

Triangular norms. Position paper III: Continuous t-norms

Erich Peter Klement Fuzzy Logic Laboratorium Linz-Hagenberg ep.klement@jku.at

Radko Mesiar Slovak Technical University, Bratislava & Czech Academy of Sciences, Prague mesiar@cvt.stuba.sk

> Endre Pap University of Novi Sad pap@im.ns.ac.yu, pape@eunet.yu

Abstract — This third and last part of a series of position papers on triangular norms (for Parts I and II see [25, 26]) presents the representation of continuous Archimedean t-norms by means of additive generators, and the representation of continuous t-norms by means of ordinal sums with Archimedean summands, both with full proofs. Finally some consequences of these representation theorems in the context of comparison and convergence of continuous t-norms, and of the determination of continuous t-norms by their diagonal sections are mentioned.

Key words: Triangular norm

Submitted for publication

Johannes Kepler Universität Linz

Fuzzy Logic Laboratorium Linz-Hagenberg

1 Introduction 1

1 Introduction

This is the third and final part of a series of position papers on the state of the art of some particularly important aspects of triangular norms in a condensed form. The monograph [24] provides a rather complete and self-contained overview about triangular norms and their applications.

Part I [25] considered some basic analytical properties of t-norms, such as continuity, and important classes such as Archimedean, strict and nilpotent t-norms. Also the dual operations, the triangular conorms, and De Morgan triples were mentioned. Finally, a short historical overview on the development of t-norms and their way into fuzzy sets and fuzzy logics was given.

Part II [26] is devoted to general construction methods based mainly on pseudo-inverses, additive and multiplicative generators, and ordinal sums, including also some constructions leading to non-continuous t-norms, and to a presentation of some distinguished families of t-norms.

In this third part we first present the representation of continuous Archimedean t-norms by means of additive generators, and then the representation of continuous t-norms by means of ordinal sums with Archimedean summands. These theorems were first proved in the framework of triangular norms in [29]. However, they can be also derived from results in [31] in the framework of semigroups. We include full proofs of the representation theorems mentioned above, since the original sources are not so easily accessible and/or they heavily use the special language of semigroup theory. Finally we include some results and examples which follow from these representation theorems.

Several notions and results from Parts I and II will be needed in this paper, and they can be found there in full detail [25, 26]. For the convenience of the reader, we briefly recall some of them.

Recall that a triangular norm (briefly t-norm) is a binary operation T on the unit interval [0,1] which is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function $T: [0,1]^2 \longrightarrow [0,1]$ such that for all $x,y,z \in [0,1]$:

- (T1) T(x,y) = T(y,x),
- (T2) T(x,T(y,z)) = T(T(x,y),z),
- (T3) $T(x,y) \le T(x,z)$ whenever $y \le z$,
- (T4) T(x,1) = x.

Observe that for a continuous t-norm T the Archimedean property is equivalent to T(x,x) < x for all $x \in]0,1[$, and that each continuous Archimedean t-norm is either strict or nilpotent [25, Theorem 6.15]. Given a t-norm T, an element $x \in [0,1]$ is said to be idempotent if T(x,x) = x (clearly, 0 and 1 are idempotent elements of each t-norm, the so-called trivial idempotent elements).

Observe that the pseudo-inverse is defined for arbitrary monotone functions [26, Definition 2.1]. In our special setting with mostly deal with continuous, decreasing function $t \colon [0,1] \longrightarrow [0,\infty]$ with t(1)=0, in which case the pseudo-inverse $f^{(-1)}$ reduces to

$$f^{(-1)}(x) = f^{-1}(\min(x, f(0))).$$

2 Representation of continuous Archimedean t-norms

For the class of all t-norms (which includes non-continuous t-norms and even t-norms which are not Borel measurable) the only existing characterization is by the axioms (T1)–(T4). The important subclass of continuous t-norms, however, has nice representations in terms of one-place functions and ordinal sums.

Theorem 2.1 For a function $T: [0,1]^2 \longrightarrow [0,1]$ the following are equivalent:

- (i) T is a continuous Archimedean t-norm.
- (ii) T has a continuous additive generator, i.e., there exists a continuous, strictly decreasing function $t: [0,1] \longrightarrow [0,\infty]$ with t(1)=0, which is uniquely determined up to a positive multiplicative constant, such that for all $(x,y) \in [0,1]^2$

$$T(x,y) = t^{(-1)}(t(x) + t(y)). (2.1)$$

Proof: Assume first that $t : [0,1] \longrightarrow [0,+\infty]$ is a continuous, strictly decreasing function with t(1) = 0 and that T is constructed by (2.1), i.e., t is an additive generator of T. The commutativity (T1) and the monotonicity (T3) of T are obvious. Also, the boundary condition (T4) holds since for all $x \in [0,1]$

$$T(x,1) = t^{(-1)}(t(x) + t(1)) = t^{(-1)}(t(x)) = x.$$

Concerning the associativity (T2), for all $x, y, z \in [0, 1]$ we obtain

$$T(T(x,y),z) = t^{(-1)}(t(T(x,y)) + t(z))$$

$$= t^{(-1)}(t(t^{(-1)}(t(x) + t(y))) + t(z))$$

$$= t^{(-1)}(t(x) + t(y) + t(z))$$

$$= t^{(-1)}(t(x) + t(t^{(-1)}(t(y) + t(z))))$$

$$= t^{(-1)}(t(x) + t(T(y,z)))$$

$$= T(x, T(y,z)).$$

where the third equality is a consequence of

$$t(t^{(-1)}(t(x) + t(y))) = \min(t(x) + t(y), t(0)).$$

To prove the converse, let T be a continuous Archimedean t-norm. Concerning the notion $x_T^{(n)}$ we will use, recall that, for each $x \in [0,1]$, we have $x_T^{(0)} = 1$ and, for $n \in \mathbb{N}$, by recursion

$$x_T^{(n)} = T(x, x_T^{(n-1)}).$$

Define now for $x \in [0, 1]$ and $m, n \in \mathbb{N}$

$$\begin{split} x_T^{(\frac{1}{n})} &= \sup\{y \in [0,1] \mid y_T^{(n)} < x\}, \\ x_T^{(\frac{m}{n})} &= \left(x_T^{(\frac{1}{n})}\right)_T^{(m)}. \end{split}$$

Since T is Archimedean, we have for all $x \in [0, 1]$

$$\lim_{n \to \infty} x_T^{(\frac{1}{n})} = 1. \tag{2.2}$$

Note that the expression $x_T^{(\frac{m}{n})}$ is well-defined because of $x_T^{(\frac{m}{n})} = x_T^{(\frac{km}{kn})}$ for all $k \in \mathbb{N}$. If, for some $x \in [0,1]$ and some $n \in \mathbb{N} \cup \{0\}$, we have $x_T^{(n)} = x_T^{(n+1)}$ then, in the standard way by induction, we obtain

$$x_T^{(n)} = x_T^{(2n)} = (x_T^{(n)})_T^{(2)}$$

and, since T is continuous Archimedean, $x_T^{(n)} \in \{0,1\}$. This means that we have $x_T^{(n)} > x_T^{(n+1)}$ whenever $x_T^{(n)} \in]0,1[$.

