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Abstract

This third and last part of a series of position papers on triangular norms (for Parts I and II see (E.P.
Klement, R. Mesiar, E. Pap, Triangular norms, Position paper I: basic analytical and algebraic properties,
Fuzzy Sets and Systems, in press; E.P. Klement, R. Mesiar, E. Pap, Triangular norms. Position paper II:
general constructions and parameterized families, submitted for publication) presents the representation of
continuous Archimedean t-norms by means of additive generators, and the representation of continuous t-norms
by means of ordinal sums with Archimedean summands, both with full proofs. Finally some consequences of
these representation theorems in the context of comparison and convergence of continuous t-norms, and of
the determination of continuous t-norms by their diagonal sections are mentioned.

(© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This is the third and final part of a series of position papers on the state of the art of some
particularly important aspects of triangular norms in a condensed form. The monograph [23] provides
a rather complete and self-contained overview about triangular norms and their applications.

Part I [24] considered some basic analytical properties of t-norms, such as continuity, and im-
portant classes such as Archimedean, strict and nilpotent t-norms. Also the dual operations, the
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triangular conorms, and De Morgan triples were mentioned. Finally, a short historical overview on
the development of t-norms and their way into fuzzy sets and fuzzy logics was given.

Part II [25] is devoted to general construction methods based mainly on pseudo-inverses, additive
and multiplicative generators, and ordinal sums, including also some constructions leading to non-
continuous t-norms, and to a presentation of some distinguished families of t-norms.

In this third part we first present the representation of continuous Archimedean t-norms by means
of additive generators, and then the representation of continuous t-norms by means of ordinal sums
with Archimedean summands. These theorems were first proved in the framework of triangular norms
in [28]. However, they can also be derived from results in [30] in the framework of semigroups. We
include full proofs of the representation theorems mentioned above, since the original sources are
not so easily accessible and/or they heavily use the special language of semigroup theory. Finally
we include some results and examples which follow from these representation theorems.

Several notions and results from Parts I and II will be needed in this paper, and they can be
found there in full detail [24,25]. For the convenience of the reader, we briefly recall some of them.

Recall that a triangular norm (briefly t-norm) is a binary operation 7' on the unit interval [0, 1]
which is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function
T:[0,1]* —[0,1] such that for all x, y,z<[0,1]:

(T1) T(Cx,y)=T(y,x),

(T2) T(x, T(y,2))=T(T(x, y),2),
(T3) T(x,y)<T(x,z) whenever y<z,
(T4) T(x,1)=x.

Observe that for a continuous t-norm 7 the Archimedean property is equivalent to 7'(x,x)<x for
all x €10, 1[, and that each continuous Archimedean t-norm is either strict or nilpotent [24, Theorem
6.15]. Given a t-norm 7, an element x € [0, 1] is said to be idempotent if 7T(x,x)=x (clearly, 0 and
1 are idempotent elements of each t-norm, the so-called trivial idempotent elements).

Observe that the pseudo-inverse is defined for arbitrary monotone functions [25, Definition 2.1].
In our special setting we mostly deal with continuous, decreasing function ¢:[0, 1] — [0, 00] with
t(1)=0, in which case the pseudo-inverse #~! reduces to

(T D(x) = ¢ (min(x, £(0))).

2. Representation of continuous Archimedean t-norms
For the class of all t-norms (which includes non-continuous t-norms and even t-norms which are
not Borel measurable) the only existing characterization is by the axioms (T1)—(T4). The important

subclass of continuous t-norms, however, has nice representations in terms of one-place functions
and ordinal sums.

Theorem 2.1. For a function T :[0,1]> — [0, 1] the following are equivalent:

(1) T is a continuous Archimedean t-norm.
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(it) T has a continuous additive generator, i.e., there exists a continuous, strictly decreasing func-
tion t:[0,1] — [0, 00] with t(1)=0, which is uniquely determined up to a positive multiplicative
constant, such that for all (x,y) € [0,1]

T(x,y) = 7 D(1(x) + (). (1)

Proof. Assume first that ¢: [0, 1] — [0, +o00] is a continuous, strictly decreasing function with #(1)=0
and that 7 is constructed by (1), i.e., ¢ is an additive generator of 7. The commutativity (T1) and the
monotonicity (T3) of T are obvious. Also, the boundary condition (T4) holds since for all x € [0, 1]

T(x, 1) = (0(t(x) + 1(1)) = £ D(1(x)) = x.

