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Abstract

This second part (out of three) of a series of position papers on triangular norms (for Part I see Triangular
norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems, in press) deals
with general construction methods based on additive and multiplicative generators, and on ordinal sums. Also
included are some constructions leading to non-continuous t-norms, and a presentation of some distinguished
families of t-norms.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This is the second part (out of three) of a series of position papers on triangular norms. The
monograph [40] provides a rather complete and self-contained overview about triangular norms and
their applications.

Part I [42] considered some basic analytical properties of t-norms, such as continuity, and im-
portant classes such as Archimedean, strict and nilpotent t-norms. Also the dual operations, the
triangular conorms, and De Morgan triples were mentioned. Finally, a short historical overview on
the development of t-norms and their way into fuzzy sets and fuzzy logics was given.
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In this Part II we present general construction methods based on additive and multiplicative
generators, and on ordinal sums. We also include some constructions leading to non-continuous
t-norms, and a presentation of some distinguished families of t-norms.

To keep the paper readable, we have omitted all proofs (usually giving a source for the reader
interested in them).

Finally, Part III will concentrate on continuous t-norms, in particular on their representation by
additive and multiplicative generators and ordinal sums.

Recall that a triangular norm (brieCy t-norm) is a binary operation T on the unit interval [0; 1]
which is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function
T : [0; 1]2 → [0; 1] such that for all x; y; z ∈ [0; 1]:

(T1) T (x; y) =T (y; x),
(T2) T (x; T (y; z)) =T (T (x; y); z),
(T3) T (x; y)6T (x; z) whenever y6z,
(T4) T (x; 1) = x.

A function F : [0; 1]2 → [0; 1] which satisEes, for all x; y; z ∈ [0; 1], properties (T1)–(T3) and

F(x; y) 6 min(x; y) (1)

is called a t-subnorm (as introduced in [30], see [42, DeEnition 2.3]).

2. Additive and multiplicative generators

It is straightforward that, given a t-norm T and a strictly increasing bijection ’ : [0; 1] → [0; 1], the
function T’ : [0; 1]2 → [0; 1] given by

T’(x; y) = ’−1(T (’(x); ’(y))) (2)

is again a t-norm.
In other words, the t-norms T and T’ are isomorphic in the sense that for all (x; y) ∈ [0; 1]2

’(T’(x; y)) = T (’(x); ’(y)):

From the point of view of semigroup theory, for each t-norm T an increasing bijection ’ : [0; 1] →
[0; 1] is exactly an automorphism between the semigroups ([0; 1]; T ) and ([0; 1]; T’). Note also that
for all strictly increasing bijections ’;  : [0; 1] → [0; 1] and for each t-norm T we obtain

(T’) = T’◦ ;

(T’)’−1 = (T’−1)’ = T:

The only t-norms which are invariant with respect to construction (2) under arbitrary strictly in-
creasing bijections are the two extremal t-norms TM and TD, i.e., if a t-norm T is only isomorphic
to itself then either T =TM or T =TD.

It is also trivial that construction (2) preserves the continuity, the Archimedean property, and the
strictness, as well as the existence of idempotent and nilpotent elements, and the existence of zero
divisors (see [40,42]) of the t-norm we started with.
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This illustrates both the strength and the weakness of (2): it can be applied to any t-norm T , but
the resulting t-norm T’ has exactly the same algebraic properties.

Construction (2) uses the inverse of the function ’ : [0; 1] → [0; 1] and, therefore, requires ’ to be
bijective.

If we want to construct t-norms as transformations of the additive semigroup ([0;∞];+) and the
multiplicative semigroup ([0; 1]; ·), respectively, monotone (but not necessarily bijective) functions
are used, and a generalized inverse, the so-called pseudo-inverse [39,63] (see also [40, Section 3.1])
is needed.

De�nition 2.1. Let f : [a; b] → [c; d] be a monotone function, where [a; b] and [c; d] are closed
subintervals of the extended real line [−∞;∞]. The pseudo-inverse f(−1)(y) : [c; d] → [a; b] of f is
deEned by

f(−1)(y) =




sup{x ∈ [a; b] |f(x) ¡ y} if f(a) ¡ f(b);
sup{x ∈ [a; b] |f(x) ¿ y} if f(a) ¿ f(b);
a if f(a) = f(b):

(3)

Example 2.2. Consider the function f : [−1; 1] → [c; d] with [1:5; 2:5] ⊆ [c; d] speciEed by f(x) =
(x + 4)=2. Then its pseudo-inverse f(−1) : [c; d] → [−1; 1] is given by

f(−1)(x) = max(min(2x − 4; 1);−1):

Visualizations of the pseudo-inverse of non-continuous non-bijective monotone functions are given
in Fig. 1. These pictures also indicate how to construct the graph of the pseudo-inverse f(−1) of a
non-constant monotone function f : [a; b] → [c; d]:

(1) Draw vertical line segments at discontinuities of f.
(2) ReCect the graph of f in the Erst median, i.e., in the graph of the identity function id[−∞;∞].
(3) Remove any vertical line segments from the reCected graph except for their lowest points.
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Fig. 1. Two monotone functions from [0; 1] to [0; 1] together with their pseudo-inverses (dashed graphs).
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The basic idea of additive generators is already contained in a result of Abel [1] from 1826 who
gave a suIcient condition for operations on the real line to be associative and showed how such
functions may be constructed by means of a continuous, strictly monotone one-place function whose
range is closed under addition. The following result [40, Theorem 3.23] is more general in the sense
that the continuity of the one-place function is not needed, that the requirement of the closedness
of the range under addition can be relaxed, and that the inverse function is replaced by the pseudo-
inverse. On the other hand, it is slightly more special since we want to construct an operation on
the unit interval with neutral element 1.

Theorem 2.3. Let f : [0; 1] → [0;∞] be a strictly decreasing function with f(1) = 0 such that f is
right-continuous at 0 and

f(x) + f(y) ∈ Ran(f) ∪ [f(0);∞] (4)

for all (x; y) ∈ [0; 1]2. The following function T : [0; 1]2 → [0; 1] is a t-norm:

T (x; y) = f(−1)(f(x) + f(y)): (5)

In Theorem 2.3, the pseudo-inverse f(−1) may be replaced by any monotone function g : [0;∞] →
[0; 1] with g|Ran(f) =f(−1)|Ran(f). In some very abstract settings (see, e.g., [62]), such a function g
(which may be non-monotone) is called a quasi-inverse of f.

