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Abstract

We present the basic analytical and algebraic properties of triangular norms. We discuss continuity as well
as the important classes of Archimedean, strict and nilpotent t-norms. Triangular conorms and De Morgan
triples are also mentioned. Finally, a brief historical survey on triangular norms is given.
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1. Introduction

Triangular norms (brie8y t-norms) are an indispensable tool for the interpretation of the con-
junction in fuzzy logics [27] and, subsequently, for the intersection of fuzzy sets [67]. They are,
however, interesting mathematical objects for themselves.

Triangular norms, as we use them today, were >rst introduced in the context of probabilistic
metric spaces [54,57,58], based on some ideas presented in [43] (see Section 7 for details). They
also play an important role in decision making [21,26], in statistics [47] as well as in the theories
of non-additive measures [39,50,61,64] and cooperative games [11]. Some parameterized families of
t-norms (see, e.g. [22]) turn out to be solutions of well-known functional equations.

Algebraically speaking, t-norms are binary operations on the closed unit interval [0,1] such that
([0; 1]; T;6) is an abelian, totally ordered semigroup with neutral element 1 [28].
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For the closely related concept of uninorms (which turn [0,1] into an abelian, totally ordered
semigroup with neutral element e∈ ]0; 1[) see [38,66].

A recent monograph [38] provides a rather complete overview about triangular norms and their
applications.

In a series of three papers we want to summarize in a condensed form the most important facts
about t-norms. This Part I deals with the basic analytical properties, such as continuity, and with
important classes such as Archimedean, strict and nilpotent t-norms. We also mention the dual
operations, the triangular norms, and De Morgan triples. Finally we give a short historical overview
on the development of t-norms and their way into fuzzy sets and fuzzy logics.

To keep the paper readable, we have omitted all proofs (usually giving a source for the reader
interested in them) and rather included a number of (counter-)examples, in order to motivate and to
illustrate the abstract notions used.

Part II will be devoted to general construction methods based mainly on pseudo-inverses, additive
and multiplicative generators, and ordinal sums, adding also some constructions leading to non-
continuous t-norms, and to a presentation of some distinguished families of t-norms.

Finally, Part III will concentrate on continuous t-norms, in particular, on their representation by
additive and multiplicative generators and ordinal sums.

2. Triangular norms

The term triangular norm appeared for the >rst time (with slightly diFerent axioms) in [43]. The
following set of independent axioms for triangular norms goes back to Schweizer and Sklar [53–61].

De�nition 2.1. A triangular norm (brie8y t-norm) is a binary operation T on the unit interval
[0, 1] which is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function
T : [0; 1]2 → [0; 1] such that for all x; y; z ∈ [0; 1]:

(T1) T (x; y) =T (y; x),
(T2) T (x; T (y; z)) =T (T (x; y); z),
(T3) T (x; y)6T (x; z) whenever y6z,
(T4) T (x; 1) = x.

Since a t-norm is an algebraic operation on the unit interval [0,1], some authors (e.g., in [48])
prefer to use an in>x notation like x ∗ y instead of the pre>x notation T (x; y). In fact, some of the
axioms (T1)–(T4) then look more familiar: for all x; y; z ∈ [0; 1]

(T1) x ∗ y=y ∗ x,
(T2) x ∗ (y ∗ z) = (x ∗ y) ∗ z,
(T3) x ∗ y6x ∗ z whenever y6z,
(T4) (x ∗ 1) = x.

Because of the importance of some functional aspects (e.g., continuity) and since we prefer to keep
a uni>ed notation throughout this paper, we shall consistently use the pre>x notation for t-norms
(and t-conorms).
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Fig. 1. 3D plots (top) and contour plots (bottom) of the four basic t-norms TM ; TP; TL, and TD (observe that there are no
contour lines for TD).

Since t-norms are obviously extensions of the Boolean conjunction, they are usually used as
interpretations of the conjunction � in [0, l]-valued and fuzzy logics.

There exist uncountably many t-norms. In [38, Section 4] some parameterized families of t-norms
are presented which are interesting from diFerent points of view.

The following are the four basic t-norms, namely, the minimum TM, the product TP, the
 Lukasiewicz t-norm TL, and the drastic product TD (see Fig. 1 for 3D and contour plots), which
are given by, respectively:

TM(x; y) = min(x; y); (1)

TP(x; y) = x · y; (2)

TL(x; y) = max(x + y − 1; 0); (3)

TD(x; y) =
{

0 if (x; y) ∈ [0; 1[2;
min(x; y) otherwise:

(4)

These four basic t-norms are remarkable for several reasons. The drastic product TD and the minimum
TM are the smallest and the largest t-norm respectively (with respect to the pointwise order). The
minimum TM is the only t-norm where each x∈ [0; 1] is an idempotent element (compare De>nition
6.1), whereas the product TP and the  Lukasiewicz t-norm TL are prototypical examples of two
important subclasses of t-norms, namely, of the classes of strict and nilpotent t-norms, respectively.

It should be mentioned that the t-norms TM; TP; TL, and TD were denoted M;
;W , and Z , respec-
tively, in [57].