Now choose and fix an arbitrary element $a \in]0,1[$, and define the function $h:\mathbb{Q}\cap [0,\infty[$ \longrightarrow [0,1] by $h(r)=a_T^{(r)}$. Since T is continuous and since (2.2) holds, h is a continuous function. Moreover, we have for all $x \in [0,1]$ and $m,n,p,q \in \mathbb{N}$

$$\begin{split} x_T^{\left(\frac{m}{n} + \frac{p}{q}\right)} &= x_T^{\left(\frac{mq + np}{nq}\right)} \\ &= \left(x_T^{\left(\frac{1}{nq}\right)}\right)_T^{(mq + np)} \\ &= T\left(\left(x_T^{\left(\frac{1}{nq}\right)}\right)_T^{(mq)}, \left(x_T^{\left(\frac{1}{nq}\right)}\right)_T^{(np)}\right) \\ &= T\left(x_T^{\left(\frac{m}{n}\right)}, x_T^{\left(\frac{p}{q}\right)}\right) \end{split}$$

and, as a consequence, for all $r, s \in \mathbb{Q} \cap [0, \infty[$

$$h(r+s) = a_T^{(r+s)} = T(a_T^{(r)}, a_T^{(s)}) \le a_T^{(r)} = h(r),$$

i.e., h is also non-increasing. The function h is even strictly decreasing on the preimage of]0,1] since for all $\frac{m}{n},\frac{p}{q}\in\mathbb{Q}\cap[0,\infty[$ with $h(\frac{m}{n})>0$ we get

$$h\left(\frac{m}{n} + \frac{p}{q}\right) \le h\left(\frac{mq+1}{nq}\right) = \left(a_T^{\left(\frac{1}{nq}\right)}\right)_T^{\left(mq+1\right)} < \left(a_T^{\left(\frac{1}{nq}\right)}\right)_T^{\left(mq\right)} = h\left(\frac{m}{n}\right).$$

The monotonicity and continuity of h on $\mathbb{Q} \cap [0, \infty[$ allows us to extend it uniquely to a function $\overline{h} \colon [0, \infty] \longrightarrow [0, 1]$ via

$$\overline{h}(x) = \inf\{h(r) \mid r \in \mathbb{Q} \cap [0, x]\}.$$

Then \overline{h} is continuous and non-increasing, and we have for all $x, y \in [0, \infty]$

$$\overline{h}(x+y) = T(\overline{h}(x), \overline{h}(y)).$$

Moreover, \overline{h} is strictly decreasing on the preimage of]0,1]. Define the function $t \colon [0,1] \longrightarrow [0,\infty]$ by

$$t(x) = \sup\{y \in [0,\infty] \mid \overline{h}(y) > x\}$$

with the usual convention $\sup\emptyset=0$ (observe that t is just the pseudo-inverse of \overline{h} and vice versa). Then t is continuous, strictly decreasing, and satisfies t(1)=0 [24, Remark 3.4]. A combination of all the arguments so far yields that t is indeed a continuous additive generator of T since for each $(x,y)\in[0,1]^2$

$$T(x,y) = T(\overline{h}(t(x)), \overline{h}(t(y))) = \overline{h}(t(x) + t(y)) = t^{(-1)}(t(x) + t(y)).$$

To show that the continuous additive generator t of T constructed above is unique up to a positive multiplicative constant, assume that the two functions $t_1, t_2 : [0, 1] \longrightarrow [0, \infty]$ are both continuous additive generators of T, i.e., we have for each $(x, y) \in [0, 1]^2$ the equality

$$t_1^{(-1)}(t_1(x) + t_1(y)) = t_2^{(-1)}(t_2(x) + t_2(y)).$$

Substituting $u = t_2(x)$ and $v = t_2(y)$, we obtain that, for all $u, v \in [0, t_2(0)]$ satisfying $u + v \in [0, t_2(0)]$,

$$t_1 \circ t_2^{(-1)}(u) + t_1 \circ t_2^{(-1)}(v) = t_1 \circ t_2^{(-1)}(u+v).$$
 (2.3)

Then from the continuity of t_1 and $t_2^{(-1)}$ it follows that (2.3) holds for all $u, v \in [0, t_2(0)]$ with $u + v \in [0, t_2(0)]$.

Equation (2.3) is a Cauchy functional equation (see [2]), whose continuous, strictly increasing solutions $t_1 \circ t_2^{(-1)} \colon [0,t_2(0)] \longrightarrow [0,\infty]$ must satisfy $t_1 \circ t_2^{(-1)} = b \cdot \mathrm{id}_{[0,t_2(0)]}$ for some $b \in]0,\infty[$. As a consequence, we get $t_1 = b \cdot t_2$ for some $b \in]0,\infty[$, thus completing the proof. \square

Because of the special form of the pseudo-inverse $t^{(-1)}$, the representation (2.1) in Theorem 2.1 can also be written as

$$T(x,y) = t^{-1}(\min(t(x) + t(y), t(0))).$$

We already have seen in [25, Proposition 6.13 and Theorem 6.17] that a continuous Archimedean t-norm is either strict or nilpotent, a distinction which can be made also with the help of their additive generators. Indeed, generators t of strict t-norms satisfy $t(0) = \infty$ while generators of nilpotent t-norms satisfy $t(0) < \infty$ [26, Corollary 2.8].

Recall that for the product $T_{\mathbf{P}}$ and for the Łukasiewicz t-norm $T_{\mathbf{L}}$ additive generators $t:[0,1] \longrightarrow [0,\infty]$ are given by, respectively,

$$t(x) = -\log x,$$

$$t(x) = 1 - x.$$

Based on the proof of Theorem 2.1, it is possible to give some constructive way to obtain additive generators of continuous Archimedean t-norms. As an illustrating example, we include the following result of [11] (compare also [1, 34, 4]) for the case of strict t-norms which can be derived in a straightforward manner from the proof of Theorem 2.1.

Corollary 2.2 Let T be a strict t-norm. Fix an arbitrary element $x_0 \in]0,1[$, and define the function $t: [0,1] \longrightarrow [0,\infty]$ by

$$t(x) = \inf \left\{ \frac{m-n}{k} \mid m, n, k \in \mathbb{N} \quad \text{and} \quad (x_0)_T^{(m)} < T((x_0)_T^{(n)}, x_T^{(k)}) \right\}.$$

Then t is an additive generator of T.