It is obvious that a multiplication of f in Theorem 2.3 by a positive constant does not change
the resulting t-norm T .

De�nition 2.4. An additive generator t : [0; 1] → [0;∞] of a t-norm T is a strictly decreasing function
which is right-continuous at 0 and satisEes t(1) = 0, such that for all (x; y) ∈ [0; 1]2 we have

t(x) + t(y) ∈ Ran(t) ∪ [t(0);∞]; (6)

T (x; y) = t(−1)(t(x) + t(y)): (7)

Starting with the function t : [0; 1] → [0;∞] given by t(x) = 1 − x we get the  Lukasiewicz t-norm
TL, and t(x) = −ln x produces the product TP. The drastic product TD (which is right-continuous but
not continuous) is obtained putting

t(x) =
{

2 − x if x ∈ [0; 1[;
0 if x = 1:

In Fig. 2, an example of a rather complicated non-continuous t-norm together with its additive
generator is given.

If t : [0; 1] → [0;∞] is an additive generator of a t-norm T , then we clearly have for all x1; x2; : : : ; xn
∈ [0; 1]

T (x1; x2; : : : ; xn) = t(−1)

(
n∑

i=1

t(xi)

)
;
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Fig. 2. A non-continuous t-norm together with its additive generator.

where, for n¿2, the expression T (x1; x2; : : : ; xn) is deEned recursively by

T (x1; x2; : : : ; xn) = T (T (x1; x2; : : : ; xn−1); xn):

An immediate consequence of Proposition 2.7 is that a t-norm with a non-trivial idempotent
element (e.g., a non-trivial ordinal sum, see DeEnition 3.2) cannot have an additive generator. In
particular, the minimum TM has no additive generator, a fact which was mentioned Erst in [48]. In
this context, the classical result in [5] (for an extension see [47]), where it was shown that there
are no continuous real functions f :R→R and g; h : [0; 1] →R such that for all (x; y) ∈ [0; 1]2

min(x; y) =f(g(x) + h(y))

is of interest.
There is a strong connection [40, Proposition 3.26] between the (left-)continuity of additive gen-

erators and the (left-)continuity of the t-norm constructed by (7).

Proposition 2.5. Let T be a t-norm which has an additive generator t : [0; 1] → [0;∞]. Then the
following are equivalent:

(i) T is continuous,
(ii) T is left-continuous at the point (1; 1),

(iii) t is continuous,
(iv) t is left-continuous at 1.

An obvious and useful consequence of this result is that a left-continuous t-norm which has an
additive generator is automatically continuous.

The right-continuity of a t-norm having an additive generator is equivalent to the existence of a
right-continuous additive generator [40, Proposition 3.27].

Proposition 2.6. Let T be a t-norm which has an additive generator t : [0; 1] → [0;∞]. Then T is
right-continuous if and only if it has a right-continuous additive generator.
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The following proposition shows that triangular norms constructed by means of additive generators
are always Archimedean [40, Proposition 3.29]. The converse, however, is not true: the t-norm
introduced in [42, Example 6.14(vii)] is Archimedean and continuous at (1; 1) but not continuous
whence, because of Proposition 2.5, it cannot have an additive generator.

Proposition 2.7. If a t-norm T has an additive generator t : [0; 1] → [0;∞], then T is necessarily
Archimedean. Moreover, we have

(i) the t-norm T is strictly monotone if and only if t(0) = ∞,
(ii) each element of ]0; 1[ is a nilpotent element of T if and only if t(0)¡∞,

(iii) if t is not continuous and satis<es t(0)¡∞ then there exists an n0 ∈N such that for all
x∈ [0; 1[ we have x(n0)

T = 0.

As an immediate consequence of Proposition 2.7(i) and (ii) we obtain, in the particular case of
continuous additive generators of a (necessarily continuous Archimedean) t-norm (see Proposition
2.5), the following.

Corollary 2.8. If t : [0; 1] → [0;∞] is a continuous additive generator of a continuous Archimedean
t-norm T , then we have

(i) T is strict if and only if t(0) = ∞,
(ii) T is nilpotent if and only if t(0)¡∞.

Starting from an arbitrary Archimedean t-norm T with additive generator it is easy to construct
additive generators of t-norms which are isomorphic to T [40, Proposition 3.31].

Proposition 2.9. Let T be an Archimedean t-norm with additive generator t : [0; 1] → [0;∞]:

(i) If ’ : [0; 1] → [0; 1] is a strictly increasing bijection then the function t ◦ ’ : [0; 1] → [0;∞] is
an additive generator of the Archimedean t-norm T’ given in (2).

(ii) If the additive generator t is continuous and if  : [0;∞] → [0;∞] is a strictly increasing bijec-
tion then the function  ◦t : [0; 1] → [0;∞] is an additive generator of a continuous Archimedean
t-norm which is isomorphic to T .

The result of Proposition 2.9(ii) makes it possible to construct, starting from a continuous
Archimedean t-norm, interesting families of t-norms.

Example 2.10. Let T be a continuous Archimedean t-norm and t : [0; 1] → [0;∞] an additive gener-
ator of T .

(i) For each index �∈ ]0;∞[ the function t � : [0; 1] → [0;∞] deEned by t �(x) = (t(x))� is an ad-
ditive generator of a continuous Archimedean t-norm which we shall denote by T (�), and the
family (T (�))�∈]0;∞[ is strictly increasing with respect to the parameter �. Adding the limit
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cases T (0) =TD and T (∞) =TM, we obtain some well-known families of t-norms in this way,
depending on the t-norm T we start with. For instance, ((TL)(�))�∈[0;∞] is the family of Yager
t-norms (see Example 5.4), ((TP)(�))�∈[0;∞] is the family of AczLel–Alsina t-norms (see [2,40,
Section 4.8]), and ((TH

0 )(�))�∈[0;∞], where TH
0 is the Hamacher t-norm with parameter 0 (see

[19,25,26,40, Section 4.3]), is just the family of Dombi t-norms (see [14,40, Section 4.6]).
(ii) Let T ∗ be a strict t-norm with additive generator t∗ : [0; 1] → [0; ∞]. Then, for each �∈ ]0; ∞[,

the function t(t∗ ; �) : [0; 1] → [0;∞] deEned by

t(t∗ ;�)(x) = t((t∗)−1(�t∗(x)))

is an additive generator of a continuous Archimedean t-norm which we shall denote by T(T∗ ; �).
As a concrete example, for each �∈ ]0;∞[ the t-norm TP(TH0 ; �) equals the Hamacher t-norm TH

�
(see [19,25,26,40, Section 4.3]).