Sometimes we shall visualize t-norms (and functions F : [0; 1]2 → [0; 1] in general) in diFerent
forms: as 3D plots, i.e., as surfaces in the unit cube, as contour plots showing the curves (or,
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more generally, the sets) where the function in question has constant (equidistant) values, and,
occasionally, as diagonal sections, i.e., as graphs of the function x → F(x; x).

The boundary condition (T4) and the monotonicity (T3) were given in their minimal form. To-
gether with (T1) it follows that, for all x∈ [0; 1], each t-norm T satis>es

T (0; x) = T (x; 0) = 0; (5)

T (1; x) = x: (6)

Therefore, all t-norms coincide on the boundary of the unit square [0; 1]2.
The monotonicity of a t-norm T in its second component (T3) is, together with the commutativity

(T1), equivalent to the (joint) monotonicity in both components, i.e., to

T (x1; y1) 6 T (x2; y2) whenever x1 6 x2 and y1 6 y2: (7)

Since t-norms are just functions from the unit square into the unit interval, the comparison of
t-norms is done in the usual way, i.e., pointwise.

De�nition 2.2. If, for two t-norms T1 and T2, we have T1(x; y)6T2(x; y) for all (x; y)∈ [0; 1]2, then
we say that T1 is weaker than T2 or, equivalently, that T2 is stronger than T1, and we write in this
case T16T2.

We shall write T1¡T2 if T16T2 and T1 �= T2, i.e., if T16T2 and if T1(x0; y0)¡T2(x0; y0) for
some (x0; y0)∈ [0; 1]2.

As an immediate consequence of (T1), (T3) and (T4), the drastic product TD is the weakest, and
the minimum TM is the strongest t-norm, i.e., for each t-norm T we have

TD 6 T 6 TM: (8)

Between the four basic t-norms we have these strict inequalities

TD ¡ TL ¡ TP ¡ TM: (9)

A slight modi>cation of axiom (T4) leads to the following notion, introduced in [30,31].

De�nition 2.3. A function F : [0; 1]2 → [0; 1] which satis>es, for all x; y; z ∈ [0; 1], the properties
(T1)–(T3) and

F(x; y) 6 min(x; y) (10)

is called a t-subnorm.

Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the zero function is a
t-subnorm but not a t-norm.

Each t-subnorm can be transformed into a t-norm by rede>ning (if necessary) its values on the
upper right boundary of the unit square [38, Corollary 1.8].
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Proposition 2.4. If F : [0; 1]2 → [0; 1] is a t-subnorm then the function T : [0; 1]2 → [0; 1]
de:ned by

T (x; y) =
{
F(x; y) if (x; y) ∈ [0; 1[2;
min(x; y) otherwise;

is a triangular norm.

An interesting question is whether a t-norm is determined uniquely by its values on the diagonal
of the unit square. In general, this is not the case, but the two extremal t-norms TD and TM are
completely determined by their diagonal sections, i.e., by their values on the diagonal of the unit
square.

The associativity (T2) allows us to extend each t-norm T (which was introduced as a binary
operation) in a unique way to an nary operation for arbitrary n∈N ∪ {0} by induction:

n
T
i=1

xi =
{

1 if n = 0;
T
(
xn;Tn−1

i=1 xi
)

otherwise:
(11)

We also shall use the notation

T (x1; x2; : : : ; xn) =
n
T
i=1

xi:

If, in particular, x1 = x2 = · · · = xn = x, we shall brie8y write

x(n)
T = T (x; x; : : : ; x): (12)

The n-ary extensions of the minimum TM and the product TP are obvious. For the  Lukasiewicz
t-norm TL and the drastic product TD we get

TL(x1; x2; : : : ; xn) = max

(
n∑

i=1

xi − (n− 1); 0

)
;

TD(x1; x2; : : : ; xn) =
{
xi if xj = 1 for all j �= i;
0 otherwise:

The fact that each t-norm T is weaker than TM implies that, for each sequence (xi)i∈N of elements
of [0,1], the sequence(

n
T
i=1

xi

)
n∈N

is non-increasing and bounded from below and, subsequently, convergent. We therefore can extend
T to a (countably) in>nitary operation putting

∞
T
i=1

xi = lim
n→∞

n
T
i=1

xi: (13)

However, similarly as for in>nite series of numbers, then some desirable properties such as the
generalized associativity may be violated (for more details see [44]).
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3. Triangular conorms

In [55] triangular conorms were introduced as dual operations of t-norms. We give here an inde-
pendent axiomatic de>nition.

De�nition 3.1. A triangular conorm (t-conorm for short) is a binary operation S on the unit interval
[0,1] which is commutative, associative, monotone and has 0 as neutral element, i.e., it is a function
S : [0; 1]2 → [0; 1] which satis>es, for all x; y; z ∈ [0; 1], (T1)–(T3) and

(S4) S(x; 0) = x:

The following are the four basic t-conorms, namely, the maximum SM, the probabilistic sum SP,
the  Lukasiewicz t-conorm or (bounded sum) SL, and the drastic sum SD (see Fig. 2 for 3D and
contour plots), which are given by, respectively:

SM(x; y) = max(x; y); (14)

SP(x; y) = x + y − x · y; (15)

SL(x; y) = min(x + y; 1); (16)

SD(x; y) =
{

1 if (x; y) ∈]0; 1]2;
max(x; y) otherwise:

(17)

