The following statements hold:

(i) S ⊂ C ∩ I ∩ N is a closed subset;
(ii) If L1 is a distributive lattice, then C ∩ I ∩ N is a closed set.

From Theorem 1 and Proposition 1 the following can be inferred.

Corollary 1. The join and meet operations given in Eqs. (1) and (2) generate a lattice
on S.

Corollary 2. Let be L1 a distributive lattice. Then the join and meet operations given
in Eqs. (1) and (2) generate a lattice.

Moreover, it can be shown that the lattice in Corollary 2 is distributive.
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Abstract. Domain theory provides a foundation for denotational semantics. In
classical domain theory, the domains are partially ordered sets with additional
structural properties. Generalizations of classical domain theory include using
preordered sets or multivalued partially ordered sets. In this paper, we general-
ize to many-valued preordered sets. Domain theory in naturally presented in the
language of category theory. In this paper, however, our emphasis is not on the
categorical structures and properties; it is on developing a basic many-valued do-
main theory for programming semantics.

1 Introduction and Domain Theory Constructors

There are several introductions to programming semantics and domain theory. In this
paper, we use the book The Formal Semantics of Programming Languages An Introduc-
tion by Glynn Winskel [6] and the chapter Domain Theory by Samson Abramsky and
Achim Jung in the Handbook of Logic in Computer Science volume 3 [1].

As stated in [6], “Domain theory is the mathematical foundation of denotational
semantics,” and as stated above, classical domains are built from partially ordered sets.
We build our domains from many-valued preodered sets.

Definition 1. Let X be a set, and let (L,≤) be a frame with largest element >L and
smallest element ⊥L. An L-valued relation R on X is a function R : X ×X → L.4

Definition 2. Let R : X ×X → L be an L-valued relation on X . R is an L-preorder if

• R is reflexive, i.e., ∀x ∈ X , R(x, x) = >L, and
• R is transitive, i.e., ∀x, y, z ∈ X , R(x, y) ∧R(y, z) ≤ R(x, z).

If R is an L-preorder on X , then (X,R) or just X is an L-preordered set or an
L-preset.

4 Some definitions and comments in this paper are borrowed verbatim from [3].
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For an L-preset (X,R), when R(x, y) = α ∈ L, we consider x to be R-related to
y to degree α. However, when R(x, y) = α, then we normally say either x is less than
or equal to y to degree α, or y is greater than or equal to x to degree α.

For denotational semantics, we often want our domains to have bottom or least
elements. To make sure that our domains have least elements, we can lift the domains
by adding to each domain a new element which is less than or equal to each element in
the original domain. Thus, we have the next definition.

Definition 3. Let (X,R) be an L-preset. We define a new element⊥(X,R) which is not
in X . Thus, we have a new set X⊥(X,R)

= X ∪ {⊥(X,R)}, and we extend the ordering
R so that

R(⊥(X,R),⊥(X,R)) = >L
and for each x ∈ X ,

R(x,⊥(X,R)) = ⊥L and R(⊥(X,R), x) = >L.

We use the symbol R for both the original and the extended many-valued relation, and
we call (X⊥(X,R)

, R) the lift of (X,R).

Proposition 1. If (X,R) be an L-preset, then (X⊥(X,R)
, R) is also an L-preset.

Let (X,R) and (Y, S) beL-presets. We want to be able to form theL-preset product
and direct sum of (X,R) and (Y, S). Thus, we have the following two definitions.

Definition 4. Let R be an L-valued relation on X , and let S be an L-valued relation on
Y . We define an L-valued relation R× S on the set X × Y so that for x1, x2 ∈ X and
for y1, y2 ∈ Y , we have

(R× S)((x1, y1), (x2, y2)) = R(x1, x2) ∧ S(y1, y2).

We say (X × Y,R× S) is the product or direct product of (X,R) and (Y, S)

Proposition 2. If (X,R) and (Y, S) are L-presets, then (X × Y,R × S) is also an
L-preset.

Definition 5. Let R be an L-valued relation on X , and let S be an L-valued relation
on Y . We define an L-valued relation R + S on the disjoint union X ] Y so that for
w, z ∈ X ] Y ,

(R+ S)(w, z) =




R(w, z) if w, z ∈ X
S(w, z) if w, z ∈ Y
⊥L if w and z are not in same set

We say (X ] Y,R+ S) is the direct sum or coproduct of (X,R) and (Y, S)

Proposition 3. If (X,R) and (Y, S) are L-presets, then (X ] Y,R + S) is also an
L-preset.
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The most interesting basic domain constructor is the function space constructor. It
is also the one which can create cardinality inconsistencies; see, for example, [5, ?].

Before we continue, we need more definitions. Please see [3] for more details.

Definition 6. Let (D,R) be an L-preset, and let α ∈ L. (D,R) or just D is an α-
directed set if every finite subset of D has an α-upper bound in D. Since the finite
subset may be empty, then D must be non-empty.

If (X,R) is an L-preset, then D ⊂ X is an α-directed subset of X if (D,RD) is an
α-directed set where RD is the restriction of R to D ×D.

Definition 7. Let (X,R) be an L-preset, and let α ∈ L. (X,R) or X is an α-directed
complete preset or an α-dcpro if every α-directed subset D of X has an α-least upper
bound or α-supremum

⊔
αD in X .

Definition 8. Let (X,R) be an L-preset, and let α ∈ L. X has an α-bottom element if
there is an element ⊥(X,R)α

∈ X such that for each x ∈ X , R(⊥(X,R)α
, x) ≥ α. An

L-preset (X,R) is said to have an L-bottom element or simply a bottom element if it
has a >L-bottom element.

If (X⊥(X,R)
, R) is a lifted domain, then ⊥(X,R) is the >L-bottom element.

Definition 9. An L-preset (X,R) is an α-complete preset or an α-cpro if it is α-
directed complete and if it has an α-bottom element.

Definition 10. Let (X,R) and (Y, S) be L-presets, and let α ∈ L. A function f : X →
Y is α-order-preserving if whenever a, b ∈ X with R(a, b) ≥ α, then S(f(a), f(b)) ≥
α. The function f is L-order-preserving if for all a, b ∈ X , R(a, b) ≤ S(f(a), f(b)).

Definition 11. Let (X,R) and (Y, S) be L-presets, and let α ∈ L. A function f : X →
Y is α-Scott continuous if it preserves α-suprema of α-directed sets. That is, if D is an
α-directed subset of X and if

⊔
αD exists in X , then f(

⊔
αD) is an α-supremum of

f→(D).

Definition 12. Let (X,R) be an L-preset, and let α ∈ L. A subset U ⊂ X is α-Scott
open if U is α-up-closed and if it non-trivially intersects every α-directed set whose
limit it contains. Thus, U is α-Scott open if U = ↑αU and whenever D is an α-directed
subset of X with

⊔
αD existing and in U , i.e.,

⊔
αD ∈ U , then U ∩D 6= ∅.

Theorem 1. Let (X,R) and (Y, S) be L-presets; let α ∈ L; and let f : X → Y be
a function. f : (X,R) → (Y, S) is α-Scott continuous if and only if f : (X, τR) →
(Y, τS) is continuous when τR and τS are the α-Scott topologies on (X,R) and (X,S),
respectively.

Theorem 2. Let (X,R) be an L-preset; let α ∈ L; and let (Y, S) be an α-cpro. Then
([(X,R)→ (Y, S)]α, RX→(Y,S)) is also an α-cpro.

In the proof of the previous theorem, the axiom of choice is used.
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2 Conclusion and Continuation

Beginning with L-presets, a domain theory can be developed. We continue this devel-
opment, especially focusing on the the function space constructor and function space
domain equations.
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Abstract. We provide an analogue of the Sierpinski space for many-valued topo-
logical systems and show that it has three important properties of the crisp case.

1 Introduction

The notion of Sierpinski space S = ({0, 1}, {∅, {0}, {0, 1}}) plays an important role
in general topology. In particular, one can show the following results [1, 10]:

1. A topological space is T0 iff it can be embedded into some power of S.
2. The injective objects in the category Top0 of T0 topological spaces are precisely

the retracts of powers of S.
3. A topological space is sober iff it can be embedded as a front-closed subspace into

some power of S.

Moreover, [8, 9] introduced the concept of Sierpinski object in categories of structured
sets and structure-preserving maps, and provided a characterization of the category of
topological spaces among such categories in terms of Sierpinski object.

Some of the above-mentioned results have already been extended to lattice-valued
topology [7, 13, 14]. In particular, one already has a characterization of the category of
fuzzy topological spaces in terms of the Sierpinski object of E. G. Manes [13].

In [15], S. Vickers introduced the concept of topological system as a common frame-
work for both point-set and point-free topologies. Inspired by this notion, the authors
of [11] have recently presented the concept of Sierpinski object in the category TopSys
of topological systems, providing topological system analogues of items (1), (2) above.

Motivated by the notion of lattice-valued topological system of [2, 12] and the re-
sults of [11], we show lattice-valued system analogues of the above three items.
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2 Affine systems

To better encompass various many-valued frameworks, we employ a particular instance
of the setting of affine sets of [3, 4], which is based in varieties of algebras.

Definition 1. Let Ω = (nλ)λ∈Λ be a family of cardinal numbers, which is indexed
by a (possibly, proper or empty) class Λ. An Ω-algebra is a pair (A, (ωAλ )λ∈Λ), which

comprises a set A and a family of maps Anλ
ωAλ−−→ A (nλ-ary primitive operations on

A). An Ω-homomorphism (A, (ωAλ )λ∈Λ)
ϕ−→ (B, (ωBλ )λ∈Λ) is a map A

ϕ−→ B, which
makes the diagram

Anλ

ωAλ
��

ϕnλ // Bnλ

ωBλ
��

A
ϕ
// B

commute for every λ ∈ Λ. Alg(Ω) is the category of Ω-algebras and Ω-homomorp-
hisms, concrete over the category Set of sets and maps (with the forgetful functor | − |).
Definition 2. LetM (resp. E) be the class of Ω-homomorphisms with injective (resp.
surjective) underlying maps. A variety of Ω-algebras is a full subcategory of Alg(Ω),
which is closed under the formation of products,M-subobjects (subalgebras), and E-
quotients (homomorphic images). The objects (resp. morphisms) of a variety are called
algebras (resp. homomorphisms).

From now on, we fix a variety of algebras A (one can think of the variety Frm of
frames [6], which provides an example for all the results in this talk).

Definition 3. Given a functor X T−→ Aop, Af Sys(T ) is the comma category (T ↓ 1Bop),
concrete over the product category X × Aop, whose objects (T -affine systems or T -
systems) are triples (X,κ,A), made by Aop-morphisms TX κ−→ A; and whose mor-

phisms (T -affine morphisms or T -morphisms) (X1, κ1, A1)
(f,ϕ)−−−→ (X2, κ2, A2) are

X×Aop-morphisms (X1, A1)
(f,ϕ)−−−→ (X2, A2), which make the next diagram commute

TX1

κ1

��

Tf // TX2

κ2

��
A1 ϕ

// A2.

In this talk, we will restrict ourselves to the functor T of the following form.

Proposition 1. Every subcategory S of Aop gives rise to a functor Set × S PS−→ Aop,

PS((X1, A1)
(f,ϕ)−−−→ (X2, A2)) = AX1

1

PS(f,ϕ)−−−−−→ AX2
2 , (PS(f, ϕ))

op
(α) = ϕop ◦ α ◦ f .

For the sake of convenience, we will consider the simplest possible case of fixed-
basis affine systems, which is given by the subcategory S of the form A

1A−−→ A. Thus,
from now on, we fix an A-algebra L (as a reminder for “lattice-valued”). The case
A = Frm and L = {0, 1} provides the category TopSys of S. Vickers.
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3 Sierpinski object for affine systems

We start by introducing an affine system analogue of the Sierpinski space. Let there
exist a free A-algebra S over a singleton 1 = {∗} with the universal map 1

η−→ |S|.

Definition 4. Sierpinski affine system is the triple S = (|L|, κS , S), in which the map

S
κopS−−→ L|L| is given by the diagram

1

hLa

��

η // |S|
|hLa |

ww

|κopS |
��

|L| |L|L||,
|πa|

oo

where hLa (∗) = a for every a ∈ L, and hLa is the unique A-homomorphism, obtained
from hLa with the help of the universal map η.

In case of the category TopSys, one gets the Sierpinski object of [11]. One of the
crucial properties of the Sierpinski system is the following.

Proposition 2. Given an affine system (X,κ,A), for every a ∈ A, there exists a system

morphism (X,κ,A)
(fa,ϕa)−−−−−→ S, where fa = κop(a) and |ϕopa | ◦ η = hAa . Every affine

morphism (A, κ,A)
(f,ϕ)−−−→ S has the form (fa, ϕa) for some a ∈ A.

The next are affine analogues of the three items from the first section. We begin with
an affine modification of the concept of T0 topological system of [15].

Definition 5. An affine system (X,κ,A) is T0 provided that for every x, y ∈ X , if
(κop(a))(x) = (κop(a))(y) for every a ∈ A, then x = y.

Proposition 3. The Sierpinski affine system S is T0.

Theorem 1. An affine system (X,κ,A) is T0 iff it is embeddable into a power of S.

Definition 6. Af Sys0(T ) is the full subcategory of Af Sys(T ) of all T0 affine systems.

Proposition 4. If A-epimorphisms are onto, then S is an injective object in Af Sys0(T ).

Theorem 2. Suppose epimorphisms in A are onto. Then the injective objects in the
category Af Sys0(T ) are precisely the retracts of powers of S.

The following is an affine modification of the concept of localic system of [15].

Definition 7. An affine system (X,κ,A) is sober provided that the map X `−→ PtL(A),
`(x) = (κop(−))(x) is bijective, where PtL(A) = A(A,L).
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In our case, we can equivalently describe the condition on an affine morphism

(X1, κ1, A1)
(f,ϕ)−−−→ (X2, κ2, A2) from Definition 3 by commutativity of the diagram

X1

`1
��

f // X2

`2
��

PtL(A1)
(ϕop)←L

// PtL(A2).

(D)

Definition 8. An affine monomorphism (X1, κ1, A1)
(f,ϕ)−−−→ (X2, κ2, A2) is sober if (D)

is a weak pullback [5] (the canonical map X −→ PtL(A1)×PtL(A2) X2 is onto).

Theorem 3. An affine system (X,κ,A) is sober iff it is soberly embeddable into a
power of S.

We would like to conclude our discussion with an obvious open problem.

Problem 1. Extend our fixed-basis results to the variable-basis case of Proposition 1.
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In continuous valued logic we can measure how fair are we from the two valued
logic. This measure is called the fuzziness measure. We shall present an operator-
dependent fuzziness measure called the vagueness measure. We will show that this
measure satisfies the usual classical assumptions for the fuzziness measue. In our view,
the operator depended fuzziness measure one of the most important concept, because
on this basis we can prove “convergence theorems” -based on inequalities- in the sense
that “if there is less fuzziness in the input variables, then there will be less fuzziness in
the result”. In the fuzzy literature we do not find such theorems, because membership
functions, operators and fuzziness measures are unrelated so it seems hopeless to prove
such convergence theorems.

In the Pliant concept i.e.: for the generator function of the conjuctive and disjunctive
operator are in reciprocial relation. We show the following inequalities hold:

c(V(x),V(y)) ≤ V(c(x, y)) ≤ d(V(x),V(y))

c(V(x),V(y)) ≤ V(d(x, y)) ≤ d(V(x),V(y))

Where c(x, y) and d(x, y) are conjuctive and disjunctive operators (strict t-norm and
t-conorm) and V(x) is the Vagueness measure.
We show that a more general theorem is valid:
Let L(x) be any pliant logical expresssion then

c(V(x1) . . .V(xn)) ≤ V(L(x)) ≤ d(V(x1) . . .V(xn)

i.e. the vagueness measure of a logical expression always lies between the conjunction
of the vagueness measure of the input variables and the disjunction of the vagueness
measure of the input variables. If a variable appears k times in L(x), then on the left
and right hand sides it should be used k times.