(iii) If in (ii) we take T ∗ =TP and, subsequently, t∗(x) = −ln x for all x∈ [0; 1], then we ob-
tain t(t∗ ; �)(x) = t(x�), and the t-norm T(TP ; �) will be denoted T(�) for simplicity, and its ad-
ditive generator by t(�). As a concrete example, the subfamily (T SS

� )�∈]−∞;∞] of the family of
Schweizer–Sklar t-norms (see Example 5.1) is obtained as follows: for each �∈ ]0;∞[ we have
T SS
� = (TL)(�), and for �∈ ]−∞; 0[ we have T SS

� = (TH
0 )(−�) (again TH

0 is the Hamacher t-norm
with parameter 0).

There is a concept completely dual to additive generators, the so-called multiplicative generators
of t-norms. Of course, the basis for this duality is that the exponential function and the logarithm are
natural isomorphisms between the additive semigroup ([0;∞];+) and the multiplicative semigroup
([0; 1]; ·).

If t : [0; 1] → [0;∞] is an additive generator of the t-norm T and if we deEne the strictly increasing
function � : [0; 1] → [0; 1] by

�(x) = e−t(x);

then it is obvious that for all (x; y) ∈ [0; 1]2

T (x; y) = �(−1)(�(x) · �(y)):

The following result about multiplicative generators, (which can be obtained also via pseudo-inverse
functions or in duality to additive generators), is a generalization of Theorem 5.2.1 in [62]).

Corollary 2.11. Let � : [0; 1] → [0; 1] be a strictly increasing function which is right-continuous at
0 and satis<es �(1) = 1 and for all (x; y) ∈ [0; 1]2

�(x) · �(y) ∈ Ran(�) ∪ [0; �(0)]:

Then the function T : [0; 1]2 → [0; 1] given by

T (x; y) = �(−1)(�(x) · �(y))

is a triangular norm.
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De�nition 2.12. A multiplicative generator of a t-norm T is a strictly increasing function � : [0; 1] →
[0; 1] which is right-continuous at 0 and satisEes �(1) = 1, such that for all (x; y) ∈ [0; 1]2 we have

�(x) · �(y) ∈ Ran(�) ∪ [0; �(0)];

T (x; y) = �(−1)(�(x) · �(y)):

Because of the duality between t-norms and t-conorms, that T is a t-norm if and only if the
function S : [0; 1]2 → [0; 1] given by

S(x; y) = 1 − T (1 − x; 1 − y) (8)

is a t-conorm, additive and multiplicative generators of t-conorms can also be considered. Without
presenting technical details and proofs, this can be summarized as follows.

Let T be a t-norm, S the dual t-conorm, t : [0; 1] → [0;∞] an additive generator of T and � : [0; 1] →
[0; 1] a multiplicative generator of T . If we deEne the functions s : [0; 1] → [0;∞] and � : [0; 1] → [0; 1]
by

s(x) = t(1 − x);

�(x) = �(1 − x);

then it is obvious that for all (x; y) ∈ [0; 1]2 we get

S(x; y) = s(−1)(s(x) + s(y));

S(x; y) = �(−1)(�(x) · �(y)):

In complete analogy to Theorem 2.3 and Corollary 2.11 we get the following result for triangular
conorms.

Corollary 2.13. (i) Let s : [0; 1] → [0;∞] be a strictly increasing function with s(0) = 0 such that s
is left-continuous at 1 and

s(x) + s(y) ∈ Ran(s) ∪ [s(1);∞]

for all (x; y) ∈ [0; 1]2. Then the function S : [0; 1]2 → [0; 1] given by

S(x; y) = s(−1)(s(x) + s(y))

is a triangular conorm.
(ii) Let � : [0; 1] → [0;∞] be a strictly decreasing function which is left-continuous at 1 and

satis<es �(0) = 1 such that for all (x; y) ∈ [0; 1]2

�(x) · �(y) ∈ Ran(�) ∪ [0; �(1)]:

Then the function S : [0; 1]2 → [0; 1] given by

S(x; y) = �(−1)(�(x) · �(y))

is a triangular conorm.
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It is therefore quite natural to deEne additive and multiplicative generators of t-conorms as
follows.

De�nition 2.14. (i) An additive generator of a t-conorm S is a strictly increasing function s : [0; 1]
→ [0;∞] which is left-continuous at 1 and satisEes s(0) = 0, such that for all (x; y) ∈ [0; 1]2 we have

s(x) + s(y) ∈ Ran(s) ∪ [s(1);∞];

S(x; y) = s(−1)(s(x) + s(y)):

(ii) A multiplicative generator of a t-conorm S is a strictly decreasing function � : [0; 1] → [0; 1]
which is left-continuous at 1 and satisEes �(0) = 1, such that for all (x; y) ∈ [0; 1]2 we have

�(x) · �(y) ∈ Ran(�) ∪ [0; �(1)];

S(x; y) = �(−1)(�(x) · �(y)):

The exact relationship between the classes of additive and multiplicative generators of t-norms
and t-conorms, respectively, is exhibited by the commutative diagram in Fig. 3, where the operators
N, E and L assign to each function f : [0; 1] → [0;∞] the functions Nf; Ef; Lf : [0; 1] → [0;∞] given
by

Nf(x) = f(1 − x); (9)

Ef(x) = e−f(x); (10)

Lf(x) = − ln(f(x)): (11)

Note that the same function can be an additive generator for a t-norm and a multiplicative generator
for a t-conorm, and vice versa. Put, e.g., f(x) = 1 − x and g(x) = x for x∈ [0; 1]. Then f is an
additive generator of TL and a multiplicative generator of SP, while g is an additive generator of
SL and a multiplicative generator of TP.

The concept of additive and multiplicative generators of t-norms can be further generalized. We
only mention that requirement (4), i.e., the closedness of the range, can be relaxed and one still
obtains a t-norm [68]. On the other hand, the strict monotonicity and the boundary condition of the
generator can also be relaxed, in which case one obtains a t-subnorm, in general [51,52].