The t-conorms SM; SP; SL, and SD were denoted M ∗; 
∗; W ∗ and Z∗, respectively, in [57].
The original de>nition of t-conorms given in [55] is completely equivalent to the axiomatic de>-

nition given above: a function S : [0; 1]2 → [0; 1] is a t-conorm if and only if there exists a t-norm
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Fig. 2. 3D plots (top) and contour plots (bottom) of the four basic t-conorms SM ; SP; SL, and SD.
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T such that for all (x; y)∈ [0; 1]2 either one of the two equivalent equalities holds:

S(x; y) = 1 − T (1 − x; 1 − y); (18)

T (x; y) = 1 − S(1 − x; 1 − y): (19)

The t-conorm given by (18) is called the dual t-conorm of T and, analogously, the t-norm given
by (19) is said to be the dual t-norm of S. Obviously, (TM; SM); (TP; SP); (TL; SL), and (TD; SD)
are pairs of t-norms and t-conorms which are mutually dual to each other.

Considering the standard negation Ns(x) = 1 − x (compare (20)) as complement of x in the unit
interval, Eq. (18) explains the name t-conorm. We shall keep this original notion and avoid the term
s-norm which sometimes is used synonymously in the literature.

The duality expressed in (18) allows us to translate many properties of t-norms into the corre-
sponding properties of t-conorms, including the n ary and in>nitary extensions of a t-conorm.

The duality changes the order: if, for some t-norms T1 and T2 we have T16T2, and if S1 and S2

are the dual t-conorms of T1 and T2, respectively, then we get S1¿S2.
If (T; S) is a pair of mutually dual t-norms and t-conorms, then dualities (18) and (19) can be

generalized as follows (here I can be an arbitrary >nite or countably in>nite index set):

S
i∈I

xi = 1 − T
i∈I

(1 − xi);

T
i∈I

xi = 1 − S
i∈I

(1 − xi):

In fuzzy logics, t-conorms are usually used as an interpretation of the disjunction ∨.

4. Negations and De Morgan triples

Finally, let us have a brief look at negations.

De�nition 4.1.
(i) A non-increasing function N : [0; 1] → [0; 1] is called a negation if

(N1) N (0) = 1 and N (1) = 0:

(ii) A negation N : [0; 1] → [0; 1] is called a strict negation if, additionally,

(N2) N is continuous:

(N3) N is strictly decreasing:

(iii) A strict negation N : [0; 1] → [0; 1] is called a strong negation if it is an involution, i.e., if

(N4) N ◦ N = id[0;1]:

It is obvious that N : [0; 1] → [0; 1] is a strict negation if and only if it is a strictly decreasing
bijection.
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The most important and most widely used strong negation is the standard negation Ns : [0; 1] →
[0; 1] given by

Ns(x) = 1 − x: (20)

Note that N : [0; 1]→ [0; 1] is a strong negation if and only if there is a monotone bijection g : [0; 1] →
[0; 1] such that for all x∈ [0; 1]

’(x) = g−1(Ns(g(x))); (21)

i.e., each strong negation is a monotone transformation of the standard negation [62].
The negation N : [0; 1] → [0; 1] given by N (x) = 1 − x2 is strict, but not strong.
An example of a negation which is not strict and, subsequently, not strong, is the G<odel negation

NG[0; 1] → [0; 1] given by

NG(x) =
{

1 if x = 0;
0 if x ∈]0; 1]:

(22)

The standard negation Ns was used, e.g., in [53,54] when introducing t-conorms as duals of
t-norms, or in [67] when modeling the complement of a fuzzy set.

Given a t-norm T and a strict negation N , one obtains a t-conorm S : [0; 1]2 → [0; 1], which is
N -dual to T in the sense of

S(x; y) = N−1(T (N (x); N (y))): (23)

Note, however, that if N is a non-strict negation, formula (23) cannot be applied.
If N is a strong negation, then, applying the construction in (23) to the t-conorm S, we get back

the t-norm T we started with.
A triple (T; S; N ), where T is a t-norm, S is a t-conorm and N is a negation is called a De

Morgan triple if for all (x; y)∈ [0; 1]2 we have

T (x; y) = N (S(N (x); N (y)));

S(x; y) = N (T (N (x); N (y))):

This means that, given a t-norm T; (T; S; N ) is a De Morgan triple if and only if N is a strong
negation and S is the N -dual of T .

Let s : [0; 1] → [0; 1] be a strictly increasing bijection. Then S : [0; 1]2 → [0; 1] de>ned by

S(x; y) = s−1(min(s(x) + s(y); 1))

is a t-conorm (in fact, S is a nilpotent t-conorm with additive generator s [38, De>nition 3.39]).
Moreover, N : [0; 1] → [0; 1] given by

N (x) = inf{y ∈ [0; 1] | S(x; y) = 1}
is a strong negation. If T is t-norm which is N -dual to S then we have

T (x; y) = s−1(TL(s(x); s(y)));
S(x; y) = s−1(SL(s(x); s(y)));
N (x) = s−1(Ns(s(x)));
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which means that the De Morgan triple (T; S; N ) is isomorphic to the  Lukasiewicz De Morgan triple
(TL; SL; Ns).