Example 2.3 If we consider the Hamacher product T [15] defined by

$$T(x,y) = \frac{xy}{x + y - xy}$$

whenever $(x,y) \neq (0,0)$, observe that we get (taking into account $\frac{1}{\infty} = 0$ and $\frac{1}{0} = \infty$) for all $(x,y) \in [0,1]^2$

$$T(x,y) = \frac{1}{\frac{1}{x} + \frac{1}{y} - 1}$$

and, for each $x \in [0,1]$ and each $n \in \mathbb{N}$

$$x_T^{(n)} = \frac{1}{\frac{n}{r} - n + 1}.$$

For $x_0 = 0.5$ the inequality

$$(x_0)_T^{(m)} < T((x_0)_T^{(n)}, x_T^{(k)})$$

is easily seen to be equivalent to $m-n>k(\frac{1}{x}-1)$, yielding the additive generator $t\colon [0,1]\longrightarrow [0,\infty]$ of T specified by

$$\begin{split} t(x) &= \inf \left\{ \frac{m-n}{k} \;\middle|\; m,n,k \in \mathbb{N} \text{ and } \frac{m-n}{k} > \frac{1}{x} - 1 \right\} \\ &= \frac{1-x}{x}. \end{split}$$

The representation of continuous Archimedean t-norms given in Theorem 2.1 is based on the addition on the interval $[0, +\infty]$. There is a completely analogous representation thereof based on the multiplication on [0, 1], thus leading to a representation of continuous Archimedean t-norms by means of multiplicative generators [26, Section 2]. By duality, there are also representations of continuous Archimedean t-conorms by means of additive generators and multiplicative generators, respectively.

- **Remark 2.4** (i) If T is a continuous Archimedean t-norm with additive generator $t \colon [0,1] \longrightarrow [0,\infty]$, then the function $\theta \colon [0,1] \longrightarrow [0,1]$ defined by $\theta(x) = e^{-t(x)}$ is a multiplicative generator of T.
 - (ii) If S is a continuous Archimedean t-conorm then the dual t-norm T is continuous Archimedean and, therefore, has an additive generator $t \colon [0,1] \longrightarrow [0,\infty]$. Then $s \colon [0,1] \longrightarrow [0,\infty]$ defined by s(x) = t(1-x) is an additive generator of S, and $\xi \colon [0,1] \longrightarrow [0,1]$ defined by $e^{-t(1-x)}$ is a multiplicative generator of S.
 - (iii) Given a continuous Archimedean t-norm T and a strictly increasing bijection $\varphi \colon [0,1] \longrightarrow [0,1]$, it is clear that the function $T_{\varphi} \colon [0,1]^2 \longrightarrow [0,1]$ given by

$$T_{\varphi}(x,y) = \varphi^{-1}(T(\varphi(x),\varphi(y)))$$

is a continuous Archimedean t-norm too. By Theorem 2.1, there are additive generators $t, t_{\varphi} \colon [0,1] \longrightarrow [0,\infty]$ of T and T_{φ} , respectively. Taking into account [26, Proposition 2.9], t_{φ} equals $t \circ \varphi$ up to a multiplicative constant.

It is straightforward that each isomorphism $\varphi \colon [0,1] \longrightarrow [0,1]$ preserves (among many other properties) the continuity, the strictness and the existence of zero divisors. Therefore, each t-norm which is isomorphic to a strict or to a nilpotent t-norm, itself is strict or nilpotent, respectively.

Conversely, if T_1 and T_2 are two strict t-norms with additive generators t_1 and t_2 (which are bijective functions from [0,1] into $[0,\infty]$ in this case), respectively, then $\varphi \colon [0,1] \longrightarrow [0,1]$ given

by $\varphi=t_1^{-1}\circ t_2$ is a strictly increasing bijection and $T_2=(T_1)_{\varphi}$. If T_1 and T_2 are two nilpotent t-norms with additive generators t_1 and t_2 , respectively, then we have $T_2=(T_1)_{\varphi}$, where the strictly increasing bijection $\varphi\colon [0,1] \longrightarrow [0,1]$ is given by $\varphi=t_1^{-1}\circ \left(\frac{t_1(0)}{t_2(0)}\cdot t_2\right)$ (observe that in this case the two functions t_1 and $\frac{t_1(0)}{t_2(0)}\cdot t_2$ can be viewed as bijections from [0,1] into $[0,t_1(0)]$).

We therefore have shown the following result:

Lemma 2.5 Two continuous Archimedean t-norms are isomorphic if and only if they are either both strict or both nilpotent.

An immediate consequence of Remark 2.4(iii) and Lemma 2.5 is that the product $T_{\mathbf{P}}$ and the Łukasiewicz t-norm $T_{\mathbf{L}}$ are not only prototypical examples of strict and nilpotent t-norms, respectively, but that each continuous Archimedean t-norm is isomorphic either to $T_{\mathbf{P}}$ or to $T_{\mathbf{L}}$:

- **Theorem 2.6** (i) A function $T: [0,1]^2 \longrightarrow [0,1]$ is a strict t-norm if and only if it is isomorphic to the product $T_{\mathbf{P}}$.
 - (ii) A function $T: [0,1]^2 \longrightarrow [0,1]$ is a nilpotent t-norm if and only if it is isomorphic to the Łukasiewicz t-norm T_L .

Each multiplicative generator $\theta \colon [0,1] \longrightarrow [0,1]$ of a strict t-norm T can be viewed as an isomorphism between $T_{\mathbf{P}}$ and T, i.e., $T = (T_{\mathbf{P}})_{\theta}$. In particular, this means that there are infinitely many isomorphisms between $T_{\mathbf{P}}$ and T. On the other hand, if T is a nilpotent t-norm with additive generator $t \colon [0,1] \longrightarrow [0,\infty]$, then there is a unique isomorphism $\varphi \colon [0,1] \longrightarrow [0,1]$ between $T_{\mathbf{L}}$ and T, namely, $\varphi = 1 - \frac{1}{t(0)} \cdot t$.

Recall that each continuous t-norm T satisfying T(x, x) < x for all $x \in]0, 1[$ is Archimedean [24, Proposition 2.15].

Corollary 2.7 If T is a continuous t-norm with trivial idempotent elements only, i.e., T(x,x) = x only if $x \in \{0,1\}$, then T is Archimedean and, therefore, has a continuous additive generator.

Remark 2.8 Note that the representation in Theorem 2.1 holds for continuous Archimedean tnorms only. However, there are several possibilities to show the existence of continuous additive generators for a function $T: [0,1]^2 \longrightarrow [0,1]$ under weaker hypotheses than in Theorem 2.1.