Theorem 2.15. Let f : [0; 1] → [0;∞] be a non-increasing function such that

f(x) + f(y) ∈ Ran(f) ∪ [f(0);∞]

for all (x; y) ∈ [0; 1]2. The following function F : [0; 1]2 → [0; 1] is a t-subnorm:

F(x; y) = f(−1)(f(x) + f(y)): (12)

Observe that for an arbitrary continuous non-increasing function f : [0; 1] → [0;∞] the operation
F given by (12) is a left-continuous t-subnorm [51].
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Fig. 3. The relationship between additive and multiplicative generators of a t-norm T and its dual t-conorm S: a commu-
tative diagram.

3. Ordinal sums

The construction of a new semigroup from a family of given semigroups using ordinal sums goes
back to CliNord [11] (see also [12,27,59]), and it is based on ideas presented in [13,37]. It has been
successfully applied to t-norms in [20,48,61] (for a proof of the following result see [40, Theorem
3.43]; a visualization is given in Fig. 4).

Theorem 3.1. Let (T�)�∈A be a family of t-norms and (]a�; e�[)�∈A be a family of non-empty,
pairwise disjoint open subintervals of [0; 1]. Then the following function T : [0; 1]2 → [0; 1] is a
t-norm:

T (x; y) =




a� + (e� − a�) · T�

(
x − a�

e� − a�
;
y − a�

e� − a�

)
if (x; y) ∈ [a�; e�]2;

min(x; y) otherwise:
(13)

This allows us to adapt the general concept of ordinal sums of abstract semigroups to the case of
t-norms as follows.

De�nition 3.2. Let (T�)�∈A be a family of t-norms and (]a�; e�[)�∈A be a family of non-empty,
pairwise disjoint open subintervals of [0; 1]. The t-norm T deEned by (13) is called the ordinal sum
of the summands 〈a�; e�; T�〉, �∈A, and we shall write

T = (〈a�; e�; T�〉)�∈A:

In the same spirit it is possible to introduce the ordinal sum of other binary operations on the
unit interval [0; 1]. Examples for this are the ordinal sum of t-conorms (which is again a t-conorm,
see Corollary 3.7), of copulas (introduced in [64], for a recent survey see [55]), always yielding
a copula, and of t-subnorms (which always leads to a t-subnorm, sometimes even to a t-norm as
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Fig. 4. Construction of ordinal sums: the “important” parts of the domain of (〈0:1; 0:3; TP〉; 〈0:3; 0:6; TP〉; 〈0:7; 0:8; TL〉;
〈0:8; 1; TL〉) (top left), top right its diagonal section, bottom left its contour plot, and bottom right its 3D plot.

in Example 4.5(ii), compare also [30,33] and Theorem 3.8). In [41], it was shown that the most
general way to obtain a t-norm as an ordinal sum of semigroups in the spirit of [11] is to build
ordinal sums of suitable t-subnorms.

Clearly, each t-norm T can be viewed as a trivial ordinal sum with one summand 〈0; 1; T 〉 only,
i.e., we have T = (〈0; 1; T 〉).

Also, the minimum TM is a neutral element of the ordinal sum construction in the following
sense: if T = (〈a�; e�; T�〉)�∈A is an ordinal sum of t-norms and if T�0 =TM for some �0 ∈A, then the
summand 〈a�0 ; e�0 ; T�0〉 can be omitted, i.e.,

(〈a�; e�; T�〉)�∈A = (〈a�; e�; T�〉)�∈A\{�0}:

In particular, an empty ordinal sum of t-norms, i.e., an ordinal sum of t-norms with index set ∅,
yields the minimum TM:

TM = (∅) = (〈a�; e�; T�〉)�∈∅:
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An ordinal sum of t-norms may have inEnitely many summands. For instance, the ordinal sum
T = (〈1=2n; 1=2n−1; TP〉)n∈N is given by

T (x; y) =




1
2n + 2n

(
x − 1

2n

)(
y − 1

2n

)
if (x; y) ∈

[
1
2n ;

1
2n−1

]2

;

min(x; y) otherwise:

However, if T = (〈a�; e�; T�〉)�∈A is an ordinal sum of t-norms, then each of the intervals ]a�; e�[ is
non-empty and, therefore, contains some rational number. Consequently, the cardinality of the index
set A cannot exceed the cardinality of the set of rational numbers (in [0; 1]), i.e., A must be Enite
or countably inEnite.

It is possible to construct parameterized families of t-norms using ordinal sums. Two examples are
the family (TDP

� )�∈]0;1] of Dubois–Prade t-norms (Erst introduced in [17]) and the family (TMT
� )�∈]0;1]

of Mayor–Torrens t-norms (see [50]) deEned by, respectively,

TDP
� = (〈0; �; TP〉); (14)

TMT
� = (〈0; �; TL〉): (15)

By construction, the set of idempotent elements of an ordinal sum T = (〈a�; e�; T�〉)�∈A of t-norms
contains the set

M = [0; 1]
∖ ⋃

�∈A

]a�; e�[ (16)

as a subset, and for each idempotent element a of T with a∈M and for all x∈ [0; 1] we have
T (a; x) = min(a; x).

Moreover, the set M given in (16) equals the set of idempotent elements of T if and only if each
T� has only trivial idempotent elements.

If T = (〈a�; e�; T�〉)�∈A is a non-trivial ordinal sum of t-norms, i.e., if A �= ∅ and if no ]a�; e�[
equals ]0; 1[, then T necessarily has non-trivial idempotent elements and, as a consequence, cannot
be Archimedean.

An ordinal sum T = (〈a�; e�; T�〉)�∈A of t-norms has zero divisors (nilpotent elements) if and only
if there is an �0 ∈A such that a�0 = 0 and T�0 has zero divisors (nilpotent elements).

There is a very close relationship between the existence of non-trivial idempotent elements and
ordinal sums [40, Proposition 3.48].

Proposition 3.3. Let T be a t-norm and a0 ∈ ]0; 1[ such that T (a0; x) = min(a0; x) for all x∈ [0; 1].
Then a0 is a non-trivial idempotent element of T if and only if there are t-norms T1 and T2 such
that T = (〈0; a0; T1〉; 〈a0; 1; T2〉).