Even if (T; S; N ) is a De Morgan triple, we do not necessarily have T (x; N (x)) = 0 and S(x; N (x))
= 1 for all x∈ [0; 1], i.e., the law of the excluded middle (which is one of the crucial features
of the classical, two-valued Boolean logic) may be violated. For instance, if the t-norm T in
the De Morgan triple (T; S; Ns) has no zero divisors, i.e., if T (x; y)¿0 whenever x¿0 and y¿0
(see De>nition 6.1(iii)), then the law of the excluded middle never holds. On the other hand, in the
De Morgan triple (TL; SL; Ns) and, a fortiori, in each De Morgan triple (T; S; Ns) with T6TL, we
have a many-valued analogue of the classical law of the excluded middle.

It is noteworthy that, given a De Morgan triple (T; S; N ), the tuple ([0; 1]; T; S; N; 0; 1) can never
be a Boolean algebra: in order to satisfy distributivity we must have T =TM and S = SM (see
Proposition 6.18), in which case it is impossible to have both T (x; N (x)) = 0 and S(x; N (x)) = 1 for
all x∈ [0; 1].

5. Continuity

As can be seen from the drastic product TD and its dual SD, t-norms and t-conorms (viewed as
functions in two variables) need not be continuous (in fact, they need not, even be Borel measurable
functions [38, Example 3.75]). Nevertheless, for a number of reasons continuous t-norms and t-
conorms play an important role. Therefore, we shall discuss here continuity as well as left- and
right-continuity.

Recall that a t-norm T : [0; 1]2 → [0; 1] is continuous if for all convergent sequences (xn)n∈N;
(yn)n∈N ∈ [0; 1]N we have

T
(

lim
n→∞ xn; lim

n→∞ yn

)
= lim

n→∞ T (xn; yn):

Obviously, the continuity of a t-conorm S is equivalent to the continuity of the dual t-norm T .
Since the unit square [0; 1]2 is a compact subset of the real plane R2, the continuity of a t-norm
T : [0; 1]2 → [0; 1] is equivalent to its uniform continuity.

Obviously, the basic t-norms TM; TP and TL as well as their dual t-conorms SM; SP and SL are
continuous, and the drastic product TD and the drastic sum SD are not continuous.

In general, a real function of two variables, e.g, with domain [0; 1]2, may be continuous in each
variable without being continuous on [0; 1]2. Because of their monotonicity, triangular norms (and
conorms) are exceptions from this:

Proposition 5.1. A t-norm T : [0; 1]2 → [0; 1] is continuous if and only if it is continuous in each
component, i.e., if for all x0; y0 ∈ [0; 1] both the vertical section T (x0;.) : [0; 1]→ [0; 1] and the
horizontal section T (.; y0) : [0; 1]→ [0; 1] are continuous functions in one variable.

Obviously, because of the commutativity (T1), for a t-norm or a t-conorm its continuity is equiv-
alent to its continuity in the >rst component.

For applications, e.g., in probabilistic metric spaces, many-valued logics or decomposable mea-
sures, quite often weaker forms of continuity are suMcient. Since we have a similar result as
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Fig. 3. 3D plot (left) and contour plot of the nilpotent minimum T nM de>ned by (24).

Proposition 5.1 for left- and right-continuous t-norms, these de>nitions are given in one component
only.

De�nition 5.2. A t-norm T : [0; 1]2 → [0; 1] is said to be left-continuous (right-continuous) if for
each y∈ [0; 1] and for all non-decreasing (non-increasing) sequences (xn)n∈N we have

lim
n→∞ T (xn; y) = T

(
lim
n→∞ xn; y

)
:

Clearly, a t-norm is continuous if and only if it is both left- and right-continuous.
The nilpotent minimum T nM (mentioned in [20,51,52], for a visualization see Fig. 3) de>ned by

T nM(x; y) =
{

0 if x + y 6 1;
min(x; y) otherwise

(24)

is a t-norm which is left-continuous but not right-continuous. The drastic product TD, on the other
hand, is right-continuous but not left-continuous. An example of a t-norm which is neither left- nor
right-continuous can be found in Example 6.14(iv).

Clearly, a t-norm T is left-continuous if and only if its dual t-conorm given by (18) is right-
continuous, and vice versa.

6. Algebraic properties

In the language of algebra, T is a t-norm if and only if ([0; 1]; T;6) is a fully ordered commutative
semigroup with neutral element 1 and annihilator (zero element) 0. Therefore, it is natural to consider
additional algebraic properties a t-norm may have.

Our >rst focus are idempotent and nilpotent elements, and zero divisors. Since for each n∈N
we trivially have 0(n)

T = 0 and 1(n)
T = 1, only elements of ]0,1[ will be considered as candidates for

nilpotent elements and zero divisors in the following de>nition.
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De�nition 6.1. Let T be a t-norm.

(i) An element a∈ [0; 1] is called an idempotent element of T if T (a; a) = a. The numbers 0 and
1 (which are idempotent elements for each t-norm T ) are called trivial idempotent elements of
T , each idempotent element in ]0, 1[ will be called a non-trivial idempotent element of T .

(ii) An element a∈ ]0; 1[ is called a nilpotent element of T if there exists some n∈N such that
a(n)
T = 0.

(iii) An element a∈ ]0; 1[ is called a zero divisor of T if there exists some b∈ ]0; 1[ such that
T (a; b) = 0.