We prove -in the weighted operator case- that preference (or distance) index be-
tween left and right hand-side bound is

p (c (w, x) , d (w, x)) < ν,

where

ν = g−1

(
1

4

(√
g(x∗)
g(x∗)

+

√
g(x∗)
g(x∗)

))
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and x∗, x∗ are the maximum and minimum values of the variables:

x∗ = max
1≤i≤n

xi x∗ = min
1≤i≤n

xi

and g(x) the generator function of the operator. In this theorem we are used weighted
operators.
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Abstract. Supermigrative copulas (and related aggregation functions) are pre-
sented and their main properties are studied with a discussion about possible
higher dimensional generalizations. Moreover, several applications of these con-
cepts will be presented in reliability theory (in particular, stochastic system of
lifetimes), life insurance and economics.

1 Motivation

The problem of determining the dependence among random variables has been long
studied in the case of Gaussian distributions (and related generalizations) and contin-
gency tables. A classical way to extend these studies to more general random structures
consists in reducing to the class of multivariate distribution functions with identical
marginals, i.e. to consider the so–called Fréchet classes. In fact, in such a case, mean-
ingful dependence properties can be easily expressed in terms of (functional) inequal-
ities involving the joint distribution (or some of its sections) and the related univariate
margins. See, for instance, [21, 23, 25].

The study of the Fréchet classes of distribution functions is made easy (at least in the
continuous case) by considering the associated class of copulas, which are multivariate
probability distribution functions whose univariate marginals are uniformly distributed
on [0, 1] (see, for instance, [17]). In particular, since the copula of a random vector is
invariant under increasing transformation of the components of the vector, all the con-
cepts of dependence (and measures of association) that are rank–invariant can be conve-
niently characterized in terms of copulas. Consider, for instance, classical Spearman’s
and Kendall’s correlation measures as well as notions like quadrant dependence and
regression dependence that have become nowadays standard tools in stochastic models.
For an overview, see [19, 24].

A more recent problem in the study of random vectors is related to the determination
of those properties of lifetimes (i.e. non–negative random variables) that may have an
interpretation in terms of aging of the system. Usually, aging properties are expressed in
terms of comparisons between suitable conditional distribution functions derived from
the system with respect to different times and/or a different history. See, for instance,
[1–3, 26]. Among these studies, Bassan and Spizzichino have introduced a variety of
functional inequalities involving copulas and associated functions, like the multivariate

39



aging functions, in order to express suitable aging relations. See, for instance, [4, 5]
and also [10]. Here, in particular, we are interested in a special inequality in the class
of bivariate copulas, called supermigrativity, which will be descibed in detail in the
following.

2 Main results

A semi-copula S is a function from [0, 1]2 to [0, 1] that is increasing in each variable and
satisfies S(x, 1) = S(1, x) = x for every x ∈ [0, 1], but it may be neither associative
nor commutative [14, 16]. As shown in [13], the class of semi-copulas constitutes the
lattice completion of the class of triangular norms.

A semi-copula S is called supermigrative if it is commutative and satisfies

S(αx, y) ≥ S(x, αy) (1)

for all α ∈ [0, 1] and for all x, y ∈ [0, 1] such that y ≤ x. This inequality was first
considered in [5] in the definition of a novel notion of bivariate aging. The term “su-
permigrative” appeared for the first time in [11], where it is linked to the notion of mi-
grativity, introduced for a special class of associative functions called triangular norms
(see, e.g., [8, 9, 15, 18, 22]).

Following [8], we can intuitively interpret supermigrativity as a property of the
aggregation process of two inputs into a single output. Basically, supermigrativity refers
to the fact that, when the intensity of one input is reduced to 100 · α per cent, global
evaluation will be greater when the higher input is being reduced. For an economic
interpretation in a two-person bargaining problem, see also [6].

In another context, [7] interpreted Eq. (1) as a way to compare the values assumed
by the semi–copula along curves where the product xy is constant, and that the value
increases as one approaches to the diagonal y = x. In particular, they argued that a cop-
ula is supermigrative when, roughly speaking, it has the probability mass concentrated
around the diagonal of [0, 1]2.

Despite its apparent simplicity, the notion of supermigrativity for semi–copulas
presents interesting connections with other concepts considered in the literature. For
instance, the following results hold:

– Every supermigrative semi–copula is Schur–concave (see [11]).
– Every supermigrative continuous and Archimedean triangular norm is a copula (see

[11]).
– Gaussian copulas with positive correlation are supermigrative, while Gaussian cop-

ulas with negative correlation are neither super- nor submigrative (see [12]).

Specifically, the latter property was used in [12] to show how the supermigrativity can
be used in order to define a notion of positive dependence (in the sense of Kimeldorf
and Sampson [20]) for bivariate vectors of continuous random variables. Another inter-
esting application of supermigrativity is related to the comparison of hazard rates for
dependent vector of lifetimes (see [7]). All these properties and applications will be
reviewed in the present talk.
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Finally, notice that, while supermigrativity has been largely investigated in the bi-
variate case, its extension in higher dimensions merits special attention in view of dif-
ferent possible definitions that can be adopted. For instance, in [11] it was argued that
a proper generalization may involve the extension of the characterization given in [11,
Proposition 2.7]. Another possible extension has been instead appeared in [10, Defi-
nition 2.1] and it is grounded on its probabilistic interpretation in terms of stochastic
aging. Both these extensions will be presented and discussed as well.
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Abstract. When trying to convert different kinds of ordered structures, under-
stood as qualitative scales on a nonempty set, into numerical or quantitative
scales, we usually look for representations through one or more real valued func-
tions that formally interpret and characterize the given ordered structure and ac-
tually constitute an equivalent scale that is based on numbers. However, instead
of using directly what is called as a numerical scale based on functions on one
single variable, we could try to use other representations using real-valued bivari-
ate maps, that is, functions on several variables defined on the two-fold Cartesian
product of the given set by itself. These bivariate maps give rise to functional
equations in two variables. Furthermore, in some appealing situations, suitable
solutions to those functional equations could be used to interpret or understand
better the particular ordered structure to which they are associated. We will an-
alyze functional equations related to the numerical representability of total pre-
orders, interval orders and semiorders, paying attention to the particular features
of those equations and analyzing how they can be used to represent several kinds
of ordered structures on a nonempty set. Also, we will establish some relation-
ship between several functional equations that could be related someway to the
same kind of ordered structure. In particular, an analysis of the classical Abel’s
equation on one single variable will be introduced to understand better what is
a representable semiorder. Several miscellaneous uses of those functional equa-
tions that are often encountered when dealing with numerical representability of
ordered structures are also commented, so giving a panoramic view of this theory.

Introduction and general scope

LetX be a nonempty set. A binary relationR onX can be, under certain circumstances
and provided that it satisfies some suitable properties, interpreted as a comparison, pref-
erence or ordering on X , so that given x, y ∈ X , the fact xRy represents the idea of
the element x being as least as good as the element y. Therefore the binary relation
R represents a qualitative scale of comparison or ranking. However, it is common to
try to convert that scale in another equivalent one, but now based on numbers. To put
an example, we could think that each element of X could be assigned a real number,
say r(x) ∈ R such that the claim xRy is equivalent to the fact r(x) ≤ r(y). In this
case, we would have represented the binary relation or qualitative scale R by means
of a numerical or quantitative scale. It is not difficult to see that the mere existence of
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that quantitative scale would carry important restrictions on the binary relation R. Of
course, not every binary relationR will admit that kind of numerical representation.

The theory that tries to convert qualitative scales or ordered structures into quan-
titative (numerical) ones that are equivalent to the former (qualitative) scale, is known
in the specialized literature as the representability theory of ordered structures. Among
the typical binary relations to be analyzed here, we have the total preorders, the interval
orders and the semiorders.

A total preorder - defined onX is a binary relation that is total (complete) and tran-
sitive. The preorder - is said to be representable if there exists a real-valued function
u : X → R such that x - y ⇔ u(x) ≤ u(y) holds for every x, y ∈ X . This is equiv-
alent to the existence of a bivariate map F : X × X → R that satisfies the so-called
Sincov functional equation, namely F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X) and,
in addition x - y ⇔ F (x, y) ≥ 0 holds true for every x, y ∈ X .

Similarly, an interval order ≺ defined on X is an asymmetric binary relation such
that x ≺ y jointly with z ≺ t imply that either x ≺ t or z ≺ y holds true for every
x, y, z, t ∈ X . The interval order ≺ is said numerically representable if there exist two
real-valued functions u, v : X → R such that x ≺ y ⇔ v(x) ≤ u(y) holds for every
x, y ∈ X . This is equivalent to the existence of a bivariate map F : X ×X → R that
satisfies the separability functional equation, namely F (x, y) + F (y, z) = F (x, z) +
F (y, y) (x, y, z ∈ X) and, in addition x ≺ y ⇔ F (x, y) > 0 holds true for every
x, y ∈ X .

Finally, an interval order ≺ defined on X is said to be a semiorder whenever for
any x, y, z, a ∈ X it holds true that x ≺ y ≺ z carries x ≺ a or a ≺ z. A semiorder
≺ is representable in the sense of Scott and Suppes ([19]) if there exists a real-valued
function u : X → R such that x ≺ y ⇔ u(x) + 1 ≤ u(y) holds for every x, y ∈ X .
This is equivalent to the existence of a bivariate map F : X ×X → R that satisfies the
functional equation F (x, y) + F (y, z) = F (x, z) + F (a, a) (x, y, z, a ∈ X) and, in
addition x ≺ y ⇔ F (x, y) > 0 holds true for every x, y ∈ X .

Let I denote an open real interval. Let h : I → I be a continuous and strictly
increasing map such that x < h(x) holds true for every x ∈ I . Then there exists a
continuous and strictly increasing real-valued function f : I → R such that f((h(x)) =
f(x) + 1 holds true for every x ∈ I , (For the proof, see Theorem 2.1 in [16] or pp.
133 and ff. in [2]. The associated equation in one single variable, namely, f((h(x)) =
f(x)+1 is known as the Abel functional equations and was introduced by Niels Henrik
Abel in 1824. This equation is also closely related to the numerical representability of
semiorders.

The purpose of the lecture will we to give a panoramic view of these equations and
their uses in the theory of the numerical representations of ordered structures.

Acknowledgement. This work has been partially supported by the research projects
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1 Extended Abstract

The motivation mostly came from the main topic of Vickers book “Topology via Logic”
[5], where he introduced a notion of topological system and indicated it’s connection
with geometric logic. The relationships among topological space, topological system,
frame and geometric logic play an important role to study topology through logic (geo-
metric logic). Naturally the question “from which logic fuzzy topology can be studied?”
comes in mind. If such a logic is obtained what could be its significance?

To answer these questions, as basic steps, we first introduced some notions of
fuzzy topological systems and established the interrelation with appropriate topolog-
ical spaces and algebraic structures. These relationships are studied in a categorical
framework [4].

In [3] another level of generalisation (that is, introduction of many-valuedness) shall
take place giving rise to graded fuzzy topological systems (vide Definition 4) and fuzzy
topological spaces with graded inclusion (vide Definition 2). It will also be required to
generalise the notion of a frame to a graded frame (vide Definition 3).

Geometric logic is endowed with an informal observational semantics [6]: whether
what has been observed does satisfy (match) an assertion or not. In fact, from the stand
point of observation, negative and implicational propositions and universal quantifica-
tion face ontological difficulties. On the other hand arbitrary disjunction needs to be
included (cf. [6] for an elegant discussion on this issue). Now, observations of facts and
assertions about them may corroborate with each other partially. It is a fact of reality
and in such cases it is natural to invoke the concept of ‘satisfiability to some extent or
to some degree’. As a result the question whether some assertion follows from some
other assertion might not have a crisp answer ‘yes’/‘no’. It is likely that in general the
‘relation of following’ or more technically speaking, the consequence relation turnstile
(`) may be itself many-valued or graded (vide Definition 1). For an introduction to
the general theory of graded consequence relation we refer to [1, 2]. Thus, we have

? The abstract contains some material from the doctoral thesis of the first author.
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adopted graded satisfiability as well as graded consequence in [3]. On top of that a fur-
ther generalised notions such as fuzzy geometric logic with graded consequence, fuzzy
topological spaces with graded inclusion, graded frame and graded fuzzy topological
systems came into the picture.

In this seminar the main discussion point is to explain fuzzy geometric logic with
graded consequence first and then categorical relationships among fuzzy topological
spaces with graded inclusion, graded frames and graded fuzzy topological systems. On
top of that the transformation of morphisms between the objects will also be explained,
which play an interesting role too. Through the categorical study it becomes more clear
why the graded inclusion is important in the fuzzy topology to establish the desired
interrelations.

Fuzzy geometric logic with graded inclusion

The alphabet, terms, formulae of this logic are the same as of geometric logic. The
changes occur in the definition of interpretation and satisfiability relations. That is, the
concept of grades takes place in those concepts. The expression φ ` ψ, where φ, ψ are
formulae of fuzzy geometric logic with graded consequence, is called a sequent. It is to
be noted that the grade of satisfiability of a geometric formula φ by s, a sequence over
the domain of interpretation, is denoted by gr(s sat φ).

Definition 1. 1. gr(s sat φ ` ψ)=gr(s sat φ) → gr(s sat ψ), where →: [0, 1] ×
[0, 1] −→ [0, 1] is the Gödel arrow and s is the sequence over the domain of interpre-
tation of the logic. 2. gr(φ ` ψ) = infs{gr(s sat φ ` ψ)}.

Theorem 1. Graded sequents satisfy the following properties

1. gr(φ ` φ) = 1,
2. gr(φ ` ψ) ∧ gr(ψ ` χ) ≤ gr(φ ` χ),
3. (i) gr(φ ` >) = 1, (ii) gr(φ ∧ ψ ` φ) = 1,

(iii) gr(φ ∧ ψ ` ψ) = 1, (iv) gr(φ ` ψ) ∧ gr(φ ` χ) = gr(φ ` ψ ∧ χ),
4. (i) gr(φ ` ∨S) = 1 if φ ∈ S,

(ii)infφ∈S{gr(φ ` ψ)} ≤ gr(
∨
S ` ψ),

5. gr(φ ∧∨S ` ∨{φ ∧ ψ | ψ ∈ S}) = 1,
6. gr(> ` (x = x)) = 1,
7. gr(((x1, . . . , xn) = (y1, . . . , yn)) ∧ φ ` φ[(y1, . . . , yn)/(x1, . . . , xn)])=1,
8. (i) gr(φ ` ψ[x/y]) ≤ gr(φ ` ∃yψ), (ii) gr(∃yφ ` ψ) ≤ gr(φ[x/y] ` ψ),
9. gr(φ ∧ (∃y)ψ ` (∃y)(φ ∧ ψ)) = 1.

Definition 2 (Fuzzy topological space with graded inclusion). Let X be a set, τ be
a collection of fuzzy subsets of X s.t.

1. ∅̃ , X̃ ∈ τ , where ∅̃(x) = 0, for all x ∈ X and X̃(x) = 1, for all x ∈ X;
2. T̃i ∈ τ for i ∈ I imply

⋃
i∈I T̃i ∈ τ , where

⋃
i∈I T̃i(x) = supi∈I{T̃i(x)};

3. T̃1, T̃2 ∈ τ imply T̃1 ∩ T̃2 ∈ τ , where (T̃1 ∩ T̃2)(x) = T̃1(x) ∧ T̃2(x),
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and ⊆ be a fuzzy inclusion relation for fuzzy sets is defined as gr(T̃1 ⊆ T̃2) =
infx∈X{T̃1(x) → T̃2(x)}, where T̃1, T̃2 are fuzzy subsets of X and → is the Gödel
arrow. Then (X, τ,⊆) is called a fuzzy topological space with graded inclusion. (τ,⊆)
is called a fuzzy topology with graded inclusion over X .

It can be shown that fuzzy topological spaces with graded inclusion can be studied via
fuzzy geometric logic with graded consequences [3].

Definition 3 (Graded Frame). A graded frame is a 5-tuple (A,>,∧,∨, R), where A
is a non-empty set, > ∈ A, ∧ is a binary operation,

∨
is an operation on arbitrary

subset of A, R is a [0, 1]-valued fuzzy binary relation on A satisfying the following
conditions: (1) R(a, a) = 1, (2) R(a, b) = 1 = R(b, a) ⇒ a = b, (3) R(a, b) ∧
R(b, c) ≤ R(a, c), (4) R(a ∧ b, a) = 1 = R(a ∧ b, b), (5) R(a,>) = 1, (6) R(a, b) ∧
R(a, c) = R(a, b ∧ c), (7) R(a,

∨
S) = 1 if a ∈ S, (8) inf{R(a, b) | a ∈ S} =

R(
∨
S, b), (9) R(a ∧∨S,∨{a ∧ b | b ∈ S}) = 1, for any a, b, c ∈ A and S ⊆ A. We

will denote a graded frame by (A,R).