For example, it is possible to drop the commutativity [T1] [31] (see also [24, Theorem 2.43]) or to weaken the associativity [T2] [6, 28]. In the case of left-continuous t-norms, either the Archimedean property [27] or the existence of a (not necessarily continuous) additive generator [39] implies the existence of a continuous additive generator. In the case of a strictly monotone Archimedean t-norm T, the continuity of T in the point (1,1) is sufficient [14].

3 Representation of continuous t-norms

The construction of a new semigroup from a family of given semigroups using ordinal sums goes back to A. H. Clifford [8] (see also [9, 17, 35]), and it is based on ideas presented in [10, 22]. It has been successfully applied to t-norms in [13, 25, 29, 37].

Definition 3.1 Let $(T_{\alpha})_{\alpha \in A}$ be a family of t-norms and $(]a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ be a family of non-empty, pairwise disjoint open subintervals of [0, 1]. The t-norm T defined by

$$T(x,y) = \begin{cases} a_{\alpha} + (e_{\alpha} - a_{\alpha}) \cdot T_{\alpha} \left(\frac{x - a_{\alpha}}{e_{\alpha} - a_{\alpha}}, \frac{y - a_{\alpha}}{e_{\alpha} - a_{\alpha}} \right) & \text{if } (x,y) \in [a_{\alpha}, e_{\alpha}]^{2}, \\ \min(x,y) & \text{otherwise.} \end{cases}$$

is called the *ordinal sum* of the *summands* $\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle$, $\alpha \in A$, and we shall write

$$T = (\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle)_{\alpha \in A}.$$

Observe that the index set A is necessarily finite or countably infinite. It also may be empty, in which case the ordinal sum equals the idempotent t-norm $T_{\mathbf{M}}$.

Note that the representation of continuous Archimedean t-norms by means of multiplicative generators can be derived directly from more general results for *I*-semigroups (see [24, 29, 31, 38]). Similarly, the following representation of continuous t-norms by means of ordinal sums follows also from results of [31] in the context of *I*-semigroups.

Theorem 3.2 A function $T: [0,1]^2 \longrightarrow [0,1]$ is a continuous t-norm if and only if T is an ordinal sum of continuous Archimedean t-norms.

Proof: Obviously, each ordinal sum of continuous t-norms is a continuous t-norm.

Conversely, if T is a continuous t-norm, we first show that the set I_T of all idempotent elements of T is a closed subset of [0,1]. Indeed, if $(x_n)_{n\in\mathbb{N}}$ is a sequence of idempotent elements of T which converges to some $x\in[0,1]$, then the continuity of T implies

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} T(x_n, x_n) = T(x, x),$$

so x is also an idempotent element of T, and I_T is closed.

In the case $I_T = [0, 1]$ we have $T = T_{\mathbf{M}}$, i.e., an empty ordinal sum. If $I_T \neq [0, 1]$ it can be written as the (non-trivial) union of a finite or countably infinite family of pairwise disjoint open subintervals $(]a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ where, of course, each a_{α} and each e_{α} (but no element in $]a_{\alpha}, e_{\alpha}[)$ is an idempotent element of T.

For the time being, assume that $A \neq \emptyset$ and fix an arbitrary $\alpha \in A$. Then the monotonicity of T implies that for all $(x,y) \in [a_{\alpha},e_{\alpha}]^2$

$$a_{\alpha} = T(a_{\alpha}, a_{\alpha}) \le T(x, y) \le T(e_{\alpha}, e_{\alpha}) = e_{\alpha}$$

and for all $x \in [a_{\alpha}, 1]$

$$a_{\alpha} = T(a_{\alpha}, a_{\alpha}) \le T(x, a_{\alpha}) \le T(1, a_{\alpha}) = a_{\alpha},$$

showing that $([a_{\alpha}, e_{\alpha}], T|_{[a_{\alpha}, e_{\alpha}]^2})$ is a semigroup with annihilator a_{α} and with trivial idempotent elements only (actually, a_{α} acts as annihilator on $[a_{\alpha}, 1]$). Because of the monotonicity and continuity of T we also have for each $\alpha \in A$

$$\{T(z, e_{\alpha}) \mid z \in [0, 1]\} = [0, e_{\alpha}],$$

which means that each $x \in [0, e_{\alpha}]$ can be written as $x = T(z, e_{\alpha})$ for some $z \in [0, 1]$. This, together with the associativity of T, implies that

$$T(x, e_{\alpha}) = T(T(z, e_{\alpha}), e_{\alpha}) = T(z, T(e_{\alpha}, e_{\alpha})) = T(z, e_{\alpha}) = x,$$

showing that e_{α} acts as neutral element on $[0,e_{\alpha}]$ and, subsequently, also in the I-semigroup $([a_{\alpha},e_{\alpha}],T|_{[a_{\alpha},e_{\alpha}]^2})$.

Let $\varphi_{\alpha} : [0,1] \longrightarrow [a_{\alpha}, e_{\alpha}]$ be the strictly increasing bijection given by

$$\varphi_{\alpha}(x) = a_{\alpha} + (e_{\alpha} - a_{\alpha}) \cdot x,$$

then for each $\alpha \in A$ the function $T_{\alpha} : [0,1]^2 \longrightarrow [0,1]$ defined by

$$T_{\alpha}(x,y) = \varphi_{\alpha}^{-1}(T(\varphi_{\alpha}(x),\varphi_{\alpha}(y)))$$

is a continuous t-norm which has only trivial idempotent elements, and which is also Archimedean because of Corollary 2.7. A simple computation verifies that for all $\alpha \in A$ and for all $(x, y) \in [a_{\alpha}, e_{\alpha}]^2$ we have

$$T(x,y) = a_{\alpha} + (e_{\alpha} - a_{\alpha}) \cdot T_{\alpha}(\frac{x - a_{\alpha}}{e_{\alpha} - a_{\alpha}}, \frac{y - a_{\alpha}}{e_{\alpha} - a_{\alpha}}).$$

If $(x,y) \in [0,1]^2$ (without loss of generality we may assume $x \leq y$) is contained in none of the squares $[a_{\alpha},e_{\alpha}]^2$ then there exists some idempotent element $b \in [x,y]$ which acts as neutral element on [0,b] and as annihilator on [b,1], and we have

$$T(x,y) = T(T(x,b),y) = T(x,T(b,y)) = T(x,b) = x = \min(x,y),$$

completing the proof that $T = (\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle)_{\alpha \in A}$.

The uniqueness of the representation of T is an immediate consequence of the one-to-one correspondence between the set of idempotent elements of T and the family of intervals $(|a_{\alpha}, e_{\alpha}|)_{\alpha \in A}$.