The continuity of an ordinal sum of t-norms is equivalent to the continuity of all of its summands,
i.e., an ordinal sum T = (〈a�; e�; T�〉)�∈A of t-norms with A �= ∅ is continuous if and only if T� is
continuous for each �∈A [40, Proposition 3.49].

It is easy to see that the representation of a t-norm as an ordinal sum of t-norms is not unique,
in general. For instance, for each subinterval [a; e] of [0; 1] we have

TM = (∅) = (〈0; 1; TM〉) = (〈a; e; TM〉):
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This gives rise to a natural question: which t-norms T have a unique ordinal sum representation (in
which case it necessarily must be the trivial representation T = (〈0; 1; T 〉))?

De�nition 3.4. A t-norm T which only has a trivial ordinal sum representation (i.e., there is no
ordinal sum representation of T diNerent from T = (〈0; 1; T 〉)) is called ordinally irreducible.

The proof of the two subsequent results can be found in [40, Propositions 3.53 and 3.54].

Proposition 3.5. For each t-norm T the following are equivalent:

(i) T is not ordinally irreducible,
(ii) there is an x0 ∈ ]0; 1[ such that T (x0; y) = min(x0; y) for all y∈ [0; 1],

(iii) there exists a non-trivial idempotent element x0 of T such that the vertical section T (x0; ·) :
[0; 1] → [0; 1] is continuous.

Proposition 3.6. For each t-norm T �=TM the following are equivalent:

(i) T can be uniquely represented as an ordinal sum of ordinally irreducible t-norms,
(ii) the set

MT = {x ∈ [0; 1] |T (x; y) = min(x; y) for all y ∈ [0; 1]}
is a closed subset of [0; 1].

Each Archimedean t-norm has only trivial idempotent elements and is, therefore, ordinally irre-
ducible.

The nilpotent minimum T nM which was introduced in [18] (cf. also [57,58], for a visualization
see [42, Fig. 3]) and which is given by

T nM(x; y) =
{

0 if x + y 6 1;
min(x; y) otherwise

is an example of an ordinally irreducible t-norm with non-trivial idempotent elements.
If T is a t-norm and if a; b are numbers with a¡b and a; b∈MT then Tab : [0; 1]2 → [0; 1] deEned

by

Tab(x; y) =
T (a + (b − a)x; a + (b − a)y)

b − a

is a t-norm which has an ordinal sum representation where one of the summands equals 〈a; b; Tab〉.
For the t-norm T deEned by

T (x; y) =




0 if (x; y) ∈ [0; 1
2 ]2;

n + 4
2n + 4

if (x; y) ∈
]

n + 4
2n + 4

;
n + 3
2n + 2

[2

;

min(x; y) otherwise;
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the set MT = {0} ∪ {(n + 3)=(2n + 2) | n∈N} is not closed, showing that T has no ordinal sum
representation where the t-norms in the summands are ordinally irreducible.

In the case of t-conorms, a construction dual to the one in Theorem 3.1 can be applied. The roles
of the neutral element (which is 0 in this case) and the annihilator (which is 1) are interchanged in
this case, and we have to replace the operation min by max.

Corollary 3.7. Let (S�)�∈A be a family of t-conorms and (]a�; e�[)�∈A be a family of non-empty,
pairwise disjoint open subintervals of [0; 1]. Then the function S : [0; 1]2 → [0; 1] de<ned by

S(x; y) =




a� + (e� − a�) · S�

(
x − a�

e� − a�
;
y − a�

e� − a�

)
if (x; y) ∈ [a�; e�]2;

max(x; y) otherwise

is a t-conorm which is called the ordinal sum of the summands 〈a�; e�; S�〉, �∈A, and we shall
write S = (〈a�; e�; S�〉)�∈A.

All results in this section given for t-norms remain valid for t-conorms with the obvious changes
where necessary. In particular, if (〈a�; e�; T�〉)�∈A is an ordinal sum of t-norms then the dual t-conorm
given by (8) is an ordinal sum of t-conorms, i.e., (〈1 − e�; 1 − a�; S�〉)�∈A, where each t-conorm S�

is the dual of the t-norm T�. Note, however, that the t-norm T� and the t-conorm S�, in general, act
on diNerent intervals.

Observe that the most general construction of t-norms by means of ordinal sums of semigroups
in the sense of CliNord [11] is the subsequent modiEcation of Theorem 3.1 (see [41], compare
also [33]).

Theorem 3.8. Let (F�)�∈A be a family of t-subnorms and (]a�; e�[)�∈A be a family of non-empty,
pairwise disjoint open subintervals of [0; 1]. Further, if e�0 = 1 for some �0 ∈ A then assume that
F�0 is a t-norm, and if e�0 = a#0 for some �0; #0 ∈A then assume either that F�0 is a t-norm or that
F#0 has no zero divisors. Then the following function T : [0; 1]2 → [0; 1] is a t-norm:

T (x; y) =




a� + (e� − a�) · F�

(
x − a�

e� − a�
;
y − a�

e� − a�

)
if (x; y) ∈]a�; e�]2;

min(x; y) otherwise:

Recently, some other methods for constructing new t-norms related to ordinal sums were intro-
duced. We only mention the matrix composition [15] (which even allows t-norms to be constructed
on certain abstract lattices).

4. Other constructions

The following result shows that certain binary operations acting on subintervals of the half-open
unit interval [0; 1[ always can be extended to a t-norm [40, Proposition 3.60].
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Proposition 4.1. Let A be a subinterval of the half-open unit interval [0; 1[ and let ∗ :A2 →A be an
operation on A which satis<es for all x; y; z ∈A properties (T1)–(T3) and (1). Then the function
T : [0; 1]2 → [0; 1] de<ned by

T (x; y) =

{
x ∗ y if (x; y) ∈ A2;

min(x; y) otherwise
(17)

is a t-norm.

An immediate consequence of Proposition 4.1 is that each t-subnorm F can be transformed into
a t-norm by redeEning (if necessary) its values on the upper right boundary of the unit square.

Corollary 4.2. If F is a t-subnorm then the function T : [0; 1]2 → [0; 1] given by

T (x; y) =

{
F(x; y) if (x; y) ∈ [0; 1[2;

min(x; y) otherwise;

is a triangular norm.

Another consequence of Proposition 4.1 is that, given a t-norm T and a non-decreasing function
f : [0; 1] → [0; 1] which in some sense is compatible with T , the pseudo-inverse allows us to construct
a new t-norm (see [40, Theorem 3.6]). We will not state this result in its most general form and,
therefore, restrict ourselves to continuous functions f, in which case f is compatible with each
t-norm T .