Definition 4 (Graded fuzzy topological system). A graded fuzzy topological system
is a quadruple (X, |=, A,R) consisting of a nonempty setX , a graded frame (A,R) and
a fuzzy relation |= from X to A such that (1) gr(x |= a)∧R(a, b) ≤ gr(x |= b), (2) for
any finite subset including null set, S, of A, gr(x |= ∧S) = inf{gr(x |= a) | a ∈ S},
(3) for any subset S of A, gr(x |= ∨S) = sup{gr(x |= a) | a ∈ S}.

Let us consider the quadruple (X, |=, A,R) whereX be a non empty set of assignments
s, A be the set of geometric formulae, |= defined as gr(s |= φ) = gr(s sat φ) and
R(φ, ψ) = gr(φ ` ψ) = infs{gr(s sat φ ` ψ)}.
Definition 5. φ ≈ ψ iff gr(s |= φ) = gr(s |= ψ) for any s ∈ X and φ, ψ ∈ A.

It can be shown that the above defined “≈” is an equivalence relation. Thus we getA/≈.
The following theorems hold.

Theorem 2. (X, |=′, A/≈, R) is a graded fuzzy topological system, where |=′ is defined
by gr(s |=′ [φ]) = gr(s |= φ) and R([φ], [ψ]) = infs{gr(s |=′ [φ])→ gr(s |=′ [ψ])}.

Categories

Definition 6 (Graded Fuzzy Top). The category Graded Fuzzy Top is defined
thus.

– The objects are fuzzy topological spaces with graded inclusion (X, τ,⊆), (Y, τ ′,⊆)
etc.

– The morphisms are functions satisfying the following continuity property: If f :
(X, τ,⊆) −→ (Y, τ ′,⊆) and T̃ ′ ∈ τ ′ then f−1(T̃ ′) ∈ τ .

– The identity on (X, τ,⊆) is the identity function. It can be shown that the identity
function is a Graded Fuzzy Top morphism.

– If f : (X, τ,⊆) −→ (Y, τ ′,⊆) and g : (Y, τ ′,⊆) −→ (Z, τ ′′,⊆) are morphisms
in Graded Fuzzy Top, their composition g ◦ f is the composition of functions
between two sets.
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Definition 7 (Graded Frm). The category Graded Frm is defined thus.

– The objects are graded frames (A,R), (B,R′) etc.
– The morphisms are graded frame homomorphisms defined in the following way: If
f : (A,R) −→ (B,R′) then (i) f(a1 ∧ a2) = f(a1) ∧ f(a2), (ii) f(

∨
i ai) =

supi{f(ai)}, (iii) R(a1, a2) ≤ R′(f(a1), f(a2)).
– The identity on (A,R) is the identity morphism. It can be shown by routine check

that the identity morphism is a Graded Frm morphism.
– If f : (A,R) −→ (B,R′) and g : (B,R′) −→ (C,R′′) are morphisms in
Graded Frm, their composition g ◦ f is the composition of graded homomor-
phisms between two graded frames.

Definition 8 (Graded Fuzzy TopSys). The category of graded fuzzy topological
systems, Graded Fuzzy TopSys, is defined thus.

– The objects are graded fuzzy topological systems (X, |=, A,R), (Y, |=, B,R′) etc.
– The morphisms are pair of maps satisfying the following continuity properties: If

(f1, f2) : (X, |=, A,R) −→ (Y, |=′, B,R′) then (i) f1 : X −→ Y is a set map, (ii)
f2 : (B,R′) −→ (A,R) is a graded frame homomorphism, (iii) gr(x |= f2(b)) =
gr(f1(x) |=′ b).

– The identity on (X, |=, A,R) is the pair (idX , idA), where idX is the identity map
on X and idA is the identity graded frame homomorphism.

– If (f1, f2) : (X, |=, A,R) −→ (Y, |=′, B,R′) and (g1, g2) : (Y, |=′, B,R′) −→
(Z, |=′′, C,R′′) are morphisms in Graded Fuzzy TopSys, their composition
(g1, g2)◦(f1, f2) = (g1◦f1, f2◦g2) is the pair of composition of functions between
two sets and composition of graded homomorphisms between two graded frames.

Theorem 3. There exist adjoint functors between the category Graded Fuzzy Top
and the category Graded Fuzzy TopSys.

Theorem 4. There exist adjoint functors between the category Graded Frm and the
category Graded Fuzzy TopSys.

Theorem 5. There exist adjoint functors between the category Graded Fuzzy Top
and the category Graded Frm.
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If you need to determine all the numbers z for which the formula

∃ x ∀ y : (x− 1)(y − 1)(z − 1) ≤ 0⇒ x2 − y2 + z2 ≤ 1

is true in the theory of real numbers, then Cylindrical Algebraic Decomposition is the
technique you need. Cylindrical Algebraic Decomposition is a quite general technique
developped by George Collins in the 1970 for answering questions about systems of
polynomial equations and inequalities. While it was already shown in the 1930s that
quantifier elimination is decidable over the reals, Collins’s algorithm was the first that
was not only of theoretical interest but also had a chance to solve non-trivial problems
in practice.

Even though the complexity of the problem is so high that we must not expect to be
able to solve even medium size problems within a reasonable amount of time, there is an
increasing number of such medium size problems for which the latest implementations
of the algorithm do find answers within a reasonable amount of time. We therefore
believe that Cylindrical Algebraic Decomposition is one of the techniques in the area
of computer algebra that deserves to be better known outside the computer algebra
community. This is the purpose of the talk.

We will explain what the precise problem specification of the algorithm solves, and
give some examples for reducing some seemingly different problems to this pattern.
We will also make some brief comments on how the algorithm works. Finally, we will
mention some mention some recent results which were obtained with the help of this
algorithm. For further details on the algorithms, see [1, 3]. The original publication of
Collins is [4]. For implementations, see [2, 5, 6].

By the way, the answer to the problem stated at the beginning of this abstract is that
the formula is true if and only if −1 ≤ z ≤

√
2.
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Abstract. Extensions of the concept of distance to more than two elements have
been recently proposed in the literature to measure to which extent the elements
of a set are spread out. Such extensions may be particularly useful to define dis-
persion measures for instance in statistics or data analysis. In this note we provide
and discuss an extension of the concept of distance, called n-distance, as func-
tions of n variables. The key feature of this extension is a natural generalization
of the triangle inequality. We also provide some examples of n-distances that
involve geometric and graph theoretic constructions.

1 Introduction

The notion of metric space is one of the key ingredients in many areas of pure and
applied mathematics, particularly in analysis, topology, and statistics.

Denote the half line [0,+∞[ by R+. Recall that a metric space is a pair (X, d),
where X is a nonempty set and d is a distance on X , that is a function d : X2 → R+

satisfying the following properties:

(i) d(x1, x2) = 0 if and only if x1 = x2,
(ii) d(x1, x2) = d(x2, x1) for all x1, x2 ∈ X ,
(iii) d(x1, x2) 6 d(x1, z) + d(z, x2) for all x1, x2, z ∈ X .

Property (iii) is often refereed to as triangle inequality.
It is natural to generalize the concept of metric space by considering a notion of

“distance” among more than two elements of X . The idea behind such a notion is to
measure in some sense how spread out the elements of X are. Several attempts in this
line have been proposed for instance in [2–4, 6, 8, 9]. For example, Martı́n and Mayor
[6] recently introduced the concept of multidistance as follows. Let Sn denote the set
of all permutations on {1, . . . , n}. A multidistance on a nonempty set X is a function
d : ∪n>1 X

n → R+ satisfying the following properties for every integer n > 1:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,
(ii) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ X and all π ∈ Sn,
(iii) d(x1, . . . , xn) 6

∑n
i=1 d(xi, z) for all x1, . . . , xn, z ∈ X .
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Properties of multidistances as well as instances such as Fermat multidistance and
smallest enclosing ball multidistances have been investigated for example in [5–7, 1]

In this short note we introduce and discuss the following alternative generalization
of the concept of metric space by considering the underlying distance as a function of
n > 2 variables.

Definition 1. Let n > 2 be an integer. We say that an n-metric space is a pair (X, d),
whereX is a nonempty set and d is an n-distance onX , that is a function d : Xn → R+

satisfying the following properties:

(i) d(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,
(ii) d(x1, . . . , xn) = d(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ X and all π ∈ Sn,
(iii) There exists K ∈ [0, 1] such that d(x1, . . . , xn) 6 K

∑n
i=1 d(x1, . . . , xn)|xi=z

for all x1, . . . , xn, z ∈ X .

We denote by K∗ the smallest constant K for which (iii) holds. For n = 2, we assume
that K∗ = 1.

Clearly, Definition 1 gives an extension of the concept of metric space. Indeed, a
function d : X2 → R+ is a distance if and only if it is a 2-distance.

We observe that an important feature of n-distances is that they have a fixed number
of arguments, contrary to multidistances (see Martı́n and Mayor [6]), which have an
indefinite number of arguments. In particular, an n-distance can be defined without
referring to any given 2-distance.

Example 1 (Drastic n-distance). The function d : Xn → R+ defined by d(x1, . . . , xn)
= 0, if x1 = · · · = xn, and d(x1, . . . , xn) = 1, otherwise, is an n-distance, called the
drastic n-distance, for which the best constant K∗ is given by 1

n−1 for every n > 2.
The function d′ : Xn → R+ defined by d′(x1, . . . , xn) = |{x1, . . . , xn}| − 1 is an
n-distance for which the best constant is K∗ = 1.

Proposition 1. Let d and d′ be n-distances on X and let λ > 0. The following asser-
tions hold.

(1) d+ d′ and λ d are n-distance on X .
(2) d

1+d is an n-distance on X , with value in [0, 1].

2 A generalization of n-distances

Condition (iii) in Definition 1 can be generalized as follows.

Definition 2. Let g : Rn+ → R+ be a symmetric function. We say that a function d : Xn

→ R+ is a g-distance if it satisfies conditions (i) and (ii) in Definition 1 as well as the
condition

d(x1, . . . , xn) 6 g
(
d(x1, . . . , xn)|x1=z , . . . , d(x1, . . . , xn)|xn=z

)

for all x1, . . . , xn, z ∈ X .
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In view of Proposition 1, it is natural to ask that d+ d′, λ d, and d
1+d be g-distances

whenever so are d and d′. The following proposition provides sufficient conditions on
g for these properties to hold. We observe that these conditions are rather strong.

Proposition 2. Let g : Rn+ → R+ be a symmetric function. The following assertions
hold.

(1) If g is positively homogeneous, i.e., g(λ r) = λ g(r) for all r ∈ Rn+ and all λ > 0,
then for every λ > 0, λ d is a g-distance whenever so is d.

(2) If g is superadditive, i.e., g(r+ s) > g(r) + g(s) for all r, s ∈ Rn+, then d+ d′ is a
g-distance whenever so are d and d′.

(3) If g is both positively homogeneous and superadditive, then it is concave.
(4) If g is bounded from below and additive, that is, g(r + s) = g(r) + g(s) for all

r, s ∈ Rn+, then and only then there exist λ1, . . . , λn > 0 such that

g(r) =
n∑

i=1

λi ri (1)

(5) Suppose that g has the form (1) with λi > 1 for i = 1, . . . , n. Then d
1+d is a

g-distance whenever so is d.

3 Examples

We end this note by considering a few examples of n-distances that arise in different
fields of pure and applied mathematics.

Example 2 (Basic examples). Given a metric space (X, d) and an integer n > 2, the
maps dmax : X

n → R+ and dΣ : Xn → R+ defined by

dmax(x1, . . . , xn) = max
16i<j6n

d(xi, xj)

dΣ(x1, . . . , xn) =
∑

16i<j6n
d(xi, xj)

are n-distances for which the best constants are given by K∗ = 1
n−1 .

Example 3 (Geometric constructions). Let x1, . . . , xn be n > 2 arbitrary points in Rk
(k > 2) and denote byB(x1, . . . , xn) the smallest closed ball for the Euclidean distance
containing x1, . . . , xn. It can be shown that this ball always exists, is unique, and can
be determined in linear time.

(1) The radius of B(x1, . . . , xn) is an n-distance whose best constant K∗ satisfies
1

n−1 6 K∗ and we conjecture that K∗ = 1
n−1 .

(2) The k-dimensional volume of B(x1, . . . , xn) is an n-distance and we conjecture
that the best constantK∗ is given byK∗ = 1

n−1−(1/2)k . Actually this value forK∗

is correct for k = 2.
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Example 4 (Fermat point based n-distances). Given a metric space (X, d), and an in-
teger n > 2, the Fermat set FY of any n-element subset Y = {y1, . . . , yn} of X , is
defined as

FY =
{
x ∈ X :

n∑

i=1

d(xi, x) 6
n∑

i=1

d(xi, z) for all z ∈ X
}
.

Since the function h : X → R+ defined by h(x) =
∑n
i=1 d(xi, x) is continuous and

bounded from below by 0, the Fermat set of an n-element subset of X is never empty.
Hence, we can define a function dF : Xn → R+ by setting

dF (x1, . . . , xn) = min
{ n∑

i=1

d(xi, x) : x ∈ X
}
.

Thus defined, the map dF : Xn → R+ is an n-distance onX for which the best constant
K∗ satisfies K∗ 6 1

d(n−1)/2e .

4 Further research

In this note, we have introduced and discussed an extension of the concept of distance,
called n-distance, as functions of n-variables. The key feature of this extension is a
natural generalization of the triangle inequality. Finding the best constant for various
classes of n-distances and studying their topological properties are topics of current
research.
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Let us start with the Frank functional equation: under which conditions are a binary
copula [20] F : [0, 1]2 → [0, 1] and its dual G : [0, 1]2 → [0, 1] given by G(x, y) =
x + y − F (x, y) both associative? The answer given in [7] is that a copula F with
this property is either a so-called Frank copula [6, 16, 19] or an ordinal sum of Frank
copulas.

Here we will first study the following:

Problem 1. When are a 1-Lipschitz aggregation function A : [0, 1]2 → [0, 1] and its
dual A∗ : [0, 1]2 → [0, 1] given by A∗(x, y) = x+ y −A(x, y) both associative?

A functionA : [0, 1]2 → [0, 1] is called a (binary) aggregation function if it is mono-
tone non-decreasing and satisfies the boundary conditionsA(0, 0) = 0 andA(1, 1) = 1.
We shall denote the set of all binary aggregation functions by A.

A binary aggregation function A : [0, 1]2 → [0, 1] is said to be 1-Lipschitz [10–12,
17] if, for all (x, y), (x′, y′) ∈ [0, 1]2 we have

|A(x, y)−A(x′, y′)| ≤ |x− x′|+ |y − y′|.
The set of all binary 1-Lipschitz aggregation functions will be denoted by A1.

A binary aggregation function A : [0, 1]2 → [0, 1] is said to have neutral element
e ∈ [0, 1] if, for all x ∈ [0, 1], we have A(x, e) = A(e, x) = x. The set of all binary
1-Lipschitz aggregation functions with neutral element e by will be denoted by A1,e.

Given a binary function F : [0, 1]2 → R, its dual [9] F ∗ : [0, 1]2 → R is defined
by F ∗(x, y) = x + y − F (x, y). Note that, even if A : [0, 1]2 → [0, 1] is a binary
aggregation function, its dual A∗ is not necessarily monotone non-decreasing nor is its
range a subset of [0, 1]. However, for an arbitrary binary function F : [0, 1]2 → R we
have that both F and its dual F ∗ are monotone non-decreasing if and only if both F
and F ∗ are 1-Lipschitz.

Summarizing (see Theorem 1 in [17]), a binary aggregation function A ∈ A is
1-Lipschitz if and only if its dual A∗ is a binary 1-Lipschitz aggregation function.
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Recall that a (binary) quasi-copula [2, 8] Q : [0, 1]2 → [0, 1] is an element of A1,1,
i.e., a binary aggregation function on the unit interval [0, 1] which is 1-Lipschitz and
has neutral element 1.