The combination of Theorem 3.2 and of the results of Section 2 yields the following representations of continuous t-norms:

Corollary 3.3 For a function $T: [0,1]^2 \longrightarrow [0,1]$ the following are equivalent:

- (i) T is a continuous t-norm.
- (ii) T is isomorphic to an ordinal sum whose summands contain only the t-norms $T_{\mathbf{P}}$ and $T_{\mathbf{L}}$.
- (iii) There is a family $(]a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ of non-empty, pairwise disjoint open subintervals of [0,1] and a family $h_{\alpha} \colon [a_{\alpha}, e_{\alpha}] \longrightarrow [0, \infty]$ of continuous, strictly decreasing functions with $h_{\alpha}(e_{\alpha}) = 0$ for each $\alpha \in A$ such that for all $(x, y) \in [0, 1]^2$

$$T(x,y) = \begin{cases} h_{\alpha}^{(-1)}(h_{\alpha}(x) + h_{\alpha}(y)) & \text{if } (x,y) \in [a_{\alpha}, e_{\alpha}]^{2}, \\ \min(x,y) & \text{otherwise.} \end{cases}$$
(3.1)

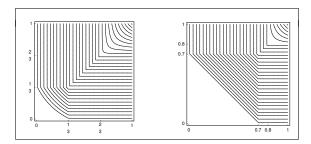


Figure 1: Contour plots of the isomorphic t-norms T (left) and $T_{0.7,0.8}$ from Example 3.4

Example 3.4 Consider the continuous t-norm T (see Figure 1) given by

$$T(x,y) = \begin{cases} \max\left(\frac{3x+3y+9xy-1}{6},0\right) & \text{if } (x,y) \in \left[0,\frac{1}{3}\right]^2, \\ \frac{4x+4y-3xy-4}{9x+9y-9xy-8} & \text{if } (x,y) \in \left[\frac{2}{3},1\right]^2, \\ \min(x,y) & \text{otherwise.} \end{cases}$$

This t-norm T can be written as the ordinal sum $(\langle 0, \frac{1}{3}, T_1 \rangle, \langle \frac{2}{3}, 1, T_2 \rangle)$ with T_1 and T_2 being given by

$$T_1(x,y) = \max\left(\frac{x+y+xy-1}{2}, 0\right),$$

$$T_2(x,y) = \frac{xy}{x+y-xy}.$$

Observe that the nilpotent t-norm T_1 was introduced in [40], and that the strict t-norm T_2 is the Hamacher product $T_0^{\mathbf{H}}$ [26], and that the functions t_1, t_2 given by

$$t_1(x) = -\log \frac{1+x}{2},$$

 $t_2(x) = \frac{1-x}{x}.$

are continuous additive generators of T_1 and T_2 , respectively. Defining the functions $h_1: \left[0, \frac{1}{3}\right] \longrightarrow [0, \infty]$ and $h_2: \left[\frac{2}{3}, 1\right] \longrightarrow [0, \infty]$ by

$$h_1(x) = -\log \frac{1+3x}{2},$$

 $h_2(x) = \frac{3-3x}{3x-2},$

we can represent our t-norm T in the form (3.1). For any numbers $a,b \in]0,1[$ with a < b consider the t-norm $T_{ab} = (\langle 0,a,T_{\mathbf{L}}\rangle,\langle b,1,T_{\mathbf{P}}\rangle)$ (see Figure 1). Then T is isomorphic to T_{ab} , i.e., we have $T = (T_{ab})_{\varphi}$ where the strictly increasing bijection $\varphi \colon [0,1] \longrightarrow [0,1]$ is given by

$$\varphi(x) = \begin{cases} a \frac{\log(1+3x)}{\log 2} & \text{if } x \in [0, \frac{1}{3}], \\ a + (b-a)(3x-1) & \text{if } x \in \left] \frac{1}{3}, \frac{2}{3}\right], \\ b + (1-b)e^{\frac{3x-3}{3x-2}} & \text{otherwise.} \end{cases}$$

Analogous representations for continuous t-conorms can be obtained by duality (making the necessary changes, e.g., replacing min by max).

4 Consequences of the representation theorems

Theorems 2.1 and 3.2 simplify the work with continuous t-norms in the sense that it suffices to consider (a family of) continuous Archimedean t-norms and, subsequently, their additive generators. In particular, the additive generator (which is a one-place function) of a continuous Archimedean t-norm T carries all the information of the whole t-norm T.

Knowing the structure of continuous t-norms allows us also to deduce general properties from partial information. For instance, if for a continuous t-norm T and for some $x_0 \in]0,1[$ the vertical section $f \colon [0,1] \longrightarrow [0,1]$ given by $f(y) = T(x_0,y)$ is strictly monotone and satisfies f(y) < y for all $y \in]0,1[$, then T is a strict t-norm.

In this section, we demonstrate the impact of Theorems 2.1 and 3.2 on the problems of (pointwise) comparison and convergence of continuous t-norms, and on the determination of continuous t-norms by their diagonal sections.

The following necessary and sufficient condition for the comparison of continuous Archimedean t-norms can be found in [38, Lemma 5.5.8] (see also [24, Theorem 6.2], for the special case of strict t-norms it was proved first in [36] (see also [5]).

Theorem 4.1 Let T_1 and T_2 be two continuous Archimedean t-norms with additive generators $t_1, t_2 : [0, 1] \longrightarrow [0, \infty]$, respectively. The following are equivalent:

- (i) $T_1 \leq T_2$.
- (ii) The function $t_1 \circ t_2^{-1} : [0, t_2(0)] \longrightarrow [0, \infty]$ is subadditive, i.e., for all $u, v \in [0, t_2(0)]$ with $u + v \in [0, t_2(0)]$ we have

$$t_1 \circ t_2^{-1}(u+v) \le t_1 \circ t_2^{-1}(u) + t_1 \circ t_2^{-1}(v).$$

There exist criteria (some of which are only sufficient) for the comparability of continuous Archimedean t-norms which sometimes are easier to check than the subadditivity in Theorem 4.1. The following sufficient conditions can be derived easily from Theorem 4.1 (recall that a function $f: [a, b] \longrightarrow [0, \infty]$ is called concave if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in [a, b]$ and for all $\lambda \in [0, 1]$) and from [16, (103)].

Corollary 4.2 Let T_1 and T_2 be two continuous Archimedean t-norms with additive generators $t_1, t_2 : [0, 1] \longrightarrow [0, \infty]$, respectively. Then we have $T_1 \leq T_2$ if one of the following conditions is satisfied:

- (i) The function $t_1 \circ t_2^{-1} : [0, t_2(0)] \longrightarrow [0, \infty]$ is concave.
- (ii) The function $f: [0, t_2(0)] \longrightarrow [0, \infty]$ defined by

$$f(x) = \frac{(t_1 \circ t_2^{-1})(x)}{x}$$

is non-increasing.