The set of idempotent elements of the minimum TM equals [0, 1] (actually, TM is the only t-norm
with this property). For the  Lukasiewicz t-norm TL as well as for the drastic product TD, both the set
of nilpotent elements and the set of zero divisors equal ]0,1[. The minimum TM and the product TP
have neither nilpotent elements nor zero divisors, and TP; TL, and TD possess only trivial idempotent
elements.

The set of idempotent elements of the nilpotent minimum T nM de>ned in (24) equals {0}∪]0:5; 1],
its set of nilpotent elements is ]0,0.5], and its set of zero divisors equals ]0, 1[.

The idempotent elements of t-norms can be characterized in the following way, which involves
the operation minimum [38, Proposition 2.3].

Proposition 6.2. (i) An element a ∈ [0; 1] is an idempotent element of a t-norm T if and only if
for all x∈ [a; 1] we have T (a; x) = min(a; x).

(ii) If T is a continuous t-norm, then a∈ [0; 1] is an idempotent element of T if and only if for
all x∈ [0; 1] we have T (a; x) = min(a; x).

Remark 6.3. For arbitrary t-norms some general observations concerning idempotent and nilpotent
elements and zero divisors can be formulated.

(i) No element of ]0,1[ can be both idempotent and nilpotent.
(ii) Each nilpotent element a of a t-norm T is also a zero divisor of T , but not conversely (T nM

is a counterexample).
(iii) If a t-norm T has a nilpotent element a then there is always an element b∈ ]0; 1[ such that

b(2)
T = 0.

(iv) If a∈ ]0; 1[ is a nilpotent element of a t-norm T then each number b∈ ]0, a[ is also a nilpo-
tent element of T , i.e., the set of nilpotent elements of a t-norm T can either be the empty
set (as for TM or TP) or an interval of the form ]0; c[ or ]0; c]. The same is true for zero
divisors.

Example 6.4. For the t-norm T [57, Example 5.3.13] given by

T (x; y) =




0 if (x; y) ∈ [0; 0:5]2;

2(x − 0:5)(y − 0:5) + 0:5 if (x; y) ∈]0:5; 1]2;

min(x; y) otherwise;

(25)
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its set of nilpotent elements and its set of zero divisors both equal ]0,0.5], and for each element of
the family (Tc)c∈]0;1] of t-norms de>ned by

Tc(x; y) =
{

max(0; x + y − c) if (x; y) ∈ [0; c]2

min(x; y) otherwise;

the set of nilpotent elements and the set of zero divisors of Tc equal ]0; c[.

Although the set of nilpotent elements is in general a subset of the set of zero divisors, for each
t-norm the existence of zero divisors is equivalent to the existence of nilpotent elements, i.e., a
t-norm has zero divisors if and only if it has nilpotent elements [38, Proposition 2.5].

For right-continuous t-norms (in fact, the right-continuity of T on the diagonal of the unit square
is suMcient) it is possible to obtain each idempotent element as the limit of the powers of a suitable
x∈ [0; 1] [38, Proposition 2.6].

Proposition 6.5. Let T be a t-norm which is right-continuous on the diagonal {(x; x) | x∈ [0; 1]} of
the unit square [0; 1]2, and let a∈ [0; 1]. The following are equivalent:

(i) a is an idempotent element of T .
(ii) There exists an x∈ [0; 1] such that a= limn→∞ x(n)

T .

It is well-known that, for continuous t-norms, its set of idempotent elements is a closed subset of
the unit interval [0,1]. As a consequence of [38, Corollary 2.8], this is also true for t-norms which
are right-continuous in some speci>c points of the diagonal of the unit square and, consequently,
for t-norms which are right-continuous:

Corollary 6.6. Let T be a t-norm such that for each a∈ [0; 1[

T (a; a) = a whenever lim
x↘a

T (x; x) = a:

Then the set of idempotent elements of T is a closed subset of [0,1].

The t-norm T given in (25) shows that the converse implication does not necessarily hold in
Corollary 6.6 (just consider the case a = 0:5).

Some t-norms have additional algebraic properties. The >rst group of such properties centers
around the notions of strict monotonicity and the Archimedean property, which play an important
role in many algebraic concepts, e.g., in semigroups.

De�nition 6.7. For an arbitrary t-norm T we consider the following properties:

(i) The t-norm T is said to be strictly monotone if

(SM) T (x; y) ¡ T (x; z) whenever x ¿ 0 and y ¡ z:

(ii) The t-norm T satis>es the cancellation law if

(CL) T (x; y) = T (x; z) implies x = 0 or y = z:
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(iii) The t-norm T satis>es the conditional cancellation law if

(CCL) T (x; y) = T (x; z) ¿ 0 implies y = z:

(iv) The t-norm T is called Archimedean if

(AP) for each (x; y)∈ ]0; 1[2 there is an n∈N with x(n)
T ¡ y:

(v) The t-norm T has the limit property if

(LP) for all x ∈]0; 1[: lim
n→∞ x(n)

T = 0:

Example 6.8. (i) The minimum TM has none of these properties, and the product TP satis>es all
of them. The  Lukasiewicz t-norm TL and the drastic product TD are Archimedean and satisfy
the conditional cancellation law (CCL) and the limit property (LP), but none of the other
properties.