Proposition 4.3. Let f : [0; 1] → [0; 1] be a continuous, non-decreasing function and let T be a
t-norm. Then the following function T[f ] : [0; 1]2 → [0; 1] is a t-norm:

T[f ](x; y) =

{
f(−1)(T (f(x); f(y))) if (x; y) ∈ [0; 1[2;

min(x; y) otherwise:
(18)

It is easy to see that construction (18) leads to a t-subnorm (as introduced in [30], see [42,
DeEnition 2.3]).

Corollary 4.4. Let f : [0; 1] → [0; 1] be a continuous, non-decreasing function and let T be a t-norm.
Then the function F : [0; 1]2 → [0; 1] given by

F(x; y) = f(−1)(T (f(x); f(y)))

is a t-subnorm.

If f; g : [0; 1] → [0; 1] are two continuous, non-decreasing functions and if T is a t-norm, then we
have

(T[f ])[g] = T[f◦g]:
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Fig. 5. The t-norms (TM)[f ] (left) and (TD)[f ] (right) induced by the function f : [0; 1] → [0; 1] given by f(x) = min(2x; 1).

This means in particular that the original T can be reconstructed if f ◦ g= id[0;1], e.g., if Ran(f) =
[0; 1] and g=f(−1), in which case we get

T = (T[f ])[f(−1)]:

The minimum TM and the drastic product TD are no longer invariant under the construction of
Proposition 4.3 (see Fig. 5), and if f : [0; 1] → [0; 1] is a constant function then, for an arbitrary
t-norm T , formula (18) always yields the drastic product TD.

The general form of Proposition 4.3 (cf. [40, Theorem 3.6]) can be applied in many special cases
which cover a wide range of constructions of t-norms mentioned in the literature.

In general, construction (18) preserves neither the continuity (see TM[f ] in Fig. 5) nor any of
the algebraic properties the original t-norm may have: for instance, TD is Archimedean but TD[f ] in
Fig. 5 is not (see also Fig. 6).

It also may be that a non-continuous t-norm T gives rise to a continuous t-norm T[f ] (see Fig. 7).
Many more examples of t-norms constructed by means of (18) can be found in [39,40,

Section 3.1].

Example 4.5. (i) Let [a; b] be a closed subinterval of [0; 1[, let f : [a; b] → [0;∞] be a continuous,
non-increasing function, and deEne the binary operation ∗ on [a; b] by

x ∗ y = f(−1)(f(x) + f(y))

Clearly, ∗ satisEes all the requirements in Proposition 4.1 (cf. Theorem 2.3) and, consequently, the
function T : [0; 1]2 → [0; 1] given by (17) is a left-continuous t-norm.

(ii) If in (i) we put a= 0 and f(x) = 0 for all x∈ [0; b], then the t-norm T introduced by (17) is
given by

T (x; y) =

{
0 if (x; y) ∈ [0; b]2;

min(x; y) otherwise:
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Fig. 6. Starting with the ordinal sum T = (〈0; 0:2; TL〉; 〈0:2; 1; TP〉) (left, which has nilpotent elements) and the func-
tion f : [0; 1] → [0; 1] given by f(x) = 1

5 + 4
5 x we obtain the strict t-norm T[f ] = TP; on the other hand, the function

g : [0; 1] → [0; 1] given by g(x) = 3
4 max(x − 1

5 ; 0) induces the non-strict t-norm (TP)[g] (right).
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Fig. 7. Using the function f : [0; 1] → [0; 1] given by f(x) = x=2, the non-continuous ordinal sum (〈0; 0:5; TP〉; 〈0:5; 1; TD〉)
(left, see DeEnition 3.2) induces the continuous t-norm T[f ] = TP.

Observe that T is not an ordinal sum of ordinally irreducible t-norms (cf. DeEnition 3.4), but
rather an ordinal sum of t-subnorms (see Theorem 3.8).

If A is a subinterval of the half-open unit interval [0; 1[ and if the binary operation ∗ on A satisEes
the requirements in Proposition 4.1, then the t-norm T given by (17) is continuous if and only if ∗
is continuous and if for all x∈A we have sup{x ∗ y | y∈A} = x.

Proposition 4.6. Let A be a subset of ]0; 1[2 with the following properties:

(i) A is symmetric, i.e., (x; y) ∈A implies (y; x) ∈A.
(ii) For all (x; y) ∈A we have ]0; x] × ]0; y] ⊆A.
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Then the following function TA : [0; 1]2 → [0; 1] is a t-norm:

TA(x; y) =

{
0 if (x; y) ∈ A;

min(x; y) otherwise:

Remark 4.7. Let A⊆ ]0; 1[2 be a set which satisEes the conditions in Proposition 4.6:

(i) A t-norm T is of the form TA if and only if we have T (x; y)∈{0;min(x; y)} for all (x; y)∈[0; 1]2.
(ii) The t-norm TA is left-continuous if and only if the set

({0} × [0; 1]) ∪ ([0; 1] × {0}) ∪ A

is a closed subset of [0; 1]2 (compare also Example 4.5(ii)), and it is continuous only in the
trivial case A= ∅ (in which case we obtain TA =TM).

(iii) If A �= ∅, then TA always has nilpotent elements and zero divisors.
(iv) The only Archimedean case is A= ]0; 1[2 (which means TA =TD), in all the other cases TA has

non-trivial idempotent elements.
(v) If f : [0; 1] → [0; 1] is a non-decreasing function, then the set

Af = {(x; y) ∈]0; 1[2 |f(x) + f(y) 6 1}
satisEes all the properties in Proposition 4.6, and TAf is a t-norm (this is also true if we replace
the constant 1 by any other real number).

Example 4.8. (i) In the special case f = id[0;1] we obtain the nilpotent minimum T nM.
(ii) If f : [0; 1] → [0; 1] is a strictly increasing bijection and if T is the nilpotent t-norm de-

Ened by

T (x; y) = f−1(TL(f(x); f(y)));

i.e., if f is the unique isomorphism between T and the  Lukasiewicz t-norm TL, then TAf is the
strongest t-norm which vanishes exactly at the same points of the unit square [0; 1]2 as T .

The following construction even leads to an Archimedean t-norm.