(iii) The function

$$\frac{t_1'}{t_2'}$$
: $]0,1[\longrightarrow [0,\infty[$

is non-decreasing.

Example 4.3 In [26, Example 2.10(i)] we have seen that for each continuous Archimedean t-norm T with additive generator $t \colon [0,1] \longrightarrow [0,\infty]$, and for each $\lambda \in]0,\infty[$, the function $t^{\lambda} \colon [0,1] \longrightarrow [0,\infty]$ is an additive generator of a continuous Archimedean t-norm which was denoted there $T^{(\lambda)}$. Now we are able to show that the family $(T^{(\lambda)})_{\lambda \in]0,\infty[}$ is strictly increasing with respect to the parameter λ . Indeed, for $\lambda, \mu \in]0,\infty[$ the composite function $t^{\lambda} \circ (t^{\mu})^{-1} \colon [0,t(0)^{\mu}] \longrightarrow [0,\infty]$ is given by

$$t^{\lambda} \circ (t^{\mu})^{-1}(x) = x^{\frac{\lambda}{\mu}},$$

and it is concave whenever $\lambda \leq \mu$, showing that $(T^{(\lambda)})_{\lambda \in]0,\infty[}$ is a strictly increasing family of t-norms. Consequently, the families of Yager t-norms [41], of Aczél-Alsina t-norms [3], and of Dombi t-norms [12] are strictly increasing families of t-norms.

A nontrivial problem was the monotonicity of the family of Frank t-norms $(T_{\lambda}^{\mathbf{F}})_{\lambda \in [0,\infty]}$ [13]. A first proof thereof appeared in [7, Proposition 1.12]. In the following we give a simpler proof [23] based on Corollary 4.2(iii) (see also [24, Proposition 6.8]).

Proposition 4.4 The family $(T_{\lambda}^{\mathbf{F}})_{\lambda \in [0,\infty]}$ of Frank t-norms is strictly decreasing.

Proof: Recall that $T_0^{\mathbf{F}} = T_{\mathbf{M}}$, $T_1^{\mathbf{F}} = T_{\mathbf{P}}$, whose additive generator $t_1^{\mathbf{F}}$ is given by $t_1^{\mathbf{F}}(x) = -\log x$, and $T_{\infty}^{\mathbf{F}} = T_{\mathbf{L}}$ whose additive generator $t_{\infty}^{\mathbf{F}}$ is given by $t_{\infty}^{\mathbf{F}}(x) = 1 - x$. For each $\lambda \in]0,1[\cup]1,\infty[$, $T_{\lambda}^{\mathbf{F}}$ is a strict t-norm, and its additive generator $t_{\lambda}^{\mathbf{F}}$ is given by $t_{\lambda}^{\mathbf{F}}(x) = \log \frac{\lambda-1}{\lambda^x-1}$.

Trivially we have $T_0^{\mathbf{F}}=T_{\mathbf{M}}>T_{\lambda}^{\mathbf{F}}$ for all $\lambda\in]0,\infty].$ From

$$\frac{(t_{\infty}^{\mathbf{F}})'}{(t_{\lambda}^{\mathbf{F}})'}(x) = \begin{cases} x & \text{if } \lambda = 1, \\ \frac{\lambda^x - 1}{\lambda^x \log \lambda} & \text{if } \lambda \in]0, 1[\, \cup \,]1, \infty[\, , \end{cases}$$

it follows that for each $\lambda \in]0, \infty[$ the function $\frac{(t_{\lambda}^{\mathbf{F}})'}{(t_{\lambda}^{\mathbf{F}})'}$ is non-decreasing, implying $T_{\infty}^{\mathbf{F}} \leq T_{\lambda}^{\mathbf{F}}$ and, since $T_{\infty}^{\mathbf{F}}$ is nilpotent and $T_{\lambda}^{\mathbf{F}}$ is strict, even $T_{\infty}^{\mathbf{F}} < T_{\lambda}^{\mathbf{F}}$.

Now let us show that $T_{\mu}^{\mathbf{F}} \leq T_{\lambda}^{\mathbf{F}}$ whenever $1 < \lambda < \mu < \infty$. Observe that for all $x \in]0,1[$ we get

$$\frac{(t_{\mu}^{\mathbf{F}})'}{(t_{\lambda}^{\mathbf{F}})'}(x) = \frac{\mu^x(\lambda^x - 1)\log\mu}{\lambda^x(\mu^x - 1)\log\lambda} = \frac{\log\mu}{\log\lambda} \cdot \frac{1 - \left(\frac{1}{\lambda}\right)^x}{1 - \left(\frac{1}{\mu}\right)^x}.$$

Then $\frac{(t_{\mu}^{\mathbf{F}})'}{(t_{\lambda}^{\mathbf{F}})'}$ is non-decreasing on]0,1[if and only if

$$\left(1 - \left(\frac{1}{\mu}\right)^x\right) \left(\frac{1}{\lambda}\right)^x \log \frac{1}{\lambda} \le \left(1 - \left(\frac{1}{\lambda}\right)^x\right) \left(\frac{1}{\mu}\right)^x \log \frac{1}{\mu},$$

i.e., if and only if we have the inequality

$$\frac{\left(\frac{1}{\lambda}\right)^x \log \frac{1}{\lambda}}{\left(\frac{1}{\mu}\right)^x \log \frac{1}{\mu}} \ge \frac{1 - \left(\frac{1}{\lambda}\right)^x}{1 - \left(\frac{1}{\mu}\right)^x}.\tag{4.1}$$

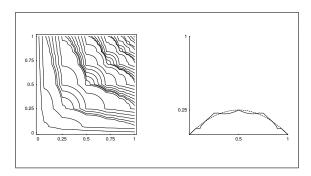


Figure 2: Contour plot of the strict t-norm T (left) considered in Example 4.5 together with the incomparable opposite diagonal sections of T and $T_{\mathbf{P}}$ (right)

Consider now the functions $f,g\colon]0,1[\longrightarrow [0,\infty[$ which are defined by $f(x)=1-\left(\frac{1}{\lambda}\right)^x$ and $g(x)=1-\left(\frac{1}{\mu}\right)^x$. Then, by the Cauchy Mean Value Theorem, for each $x\in]0,1[$ there exists a $y\in]0,x[$ such that

$$\frac{1 - \left(\frac{1}{\lambda}\right)^x}{1 - \left(\frac{1}{\mu}\right)^x} = \frac{f(x) - f(0)}{g(x) - g(0)} = \frac{f'(y)}{g'(y)} = \frac{\left(\frac{1}{\lambda}\right)^y \log \frac{1}{\lambda}}{\left(\frac{1}{\mu}\right)^y \log \frac{1}{\mu}} < \frac{\left(\frac{1}{\lambda}\right)^x \log \frac{1}{\lambda}}{\left(\frac{1}{\mu}\right)^x \log \frac{1}{\mu}}.$$

This proves inequality (4.1) and, consequently, the function $\frac{(t_{\mu}^{\mathbf{F}})'}{(t_{\lambda}^{\mathbf{F}})'}$ is non-decreasing, i.e., $T_{\mu}^{\mathbf{F}} \leq T_{\lambda}^{\mathbf{F}}$ and, because of $T_{\mu}^{\mathbf{F}} \neq T_{\lambda}^{\mathbf{F}}$, even $T_{\mu}^{\mathbf{F}} < T_{\lambda}^{\mathbf{F}}$ in this case. Similarly we can show $T_{1}^{\mathbf{F}} < T_{\lambda}^{\mathbf{F}}$ for all $\lambda \in]1, \infty[$.