(ii) If a t-norm T satis>es the cancellation law (CL) then it obviously ful>lls the conditional
cancellation law (CCL), but not conversely (see, e.g., TL).

(iii) The algebraic properties introduced in De>nition 6.7 are independent of the continuity: the
continuous t-norm TM shows that continuity implies none of these properties. Conversely, TD
and the non-continuous t-norm T given by

T (x; y) =

{ xy
2

if (x; y) ∈ [0; 1[2;

min(x; y) otherwise;
(26)

which is strictly monotone and satis>es the cancellation law (CL), are examples demonstrating
that none of the algebraic properties implies the continuity of the t-norm under consideration.

The strict monotonicity (SM) of a t-norm is related to the other properties as follows [38, Propo-
sition 2.11]:

Proposition 6.9. Let T be a t-norm. Then we have:

(i) T is strictly monotone if and only if it satis:es the cancellation law (CL).
(ii) If T is strictly monotone then it has only trivial idempotent elements.

(iii) If T is strictly monotone then it has no zero divisors.

The Archimedean property (AP) of a t-norm can be characterized in the following way [38,
Theorem 2.12].

Proposition 6.10. For a t-norm T the following are equivalent:

(i) T is Archimedean.
(ii) T satis:es the limit property (LP).
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(iii) T has only trivial idempotent elements and, whenever

lim
x↘x0

T (x; x) = x0

for some x0 ∈ ]0; 1[, there exists a y0 ∈ ]x0; 1[ such that T (y0; y0) = x0.

Combining the continuity with some algebraic properties, we obtain two extremely important
classes of t-norms.

De�nition 6.11.

(i) A t-norm T is called strict if it is continuous and strictly monotone.
(ii) A t-norm T is called nilpotent if it is continuous and if each a∈ ]0; 1[ is a nilpotent

element of T .

Example 6.12. (i) The product TP is a strict t-norm, and the  Lukasiewicz t-norm TL is a nilpotent
t-norm. In fact [38, Propositions 5.9, 5.10] each strict t-norm is isomorphic to TP and each nilpotent
t-norm is isomorphic to TL.

(ii) Because of Proposition 6.9(i), a t-norm T is strict if and only if it is continuous and satis>es
the cancellation law (CL).

(iii) Each strict and each nilpotent t-norm ful>lls the conditional cancellation law (CCL).

The following result gives a number of suMcient conditions for a t-norm to be Archimedean [38,
Proposition 2.15].

Proposition 6.13. For an arbitrary t-norm T we have:

(i) If T is right-continuous and has only trivial idempotent elements then it is Archimedean.
(ii) If T is right-continuous and satis:es the conditional cancellation law (CCL) then it is

Archimedean.
(iii) If limx↘x0 T (x; x)¡x0 for each x0 ∈ ]0; 1[ then T is Archimedean.
(iv) If T is strict then it is Archimedean.
(v) If each x∈ ]0; 1[ is a nilpotent element of T then T is Archimedean.

In [40] it was shown that each left-continuous Archimedean t-norm is necessarily continuous.
All the implications between the algebraic properties of t-norms considered so far are summarized

and visualized in Fig. 4. The following are counterexamples showing that there are no other logical
relations between these algebraic properties.

Example 6.14. (i) The  Lukasiewicz t-norm TL shows that an Archimedean t-norm need not be
strictly monotone, and that the limit property (LP) does not imply the cancellation law (CL). The
product TP is an example of a continuous Archimedean t-norm without nilpotent elements. The
drastic product TD is an example of a non-continuous Archimedean t-norm for which each a∈ ]0; 1[
is a nilpotent element.

(ii) The t-norm given in (26) shows that a strictly monotone t-norm need not be continuous and,
subsequently, not necessarily strict.
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Fig. 4. The logical relationship between various algebraic properties of t-norms: a double arrow indicates an implication,
a dotted arrow means that the corresponding implication holds for continuous t-norms.

(iii) The non-continuous t-norm given in (25) shows that a t-norm with only trivial idempotent
elements is not necessarily strictly monotone or Archimedean.

(iv) A t-norm may satisfy both the strict, monotonicity (SM) and the Archimedean property
(AP) without being continuous and, subsequently, without being strict. One example for this is the
t-norm introduced in (26), another t-norm with these features is the following [10]: recall that each
(x; y)∈ ]0; 1]2 is in a one-to-one correspondence with a pair ((xn)n∈N; (yn)n∈N) of strictly increasing
sequences of natural numbers given by the unique in>nite dyadic representations

x =
∞∑
n=1

1
2xn

and y =
∞∑
n=1

1
2yn

of the numbers x and y, respectively. Using this notion, then the function T : [0; 1]2 → [0; 1] given
by

T (x; y) =




∞∑
n=1

1
2xn+yn

if (x; y) ∈]0; 1[2;

min(x; y) otherwise

is a t-norm which is strictly monotone, Archimedean, and left-continuous on ]0; 1[2. However, T is
discontinuous in each point (x; y)∈ ]0; 1]2 where at least one coordinate is a dyadic rational number
(i.e., of the form m=2n for some m; n∈N with m62n; observe that the set of discontinuity points
of T is dense in [0; 1]2). Consequently, T is not strict.