A (binary) copula [1, 19, 20] C : [0, 1]2 → [0, 1] is a supermodular quasi-copula,
i.e., for all x,y ∈ [0, 1]2

C(x ∨ y) + C(x ∧ y) ≥ C(x) + C(y).

The set of all binary copulas will be denoted by C.
Coming back to Problem 1, for binary 1-Lipschitz aggregation functions we obtain

the following result:

Proposition 1. A binary 1-Lipschitz aggregation function A and its dual A∗ are both
associative if and only if {A(0, 1), A(1, 0)} ⊆ {0, 1} and

(i) if A(0, 1) = A(1, 0) = 0 then A is a Frank copula or an ordinal sum of Frank
copulas;

(ii) if A(0, 1) = A(1, 0) = 1 then A∗ is a Frank copula or an ordinal sum of Frank
copulas;

(iii) if A(0, 1) = 0 and A(1, 0) = 1 then A is the projection onto the first coordinate,
i.e., for all (x, y) ∈ [0, 1]2 we have A(x, y) = x;

(iv) ifA(0, 1) = 1 andA(1, 0) = 0 thenA is the projection onto the second coordinate,
i.e., for all (x, y) ∈ [0, 1]2 we have A(x, y) = y.

Problem 2. Is there a 1-Lipschitz aggregation function A : [0, 1]2 → [0, 1] with neutral
element such that also its dual A∗ : [0, 1]2 → [0, 1] has a neutral element?

In complete analogy to aggregation functions acting on [0, 1], it is possible to define
aggregation functions acting on an arbitrary interval [a, b] ⊂ R. For instance, a function
Q : [a, b]

2 → [a, b] is a quasi-copula on [a, b] if it satisfies Q(a, a) = a, Q(b, b) = b
and is monotone non-decreasing in each coordinate (i.e., Q is an aggregation function
on [a, b]), and if Q is 1-Lipschitz and has neutral element b.

In [3] the ordinal sum A : [0, 1]2 → [0, 1], denoted by A = (〈0, b, A1〉, 〈b, 1, A2〉),
of two aggregation functions A1 : [0, b]

2 → [0, b] and A2 : [b, 1]
2 → [b, 1] was defined

as follows:

A(x, y) =





A1(x, y) if (x, y) ∈ [0, b]
2
,

A2(x, y) if (x, y) ∈ ]b, 1]
2
,

A1(x ∧ b, y ∧ b) +A2(x ∨ b, y ∨ b)− b otherwise.

Based on this we obtain the following results (compare also [17]):

Proposition 2. Let A : [0, 1]2 → [0, 1] be an aggregation function and e ∈ ]0, 1[. Then
we have A ∈ A1,e if and only if there is a quasi-copula A1 on [0, e] and a dual A2 of a
quasi-copula on [e, 1] such that

A = (〈0, e, A1〉, 〈e, 1, A2〉) (1)
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Observe that the function A given by (1) satisfies A(x, y) = x + y − e for each
(x, y) /∈ [0, e]

2∪ [e, 1]2. Moreover, A∗ = (〈0, e, A∗1〉, 〈e, 1, A∗2〉) is a 1-Lipschitz aggre-
gation function with annihilator e, and we have A∗(x, y) = e whenever x ∧ y ≤ e ≤
x ∨ y.

Now we can give the solution of Problem 2:

Corollary 1. A function A : [0, 1]2 → [0, 1] is a 1-Lipschitz aggregation function with
neutral element such that also its dual A∗ has a neutral element if and only if A is a
quasi-copula or the dual of a quasi-copula.

As a consequence, we obtain the same result for 1-Lipschitz aggregation functions
with annihilator:

Corollary 2. A function A : [0, 1]2 → [0, 1] is a 1-Lipschitz aggregation function with
annihilator such that also its dual A∗ has an annihilator if and only if A is a quasi-
copula or the dual of a quasi-copula.

The third problem we are investigating was also motivated by some result for cop-
ulas and their duals. It was shown in [4] (using a stochastic approach) and in [18] (by
means of an algebraic proof) that for each copula C also the product C ·C∗ is a copula.

Problem 3. Fix some set of binary aggregation functions B ⊆ A1 and consider, for
F ∈ A and A ∈ B, the function F (A,A∗) : [0, 1]2 → [0, 1] defined by

F (A,A∗)(x, y) = F (A(x, y), A∗(x, y)).

For which aggregation functions F ∈ A do we have F (A,A∗) ∈ B for each A ∈ B?

Proposition 3. For binary 1-Lipschitz aggregation functions and for binary 1-Lipschitz
aggregation functions with neutral element e ∈ [0, 1] we have:

(i) F (A,A∗) ∈ A1 for all A ∈ A1 if and only if F ∈ A1;
(ii) F (A,A∗) ∈ A1,e for all A ∈ A1,e if and only if F ∈ A1,e.

Considering the special cases A1,1 and A1,0, Proposition 3(ii) immediately implies
the following:

Corollary 3.

(i) F (A,A∗) is a quasi-copula for each quasi-copula A if and only if F is a quasi-
copula;

(ii) (F (A,A∗))∗ is a quasi-copula for each A ∈ A1 such that A∗ is a quasi-copula if
and only if F ∗ is a quasi-copula.

In the case of copulas, two additional properties are needed: ultramodularity [14,
15] and Schur concavity [5, 21] on some subset of [0, 1]2.

A function F : [0, 1]2 → [0, 1] is said to be ultramodular on the upper left triangle

∆ = {(x, y) ∈ [0, 1]2 | x ≤ y}
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if for all x,y ∈ ∆ with x ≤ y and all h ≥ 0 such that x+ h,y + h ∈ ∆ we have

F (x+ h)− F (x) ≤ F (y + h)− F (y).

A copula C is called Schur concave on the upper left triangle ∆ if, for each x ∈
]0, 1[ and for all (α, β) ∈ ∆ ∩

[
0,min(x, 1− x2)

]
, we have

C(x− α, x+ α) ≤ C(x− β, x+ β).

In [13, Theorem 3.1] the following sufficient condition for F (C,C∗) being a copula
for each copula C was given:

Theorem 1. Let C be a binary copula and let F be a binary copula which is ultramod-
ular and Schur concave on the upper left triangle ∆. Then the function F (C,C∗) is a
copula.

Here one of the results of [4, 18] (namely, that C · C∗ is a copula for each copula
C) is contained as a special case, since the product copula Π obviously is ultramodular
and Schur concave on the upper left triangle ∆.

Note that the ultramodularity and the Schur concavity on the upper left triangle ∆
are preserved by our construction (see [13, Proposition 3.2]):

Proposition 4. Let C,F be binary copulas which are ultramodular and Schur concave
on the upper left triangle ∆. Then also the copula F (C,C∗) is ultramodular and Schur
concave on ∆.

It turns out that the ultramodularity of F on the upper left triangle ∆ is a necessary
condition if we want F (C,C∗) to be a copula for each copula C [13, Theorem 3.3]:

Theorem 2. Let F be a binary aggregation function such that for each binary copula
C the function F (C,C∗) is a copula. Then the function K : [0, 1]2 → [0, 1] given
by K(x, y) = F (x ∧ y, x ∨ y) is a copula and F is ultramodular on the upper left
triangle ∆.

We conclude this paper with several positive and negative examples concerning
Theorems 1 and 2 (most of them are taken from [13, Section 4]).
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Abstract. The well-known equation of associativity for binary operations may
be naturally generalized to variadic operations. In this talk, we illustrate different
approaches that can be considered to study this extension of associativity, as well
as some of its generalizations and variants, including barycentric associativity
and preassociativity.

1 Introduction

Let X and Y be arbitrary nonempty sets. We regard tuples x in Xn as n-strings over
X . We let X∗ =

⋃
n>0X

n be the set of all strings over X , with the convention that
X0 = {ε}, where ε is called the empty string. We denote the elements of X∗ by bold
roman letters x, y, z. If we want to stress that such an element is a letter of X , we use
non-bold italic letters x, y, z, etc. The length of a string x is denoted by |x|. We endow
the set X∗ with the concatenation operation, for which ε is the neutral element, i.e.,
εx = xε = x (in other words, we consider X∗ as the free monoid generated by X).
Moreover, for every string x and every integer n > 0, the power xn stands for the string
obtained by concatenating n copies of x. In particular we have x0 = ε.

Let Y be a nonempty set. Recall that, for every integer n ≥ 0, a function F : Xn →
Y is said to be n-ary. Similarly, a function F : X∗ → Y is said to have an indefinite ar-
ity or to be variadic. A variadic function F : X∗ → Y is said to be a variadic operation
on X (or an operation for short) if ran(F ) ⊆ X ∪{ε}. It is standard if F (x) = F (ε) if
and only if x = ε, and ε-standard if ε ∈ Y and we have F (x) = ε if and only if x = ε.

The main functional properties for variadic functions that we present and investigate
in this talk are given in the following definition (see [2, 4, 6]).

Definition 1. A function F : X∗ → X∗ is said to be associative if, for every x,y, z ∈
X∗, we have

F (xyz) = F (xF (y)z).

It is said to be barycentrically associative (or B-associative) if, for every x,y, z ∈ X∗ ,
we have

F (xyz) = F (xF (y)|y|z).

A variadic functionF : X∗ → Y is said to be preassociative if, for every x,y,y′, z ∈
X∗ , we have

F (y) = F (y′) =⇒ F (xyz) = F (xy′z).
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It is said to be barycentrically preassociative (or B-preassociative) if for every x,y,
y′, z ∈ X∗ , we have

F (y) = F (y′)
|y| = |y′|

}
=⇒ F (xyz) = F (xy′z).

The following results show that preassociativity is a weaker form of associativity,
and that B-preassociativity is a weaker form of B-associativity.

Proposition 1 ([2]). A function F : X∗ → X∗ is associative if and only if it is preas-
sociative and satisfies F ◦ F = F .

Proposition 2 ([6]). A function F : X∗ → X∗ is B-associative if and only if it is B-
preassociative and satisfies F (x) = F (F (x)|x|) for all x ∈ X∗.

Throughout this note, we focus on the associativity and preassociativity properties,
leaving the discussion on the properties of B-associative and B-preassociative functions
to the oral presentation.

2 Factorization of preassociative functions

Recall that an equivalence relation θ on X∗ is called a congruence if it satisfies

(x1θy1 & x2θy2) =⇒ x1x2θy1y2.

The definition of preassociativity and B-preassociativity can be restated as follows. As
usual, for any function F : Z → Y , we denote by ker(F ) the equivalence relation
defined by ker(F ) = {(x, y) ∈ Z2 | F (x) = F (y)}.

Lemma 1. A variadic function F : X∗ → Y is preassociative if and only if ker(F ) is
a congruence on X∗.

If F : Z → Y and if g : Y → Y ′ is an injective function, then ker(F ) = ker(g ◦F ).
Hence, we have the following easy corollary.

Corollary 1 ([3, 4]). Let F : X∗ → Y be a variadic function. If F is preassociative
and g : ran(F )→ Y ′ is constant or one-to-one, then g ◦ F is preassociative.

In general, given a preassociative function F : X∗ → Y , characterizing the maps
g : Y → Y ′ such that g ◦ F is preassociative is a difficult task since it amounts to
characterizing the congruences above ker(F ) on X∗.

It is easily seen that the only one-to-one associative function F : X∗ → X∗ is the
identity. The next result shows that an associative function which is non-injective is in
some sense highly non-injective.

Proposition 3 ([2]). Let F : X∗ → X∗ be an associative function different from the
identity. Then there is an infinite sequence of associative functions (Fm : X∗ → X∗)m≥1
such that ker(id)  · · ·  ker(F 2)  ker(F 1) ⊆ ker(F ).

63



By carefully choosing g in Corollary 1 we can give the following characterization
of preassociative functions (see [2, 4, 6]).

Proposition 4 (Factorization of preassociative functions). Let F : X∗ → Y be a
function. The following conditions are equivalent.

(i) F is preassociative.
(ii) There exists an associative function H : X∗ → X∗ and a one-to-one function

f : ran(H)→ Y such that F = f ◦H .

For any variadic function F : X∗ → Y and any integer n ≥ 0, we denote by Fn the
n-ary part ofF , i.e., the restrictionF |Xn ofF to the setXn. We also letX+ = X∗\{ε}
and denote the restriction F |X+ of F to X+ by F+.

Corollary 2. Let F : X∗ → Y be a standard function. The following conditions are
equivalent.

(i) F is preassociative and satisfies ran(F1) = ran(F+).
(ii) There exists an associatve ε-standard operation H : X∗ → X ∪ {ε} and a one-

to-one function f : ran(H+)→ Y such that F+ = f ◦H+.

Corollary 2 enables us to produce axiomatizations of classes of preassociative functions
from known axiomatizations of classes of associative functions. Let us illustrate this
observation on an example. Further examples can be found in [5]. Let us recall an
axiomatization of the Aczélian semigroups.

Proposition 5 ([1]). Let I be a nontrivial real interval, possibly unbounded. An opera-
tionH : I2 → I is continuous, one-to-one in each argument, and associative if and only
if there exists a continuous and strictly monotone function φ : I→ J such that

H(x, y) = φ−1(φ(x) + φ(y)),

where J is a real interval of the form ] − ∞, b[, ] − ∞, b], ]a,+∞[, [a,+∞[ or R =
] −∞,+∞[ (b ≤ 0 ≤ a). For such an operation H , the interval I is necessarily open
at least on one end. Moreover, φ can be chosen to be strictly increasing.

Corollary 2 leads to the following characterization result.

Theorem 1 ([5]). Let I be a nontrivial real interval, possibly unbounded. A standard
function F : I∗ → R is preassociative and satisfies ran(F+) = ran(F1), and F1 and
F2 are continuous and one-to-one in each argument if and only if there exist continuous
and strictly monotone functions φ : I→ J and ψ : J→ R such that

Fn(x) = ψ

(
n∑

i=1

φ(xi)

)
, n ≥ 1,

where J is a real interval of one of the forms ] − ∞, b[, ] − ∞, b], ]a,+∞, [a,+∞[
or R =] − ∞,∞[ (b ≤ 0 ≤ a). For such a function F , we have ψ : F1 ◦ φ−1 and
I is necessarily open at least on one end. Moreover, φ can be chosen to be strictly
increasing.
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3 Preassociativity and transition systems

As illustrated below, preassociative functions F : X∗ → Y can be characterized as
functions that can be computed through some special transition systems. In this note,
a transition system is a triple A = (Q, q0, δ) where Q is a set of states, q0 ∈ Q is an
initial state and δ : Q×X → Q is a transition map. As usual, the map δ is extended to
Q×X∗ by setting for any q ∈ Q,

δ(q, ε) = q

δ(q,xy) = δ(δ(q,x), y), y ∈ X,x ∈ X∗.
We say that a function F : X∗ → Y is right-preassociative if it satisfies F (x) =

F (y) =⇒ F (xz) = F (yz) for every xyz ∈ X∗.
Definition 2. Assume that F : X∗ → Y is an onto right-preassociative function. We
define the transitions system A(F ) = (Y, q0, δ) by

q0 = F (ε) and δ(F (x), z) = F (xz).

We call A(F ) the transitions system associated with F .

The language of transition systems give an elegant way to characterize preassocia-
tivity. Indeed, transition systems that arise from preassociative functions can be charac-
terized in the following way. For any transition system A = (Q, q0, δ) and any q ∈ Q,
let LA(q) = {x ∈ X∗ | δ(q0,x) = q} and LA = {LA(q) | q ∈ Q}.
Theorem 2. Let A = (Q, q0, δ) be a transition system. The following conditions are
equivalent.

(i) There is a preassociative function F : X∗ → Q such that A = A(F ).
(ii) For every z ∈ X , the map defined on LA by L 7→ zL = {zx | x ∈ L} is valued

in {2L | L ∈ LA}.
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Abstract. We discuss the requirements on a fuzzy stochastic system describing
probabilities of fuzzy events. We present (and sometimes reject) alternative ways.
We show the principal contribution of D. Butnariu and E. P. Klement to this re-
search and we summurize the state-of-the-art and perspectives.