The case $0 < \lambda < \mu \le 1$ can be transformed into $1 \le \frac{1}{\mu} < \frac{1}{\lambda} < \infty$, and the case $0 < \lambda < 1 < \mu < \infty$ is proved combining the two latter cases.

The comparison of arbitrary continuous t-norms is much more complicated, and it is fully described in [23] (see also [24, Theorem 6.12]).

When comparing t-norms it is evident that the incomparability of their diagonal sections implies the incomparability of the t-norms themselves. The converse, however, is not true in general, not even in the case of continuous Archimedean t-norms.

Example 4.5 Consider the function $t: [0,1] \longrightarrow [0,\infty]$ defined by (the index n may be any number in \mathbb{Z})

$$t(x) = \begin{cases} \infty & \text{if } x = 0, \\ 2^n (2 - (4x^{\frac{1}{2^n}} - 1)^2) & \text{if } x \in \left[\frac{1}{2^{2^{n+1}}}, \frac{1}{2^{2^n}}\right[, \\ 0 & \text{if } x = 1, \end{cases}$$

then t is an additive generator of some strict t-norm T. A simple computation shows that the diagonal sections of T and $T_{\mathbf{P}}$ coincide, but the opposite diagonal sections $d_T, d_{T_{\mathbf{P}}} \colon [0,1] \longrightarrow [0,1]$ given by $d_T(x) = T(x,1-x)$ and $d_{T_{\mathbf{P}}}(x) = T_{\mathbf{P}}(x,1-x)$ are incomparable (see Figure 2).

This shows that different continuous t-norms may have identical diagonal sections. Note that there are methods to describe all continuous t-norms having a given diagonal section [21, 24, 30]. Here we only mention one of these methods applied to strict t-norms [21, 30] (see also [24, Proposition 7.11]:

Proposition 4.6 Let $\delta \colon [0,1] \longrightarrow [0,1]$ be a strictly increasing bijection such that $\delta(x,x) < x$ for all $x \in]0,1[$. Then a continuous t-norm T has diagonal section δ if and only if T is strict and the function $t \colon [0,1] \longrightarrow [0,\infty]$ given by

$$t(x) = \begin{cases} \infty & \text{if } x = 0, \\ 2^n \cdot f(\delta^{(-n)}(x)) & \text{if } x \in]\delta^{(n+1)}(0.5), \delta^{(n)}(0.5)], \\ 0 & \text{if } x = 1, \end{cases}$$

is an additive generator of T, where $f \colon [\delta(0.5), 0.5] \longrightarrow [1, 2]$ is a strictly decreasing bijection, $\delta^{(0)} = \mathrm{id}_{[0,1]}, \, \delta^{(n)} = \delta \circ \delta^{(n-1)}$ whenever $n \in \mathbb{N}$, and $\delta^{(n)} = \left(\delta^{(-n)}\right)^{-1}$ whenever $-n \in \mathbb{N}$.

As a consequence of Proposition 4.6, two different strict t-norms with the same diagonal section are necessarily incomparable, compare also Example 4.5 (the same result holds for arbitrary continuous t-norms).

Additive generators characterize also analytical properties of the continuous Archimedean t-norms. For instance, a continuous Archimedean t-norm is 1-Lipschitz if and only if it has a convex additive generator [32, 38].

Also, convergence properties can be expressed by means of additive generators [19] (see also [24, Corollary 8.21]).

Proposition 4.7 Let $(T_n)_{n\in\mathbb{N}}$ be a sequence of continuous Archimedean t-norms and let T be a continuous Archimedean t-norm. Then the following are equivalent:

- (i) $\lim_{n\to\infty} T_n = T$.
- (ii) There exists a sequence of additive generators $(t_n : [0,1] \longrightarrow [0,\infty])_{n \in \mathbb{N}}$ of $(T_n)_{n \in \mathbb{N}}$ such that the restriction

$$\left(\lim_{n\to\infty}t_n\right)|_{]0,1]}$$

coincides with the restriction of some additive generator of T to [0,1].

Note that, whenever in Proposition 4.7 the limit t-norm T is strict, then $\lim_{n\to\infty} t_n$ is an additive generator of T.

For example, for each n > 1 the function $t_n : [0,1] \longrightarrow [0,\infty]$ given by

$$t_n(x) = \frac{2}{\log(1+\sqrt{n})} \log \frac{n-1}{n^x - 1}$$

is an additive generator of the (strict) Frank t-norm $T_n^{\mathbf{F}}$ [13]. Then for all $x \in]0,1]$ we have $\lim_{n \to \infty} t_n(x) = 1-x$, i.e., the sequence $(t_n|_{]0,1]})_{n>1}$ converges to the restriction of an additive generator of the Łukasiewicz t-norm $T_{\mathbf{L}}$ to]0,1]. Therefore, the sequence $(T_n^{\mathbf{F}})_{n>1}$ converges to $T_{\mathbf{L}}(=T_{\infty}^{\mathbf{F}})$.

Finally we mention that the continuous Archimedean t-norms form a dense subclass of the class of all continuous t-norms (with respect to the uniform topology), i.e., each continuous t-norm can be approximated by some continuous Archimedean t-norm with arbitrary precision [20, 24, 33]. More precisely we have:

References 14

Theorem 4.8 Let T be a continuous t-norm. Then for each $\varepsilon > 0$ there is a strict t-norm T_1 and a nilpotent t-norm T_2 such that for all $(x, y) \in [0, 1]^2$

$$|T(x,y) - T_1(x,y)| < \varepsilon,$$

$$|T(x,y) - T_2(x,y)| < \varepsilon.$$

Acknowledgment

This work was supported by two European actions (CEEPUS network SK-42 and COST action 274) as well as by the grants VEGA 1/8331/01, APVT-20-023402 and MNTRS-1866.