(v) A modi>cation of the t-norm in (iv) yields a t-norm which is strictly monotone but neither
Archimedean nor continuous (compare [67]): keeping the notation of (iv), the function T : [0; 1]2 →
[0; 1], which is de>ned by

T (x; y) =




∞∑
n=1

1
2xn+yn−n if (x; y) ∈]0; 1]2;

0 otherwise;
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is a t-norm which is strictly monotone, left-continuous on [0; 1]2, but discontinuous in each point
(x; y)∈]0; 1[2 where at least one coordinate is a dyadic rational number. However, T is not Archimedean.

(vi) The function T : [0; 1]2 → [0; 1] de>ned by

T (x; y) =




xy if (x; y) ∈ [0; 0:5]2;
2(x − 0:5)(y − 0:5) + 0:5 if (x; y) ∈]0:5; 1]2;
min(x; y) otherwise;

is a t-norm which has only trivial idempotent elements, no zero divisors, is not Archimedean and
not strictly monotone.

(vii) Recall that each x∈ ]0; 1] has a unique in>nite dyadic representation x=
∑∞

n=1 1=2xn , where
(xn)n∈N is a strictly increasing sequence of natural numbers, and consider the function f : [0; 1]
→ [0; 1] de>ned by

f(x) =




∞∑
n=1

2
3xn

if x =
∞∑
n=1

1
2xn

;

0 if x = 0:

Then the function T : [0; 1]2 → [0; 1] (introduced in [59], compare [38, Example 3.21]) given by

T (x; y) =
{
f(f(−1)(x) · f(−1)(y)) if (x; y) ∈ [0; 1[2;
min(x; y) otherwise;

where f(−1) : [0; 1] → [0; 1] is the pseudoinverse of f (observe that f(−1) is also known as Cantor
function) given by

f(−1)(x) = sup{z ∈ [0; 1] |f(z) ¡ x};
is an Archimedean t-norm which is continuous in the point (1,1), but which has no zero divisors and
which is not strictly monotone. A more complicated example of this type is the Krause t-norm [38,
Appendix B.1], which is also a non-continuous t-norm with a continuous diagonal, thus providing a
counterexample to an open problem stated in [57].

It turns out that among the continuous Archimedean t-norms there are only two classes: the
nilpotent and the strict t-norms. The existence of nilpotent elements (or zero divisors) provides a
simple check for that [38, Theorem 2.18], see also (Fig. 5).

Theorem 6.15. Let T be a continuous Archimedean t-norm. Then the following are equivalent:

(i) T is nilpotent.
(ii) There exists some nilpotent element of T .

(iii) There exists some zero divisor of T .
(iv) T is not strict.

Remark 6.16. (i) A consequence of Proposition 6.10 is that a t-norm T is Archimedean if and only
if it ful>lls the limit property (LP). Note that, e.g., for topological semigroups, the Archimedean
property is usually de>ned by means of the limit property (LP) (see [12,45]).
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Fig. 5. DiFerent classes of t-norms, each of them with a typical representative: within the central circle one >nds the
continuous t-norms, and the classes of strict and nilpotent t-norms are marked in gray (for the de>nition of the ordinal
sums (〈0; 0:5; TL〉) and (〈0:5; 1; TD〉) see [38, De>nition 3.44]).

(ii) An immediate consequence of Theorem 6.15 and Example 6.12(iii) is that a continuous t-norm
is Archimedean if and only if it satis>es the conditional cancellation law (CCL).

(iii) From Theorem 6.15 it follows that a continuous t-norm T is strict if and only if for each
x∈ ]0; 1[ the sequence (x(n)

T )n∈N is strictly decreasing and converges to 0. Again, this is the usual
way to de>ne the strictness of topological semigroups.

The strict monotonicity of t-conorms as well as strict, Archimedean and nilpotent t-conorms can be
introduced using dualities (18) and (19). Without presenting all the technical details, we only mention
that it suMces to interchange the words t-norm and t-conorm and the roles of 0 and 1, respectively,
and sometimes to reverse the inequalities involved, in order to obtain the proper de>nitions and
results for t-conorms. For instance, a t-conorm S is strictly monotone if

(SM∗) S(x; y) ¡ S(x; z) whenever x ¡ 1 and y ¡ z:

The Archimedean property is an example where it is necessary to reverse the inequality, so a
t-conorm S is Archimedean if

(AP∗) for each (x; y) ∈]0; 1[2 there is an n ∈ N such that x(n)
S ¿ y:

Of course, a t-conorm ful>lls any of these properties if and only if the dual t-norm ful>lls it.
Finally let us have a brief look at the distributivity of t-norms and t-conorms.

De�nition 6.17. Let T be a t-norm and S be a t-conorm. Then we say that T is distributive over S
if for all x; y; z ∈ [0; 1]

T (x; S(y; z)) = S(T (x; y); T (x; z));
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and that S is distributive over T if for all x; y; z ∈ [0; 1]

S(x; T (y; z)) = T (S(x; y); S(x; z)):

If T is distributive over S and S is distributive over T , then (T; S) is called a distributive pair (of
t-norms and t-conorms).

In the context of distributivity the minimum TM and the maximum SM play a distinguished role
(compare also [8]).

Proposition 6.18. Let T be a t-norm and S a t-conorm. Then we have:

(i) S is distributive over T if and only if T =TM.
(ii) T is distributive over S if and only if S = SM.