1 Motivation

The study of logic in ancient times started from propositions which were either true or
false. Then it was found that there are statements which violate this principle for various
reasons; we list four of them:

R1 There are logical paradoxes—sentences which cannot be assigned a meaningful
truth value.

R2 The validity of some statements is not known now, but it will be determined by a
stochastic experiment whose result cannot be predicted with certainty.

R3 Some properties can hardly be described in two-valued (yes-no) terms even if we
have all supporting information. More truth values can describe the “truth degree”
satisfactorily.

R4 Some experiments influence the environment irrevertibly and they do not admit
repetition under the same conditions. We can evaluate them in yes-no terms, but
not all possible tests can be made simultaneously or repeated many times.

Here we deal with a combination of R2 and R3. Problem R4 leads to quantum logic; its
combination with the above sources is more complex and less advanced; we refer to a
new book [21] for more details on this approach.

The idea of solving problem R3 by the use of more than two truth degrees is rather
natural; it was introduced independently by several authors. The most successful (al-
though by far not the first) was the intrduction of fuzzy sets by L. A. Zadeh [23].

Fuzzy events can also be subject to stochastic uncertainty; we may make stochastic
experiments with fuzzy outcomes. Description of such systems requires to define prob-
ability of fuzzy events. This was soon recognized and suggested by L. A. Zadeh [24];
he proposed to define a probability of a fuzzy event A with a membership function µA
as

s(A) =

∫
µA dP , (1)

where P is a classical probability measure. However, this formula itself is not satisfac-
tory. To specify its meaning, we have to determine the range of integration (usually the
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set of all reals), the probability measure P and also the domain of s, i.e., the family of
all events whose probability is defined. We concentrate on the event structures and on
the probability defined on them. In the sequel, we shall discuss various requirements
on these objects and we select a “main line” of development in this field. Although the
advocated “solution” has already been published in [20], its detailed motivation and
alternatives have not been presented till now. We also suggest its modification.

2 Classical probability and its alternatives

The event structure, E , is the set of all propositions that can be tested in an experiment,
equipped with logical operations (conjunction �, disjunction ⊕, and negation ′). A
probability is a function s : E → [0, 1] satisfying some axioms. What is now considered
a “classical” probability is the following axiomatics by A. N. Kolmogorov:

E1b E is a Boolean algebra.
E2σ E is closed under countable logical operations.
E3c E is isomorphic to a family of subsets of some set (universe) with the set-theoretical

operations.1

P1 s(0) = 0, s(1) = 1,
P2 A�B = 0 =⇒ s(A⊕B) = s(A) + s(B),
P3 s preserves limits of increasing sequences, i.e., An ↗ A =⇒ s(An)↗ s(A).

Alternatives to principle E2σ are sometimes considered, mainly the following:

E2f E is closed under finite logical operations.
E2a E is closed under logical operations of any arity.

Requiring only finite operations (E2f) appeared to be a too weak assumption which
does not admit a sufficiently strong notion of continuity. Requiring operations of any
arity (E2a) appeared to be a too strong assumption; it leads to Banach–Tarski paradox
etc.

Principle E3c is not obvious. Although each Boolean algebra has a Stone repre-
sentation, countable logical operations need not correspond to countable set-theoretical
operations. A weaker correspondence follows from the Loomis–Sikorski Theorem:

E3c- E is a σ-homomorphic image of a family of subsets of some set (universe) with
the set-theoretical operations.

The difference seems not to be essential for the theory. Principle E3c makes the theory
easier, but some problems (e.g. neglecting possible events with zero probability) arise
from this choice and they are often ignored.

The conjunction of principles P2 (finite additivity) and P3 is equivalent to σ-additivity.
Without P3, we have only finite additivity, which appears to be insufficient for probabil-
ity theory. On the other hand, complete addtitivity would be a too restrictive condition,
excluding even all continuous ditributions.

1 The set-theoretical operations correspond to the logical ones, the intersection to the conjuction,
the union to the disjunction, the complement to the negation.
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3 MV-algebras

Obviously, when generalizing to fuzzy statements, we have to abandon principle E1b
and replace it by a weaker condition. A problem is what could be a replacement of a
Boolean algebra. One candidate is an MV-algebra [5]. We may consider an axiomatic
system based on

E1M E is an MV-algebra.

and principles E2σ, P1, P2, P3. Due to E2σ, we have in fact a σ-MV-algebra with a
σ-additive measure. Unless it is a σ-algebra, it is not representable by sets and E3c can
be replaced by

E3L E is isomorphic to a family of fuzzy subsets of some set (universe) with the Łuka-
siewicz operations.

The latter requirement is often omitted; the consequences are analogous to the case of
Boolean σ-algebras. There is even an analogue of the Loomis–Sikorski Theorem [15]:

E3M– E is a σ-homomorphic image of a family of fuzzy subsets of some set (universe)
with the Łukasiewicz operations.

The theory of σ-additive measures on σ-MV-algebras is developed analogously to
the classical probability theory. In fact, each σ-additive measure s on a σ-MV-algebra E
has a unique corresponding σ-additive measure P on the Boolean σ-algebra of Boolean
elements of E and (1) holds.

Thus σ-MV-algebras offer a rich and well-developed fuzzification of probability
theory. However, it is difficult to justify the choice of Łukasiewicz operations; there are
many other fuzzy logical operations which could be considered, too. This is the topic
of the following sections.

4 Tribes

More generally, one may want an algebra E based on a triple of operations—a triangular
norm, a triangular conorm, and a fuzzy negation.

E1f (preliminary vague formulation) E is an algebra with the following operations: a
triangular norm, a triangular conorm, and a fuzzy negation, forming a de Morgan
triple.

Additional conditions can be required and they may restrict the choice of fuzzy logical
operations; we postpone the precise formulation. There seems not to be an established
name for such an algebra2. This was the axiomatic approach of Butnariu and Klement,

2 There is a well-developed theory of BL-algebras (=algebras of basic logic), initiated by
P. Hájek in [7]. It uses a t-norm and its residuum (=residuated implication) as basic connec-
tives. The negation is considered as a derived connective and, in general, there may be no
(fuzzy) disjunction dual to the (fuzzy) conjunction represented by the t-norm. This approach
is well-motivated by the logic of deduction, which is based on the implication as the prin-
cipal connective. However, the introduction of probability on BL-algebras suffers numerous
problems. We do not deal with this approach here.
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successfully developed in their monograph [4]3. We again need countable logical oper-
ations, thus we assume E2σ, and representation by fuzzy sets in a new form:

E3f E is isomorphic to a family of fuzzy subsets of some set (universe) with the fuzzy
operations interpreting those of the algebra considered in E1f.

A non-empty family of fuzzy subsets satisfying E2σ and E3f is called a tribe [4]. The
choice of the de Morgan triple—a t-norm, a t-conorm, and a fuzzy negation—is free,
but the same for all definitions4. For the definition of a probability measure, principles
P1 and P3 are kept, but P2 appears to be too week, especially for t-norms without zero
devisors. Thus it was replaced by the valuation property:

P2V s(A⊕B) + s(A�B) = s(A) + s(B).

When the fuzzy logical operations are Łukasiewicz operations, this approach co-
incides with that of Section 3 with E3L. Then we speak of a Łukasiewicz tribe. In
contrast to it, other choices of fuzzy operations are considered. In most of their work,
Butnariu and Klement concentrated on so-called Frank t-norms and conorms which
contain Łukasiewicz operations and max-min operations as special cases [6]. For max-
min operations, P2V appears to be a very weak condition and it is difficult to find a
good substitute of it. Thus max-min operations were also abandoned and Archimedean
Frank operations remained in the center of interest. Then one of the main results is that
each probability is a convex combinations of one component of the form (1) and a com-
ponent depending only on the support of A, SuppA = {x | µA(x) > 0}. This is a
consequence of P3; in [3], we proposed to strengthen it to

P3+ s preserves limits of monotonic sequences, i.e., An ↗ A =⇒ s(An) ↗ s(A)
and An ↘ A =⇒ s(An)↘ s(A).

After this modification (and for Archimedean Frank operations), only probabilities of
the form (1) remain. In the preceding approches, P3 and P3+ were equivalent, thus this
change does not modify the older notions. Moreover, for Archimedean Frank opera-
tions, a tribe (satisfying E2σ and E3f), it was proved in [4] that E3L is also satisfied,
and probabilites satisfying P1, P2V, P3+ satisfy also P2 [3].

This approach was quite successful. However, it is difficult to motivate the choice
of the de Morgan triple. One may consider it useful to apply different t-norms and
t-conorms (pointwise) in different parts of the universe. This would lead to a direct
product of tribes, which need not be a tribe. It is quite desirable to have the class of
“fuzzy probability spaces” closed under products. The class of tribes also is not closed
under σ-homomorphisms, for the same reason as in Boolean σ-algebras and σ-MV-
algebras. Thus the underlying class of algebras in E1f cannot form a variety. With this
intension, the following algebraic generalization was suggested.

3 Similar ideas appeared already in [8, 9].
4 Up to a change of scale of truth degrees by an increasing bijection, the fuzzy negation may be

assumed standard, α 7→ 1− α, without loss of generality.
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5 Common generalization

Trying to find an appropriate underlying variety, we define a fuzzy algebra5. It is a
bounded lattice E with an antitone involution ′ and binary operations �,⊕. Operations
�,⊕ satisfy the usual requirements on conjunctions and disjunctions (resp. t-norms and
t-conorms): they are commutative, associative, and have neutral elements 0, 1, respec-
tively. Monotonicity is expressed as distributivity with respect to the lattice operations:

(A ∧ C)�B = (A�B) ∧ (C �B) ,

(A ∨ C)�B = (A�B) ∨ (C �B)

and similarly for ⊕, as a consequence of the De Morgan law A ⊕ B = (A′ �B′)′.
Additionally, we assume the Kleene condition6 A ∧A′ ≤ B ∨B′.

The proposed new axiomatics uses

E1f (exact formulation) E is a fuzzy algebra.

Principle E2σ is assumed, in the sense that E is closed under all countable operations.
Closedness under countable lattice operations (used in [20]) suffices; it implies also
the closedness under the (monotonic) countable fuzzy logical operations. The reverse
implication holds only for some fuzzy logical operations, but these seem to include all
important cases. Fuzzy set representation E3f is not required. Probability measures are
subject to principles P1, P2V, and P3+.

In [20], monotonicity of � and ⊕ is strengthened to
(∧

n∈N
An

)
�B =

∧

n∈N
(An �B) ,

(∨

n∈N
An

)
�B =

∨

n∈N
(An �B) .

This implies also continuity of the t-norms and t-conorms interpreting �,⊕, respec-
tively. The appropriateness of this condition can be a point of future discussion.

This is a common generalization of σ-MV-algebras (which need not be represented
by fuzzy sets) and tribes (which admit to use other fuzzy operations than the Łukasie-
wicz ones). The principal new examples covered by this approach are direct products
of the above and also products of tribes based on different t-norms and t-conorms.

6 Conclusions

We showed a common generalization of preceding models of probability of fuzzy
events. We discussed which features seem necessary and where we have several op-
tions; future experience may decide which of them is the most perspective one.

5 The term fuzzy algebra has been already used in several different meanings. We keep it here
at least for temporary use because it is a very natural name. In [20], its σ-complete version
was introduced and named a fuzzy σ-algebra, although this term has been already used by
E.P. Klement in [9] for a less general notion.

6 The Kleene condition does not seem necessary, but it is satisfied in all models based on fuzzy
sets. With this condition, E becomes also a Kleene algebra.
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The next task is to generalize results (obtained for σ-MV-algebras and tribes) to
the new context. In particular, it is highly desirable to know under which conditions
the probability measures can be expressed in the integral form (1). Other results, like
a generalization of Loomis–Sikorski Theorem etc., could be also of interest from both
theoretical and practical points of view.
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Motivated by the celebrated characterization theorem of quasi-arithmetic means (cf.
[11]) discovered independently by A. N. Kolmogorov [12], M. Nagumo [15] and B. de
Finetti [9] in the thirties of the last century and also by J. Aczél [1] for fixed number
of variables in the fourties, it is tempting to search for similar results in various other
classes of means, such as the classes of Bajrakterević means [4, 5], Daróczy means [6,
7], Gini means [10], Matkowski means [13] and Stolarsky means [20]. Contrary to the
case of quasi-arithmetic means, some of the characterization theorems related to the
above classes of means involve properties expressed in terms of functional inequalities
instead of functional equations. Several known results from the papers [2, 3, 8, 14, 16–
19] will be discussed and compared, but also many challenging open problems will be
described.
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Abstract. In this paper we concentrate on subadditiveness in the theory of ag-
gregation functions, nonadditive measure theory and related integrals. First we
considere the finite case, and then we give some hints on more complex infinite
case.

1 Introduction

To point out the importance of subadditive functions we cite M. Kuczma [6]: ”The
natural contrapart of the Cauchy equation would be the inequality

f (x+ y)6 f (x)+ f (y).

It seems so the more interesting and astounding that the convex functions and the
additive functions share so many properties that such is not the case of additive func-
tions and functions satisfying the previous inequality.”

In this paper we concentrate on subadditiveness in the theory of aggregation func-
tions combined with homogenity, nonadditive measure theory and related integrals.
First we considere the finite case, and then we give some hints on more complex in-
finite case. We use the notions from [4].

Definition 1. A function f : Rn→ [0,∞] is sublinear if

f (αx+βy)6 α f (x)+β f (y) (x,y ∈ Rn,α,β > 0).

It is well known that a function f :Rn→ [0,∞] is sublinear if and only if it is positively
homogeneous and subadittive.

First, we considere the finite case. Let N = {1,2, . . . ,n}.

Definition 2. We say that µ : 2N −→ [0,∞] is a submeasure if it satisfies

(i) µ( /0) = 0.
(ii) (Monotonicity) E,F ∈ 2N and E ⊂ F imply µ(E)6 µ(F).

(iii) (Subadditivity) E,F ∈ 2N and µ(E ∪F)6 µ(E)+µ(F).

We have for x ∈ Rn
+ and E ⊆ N, where E = {i1, i2, . . . , is} and i1 6 · · · 6 is, that

M(x)(E) = M(xi1 ,xi2 , . . . ,xis). We introduce the notation Mi(x) = M(x1,x2, . . . ,xi).
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Definition 3. A mean M : [0,∞]n→ [0,∞]2
N

is sublinear if for every E ⊆ N

(i) (Monotonicity) x 6 y⇒M(x)(E)6 M(y)(E).

(ii) (Homogenity) M(αx)(E) = αM(x)(E) for all α > 0.

(iii) (Subadditivity) M(x+y)(E)6 M(x)(E)+M(y)(E).

Example 1. (i) Arithmetic mean is a sublinear mean. More general, the weighgthed
sum is also a sublinear mean.

(ii) Geometric mean is a sublinear mean.
(iii) Quasi arithmetical mean, see [4], for f strictly mononotone increasing is a

sublinear mean if and only if f is sublinear function.
(iv) The Choquet integral is a sublinear mean if and only if µ is submeasure, see [2,

11, 12].
(v) By [5] every aggregation function A under some conditions can be transformed

to an subadditive aggregation function A∗. It is interesting that A∗ is the great-
est subadditive aggregation function not greater than A. If A is homogeneous,
then A∗ is also homogeneous, i.e., sublinear function. It is the greatest convex
aggregation function dominated by A.

(vi) The convex integral is a sublinear mean, see [8].

Definition 4. Let µ be a submeasure. Let M be a sublinear mean. Then we define

(MC)
∫

xdµ =
∫ maxi∈N Mi(x)

0
µ({i ∈ N |Mi(x)> t})dt.

The (MC) integral with respect to submeasure µ and x ∈ Rn
+ can be written in the

following form

(MC)
∫

xdµ =
n

∑
i=1

(Mσ(i)(x)−Mσ(i−1)(x))µ({σ(i), . . . ,σ(n)}),

with a permutation σ such that Mσ(1)(x) 6 Mσ(2)(x) 6 · · ·6 Mσ(n)(x) and the conven-
tion Mσ(0)(x) = 0.

Example 2. (i) Taking M such that Mi(x) = xi for i = 1,2, . . . ,n, we obtain the
Choquet integral.