Proposition 4.9. Let A be a subset of ]0; 1[2 which satis<es the conditions in Proposition 4.6, and
assume that a∈ ]0; 1[ ful<lls {a} × ]0; 1[ ⊆A. Then the following function TA;a : [0; 1]2 → [0; 1] is an
Archimedean t-norm:

TA;a(x; y) =




0 if (x; y) ∈ A;

a if (x; y) ∈]0; 1[2\A;
min(x; y) otherwise:

As an immediate consequence of Proposition 4.9 we obtain the following suIcient condition.
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Fig. 8. Three-dimensional and contour plot of the Jenei t-norm T J
0:3 (see Example 4.11).

Corollary 4.10. If f : [0; 1] → [0; 1] is a non-decreasing function and if a ∈]0; f(−1)(1 − f(1))[ then
TAf;a is an Archimedean t-norm.

Several methods for constructing and characterizing left-continuous t-norms T satisfying T (x; y) = 0
if and only if x+y61 have been proposed recently in [28–32,34,36]. Such t-norms T are interesting
in the context of fuzzy logics (compare [22,23]), since in this case the negation associated with T
equals the standard negation N given by N (x) = 1 − x. An overview of all these methods can be
found in [35]. The following family of non-continuous t-norms is an example of such t-norms [29].
Moreover, these are (up to isomorphism) the only left-continuous t-norms T such that the associated
residual implications →T [22,23,36] satisfy

x →T y = N (y) →T N (x):

Example 4.11. The family (T J
� )�∈[0;0:5] of Jenei t-norms is given by (see Fig. 8)

T J
� �(x; y) =




0 if x + y 6 1;

� + x + y − 1 if x + y ¿ 1 and (x; y) ∈ [�; 1 − �]2;

min(x; y) otherwise:

Several peculiar non-continuous t-norms have been constructed, mostly in order to show
(by providing counterexamples) that

(i) the continuity of the diagonal does not imply the continuity of the whole t-norm (e.g. the
Krause t-norm, see [40, Appendix B.1]),

(ii) a strictly monotone t-norm need not be Archimedean nor continuous [7,24,65],
(iii) there are non-Archimedean t-norms constructed by means of strictly decreasing non-continuous

functions from [0; 1] to [0;∞] [67],
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(iv) there are t-norms which are (as functions from [0; 1]2 to [0; 1]) not Borel measurable
[38].

5. Families of t-norms and t-conorms

We now give a quick overview of some of the most important parameterized families of t-norms
and t-conorms (Table 1). In the literature, several other parameterized families are mentioned, e.g.,
the families of AczLel–Alsina t-norms [2], Dombi t-norms [14], Dubois–Prade t-norms (14), Jenei
t-norms (see Example 4.11), and Mayor–Torrens t-norms (15). Extensive surveys of families of
t-norms and t-conorms can be found in [40,49,53] (Figs. 9 and 10).

5.1. Schweizer–Sklar t-norms

Already in [60] an interesting family of t-norms was presented, and in [61] the index set was ex-
tended to the whole real line (our notation follows the monograph [62], i.e., our index � corresponds
to −p in the original papers). This family of t-norms is remarkable in the sense that it contains all
four basic t-norms.

Example 5.1. (i) The family (T SS
� )�∈[−∞;∞] of Schweizer–Sklar t-norms is given by

T SS
� (x; y) =




TM(x; y) if � = −∞;

TP(x; y) if � = 0;

TD(x; y) if � = ∞;

(max((x� + y� − 1); 0))1=� if � ∈] − ∞; 0[ ∪ ]0;∞[:

(ii) Additive generators tSS� : [0; 1] → [0;∞] of the continuous Archimedean members of the family
of Schweizer–Sklar t-norms (T SS

� )�∈[−∞;∞] are given by

tSS� (x) =




− ln x if � = 0;

1 − x�

�
if � ∈] − ∞; 0[ ∪ ]0;∞[:

In Example 2.10(iii) a construction for the additive generators of the continuous Archimedean
Schweizer–Sklar t-norms was given.

Note that the subfamily (T SS
� )�∈[−∞;1] of Schweizer–Sklar t-norms is also a family of copulas, in

which context (e.g., in [55]) it is referred to as the family of Clayton copulas [10].

5.2. Hamacher t-norms

In [25,26] an axiomatic approach for the logical connectives conjunction and disjunction, which
can be expressed by rational functions, in many-valued logics with [0; 1] as set of truth values was
presented. The original axioms for the conjunction T : [0; 1]2 → [0; 1] include continuity, associativity,



E.P. Klement et al. / Fuzzy Sets and Systems 145 (2004) 411–438 431

Fig. 9. Several Schweizer–Sklar (top), Hamacher (center) and Yager (bottom) t-norms.
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Fig. 10. Several Frank t-norms (top), Frank t-conorms (center) and Sugeno–Weber t-conorms (bottom).
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strict monotonicity on ]0; 1]2 in each component, and T (1; 1) = 1. The main result of [25,26] can
be reformulated in this way: a continuous t-norm T is a rational function (i.e., a quotient of two
polynomials) if and only if T belongs to the family (TH

� )�∈[0;∞[ (in our presentation we also include
the limit case �= ∞).

Example 5.2. (i) The family (TH
� )�∈[0;∞] of Hamacher t-norms is given by

TH
� (x; y) =




TD(x; y) if � = ∞;

0 if � = x = y = 0;
xy

� + (1 − �)(x + y − xy)
otherwise:

(ii) Additive generators tH� : [0; 1] → [0;∞] of the strict members of the family of Hamacher t-
norms are given by

tH� (x) =




1 − x
x

if � = 0;

ln
(
� + (1 − �)x

x

)
if � ∈]0;∞[:

It is clear that TH
1 =TP and TH

0 =T SS−1 (the latter is sometimes called the Hamacher product).
The subfamily (TH

� )�∈[0;2] of Hamacher t-norms is also a family of copulas [55], mentioned Erst
in [3], in which context it is usually referred to as the family of Ali–Mikhail–Haq copulas.

5.3. Frank t-norms

The investigations of the associativity of duals of copulas in the framework of distribution functions
have led to the following problem: characterize all continuous (or, equivalently, non-decreasing)
associative functions F : [0; 1]2 → [0; 1], which satisfy for each x∈ [0; 1] the boundary conditions
F(0; x) =F(x; 0) and F(x; 1) =F(1; x) = x, such that the function G : [0; 1]2 → [0; 1] given by

G(x; y) = x + y − F(x; y)

is also associative. In [20] it was shown that F has to be an ordinal sum of members of the following
family of t-norms.