(iii) (T; S) is a distributive pair if and only if T =TM and S = SM.

7. Historical remarks

The history of triangular norms started with Menger’s paper “Statistical metrics” [43]. The main
idea was to study metric spaces where probability distributions rather than numbers are used to model
the distance between the elements of the space in question. Triangular norms naturally came into
the picture in the course of the generalization of the classical triangle inequality to this more general
setting. The original set of axioms for t-norms was somewhat weaker, including among others also
triangular conorms.

Consequently, the >rst >eld where t-norms played a major role was the theory of probabilistic
metric spaces (as statistical metric spaces were called after 1964). Schweizer and Sklar [53–61]
provided the axioms of t-norms, as they are used today, and a rede>nition of statistical metric
spaces given in [58] led to a rapid development of the >eld. Many results concerning t-norms were
obtained in the course of this development, most of which are summarized in the monograph [57]
of Schweizer and Sklar.

Mathematically speaking, the theory of (continuous) t-norms has two rather independent roots,
namely, the >eld of (speci>c) functional equations and the theory of (special topological) semigroups.

Concerning functional equations, t-norms are closely related to the equation of associativity (which
is still unsolved in its most general form). The earliest source in this context seems to be Abel [1],
further results in this direction were obtained in [9,13,2,29]. Especially AczRel’s monograph [3,4].
had (and still has) a big impact on the development of t-norms. The main result based on this
background was the full characterization of continuous Archimedean t-norms by means of additive
generators in [41] (for the case of strict t-norms see [55]).

Another direction of research was the identi>cation of several parameterized families of t-norms as
solutions of some (more or less) natural functional equations. The perhaps most famous result in this
context has been proven in [22], showing that the family of Frank t-norms and
t-conorms (together with ordinal sums thereof) are the only solutions of the so-called Frank functional
equation.
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The study of a class of compact, irreducibly connected topological semigroups was initiated in
[19], including a characterization of such semigroups, where the boundary points (at the same time
annihilator and neutral element, respectively) are the only idempotent elements and where no nilpo-
tent elements exist. In the language of t-norms, this provided a full representation of strict t-norms. In
[45] all such semigroups, where the boundary points play the role of annihilator and neutral element,
were characterized (see also [49]). Again in the language of t-norms, this provided a representation
of all continuous t-norms [41].

Several construction methods from the theory of semigroups, such as (isomorphic) transformations
(which are closely related to generators mentioned above) and ordinal sums (based on the work
of CliFord [14], and foreshadowed in [34,15]), have been successfully applied to construct whole
families of t-norms from a few given prototypical examples [56]. Summarizing, starting with only
three t-norms, namely, the minimum TM, the product TP and the  Lukasiewicz t-norm TL, it is
possible to construct all continuous t-norms by means of isomorphic transformations and ordinal
sums [41].

Non-continuous t-norms, such as the drastic product TD, have been considered from the very
beginning [54]. In [41] even an additive generator for this t-norm was given. However, a general
classi>cation of non-continuous t-norms is still not known.

In his seminal paper “Fuzzy sets”, Zadeh [67] introduced the theory of fuzzy sets as a gener-
alization of the classical Cantorian set theory whose logical basis is the two-valued Boolean logic
(compare also Klaua [32,33]). It was suggested in [67] to use the minimum TM, the maximum
SM, and the standard negation Ns to model the intersection, union, and complement of fuzzy sets,
respectively. However, also the product TP, the probabilistic sum SP and the  Lukasiewicz t-conorm
SL (the latter in a restricted form) were already mentioned as possible candidates for intersection
and union of fuzzy sets, respectively, in this very >rst paper.

The use of general t-norms and t-conorms for modeling the intersection and the union of fuzzy
sets seems to have at least two independent roots. On the one hand, there was a series of semi-
nars devoted to this topic, held in the seventies by Trillas at the Departament de MatemTatiques i
EstadRUstica de l’Escola TRecnica Superior d’Arquitectura of the Universitat Politecnica de Barcelona.
On the other hand, there were suggestions by HVohle during the First International Symposium on
Policy Analysis and Information Systems (Durham, NC, 1979) and the First International Sem-
inar on Fuzzy Set Theory (Linz, Austria, 1979). The canonical reason for this was that the
axioms of commutativity, associativity, monotonicity as well as the boundary conditions were (and
still are) generally considered as reasonable, even indispensable properties of meaningful
extensions of the Cantorian intersection and union (a notable exception from this are the com-
pensatory operators which may be non-associative, compare Zimmermann and Zysno [68], Dombi
[16], Luhandjula [42], TVurksen [63], Alsina et al. [5], Yager and Filev [65], and Klement et al.
[37]).

Very early traces of (some slight variations of) t-norms and t-conorms in the context of integration
of fuzzy sets with respect to non-additive measures can be found in the Ph.D. Thesis of M. Sugeno
[61], >rst concepts for a uni>ed theory of fuzzy sets (based on TM and SM) were presented in [46]
and S. Gottwald [23–26]. The >rst papers using general t-norms and t-conorms for operations on
fuzzy sets were Anthony and Sherwood [7], Alsina et al. [6], Dubois [17], and Klement [35,36] (see
also Dubois and Prade [18]). A full characterization of strong negations as models of the complement
of fuzzy sets can be found in [62].
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