Concerning the associativity (T2), for all x, y,z €[0,1] we obtain

T(T(x,y),z) =" (UT(x,y)) + 1(z))
=D (1(x) + 1)) + 1(2))
=1 D(t(x) + 1(y) + 1(2))
=1D((x) + t((1(y) + 1(2))))
=1D(1(x) + «(T(y,2)))
=T(x,T(y.2)),

where the third equality is a consequence of

(7D (1(x) + 1(p))) = min(1(x) + (), 1(0)).

To prove the converse, let 7 be a continuous Archimedean t-norm. Concerning the notion x(T") we

will use, recall that, for each x €[0, 1], we have xg)) =1 and, for n € N, by recursion

xp) = Ty ™).
Define now for x €[0,1] and m,ne N
()

1/n

A = sup{y € [0, 1]y} < x},
m/n 1/n m

= (.

Since T is Archimedean, we have for all x € ]0, 1]

: (1/n) _
nlggo xp™M =1. (2)
Note that the expression x\"/" is well-defined because of x\"™ =x¥"* ) for all k € N. If, for some
x€[0,1] and some n€ NU{0}, we have x(Tn) :x(T"H) then, in the standard way by induction, we
obtain

)= = PP
and, since T is continuous Archimedean, x(T") € {0, 1}. This means that we have x(T") >x(T”+1)
XM e0,1]

T > L

whenever
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Now choose and fix an arbitrary element a € ]0, 1[, and define the function 4: Q N[0, 00 — [0, 1]
by h(r) :a(T'ﬂ). Since 7' is continuous and since (2) holds, 4 is a continuous function. Moreover, we
have for all x€[0,1] and m,n, p,q € N

x(Tm/n)+(p/q) _ x(T(mq+np)/nq)
— (X(Tl/nq))(quHP)
= T(O "7 (e "7
— T(x(Tm/n)’x(Tp/q))
and, as a consequence, for all »,s € @ N[0, c0[
Wr+s) = d; ™ = T(ay).a7)) < df’ = h(r),

i.e., & is also non-increasing. The function 4 is even strictly decreasing on the preimage of ]0, 1]
since for all m/n, p/qg € QN [0, 00 with A(m/n)>0 we get

1
h <m + P> <h <m‘1 * ) — (M matD) (g yma) _ (T) .
n q nq n

The monotonicity and continuity of 42 on @ N[0, o0[ allows us to extend it uniquely to a function
h:[0,00] — [0, 1] via

h(x) = inf{h(r)|r € @ N[0,x]}.

Then /4 is continuous and non-increasing, and we have for all x, y € [0, c0]
h(x + y) = T(h(x), h(y)).

Moreover, 7 is strictly decreasing on the preimage of ]0, 1]. Define the function #:[0, 1] — [0, cc] by
t(x) = sup{y € [0,00] | A(y) > x}

with the usual convention sup ) =0 (observe that ¢ is just the pseudo-inverse of & and vice versa).
Then ¢ is continuous, strictly decreasing, and satisfies #(1)=0 [23, Remark 3.4]. A combination of
all the arguments so far yields that ¢ is indeed a continuous additive generator of 7 since for each

(x, ») €10, 177
T(x, y) = T(h(1(x)), h(1(¥))) = h(t(x) + 1(y)) = (7 D((x) + 1()).

To show that the continuous additive generator ¢ of T constructed above is unique up to a posi-
tive multiplicative constant, assume that the two functions 7, : [0, 1] — [0, oc] are both continuous
additive generators of T, i.e., we have for each (x, y)€[0,1]* the equality

i (0 + 1) =1 (0E) + o).
Substituting u = #,(x) and v =1,(y), we obtain that, for all u,v €[0,#,(0)] satistfying u+v €[0,,(0)[,
oty )+t ot V(w) =t o+ v). (3)

Then from the continuity of # and lé_l) it follows that (3) holds for all u,v€[0,#(0)] with u +
ve[0,(0)].



E.P. Klement et al.| Fuzzy Sets and Systems 145 (2004) 439—454 443

Eq. (3) is a Cauchy functional equation (see [2]), whose continuous, strictly increasing solutions
t otg_l) :[0,£(0)] — [0, co] must satisfy # otg_l) = b-idjg,;,(0y for some b € ]0,00[. As a consequence,
we get t; = bt, for some b € |0, 00[, thus completing the proof. [

Because of the special form of the pseudo-inverse #~!), representation (1) in Theorem 2.1 can
also be written as

T(x, y) = ¢~ (min(t(x) + 1(),1(0))).

We already have seen in [24, Proposition 6.13 and Theorem 6.17] that a continuous Archimedean
t-norm is either strict or nilpotent, a distinction which can be made also with the help of their additive
generators. Indeed, generators ¢ of strict t-norms satisfy #(0) =oco while generators of nilpotent t-
norms satisfy #(0)<oo [25, Corollary 2.8].