Example 5.3. (i) The family (T F
� )�∈[0;∞] of Frank t-norms (which were called fundamental t-norms

in [8]) is given by

T F
� (x; y) =




TM(x; y) if � = 0;

TP(x; y) if � = 1;

TL(x; y) if � = ∞;

log�

(
1 +

(�x − 1)(�y − 1)
� − 1

)
otherwise:
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(ii) The family (SF� )�∈[0;∞] of Frank t-conorms is given by

SF� (x; y) =




SM(x; y) if � = 0;

SP(x; y) if � = 1;

SL(x; y) if � = ∞;

1 − log�

(
1 +

(�1−x − 1)(�1−y − 1)
� − 1

)
otherwise:

(iii) Additive generators tF� ; s
F
� : [0; 1] → [0;∞] of the continuous Archimedean members of the

families of Frank t-norms and t-conorms are given by, respectively,

tF� (x) =




− ln x if � = 1;

1 − x if � = ∞;

ln
(

� − 1
�x − 1

)
if � ∈]0; 1[ ∪ ]1;∞[;

sF� (x) =




− ln(1 − x) if � = 1;

x if � = ∞;

ln
(

� − 1
�1−x − 1

)
if � ∈]0; 1[∪]1;∞[:

All Frank t-norms are also copulas (see [55]) and have interesting statistical properties in the
context of bivariate distributions [21,54].

The family of Frank t-norms is strictly decreasing, and the family of Frank t-conorms is strictly
increasing (see [40, Proposition 6.8], a Erst proof of this result was given in [8, Proposition 1.12]).

The result of [20] (cf. [40, Theorem 5.14]) can be reformulated in the sense that a pair (T; S),
where T is a continuous t-norm and S is a t-conorm, fulElls the Frank functional equation

T (x; y) + S(x; y) = x + y (19)

for all (x; y) ∈ [0; 1]2 if and only if T is an ordinal sum of Frank t-norms and S is an ordinal sum
of the corresponding dual Frank t-conorms, i.e., if

T = (〈a�; e�; T F
��〉)�∈A;

S = (〈a�; e�; SF��〉)�∈A:

Note, however, that the t-norm T and the t-conorm S are not necessarily dual to each other since
the dual t-conorm of T is given by

(〈1 − e�; 1 − a�; SF��〉)�∈A;

which coincides with S if and only if for each �∈A there is a #∈A such that �� = �# and a� +
e# = a# + e� = 1.

The family of Frank t-norms plays a key role in the context of fuzzy logics [9,23,43]. Also for
T -measures based on Frank t-norms it is possible to prove nice integral representations (see [8,
Theorems 5.8, 6.2, 7.1] as well as a LiapounoN Theorem (see [6,8, Theorem 13.3]).
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5.4. Yager t-norms

One of the most popular families for modeling the intersection of fuzzy sets is the following
family of t-norms (which was Erst introduced in [71] for the special case �¿1 only). The idea was
to use the parameter � as a reciprocal measure for the strength of the logical AND. In this context,
�= 1 expresses the most demanding (i.e., the smallest) AND, and �= ∞ the least demanding (i.e.,
the largest) AND.

Example 5.4. (i) The family (TY
� )�∈[0;∞] of Yager t-norms is given by

TY
� (x; y) =




TD(x; y) if � = 0;

TM(x; y) if � = ∞;

max(1 − ((1 − x)� + (1 − y)�)1=�; 0) otherwise:

(ii) Additive generators tY� : [0; 1] → [0;∞] of the nilpotent members (TY
� )�∈]0;∞[ of the family of

Yager t-norms are given by

tY� (x) = (1 − x)�:

In Example 2.10(i) a construction for the additive generators of the nilpotent Yager t-norms was
given.

It is trivial to see that TY
1 =TL. The subfamily (TY

� )�∈[1;∞] of Yager t-norms is also a family of
copulas [55].

The family of Yager t-norms is used in several applications of fuzzy set theory, e.g., in the context
of fuzzy numbers (see [16]). In particular, for the addition of fuzzy numbers based on Yager t-norms
it has been shown in [46] that the sum of piecewise linear fuzzy numbers again is a piecewise linear
fuzzy number. The Yager t-norms appear also in the investigation of t-norms whose graphs are
(partly) ruled surfaces [4].

5.5. Sugeno–Weber t-conorms

In [69], the use of the families of some special t-norms and t-conorms was suggested in order to
model the intersection and union of fuzzy sets, respectively. These t-conorms are widely used in the
context of decomposable measures [44,45,56,70], and they already appeared as possible generalized
additions in the context of �-fuzzy measures in [66].

Example 5.5. (i) The family (SSW� )�∈[−1;∞] of Sugeno–Weber t-conorms is given by

SSW� (x; y) =




SP(x; y) if � = −1;

SD(x; y) if � = ∞;

min(x + y + �xy; 1) otherwise:
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(ii) Additive generators sSW� : [0; 1] → [0;∞] of the continuous Archimedean members of the family
of Sugeno–Weber t-conorms are given by

sSW� (x) =




x if � = 0;

− ln(1 − x) if � = −1;

ln(1 + �x)
ln(1 + �)

if � ∈] − 1; 0[ ∪ ]0;∞[:

Table 1
Some properties of the families of t-norms and t-conorms

Family Continuous Archimedean Strict Nilpotent

Schweizer–Sklar t-norms (T SS
� )�∈[−∞;∞] � ∈ [−∞;∞[ � ∈] − ∞;∞] � ∈] − ∞; 0] � ∈]0;∞[

Hamacher t-norms (TH
� )�∈[0;∞] � ∈ [0;∞[ All � ∈ [0;∞[ None

Frank t-norms (T F
� )�∈[0;∞] All � ∈]0;∞] � ∈]0;∞[ � = ∞

Yager t-norms (TY
� )�∈[0;∞] � ∈]0;∞] � ∈ [0;∞[ None � ∈]0;∞[

Sugeno–Weber t-conorms (SSW� )�∈[−1;∞] � ∈ [−1;∞[ All � = −1 � ∈] − 1;∞[
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