(ii) Taking M(x) = (C)
∫

xdµ, for a submeasure µ, we obtain the multilevel Chou-
quet integral, see [9].

(iii) The geometrical mean can not be represented by Choquet integral but as a
sublinear mean it can be used in an (MC) integral construction.

Theorem 1. The (MC) integral is monotone, homogeneous and subadditive.

Definition 5. We define for x ∈ Rn
+ ‖x‖L∞(N,M) = maxE∈2N M(x)(E).
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Definition 6. Let µ : 2N → [0,∞] be a submeasure and 0 < p < ∞. Then we define for
x ∈ Rn

+

‖x‖Lp(N,M) =

(
n

∑
i=1

(
Mσ(i)(x)p−Mσ(i−1)(x)p)µ({σ(i), . . . ,σ(n)}

)1/p

,

‖x‖Lp,∞(N,M) =

(
max

i∈{1,...,n}
Mσ(i)(x)pµ({σ(i), . . . ,σ(n)}

)1/p

,

with a permutation σ such that Mσ(1)(x)p 6 Mσ(2)(x)p 6 · · ·6 Mσ(n)(x)p and the con-
vention Mσ(0)(x) = 0.

Remark 1. (i) Choquet-like integral [7] and integrals introduced in [10, 13] are related
to previous Definition 6.

(ii) The (MC) integral approach can be managed also for Sugeno and Schilkret inte-
grals.

Proposition 1. Functionals ‖x‖L∞(N,M),‖x‖Lp(N,M) and ‖x‖Lp,∞(N,M) are norms for x ∈
Rn
+.

We define L∞(N,M), Lp(N,M) and Lp,∞(N,M) to be the spaces of elements x ∈ Rn
+

endowed with norms ‖x‖L∞(N,M),‖x‖Lp(N,M) and ‖x‖Lp,∞(N,M), respectively.

Now we investigate the infinite case, which is much more complex, see [1, 3]. Let
X be an infinite complete metric space.

Definition 7. We say that µ : 2X −→ [0,∞] is an outer measure if µ( /0) = 0, it is mono-
tone and it is countable subadditive, i.e., if E1,E2, · · · ∈ 2X , then

µ

(
∞⋃

j=1

Ei

)
6

∞

∑
j=1

µ(E j).

We introduce now generalization of the sublinear mean on the class B(X) of all
nonnegative Borel measurable functions on X , see [3].

Definition 8. Let D be a collection of subsets of X . A function M : B(X)→ [0,∞]D is
called size if for every f ,g ∈ B(X) and every E ∈D the following conditions hold

(i) (Monotonicity) f 6 g⇒M( f )(E)6 M(g)(E).

(ii) (Homogenity) M(α f )(E) = αM( f )(E) for all α > 0.

(iii) (Quasi-Subadditivity) M( f + g)(E) 6 C(M( f )(E)+M(g)(E)) for some con-
stant C depending only on M.

We introduce the following functional for f ∈ B(X).

Definition 9. We define for f ∈ B(X) ‖ f‖L∞(X ,M) = supE∈D M( f )(E), and denote by
L∞(X ,M) the space of elements f ∈ B(X) for which supE∈D M( f )(E) is finite.

77



Instead of super level sets {x | f (x) > λ} for a function f a new quantity is introduced
and called super level measure, see [3].

Definition 10. Let µ : 2X → [0,∞] be an outer measure and λ > 0. We define for f ∈
B(X) the super level measure µ(M( f )> λ) to be the infimum of all values µ(F), where
F runs through all Borel subsets of X such that supE∈D M( f 1X\F)(E)6 λ.

We introduce the outer space Lp by [3].

Definition 11. Let µ : 2X → [0,∞] be an outer measure and 0< p< ∞. Then we define
for f ∈ B(X)

‖ f‖Lp(X ,M) =

(∫ ∞

0
pλp−1µ(M(( f )> λ)dλ

)1/p

,

‖ f‖Lp,∞(N,M) =

(
sup
λ>0

λpµ(M( f )> λ)dλ
)1/p

,

where µ(M(( f ) > λ) is given in Definition 10. Define Lp(X ,M) and Lp,∞(X ,M) to be
the spaces of elements f ∈ B(X) such that the respective quantitives are finite.

Proposition 2. The functional ‖ f‖Lp(X ,M) for 0 < p 6 ∞ is monotone, homogeneous
and quasi-subadditive.

The Lp theory for outer measure is very useful in the investigations of singular
integrals, e.g., Carleson embedding theory and in time frequence analysis, see [1, 3].
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Abstract. We here discuss the polytope of ultramodular discrete copulas, i.e.,
discrete restrictions of ultramodular copulas. First, we introduce the concept of
ultramodularity in a discrete scenario. Then, we describe the polytope of ultra-
modular discrete copulas through its bounding affine half-spaces.

1 Introduction

Copula functions are largely employed in applied statistics as a flexible tool to describe
dependence between random variables (see, e.g., [1, 2, 9]). As a consequence of Sklar’s
Theorem ([10]), the joint bivariate distribution FXY of two random variables X and Y
with univariate margins FX and FY , respectively, can be written as

FXY (x, y) = C(FX(x), FY (y)) (x, y ∈ R) (1)

where C is a bivariate copula uniquely determined on the set ran(FX)× ran(FY ).
Limitations of the usage of Sklar’s Theorem in the discrete setting have led to the

introduction of discrete copula. Such functions, defined as follows, have an interesting
statistical meaning and mathematical properties (see, e.g., [5, 7, 8]).

Definition 1. Let In :=
{
0, 1

n
, . . . , n−1

n
, 1
}

, Im :=
{
0, 1

m
, . . . , m−1

m
, 1
}

with n,m ∈ N.
A function Cn,m : In × Im → [0, 1] is a discrete copula on In × Im if it satisfies:

(c1) for all i ∈ {0, . . . , n} and j ∈ {0, . . . ,m},

Cn,m

(
i
n
, 0
)
= Cn,m

(
0, j

m

)
= 0; and Cn,m

(
i
n
, 1
)
= i

n
, Cn,m

(
1, j

m

)
= j

m
;

(c2) for all i ∈ {0, . . . , n− 1} and j ∈ {0, . . . ,m− 1},

Cn,m

(
i
n
, j
m

)
+ Cn,m

(
i+1
n

, j+1
m

)
≥ Cn,m

(
i+1
n

, j
m

)
+ Cn,m

(
i
n
, j+1

m

)
.

Note that every restriction of a copula to a discrete set In × Im is a discrete copula.
Furthermore, every discrete copula can be extended to a copula on [0, 1]2 (see [9]).

In the following, we will assume that n = m. Then discrete copulas have fasci-
nating mathematical properties as highlighted in [5]; for example, they prove that there
exists a one-to-one correspondence between discrete copulas and bistochastic matrices.
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In addition, they discuss the role of a special subclass of discrete copulas, so-called irre-
ducible discrete copulas, namely discrete copulas with minimal range In. This subclass
is associated with the class of {0, 1}-valued bistochastic matrices, i.e., the permutation
matrices, and also corresponds to the order statistics ([8]). According to [5], the space
of all discrete copulas can then be defined as the convex hull of irreducible discrete
copulas, i.e., the polytope generated by permutation matrices. This is the well-known
Birkhoff polytope ([11]).

In this work, we study a particular subpolytope of the Birkhoff polytope, namely
the convex set of discrete ultramodular copulas, i.e., copulas with convex horizontal
and vertical sections (see, e.g., [4, 3]). Although the study of certain subpolytopes of
the Birkhoff polytope has been of interest per se (see, e.g., [6]), this research can be
seen as one of the first efforts in introducing geometric techniques to the domain of
discrete copulas.

The paper is organized as follows: first, we present the family of discrete restrictions
of ultramodular copulas, i.e., ultramodular discrete copulas. Then, we prove that the
space of ultramodular discrete copulas is given as the bounded intersection of (n −
2)2 + 2(n− 1)2 (for n ≥ 4) affine half-spaces and we discuss the defining hyperplanes.

2 The polytope of ultramodular discrete copulas

Consider a function C : I2n → [0, 1], n ≥ 4, with boundary conditions as in (c1)
of Definition 1. C is said to satisfy Property D if all of the following conditions are
fulfilled:

(1) C
(

1
n
, 1
n

)
≥ 0 and C

(
n−1
n

, n−1
n

)
≥ n−2

n
;

(2a) for j ∈ {2, . . . , n− 2},

C
(

1
n
, j
n

)
+ C

(
2
n
, j+1

n

)
≥ C

(
1
n
, j+1

n

)
+ C

(
2
n
, j
n

)
;

(2b) for i ∈ {2, . . . , n− 3} and j ∈ {1, . . . , n− 2},

C
(

i
n
, j
n

)
+ C

(
i+1
n

, j+1
n

)
≥ C

(
i
n
, j+1

n

)
+ C

(
i+1
n

, j
n

)
;

(2c) for j ∈ {1, . . . , n− 3},

C
(

n−2
n

, j
n

)
+ C

(
n−1
n

, j+1
n

)
≥ C

(
n−2
n

, j+1
n

)
+ C

(
n−1
n

, j
n

)
;

(3a) for i ∈ {1, . . . , n− 1} and j ∈ {0, . . . , n− 2},

C
(

i
n
, j
n

)
+ C

(
i
n
, j+2

n

)
≥ 2 C

(
i
n
, j+1

n

)
;

(3b) for i ∈ {0, . . . , n− 2} and j ∈ {1, . . . , n− 1},

C
(

i
n
, j
n

)
+ C

(
i+2
n

, j
n

)
≥ 2 C

(
i+1
n

, j
n

)
.
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Fig. 1. (n = 5) Left side: (n − 2)2 squares corresponding to properties (1) and (2). Right side:
(n− 1)2 middle points of property (3).

To give some intuition for these conditions: conditions (1) and (2) ensure positive mea-
sure for (n − 2)2 of the n2 subsquares of I2n, while condition (3) corresponds to a
discrete version of the convexity property for the horizontal and vertical sections (see
Figure 1). In the following result we establish the link between functions C that satisfy
Property D and ultramodular copulas.

Theorem 1. Let C : I2n → [0, 1] be a function that satisfies Property D. Then there
exists an ultramodular copula Ĉ : [0, 1]2 → [0, 1] such that C is the restriction of Ĉ
to the discrete set I2n. Conversely, every restriction to I2n of an ultramodular copula
defined on [0, 1]2 satisfies Property D.

Theorem 1 asserts that every restriction of an ultramodular copula fulfills Property D.
Furthermore, in the following example we prove that in fact all inequalities of Property
D are needed in order to obtain a discrete copula C on I2n through restriction of an
ultramodular copula.

Example 1. Let n = 4 and consider the discrete functions C1 and C2 defined on the
discrete set (I4 \ {0})2 by the following matrices:

C1 = (cij,1) =




0 1
12

1
6

1
4

0 1
6

1
3

1
2

1
8

1
4

1
2

3
4

1
4

1
2

3
4 1


 , C2 = (cij,2) =




0 0 1
8

1
4

1
12

1
6

1
4

1
2

1
6

1
3

1
2

3
4

1
4

1
2

3
4 1


 ,

and such that they equal zero on I4×{0} and {0}×I4. Note that both the functions
C1 and C2 satisfy statement (c1) in Definition 1. In addition, the functions C1 and C2

satisfy all conditions in Property D, except on one subsquare of I24 , each (see Figure 2).
We now define two further matrices B1 and B2 as functions of C1 and C2, respec-

tively, namely through bij = n(c
(n)
i+1,j+1 − c

(n)
i+1,j − c

(n)
i,j+1 + c

(n)
i,j ). This results in

B1 = (bij,1) =




0 1
3

1
3

1
3

0 1
3

1
3

1
3

1
2 − 1

6
1
3

1
3

1
2

1
2 0 0


 , B2 = (bij,2) =




0 0 1
2

1
2

1
3

1
3 − 1

6
1
2

1
3

1
3

1
3 0

1
3

1
3

1
3 0


 ,
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Fig. 2. The black squares correspond to the inequalities assumed true, the red squares to the ones
to be checked. Left side: condition satisfied by C2. Right side: condition satisfied by C1.

Since B1 and B2 have negative entries, C1 and C2 fail to be discrete copulas. ut

This example shows that all (n− 2)2 + 2(n− 1)2 inequalities of Property D are needed
to characterize ultramodular discrete copulas. These inequalities define the polytope of
ultramodular discrete copulas; the polytope is given by the intersection of the corre-
sponding half-spaces.

Conclusions and open questions

In this work we presented a description of the polytope of discrete ultramodular copulas
as the convex set bounded by the (n − 2)2 + 2(n − 1)2 (for n ≥ 4) affine half-spaces
corresponding to the inequalities given in Property D. Any polytope can be dually de-
fined as the convex hull of a finite set of points. An interesting open question is related
to the vertices of this polytope. We are currently investigating the number of vertices as
well as the statistical interpretation the vertices in the classical context of ultramodular
copulas.
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Abstract. The paper deals with the question of transitivity of the dominance re-
lation on the set of continuous triangular norms. A brief overview of the achieved
results is provided. Examples are given showing that the dominance is not transi-
tive neither on the set of continuous triangular norms nor on the sets of strict and
nilpotent triangular norms.

A triangular norm (a t-norm, for short) [1, 7] is a non-decreasing, commutative, and
associative binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] with neutral element 1. T-norms
play an important role, for example, in the framework of the basic logic [4, 5] and the
monoidal t-norm based logic [3] which are both prototypical logics of graded truth
(fuzzy logics). However, originally the notion of a t-norm has been introduced within
the framework of probabilistic metric spaces [8, 18] where they establish the triangular
inequality of the probabilistic metrics.

Here we deal exclusively with continuous and continuous Archimedean t-norms.
A t-norm is said to be continuous if it is continuous as a two-variable real function.
A t-norm ∗ is said to be Archimedean if, for every x, y ∈ ]0, 1[, y ≤ x, there is n ∈ N
such that xn∗ ≤ y. Here, x0∗ = 1 and xn∗ = x ∗ xn−1

∗ . A continuous t-norm is said
to be strict if its restriction to ]0, 1] × ]0, 1] is strictly increasing in each variable. A
continuous t-norm ∗ is said to be nilpotent if for every x ∈ ]0, 1[ there is an n ∈ N such
that xn∗ = 0. A continuous Archimedean t-norm is either strict or nilpotent. An example
of a strict and a nilpotent t-norm is the product and the Łukasiewicz t-norm defined, for
every x, y ∈ [0, 1], by x · y and max{0, x+ y − 1}, respectively.

Remark 1. By [0,∞] we denote the set of positive real numbers with the least element
0, the greatest element∞, and with x+∞ =∞ for any x ∈ [0,∞].

A t-norm ∗ is continuous and Archimedean if, and only if, there exist a decreasing
bijection t : [0, 1] → [0, b], b > 0, such that x ∗ y = t(−1)(t(x) + t(y)) holds for
every x, y ∈ [0, 1]. Here t(−1) denotes the pseudo-inverse [7] of t and it is defined, in
this particular case, by t(−1)(x) = t−1(x) if x ≤ b and by t(−1)(x) = 0 otherwise. If
b =∞ then ∗ is a strict t-norm, if b <∞ then ∗ is a nilpotent t-norm.

Dominance, in general, is a binary relation on a given set of n-ary operations. In our
context, a t-norm ∗ is said to dominate a t-norm � (and we denote it by ∗ � �) if

(x � y) ∗ (u � v) ≥ (x ∗ u) � (y ∗ v)
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holds for every x, y, u, v ∈ [0, 1]. The motivation to study dominance of t-norms comes
from Tardiff who, in his paper from 1984 [20], has recognized that this notion plays a
crucial role when constructing Cartesian products of probabilistic metric spaces.

It is easy to check that on the set of t-norms the dominance relation is reflexive and
anti-symmetric. However, for a long time it had remained an open problem whether it is
also transitive and thus an order [2, Problem 17]. What follows is a list of known partial
solutions.

In 1984, Sherwood [19] has proven that the dominance relation is transitive on the
class of Schweiser-Sklar t-norms.

In the monograph by Klement, Mesiar, and Pap [7] it is shown that the dominance
relation is transitive on the class of Aczél-Alsina t-norms, on the class of Dombi t-
norms, and on the class of Yager t-norms.