Recall that for the product 7p and for the Lukasiewicz t-norm 7j, additive generators ¢ : [0,1] —
[0,00] are given by, respectively,

t(x) = —log x,

tx)=1-—ux
Based on the proof of Theorem 2.1, it is possible to give some constructive way to obtain additive
generators of continuous Archimedean t-norms. As an illustrating example, we include the following

result of [11] (compare also [1,4,33]) for the case of strict t-norms which can be derived in a
straightforward manner from the proof of Theorem 2.1.

Corollary 2.2. Let T be a strict t-norm. Fix an arbitrary element xy € 10, 1[, and define the function
t:[0,1]1—1[0,00] by

t(x) = inf { mk—n‘ m,n,k € N and (xo)(Tm) < T((xo)(T"),x(Tk) } )
Then t is an additive generator of T.

Example 2.3. If we consider the Hamacher product 7 [15] defined by

Xy

T(x,y) = m,

whenever (x, y) # (0,0), observe that we get (taking into account 1/oo=0 and 1/0=00) for all
(x, ») €10, 177
1
(1/x)+(1/y) =1
and, for each x €[0,1] and each n & N

T(x,y) =

X = - )
r (n/x)y—n+1
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For xy = 0.5 the inequality
(o)™ < T((x0)}.x8)

is easily seen to be equivalent to m—n>k((1/x)—1), yielding the additive generator ¢: [0, 1] — [0, o]
of T specified by

_ _ 1 1 —
()y=infd ke Nand 20 s 2 = 2%
k k X X

The representation of continuous Archimedean t-norms given in Theorem 2.1 is based on the
addition on the interval [0,+4oc0]. There is a completely analogous representation thereof based on
the multiplication on [0, 1], thus leading to a representation of continuous Archimedean t-norms
by means of multiplicative generators [25, Section 2]. By duality, there are also representations of
continuous Archimedean t-conorms by means of additive generators and multiplicative generators,
respectively.

Remark 2.4. (i) If T is a continuous Archimedean t-norm with additive generator ¢:[0, 1] — [0, co],
then the function 0:[0,1] — [0, 1] defined by 0(x)=e '™ is a multiplicative generator of 7.

(ii) If S is a continuous Archimedean t-conorm then the dual t-norm 7 is continuous Archimedean
and, therefore, has an additive generator ¢:[0, 1] — [0, c0]. Then s:[0, 1] — [0, cc] defined by s(x) =
t(1 — x) is an additive generator of S, and &:[0,1]— [0, 1] defined by ¢(x) = e~ is a multi-
plicative generator of S.

(iii) Given a continuous Archimedean t-norm 7 and a strictly increasing bijection ¢ : [0, 1] — [0, 1],
it is clear that the function 7,,:[0,1]*> — [0, 1] given by

To(x,¥) = @ (T(p(x), p(¥)))

is a continuous Archimedean t-norm too. By Theorem 2.1, there are additive generators ¢,¢,: [0, 1] —
[0,00] of T and T, respectively. Taking into account [25, Proposition 2.9], ¢, equals to ¢ up to a
multiplicative constant.

It is straightforward that each isomorphism ¢:[0,1] — [0, 1] preserves (among many other prop-
erties) the continuity, the strictness and the existence of zero divisors. Therefore, each t-norm which
is isomorphic to a strict or to a nilpotent t-norm, itself is strict or nilpotent, respectively.

Conversely, if 73 and 7, are two strict t-norms with additive generators # and # (which are
bijective functions from [0, 1] into [0, co] in this case), respectively, then ¢:[0,1] — [0, 1] given by
(p:tl_l ot is a strictly increasing bijection and 7> =(T}),. If 7} and 7, are two nilpotent t-norms
with additive generators ¢, and f,, respectively, then we have T, =(T;),, where the strictly increasing
bijection ¢:[0,1]—10,1] is given by <p:tf1 o ((t1(0)/t2(0))t;) (observe that in this case the two
functions # and (#(0)/%(0))% can be viewed as bijections from [0, 1] into [0,#(0)]).

We therefore have shown the following result:

Lemma 2.5. Two continuous Archimedean t-norms are isomorphic if and only if they are either
both strict or both nilpotent.
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An immediate consequence of Remark 2.4(iii) and Lemma 2.5 is that the product 7p and the
Lukasiewicz t-norm 7y, are not only prototypical examples of strict and nilpotent t-norms, respec-
tively, but that each continuous Archimedean t-norm is isomorphic either to 7p or to 7i:

Theorem 2.6. (i) A function T :[0,1]> —[0,1] is a strict t-norm if and only if it is isomorphic to
the product Tp.