References

- [1] J. Aczél. Sur les opérations definies pour des nombres réels. Bull. Soc. Math. France, 76:59-64, 1949.
- [2] J. Aczél. Lectures on Functional Equations and their Applications. Academic Press, New York, 1966.
- [3] J. Aczél and C. Alsina. Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. *Methods Oper. Res.*, 48:3–22, 1984.
- [4] C. Alsina. On a method of Pi-Calleja for describing additive generators of associative functions. *Aequationes Math.*, 43:14–20, 1992.
- [5] C. Alsina and J. Gimenez. Sobre L-órdenes entre t-normas estrictas. Stochastica, 8:85–89, 1984.
- [6] B. Bacchelli. Representation of continuous associative functions. *Stochastica*, 10:13–28, 1986.
- [7] D. Butnariu and E. P. Klement. *Triangular Norm-Based Measures and Games with Fuzzy Coalitions*. Kluwer Academic Publishers, Dordrecht, 1993.
- [8] A. H. Clifford. Naturally totally ordered commutative semigroups. Amer. J. Math., 76:631-646, 1954.
- [9] A. H. Clifford and G. B. Preston. *The algebraic theory of semigroups*. American Mathematical Society, Providence, 1961.
- [10] A. C. Climescu. Sur l'équation fonctionelle de l'associativité. *Bull. École Polytechn. Iassy*, 1:1–16, 1946.
- [11] R. Craigen and Z. Páles. The associativity equation revisited. Aequationes Math., 37:306–312, 1989.
- [12] J. Dombi. A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. *Fuzzy Sets and Systems*, 8:149–163, 1982.
- [13] M. J. Frank. On the simultaneous associativity of F(x,y) and x+y-F(x,y). Aequationes Math., 19:194–226, 1979.
- [14] P. Hájek. Observations on the monoidal t-norm logic. Fuzzy Sets and Systems, 132:107–112, 2002.
- [15] H. Hamacher. Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt, 1978.
- [16] G. H. Hardy, J. E. Littlewood, and G. Pólya. *Inequalities*. Cambridge University Press, Cambridge, 1952.
- [17] K. H. Hofmann and J. D. Lawson. Linearly ordered semigroups: Historic origins and A. H. Clifford's influence. In Hofmann and Mislove [18], pages 15–39.

References 15

[18] K. H. Hofmann and M. W. Mislove, editors. *Semigroup Theory and its Applications*, volume 231 of *London Math. Soc. Lecture Notes*. Cambridge University Press, Cambridge, 1996.

- [19] S. Jenei. On Archimedean triangular norms. Fuzzy Sets and Systems, 99:179–186, 1998.
- [20] S. Jenei and J. C. Fodor. On continuous triangular norms. *Fuzzy Sets and Systems*, 100:273–282, 1998.
- [21] C. Kimberling. On a class of associative functions. *Publ. Math. Debrecen*, 20:21–39, 1973.
- [22] F. Klein-Barmen. Über gewisse Halbverbände und kommutative Semigruppen II. *Math. Z.*, 48:715–734, 1942–43.
- [23] E. P. Klement, R. Mesiar, and E. Pap. A characterization of the ordering of continuous t-norms. *Fuzzy Sets and Systems*, 86:189–195, 1997.
- [24] E. P. Klement, R. Mesiar, and E. Pap. *Triangular Norms*. Kluwer Academic Publishers, Dordrecht, 2000.
- [25] E. P. Klement, R. Mesiar, and E. Pap. Triangular norms. Position paper I: Basic analytical and algebraic properties. *Fuzzy Sets and Systems* (in press), also FLLL-TR-0208.
- [26] E. P. Klement, R. Mesiar, and E. Pap. Triangular norms. Position paper II: General constructions and parameterized families. Submitted for publication (FLLL-TR-0215).
- [27] A. Kolesárová. A note on Archimedean triangular norms. BUSEFAL, 80:57-60, 1999.
- [28] G. M. Krause. A strengthened form of Ling's theorem on associative functions. PhD thesis, Illinois Institute of Technology, Chicago, 1981.
- [29] C. M. Ling. Representation of associative functions. Publ. Math. Debrecen, 12:189–212, 1965.
- [30] R. Mesiar and M. Navara. Diagonals of continuous triangular norms. *Fuzzy Sets and Systems*, 104:35–41, 1999.
- [31] P. S. Mostert and A. L. Shields. On the structure of semi-groups on a compact manifold with boundary. *Ann. of Math., II. Ser.*, 65:117–143, 1957.
- [32] R. Moynihan. On τ_T semigroups of probability distribution functions II. *Aequationes Math.*, 17:19–40, 1978.
- [33] H. T. Nguyen, V. Kreinovich, and P. Wojciechowski. Strict Archimedean t-norms and t-conorms as universal approximators. *Internat. J. Approx. Reason.*, 18:239–249, 1998.
- [34] P. Pi-Calleja. Las ecuaciones funcionales de la teoria de magnitudes. In *Proceedings Segundo Symposium de Matemática*, *Villavicencio*, *Mendoza*, *Coni*, *Buneos Aires*, pages 199–280, 1954.
- [35] G. B. Preston. A. H. Clifford: an appreciation of his work on the occasion of his sixty-fifth birthday. *Semigroup Forum*, 7:32–57, 1974.
- [36] B. Schweizer and A. Sklar. Associative functions and statistical triangle inequalities. *Publ. Math. Debrecen*, 8:169–186, 1961.
- [37] B. Schweizer and A. Sklar. Associative functions and abstract semigroups. *Publ. Math. Debrecen*, 10:69–81, 1963.
- [38] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. North-Holland, New York, 1983.
- [39] P. Viceník. Non-continuous generated t-norms. In: S. E. Rodabaugh and E. P. Klement, editors. Topological and Algebraic Structures in Fuzzy Sets: Recent Developments in the Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Dordrecht (in press).
- [40] S. Weber. A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. *Fuzzy Sets and Systems*, 11:115–134, 1983.

References 16

[41] R. R. Yager. On a general class of fuzzy connectives. Fuzzy Sets and Systems, 4:235–242, 1980.

ERICH PETER KLEMENT
Fuzzy Logic Laboratorium Linz-Hagenberg
Department of Algebra, Stochastics and
Knowledge-Based Mathematical Systems
Johannes Kepler University
A-4040 Linz, Austria
ep.klement@jku.at

RADKO MESIAR

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering
Slovak Technical University
SK-81 368 Bratislava, Slovakia
mesiar@cvt.stuba.sk

Institute of Information Theory and Automation Czech Academy of Sciences CZ-182 08 Prague 8, Czech Republic

Endre Pap
Institute of Mathematics
University of Novi Sad
YU-21000 Novi Sad, Yugoslavia
pap@im.ns.ac.yu, pape@eunet.yu