In 2005, Sarkoci [15] has proven that the dominance relation is transitive on the
class of Frank t-norms and on the class of Hamacher t-norms.

In 2005, it has been shown by Saminger-Platz, De Baets, and De Meyer [12] that
the dominance relation is transitive on the class of Mayor-Torrens t-norms and on the
class of Dubois-Prade t-norms.

In 2009, Saminger-Platz [11] has proven transitivity of the dominance relation on
the classes T 8, T 9, T 15, T 22, and T 34.

In 2011, it has been proven using a symbolic computation system [6] that the dom-
inance relation is transitive on the class of Sugeno-Weber t-norms.

On the other hand, in 2008, Sarkoci has demonstrated that the dominance relation
on the set of continuous t-norms is not transitive [14, 16] by the following counter-
example. Take the following three t-norms: the t-norm ∗ is an ordinal sum [7] where
the only summand is the Łukasiewicz t-norm on the interval

[
0, 12
]
, the t-norm � is an

ordinal sum with two summands, both the Łukasiewicz t-norm, on the intervals
[
0, 12
]

and
[
1
2 , 1
]
, the t-norm � is equal to the Łukasiewicz t-norm. Then we have ∗ � � and

� � � but ∗ 6� �.
Further, Sarkoci has given a characterization of the dominance on the class of or-

dinal sum t-norms that use the Łukasiewicz t-norm as the only summand operation
and the class of ordinal sum t-norms that use the product t-norm as the only summand
operation [17].

The counter-example by Sarkoci is based on ordinal sum t-norms. Therefore, the
question whether the dominance relation is (or is not) transitive on the set of continuous
Archimedean t-norms has remained unanswered. As we can see, it has been revealed
that for many significant subclasses of continuous Archimedean t-norms the dominance
relation is transitive which could lead to a conjecture that this transitivity is valid on the
whole class of strict or nilpotent t-norms. We are going to show that this is not the case.

The Mulholland inequality has been introduced in 1950 by Mulholland [9] as a
generalization of the Minkowski inequality which establishes the triangular inequality
of p-norms (also Lp-norms).

Definition 1. Consider an increasing bijection f : [0,∞] → [0,∞]. It is said to solve
the Mulholland inequality if

f−1
(
f(x+ u) + f(y + v)

)
≤ f−1

(
f(x) + f(y)

)
+ f−1

(
f(u) + f(v)

)
(1)
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holds for every x, y, u, v ∈ [0,∞].

In 1984, Tardiff [20] has shown that the Mulholland inequality is in a close corre-
spondence with dominance of strict t-norms.

Theorem 1. Let ∗ and � be two strict t-norms defined by their additive generators t∗
and t� as

x ∗ y = t−1
∗ (t∗(x) + t∗(y)),

x � y = t−1
� (t�(x) + t�(y)).

Then ∗ dominates � if, and only if, f = t∗ ◦ t−1
� solves the Mulholland inequality.

In 2008, this correspondence has been enlarged by Saminger-Platz, De Baets, and
De Meyer [13] to the set of all continuous Archimedean t-norms introducing the notion
of the generalized Mulholland inequality.

Theorem 2. Let ∗ and � be two continuous Archimedean t-norms defined by their ad-
ditive generators t∗ and t� as

x ∗ y = t
(−1)
∗ (t∗(x) + t∗(y)),

x � y = t
(−1)
� (t�(x) + t�(y)).

Then ∗ dominates � if, and only if, the function f : [0,∞] → [0,∞] defined by f =

t∗ ◦ t(−1)
� satisfies

f (−1)
(
f(x+ u) + f(y + v)

)
≤ f (−1)

(
f(x) + f(y)

)
+ f (−1)

(
f(u) + f(v)

)

for every x, y, u, v ∈ [0,∞]. Here, the pseudo-inverse of f is given by f (−1) = t� ◦
t
(−1)
∗ .

In our recent result [10], we have shown that the set of functions that solve the
Mulholland inequality is not closed with respect to their compositions. Namely, both
functions g : [0,∞] → [0,∞] and h : [0,∞] → [0,∞] given, for x ∈ [0,∞], by
h(x) = x2 and

g(x) =





5
3x if x ∈ ]0, 1[ ,
7
3x− 2

3 if x ∈ [1, 2[ ,
x2 if x ∈ [2,∞]

solve the Mulholland inequality while g ◦ h does not.
This gives us a way how to construct a counter-example that disproves transitivity of

dominance on the set of strict t-norms. Indeed, taking an arbitrary decreasing bijection
t2 : [0, 1] → [0,∞] and t1 = g ◦ t2, t3 = h−1 ◦ t2 we obtain additive generators of
three strict t-norms. However, while both t1◦t−1

2 and t2◦t−1
3 does solve the Mulholland

inequality, t1 ◦ t−1
3 does not.

Thanks to the result by Saminger-Platz, De Baets, and De Meyer [13], we may
proceed analogously in the case of general continuous Archimedean t-norms.
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5. P. Hájek. “Metamathematics of Fuzzy Logic”, Kluwer Academic Publishers, Dordrecht

1998.
6. M. Kauers, V. Pillwein, and S. Saminger-Platz, Dominance in the family of Sugeno-Weber

t-norms, Fuzzy Sets Syst. 181 (2011), 74–87.
7. E. P. Klement, R. Mesiar, and E. Pap, “Triangular Norms”, Kluwer Academic Publishers,

Dordrecht 2000.
8. K. Menger, Statistical metrics. Proc. Nat. Acad. Sci. U.S.A., 8 (1942), 535–537.
9. H. P. Mulholland, On generalizations of Minkowski’s inequality in the form of a triangle

inequality, Proc. London Math. Soc. 51(2) (1950), 294–307.
10. M. Petrı́k, New solutions to Mulholland inequality, Aequationes Math. 89(4) (2015), 1107–

1122.
11. S. Saminger-Platz, The dominance relation in some families of continuous Archimedean

t-norms and copulas, Fuzzy Sets and Systems, 160 (2009), 2017–2031.
12. S. Saminger, B. De Baets, and H. De Meyer, The domination relation between continuous t-

norms, In Proceedings of Joint 4th Int. Conf. in Fuzzy Logic and Technology and 11th French
Days on Fuzzy Logic and Applications, Barcelona (Spain), (2005), 247–252.

13. S. Saminger-Platz, B. De Baets, and H. De Meyer, A generalization of the Mulholland in-
equality for continuous Archimedean t-norms, J. Math. Anal. Appl., 345: (2008), 607–614.

14. S. Saminger, P. Sarkoci, and B. De Baets, The dominance relation on the class of continu-
ous t-norms from an ordinal sum point of view, In H. de Swart, E. Orlowska, M. Roubens,
and G. Schmidt, editors, Theory and Applications of Relational Structures as Knowledge
Instruments, II (2006), 337–357.

15. P. Sarkoci, Domination in the families of Frank and Hamacher t-norms, Kybernetika, 41
(2005), 349–360.

16. P. Sarkoci, Dominance is not transitive on continuous triangular norms, Aequationes Math.,
75 (2008), 201–207.

17. P. Sarkoci, Dominance of Ordinal Sums of the ukasiewicz and the Product Triangular Norm,
Math. Inequal. Appl., 17 (2014), 335–347,

18. B. Schweizer, A. Sklar, “Probabilistic Metric Spaces”, Dover Publications, Mineola, New
York 2005.

19. H. Sherwood, Characterizing dominates on a family of triangular norms, Aequationes Math.,
27 (1984), 255–273.

20. R. M. Tardiff, On a generalized Minkowski inequality and its relation to dominates for t-
norms. Aequationes Math., 27(3) (1984), 308–316.

88



Fuzzy relation equations in fuzzy functional and
topological spaces

Irina Perfilieva, Vilém Novák

Institute for Research and Applications of Fuzzy Modeling
University of Ostrava, Centre of Excellence IT4Innovations, Ostrava, Czech Republic

{Irina.Perfilieva,Vilem.Novak}@osu.cz

Abstract. In this contribution, we discuss a prominent role of fuzzy relation
equations and their systems in determining various fuzzy spaces and notions:
spaces with fuzzy partitions, fuzzy topologies and fuzzy functions.

1 Introduction

Let (L,≤,∧,∨) be a complete frame, i.e., a lattice where arbitrary suprema (joins) and
infima (meets) exist and moreover, finite meets distribute over arbitrary joins:

α ∧ {
∨

i
: i ∈ I} =

∨
i
{α ∧ βi : i ∈ I} ∀α ∈ L, ∀{βi : i ∈ I} ⊆ L,

In particular, the top 1L and the bottom 0L elements in L exist and 0L 6= 1L.
As a general algebraic structure, we use a cl-monoid (L,≤,∧,∨, ∗) extended by the

binary operation→ (residium):

α→ β =
∨
{λ ∈ L | λ ∗ α ≤ β}.

A cl-monoid can be viewed as an integral commutative quantale in the sense of K.I.
Rosenthal [9]. Important properties of cl-monoids are collected in [3].

Let X be a set, L a cl-monoid, LX a family of (L-)fuzzy sets of X . The couple
(LX ,=) is called the ordinary fuzzy space on X . We assume that basic notions and
operations over fuzzy sets are defined in a standard way.

Let X , Y be universal sets. A (binary) (L-)fuzzy relation is a fuzzy set of X ×Y . If
X = Y , then a fuzzy set of X ×X is called a (binary) (L-)fuzzy relation on X .

A binary fuzzy relation E on X is called fuzzy equivalence on X if for all x, y, z ∈
X , the following holds:

1. E(x, x) = 1, reflexivity,
2. E(x, y) = E(y, x), symmetry,
3. E(x, y) ∗ E(y, z) ≤ E(x, z), ∗-transitivity.

If fuzzy equivalence E fulfills a stronger version of the first axiom:

1∗. E(x, y) = 1 if and only if x = y,

then it is called separated or a fuzzy equality on X .
Let us equip the space X with a fuzzy equivalence E and denote it by (X,E). We

will refer to this space as to a fuzzy space.
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2 Fuzzy Functions

We recall the notion of a fuzzy function and a perfect fuzzy function as they appeared
in [4] and in [2].

Definition 1. Let (X,E) and (Y, F ) be fuzzy spaces. A fuzzy function is a binary fuzzy
relation ρ on X × Y that solves the following system of fuzzy relation inequalities:

FF.1 (E ◦ ρ)(x′, y) ≤ ρ(x′, y),
FF.2 (ρ ◦ F )(x, y′) ≤ ρ(x, y′),
FF.3 (ρ ∗ ◦ρ)(y, y′) ≤ F (y, y′),

where ρ ∗ (y, x) = ρ(x, y) and ◦ is a sup-∗ -composition.
A fuzzy function is called sound or perfect, if it additionally fulfills

FF.4 for all x ∈ X , there exists y ∈ Y , such that ρ(x, y) = 1.

A fuzzy function is called surjective if

FF.5 for all y ∈ Y , there exists x ∈ X , such that ρ(x, y) = 1.

In this contribution, we discuss

– necessary and sufficient conditions of solvability of the system FF.1-FF.3,
– uniqueness of a solution of this system,
– relationship between a fuzzy function existence and existence of its ordinary core

function.

3 Fuzzy Partitions

Let X be a set, L a cl-monoid. According to [1], a ∗-semi-partition of a universe X is a
family {Aα, α ∈ I } of normal fuzzy sets, such that for all α, β ∈ I ,

∨

x∈X
(Aα(x) ∗Aβ(x)) ≤

∧

x∈X
(Aα(x)↔ Aβ(x)),

is fulfilled.
We show that a family {Aα, α ∈ I } of normal fuzzy sets constitute a ∗-semi-

partition of X if and only if the following system of fuzzy relation equations

Aα ◦R = Aα, α ∈ I (1)

has fuzzy relation R(x, y) =
∨
α∈I (Ai(x) ∗Ai(y)) as a solution.

We discuss a characterization of a ∗-semi-partition ofX in terms of eigen fuzzy sets
of a solution R of (1).
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4 Fuzzy Topology

We remind that a Lowen fuzzy topology [8] on a setX is a subset τ of LX that contains
all constant maps and is closed with respect to finite intersections and arbitrary unions.
(X, τ) is called a fuzzy topological space, and A ∈ τ is called an open fuzzy set. A
fuzzy topology τ on X is called a fuzzy Alexandrov topology if the intersection of an
arbitrary many open fuzzy sets is still an open fuzzy set.

It is known [7] that a fuzzy Alexandrov topology on X is connected with a family
of upper sets of a fuzzy preorder relation on X .

We show that any family {Aα, α ∈ I } of fuzzy sets of X can be embedded into
a fuzzy Alexandrov topology τ on X , if τ is determined by the greatest solution of the
following system of fuzzy relation equations

Aα ◦R = Aα, α ∈ I .

We characterize a base and open fuzzy sets of this topology.
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1 Notation and main purposes

For m : {0, 1}n → [0, 1] a capacity on the set [n] ≡ {1, . . . , n} and for C : [0, 1]
n →

[0, 1] an n-dimensional copula, we consider the aggregation function Am,C : [0, 1]
n →

[0, 1] defined by
Am,C(v) =

∑

I⊂[n]
m̂(I)C (vI) , (1)

where [n] ≡ {1, . . . , n} and m̂ denotes the Mőbius transform of m. The following
notation is furthermore used: for v ∈ Rn,

vI := (u1, . . . , un) where uj =

{
vj j ∈ I,
+∞ otherwise. (2)

Let F (v) be a probability distribution function over Rn, and V ≡ (V1, . . . , Vn) a ran-
dom vector with joint distribution given by F . Then

F (vI) = F (I)(vj1 , . . . , vj|I|)

will denote the (|I|-dimensional marginal) distribution function of the vector VI , com-
puted on the vector (vj1 , . . . , vj|I|).

Aggregation functions of the form (1) emerge, in a natural way, both in theoretical
studies and in different applied fields. In particular, we know (see [3]) that Am,C(x) is
an extension of m to [0, 1]

n, since C has been assumed to be a copula.
Possible meanings of the pair (m,C), and corresponding meanings of Am,C , will

be briefly discussed in the first part of this talk. Attention will be in particular focussed
on the settings of multi-attribute “target-based” utility functions and of multi-state re-
liability systems, along the lines that will be sketched below.

A main issue of such a discussion is in that the copulas C are not merely seen as
analytical expressions. Actually they are the copulas describing stochastic dependence
for random vectors having basic role in the problems at hand. This aspect permits one
to interpret some theoretical aspects of aggregation functions under the viewpoint of
stochastic dependence. Furthermore it suggests studying some inequalities concerning
C and corresponding effects on Am,C(x), once analytical properties (such as superad-
ditivity, subadditivity, supermodularity, . . . ) have been given for the capacity m. We
will devote the second part of the talk to this subject.

In the next sections we provide brief descriptions of the settings, in reliability and
utility respectively, that give rise to aggregation functions of the form in (1).

92



2 Multi-attribute target-based utility functions

Let [n] ≡ {1, . . . , n} be the set of attributes and let y ≡ (y1, . . . , yn) ∈ Rn be seen
as the vector of possible values taken by the random coordinates of a prospect Y ≡
(Y1, . . . , Yn), in a decision problem under uncertainty.

Let a non-decreasing function U : Rn → R and a deterministic vector t ≡ (t1, . . . ,
tn) be fixed. We say that U is a target-based utility function with deterministic target t,
if U (y) is only a function of those coordinates for which “the target is attained by the
prospect”. More precisely, we assume the existence of a set function m : 2[n] → R+

such that U coincides with the function Um,t defined as follows

Um,t(y) = m(Q(t,y)), (3)

where Q (t,x) ⊂ [n] is the subset defined by

Q(t,y) := {i ∈ N |ti ≤ yi}.

It can be natural to require that the function m, appearing in Eq. (3), is actually a
capacity.

It is generally interesting to also consider cases where the target-vector T is random.
Denote by F the joint distribution function of T. We can then attain the following
definition

A multi-attribute target-based utility function, with capacity m and with target dis-
tribution F , has the form

Um,F (y) =
∑

I⊆N
m(I)P

(⋂

i∈I
{Ti ≤ yi} ∩

⋂

i/∈I
{Ti > yi}

)
.