(ii) A function T:[0,1]>—1[0,1] is a nilpotent t-norm if and only if it is isomorphic to the
Lukasiewicz t-norm Ti..

Each multiplicative generator 0:[0,1] — [0, 1] of a strict t-norm 7 can be viewed as an isomor-
phism between Tp and 7T, i.e., T =(Tp)y. In particular, this means that there are infinitely many
isomorphisms between 7p and 7. On the other hand, if T is a nilpotent t-norm with additive gen-
erator ¢:[0,1]—[0,00], then there is a unique isomorphism ¢:[0,1]— [0, 1] between Ty, and T,
namely, ¢ =1 — (1/¢(0))z.

Recall that each continuous t-norm 7 satisfying T'(x,x)<x for all x € ]0, 1[ is Archimedean [23,
Proposition 2.15].

Corollary 2.7. If T is a continuous t-norm with trivial idempotent elements only, i.e., T(x,x)=x
only if x€{0,1}, then T is Archimedean and, therefore, has a continuous additive generator.

Remark 2.8. Note that the representation in Theorem 2.1 holds for continuous Archimedean t-norms
only. However, there are several possibilities to show the existence of continuous additive generators
for a function 7 :[0,1]*> — [0, 1] under weaker hypotheses than in Theorem 2.1.

For example, it is possible to drop the commutativity (T1) [30] (see also [23, Theorem 2.43]) or to
weaken the associativity (T2) [6,27]. In the case of left-continuous t-norms, either the Archimedean
property [26] or the existence of a (not necessarily continuous) additive generator [38] implies the
existence of a continuous additive generator. In the case of a strictly monotone Archimedean t-norm
T, the continuity of T at the point (1,1) is sufficient for the existence of a continuous additive
generator [14].

3. Representation of continuous t-norms

The construction of a new semigroup from a family of given semigroups using ordinal sums goes
back to A. H. Clifford [8] (see also [9,17,34]), and it is based on ideas presented in [10,21]. It has
been successfully applied to t-norms in [13,24,28,36].

Definition 3.1. Let (7,),cs be a family of t-norms and (Ja,,e,[).cs be a family of non-empty,
pairwise disjoint open subintervals of [0, 1]. The t-norm T defined by

X—a, Yy—ay

— T .f )
T(x’)/): a“—i_(e“ a“) x<eog_acx’€gc_aa> ! (x:y)e[aa’eot]a

min(x, y) otherwise,
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is called the ordinal sum of the summands {(a,,e,, T,), o« € A, and we shall write

T = (<aa, €y, Ta> oA

Observe that the index set A is necessarily finite or countably infinite. It also may be empty, in
which case the ordinal sum equals the idempotent t-norm 7j;.

Note that the representation of continuous Archimedean t-norms by means of multiplicative gen-
erators can be derived directly from more general results for /-semigroups (see [23,28,30,37]).
Similarly, the following representation of continuous t-norms by means of ordinal sums follows also
from results of [30] in the context of /-semigroups.

Theorem 3.2. A function T :[0,1)* —[0,1] is a continuous t-norm if and only if T is an ordinal
sum of continuous Archimedean t-norms.

Proof. Obviously, each ordinal sum of continuous t-norms is a continuous t-norm.

Conversely, if T is a continuous t-norm, we first show that the set /7 of all idempotent elements
of T is a closed subset of [0, 1]. Indeed, if (x,),cn is a sequence of idempotent elements of 7" which
converges to some x € [0, 1], then the continuity of 7" implies

x= lim x, = lim T(x,,x,) = T(x,x),
n—oo n—oo
so x is also an idempotent element of 7', and /7 is closed.

In the case /7 =[0,1] we have T =Ty, i.e., an empty ordinal sum. If /7 # [0, 1] it can be written
as the (non-trivial) union of a finite or countably infinite family of pairwise disjoint open subintervals
(lay, €s])sca where, of course, each a, and each e, (but no element in ]a,,e,[) is an idempotent
element of 7.