Notice that, by imposing the special choice

m(I) = 0 for all I ⊂ N,m([n]) = 1, (4)

one obtains Um,F (y) = F (y). The position in (4) describes the target-based utility
function of a Decision Maker who is satisfied only when all the n targets are achieved.

It is easy to check ([2]) that Um,F can also be written in the equivalent form

Um,F (y) =
∑

I⊆N
m̂(I)F (yI).

This statement can be seen as an analogue of several results presented in different
settings in the literature.

Now we denote by Gi(·) the (one-dimensional) marginal distributions of F for i =
1, . . . , n and we assume them to be continuous and strictly increasing. Furthermore we
will denote by C the connecting copula of F : for w ≡(w1, . . . , wn) ∈ [0, 1]

n,

C(w1, . . . , wn) := F (G−11 (w1), . . . , G
−1
n (wn)). (5)
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As well-known the copula C describes the structure of stochastic dependence among
the coordinates of T.

Using a notation similar to (2), for w ∈ [0, 1]n we set

wI := (v1, . . . , vn) where vj =

{
wj j ∈ I,
1 otherwise.

In this way for the connecting copula C(I)
F of F (I) we can write

C
(I)
F (wj1 , . . . , wj|I|) = C(wI).

We now consider the functionUm,F (G−11 (w1), . . . , G
−1
n (wn)). The latter is a func-

tion of the variables w1, . . . , wn, parametrized by the pair (m,F ). In view of (5), we
see that such a function depends on F only through the connecting copula C and it will
be denoted by Ûm,C .

Ûm,C can be seen as the aggregation function of the quantities w1, . . . , wn which,
in their turn, can be given the meaning of target-based marginal utilities.

As a corollary of above statements we can obtain that Ûm,C has the form

Ûm,C(w) =
∑

I⊆N
m̂(I)C(wI).

Thus Ûm,C is an aggregation function extending m and the copula C has the mean-
ing of the copula describing the form of stochastic dependence among the coordinates
of the random target T.

3 Multi-state reliability systems

We consider a multi-state system S made with n binary components. When the states
r1, . . . , rn of the components of S are known (r ≡ (r1, . . . , rn) ∈ {0, 1}n), the state
of S is described by a number y ∈ [0, 1], which is a function of the vector r. Namely
we assume, for the system S, the existence of a structure function φ : {0, 1}n → [0, 1]
such that y = φ (r).

Actually, the structure function φ can be seen as a capacity on [n] ≡ {1, . . . , n}. It
is natural, in fact, to set

φ (0, 0, . . . , 0) = 0;φ (1, 1, . . . , 1) = 1,

and to assume that φ is non-decreasing as a function of (r1, . . . , rn).
We consider however the case when the binary vector R ≡ (R1, . . . , Rn) of the

state of the components is random and set

pi = P (Ri = 1) .

Then we consider the random state of the system. Namely we consider the [0, 1]-valued
random variable Y = φ (R).
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The probability distribution of Y , and then its expected value E (Y ), obviously de-
pend on the marginal “reliabilities” p1, . . . , pn. For any fixed structure of stochastic
dependence among the components (stochastic independence being just a very special
and extreme case), we can consider the function M : [0, 1]

n → [0, 1] defined by

E (Y ) =M (p1, . . . , pn) .

The analysis of such an object is very clear when the binary random variables
R1, . . . , Rn are stochastically independent. Even in the case of dependence, however,
it is easily seen that M is an aggregation function extending φ. M(p) can be seen as
an aggregation of p1, . . . , pn and, in any case, one has that it still takes the form

M(p) =
∑

I⊂[n]
φ̂(I)Γ (pI) ,

for a suitable aggregation function Γ . We will analyze different aspects of the triple
(φ, Γ,M). Several related studies have been carried out in different settings, and under
different languages, in the field of reliability for the case when S is a binary system,
namely when φ : {0, 1}n → {0, 1} (see in particular [1], [4] and references cited
therein; see also [5]). Differences and similarities among such settings and among cor-
responding questions will be pointed out in the talk.

References

1. P.J. Boland, F.J. Samaniego, E. M. Vestrup (2003). Linking dominations and signatures in
network reliability theory. In Mathematical and Statistical Methods in Reliability. 89-103

2. F. Fantozzi, F. Spizzichino (2015). Multi-attribute target-based utilities and extensions of
fuzzy measures. Fuzzy Sets and Systems, 259, 29–43
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1 Introduction

In the present work, we take up the study of the generalized hypothetical syllogism
(GHS), which is also known as chaining syllogism, transitive property etc. In MV logic,
(GHS) is defined as follows: Let I be a fuzzy implication on [0, 1]. Then, I is said to
satisfy the generalized hypothetical syllogism (GHS), if for all a, c ∈ [0, 1],

I(a, c) = sup
b∈[0,1]

(
I(a, b) ∧ I(b, c)

)
. (GHS)

The (GHS) has been employed in many fields, fuzzy control, decision making, ex-
pert systems and especially in approximate reasoning, see for example [3]. The fol-
lowing two facts have motivated us to investigate the fuzzy implications that do satisfy
(GHS):

(i) Due to the applicational demand, it is always necessary to have the fuzzy implica-
tions that do satisfy (GHS).

(ii) The set of all fuzzy implications satisfying (GHS) forms the set of all idempotent
elements of the semigroup (I, ∗◦), where I is the set of all fuzzy implications and ∗,
a t-norm (in our case ∗ = min), see Section 6.4 in [1]. In this way, one can glean
algebraic aspects of the set I.

Note that, in the literature only few fuzzy implications that satisfy (GHS) are known,
see, for example, Chapter 11 in [3]. However, to the best of the author’s knowledge, it
is not known the kind of fuzzy implications that have this property so far. Thus in this
work, we investigate the fuzzy implications that do satisfy (GHS).

2 Basic Results

Here in this section, we provide some basic necessary conditions required for I ∈ I to
satisfy (GHS). Let Φ denote the set of all increasing bijections ϕ : [0, 1]→ [0, 1].
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Definition 1. Let I ∈ I and ϕ ∈ Φ. Define Iϕ : [0, 1]2 → [0, 1] by

Iϕ(x, y) = ϕ−1(I(ϕ(x), ϕ(y))), x, y ∈ [0, 1].

Clearly Iϕ ∈ I for all ϕ ∈ Φ and is called the ϕ- conjugate of I .

Lemma 1. Let I ∈ I. Then the following statements are equivalent:

(i) I satisfies (GHS).
(ii) Iϕ satisfies (GHS) for all ϕ ∈ Φ.

Lemma 2. Let I ∈ I satisfy (GHS). Then, we have

I(1, y) ∧ I(y, 0) = 0, y ∈ [0, 1]. (1)

On the vertical sections I(1, ·) and I(·, 0) :

From (1), it clear that the vertical sections I(1, ·) and I(·, 0) play an important role in
the investigations of (GHS). Hence, we propose the following definition, which will be
useful in the sequel.

Definition 2. Let I ∈ I. Then define the following real numbers:

ε1 = sup{t ∈ [0, 1] : I(1, t) = 0},
ε2 = inf{t ∈ [0, 1] : I(t, 0) = 0}.

Since I ∈ I, from Definition 1.1.1 in [1], it follows that I(1, 0) = 0 and hence, ε1, ε2
do exist, in general. The following result gives the relation between ε1, ε2 of an I ∈ I
such that I satisfies (1).

Lemma 3. Let I ∈ I. Then the following statements are equivalent:

(i) I satisfies (1).
(ii) ε2 ≤ ε1.

Corollary 1. Let I ∈ I satisfy (GHS). Then ε2 ≤ ε1.

However, note that the converse of Corollary 1 need not be true always. i.e., ε2 ≤ ε1
is only a necessary condition but not sufficient always. Due to the variety of fuzzy im-
plications and the complexity of the functional equation (GHS), it is too much to expect
the information of I only knowing the vertical sections I(1, ·) and I(·, 0). Hence in
Section 3, we restrict our investigations of I satisfying (GHS) to some well established
families of fuzzy implications, namely, (S,N)-, R- and Yager’s f -, g- families of fuzzy
implications.
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3 Solutions from well known families of fuzzy implications

Here in this section, we investigate the solutions of (GHS) that do come from various
families of fuzzy implications. For definitions, properties, characterizations, represen-
tations and further details of these families of fuzzy implications, please see [1].

Recall that, a fuzzy implication I is said to satisfy the left neutrality property (NP)
if I(1, y) = y, for all y ∈ [0, 1].

Lemma 4. Let I ∈ I satisfy (NP). If I satisfies (GHS) then

NI(x) = ND1(x) =

{
1, if x = 0,

0, if x > 0.

(S,N)-implications:

Theorem 1. If I be an (S,N)-implication. Then the following statements are true:

(i) I satisfies (GHS).

(ii) I(x, y) = ID(x, y) =

{
1, if x = 0,

y, if x > 0.

R-implications:

Theorem 2. Let I be an R-implication obtained from a left continuous t-norm. Then
the following statements are true:

(i) I satisfies (GHS).

(ii) I(x, y) = IGD(x, y) =

{
1, if x ≤ y,
y, if x > y

.

Proof. (i) =⇒ (ii). Let I satisfy (GHS). Then from Theorems 2.5.7 and 2.5.14 in [1],
it follows that T = TI is a t-norm, where TI is defined as follows:

TI(x, y) = min{z|I(x, z) ≥ y}, x, y ∈ [0, 1].

Claim: TI(x, x) = x, for all x ∈ [0, 1].
Now, let x ∈ [0, 1]. Then

TI(x, x) = min{z ∈ [0, 1]|I(x, z) ≥ x},
= min{z ≥ x|I(x, z) ≥ x} ∧min{z ≤ x|I(x, z) ≥ x}

min{z ≥ x|I(x, z) ≥ x}:
Since I is an R-implication obtained from a left-continuous t-norm, I satisfies
the ordering property (OP), viz., I(x, y) = 1 ⇐⇒ x ≤ y. Hence I(x, z) = 1
for all z ≥ x. Thus we have, min{z ≥ x|I(x, z) ≥ x} = min{z ≤ x|1 ≥
x} = x.
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min{z ≤ x|I(x, z) ≥ x}:
min{z ≤ x|I(x, z) ≥ x} = min{z ≤ x| sup

y∈[0,1]

(
I(x, y) ∧ I(y, z)

)
≥ x}

= min
{
z ≤ x| sup

y≤z≤x

(
I(x, y) ∧ I(y, z)

)
∨

sup
z≤y≤x

(
I(x, y) ∧ I(y, z)

)
∨ sup
z≤x≤y

(
I(x, y) ∧ I(y, z)

)
≥ x

}

= min
{
z ≤ x|

(
I(x, z) ∨ sup

z≤y≤x

(
I(x, y) ∧ I(y, z)

)
∨ I(x, z)

)
≥ x

}

= min{z ≤ x|I(x, z) ≥ x} = x.

Thus, TI(x, x) = min{z ≥ x|I(x, z) ≥ x} ∧min{z ≤ x|I(x, z) ≥ x}
= min(x, x) = x, for all x ∈ [0, 1]

and hence, from Proposition 1.9 in [2], it follows that T = min, and I = IGD.
(ii) =⇒ (i). It follows easily.

f-implications:

Lemma 5. Let I be an f -implication with f -generator h. If I satisfies (GHS) then
h(0) = ∞.

Theorem 3. If I is an f -implication then I does not satisfy (GHS).

Proof. Let I be an f -implication with f -generator h and I satisfies (GHS). Then from
Lemma 5, it follows that h(0) = ∞. This implies, from Theorem 3.1.7 in [1], that I is
continuous except at (0, 0). Now, let 0 < x, y, z < 1. Then,

I(x, I(y, z)) = I(x, sup
w∈[0,1]

{I(y, w) ∧ I(w, z)}), dfrom Definition of (GHS)

= sup
w∈[0,1]

{I(x, I(y, w) ∧ I(w, z))}, dfrom continuity of I

= sup
w∈[0,1]

{I(x, I(y, w)) ∧ I(x, I(w, z))}, dfrom Prop. 7.2.15 in [1]

= sup
w∈[0,1]

{I(xy,w) ∧ I(w, I(x, z))}, dfrom (LI) and (EP) of I

= I(xy, I(x, z)). dfrom Definition of (GHS)

Once again by using (LI) of I w.r.t Tp, we get I(x, I(y, z)) = I(xy, z) and hence,
we have also I(xy, I(x, z)) = I(xy, z). Then from Lemma 6.25 in [4], it follows that
I(x, z) = z, which further implies that either x = 1 or z = 1, a contradiction to the
fact that 0 < x, y, z < 1. This completes the proof.

g-implications:

Theorem 4. If I is a g-implication then I does not satisfy (GHS).
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Measure-free conditioning works in two steps. In a first step, conditional events
“a given b” are defined as well-defined elements in terms of the events a, b ∈ L, a
suitable lattice. In a second step, their uncertainty is expressed by suitable measures of
conditional events (a given b) as extensions of a given measure of the (unconditional)
events a, b.

In the present talk, we start with events from any MV-algebra L and an additive
measure m on L. Then the conditional events as the lattice-intervals

(a ‖ b) = [a ∧ b, b→ a], a, b ∈ L,

are in the Girard algebra L̃, see Theorem 2.3 from [2] and, additionally, Remarks 6.1 and
6.2 from [4]. The question how to extend the additivity ofm has been solved only in the
following particular cases. In [1] we have proved that for any Boolean algebra L there
exists a unique extension m̃ on the MV-algebra L̃ which is additive. For non-Boolean
MV-algebras L it seems that an adequate type of extension of m is a weakly additive
measure m̃ on L̃, i.e. where m̃ is additive on all MV-subalgebras of L̃, see Remark 6.8
from [4]. In [3] we gave a complete characterization for any finite MV-chain L, in [4]
we extended this result to any finite MV-algebra L.

The aim of the present talk is to give first results for arbitrary MV-algebras L. On the
one hand, we indicate how to find all MV-algebras from L̃ and, with those, the weakly
additive extensions m̃. On the other hand, we show that these m̃ can be represented by
a common mean value function M , i.e. as

m̃(a ‖ b) =M(m(a ∧ b), m(b→ a) ),

only if L is either a Boolean algebra or an MV-chain.
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L-fuzzy relations are relations in which every pair of elements is related up to a
certain degree indicated by a membership value from the complete Heyting algebra L.
Formally, an L-fuzzy relation R (or L-relation for short) between a set A and a set B
is a function R : A × B → L. They generalize fuzzy relations by replacing the unit
interval by an arbitrary complete Heyting algebra and allow, therefore, for incompara-
ble degrees of membership. A suitable abstract theory covering these relations is given
by arrow or Goguen categories. These theories have been studied intensively [4–8, 10]
including investigations into higher-order fuzziness [11, 12]. In addition to the theoret-
ical studies, these categories have been used to model and specify type-1 and type-2
L-fuzzy controllers [9, 13] as well as L-fuzzy databases [1–3, 15]. One reason for the
successful application of these structures in practical examples is that arrow categories
allow constructions such as relational sums and products that are essential to model
complex input/output types of controllers in particular or data in general. However, cer-
tain other constructions such as quotients by partial equivalence relations and relational
powers that are useful in more sophisticated applications are not available.

A further generalization of fuzziness is given by moving from the so-called fixed-
base to the variable-base case. In the variable-base case relations between different
objects may use membership values from different lattices. It was shown in [14] that
such an approach requires a certain collection of lattices as basis. Further investigation
led to weak arrow categories as a suitable abstract notion for the variable-base case.
This approach and its abstract theory is interesting for multiple reasons. First of all, it
provides further inside into the relationship between the different approaches to fuzzi-
ness. Second, it provides the required foundation for an internal version of higher-order
fuzziness, i.e., a theory where type-1 and type-2 fuzzy relations come from the same
category rather than from two different categories. Last but not least, it can serve as
the underlying theory to model fuzzy controllers that use different lattices for member-
ship within different components. Unfortunately, we will show in this presentation that
weak arrow categories may provide even fewer constructions than arrow categories. In
particular, they normally do not provide relational sums which are essential in practical
applications.

In this presentation we are interested in so-called dependently typed fuzzy relations.
In such a relation each pair may use a different lattice of membership values. After
defining the concrete Dedekind category with cut operations of dependently typed fuzzy
relations over a basis of complete Heyting algebras we will show that this category has
all desired constructions.
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