For the time being, assume that 4 # () and fix an arbitrary o € 4. Then the monotonicity of T
implies that for all (x, y) € [ay, e,]?

ay, =T(az,a,) < T(x,y) < T(eye,) =ey
and, for all x € [a,, 1]
ay = T(aya,) < T(x,a,) < T(1,a,) = ay,

showing that ([a,,e,], T,,,p) is a semigroup with annihilator a, and with trivial idempotent ele-
ments only (actually, a, acts as an annihilator on [a,, 1]). Because of the monotonicity and continuity
of 7" we also have for each o€ 4

{T(Z’eot) ’Z € [0, 1]} = [0, e,],

which means that each x € [0,¢,] can be written as x=T7(z,e,) for some z €[0,1]. This, together
with the associativity of 7, implies that

T(x,e;) = T(T(z,ex),ey) = T(z,T(ey,€4)) = T(z,€5) = X,

showing that e, acts as a neutral element on [0,e,] and, subsequently, in the /-semigroup
([atxa eot]aT|[a1,eu]2 )
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Let ¢, :[0,1] — [ay e,] be the strictly increasing bijection given by
Polx) = ay + (ex — ax)x,
then for each o € A4 the function T, :[0,1]*> — [0, 1] defined by
T, ¥) = 03 (T(0u(x), (1))

is a continuous t-norm which has only trivial idempotent elements, and which is also Archimedean
because of Corollary 2.7. A simple computation verifies that for all o € 4 and for all (x, y) € [a,, e,]?
we have

T(x,y):ax_i_(ea_aa)Ta(X—aa’y_(loz>.
€y — Ay €5 — dy

If (x,y)€[0,1]* (without loss of generality we may assume x<y) is contained in none of the
squares [ay,e,]? then there exists some idempotent element b € [x, y] which acts as a neutral element
on [0,b] and as an annihilator on [b, 1], and we have

I'(x,y) = T(T(x,0),y) = T(x, T(b, y)) = T(x,b) = x = min(x, y),

completing the proof that 7' = ({ay, ey, Ty) )uca-
The uniqueness of the representation of 7 is an immediate consequence of the one-to-one
correspondence between the set of idempotent elements of 7 and the family of intervals

(]aa, eoz[)szA- U

The combination of Theorem 3.2 and of the results of Section 2 yields the following representations
of continuous t-norms:

Corollary 3.3. For a function T :[0,1]> —[0,1] the following are equivalent:

(1) T is a continuous t-norm.
(i1) T is isomorphic to an ordinal sum whose summands contain only the t-norms Tp and Ty,
(iii) There is a family (lay, ey[)aca of non-empty, pairwise disjoint open subintervals of [0, 1] and
a family hy:[a,,e,] — [0,00] of continuous, strictly decreasing functions with h,(e,)=0 for
each o € A such that for all (x,y)€[0,1]

B D (ho(x) + ha(3)) if (x, 1) € [am e,]%,
T(x,y)=

min(x, y) otherwise.

(4)

Example 3.4. Consider the continuous t-norm 7 (see Fig. 1) given by

3x+3 Oxy —1
max(x+ Yyt oxy

6
T(x’y): 4x+4y—3xy—4
x+9y —9xy—8

,0> if (x,y) € [0,5T%,

if (x,») €317

min(x, ) otherwise.
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Fig. 1. Contour plots of the isomorphic t-norms 7' (left) and 75705 from Example 3.4.

This t-norm 7 can be written as the ordinal sum ((0,1/3,7}),(2/3,1,73)) with 7} and 7, being
given by

—1

7)(x,y) = max (”*”;xyo> ,
Xy

Ih(x,y) = ———.
2(x, ¥) Xt+y—xp

Observe that the nilpotent t-norm 77 was introduced in [39], and that the strict t-norm 75 is the

Hamacher product TH' [25], and that the functions #;,# given by

1 +x
2 bl

H(x) = —log

h(x) = =%

are continuous additive generators of 7 and 75, respectively. Defining the functions #4;:[0,1/3]—
[0,00] and A3 :[2/3,1]—[0,00] by

1+ 3x
2 b

hi(x) = —log
3—3x
3x -2’
we can represent our t-norm 7 in form (4). For any numbers a,b €10, 1[ with a<b consider the

t-norm 7,5 = ((0,a, T1), (b, 1, Tp)) (see Fig. 1). Then T is isomorphic to Ty, i.e., we have T = (T, ),
where the strictly increasing bijection ¢:[0,1] — [0, 1] is given by

log (1 + 3x) .
a W if x € [O, %],

PO)=Ya+rb-a)Bx—1)  ifxelld,
b+ (1 — b)e> 32 istherwise.

ha(x) =
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Analogous representations for continuous t-conorms can be obtained by duality (making the nec-
essary changes, e.g., replacing min by max).

4. Consequences of the representation theorems

Theorems 2.1 and 3.2 simplify the work with continuous t-norms in the sense that it suffices to
consider (a family of) continuous Archimedean t-norms and, subsequently, their additive generators.
In particular, the additive generator (which is a one-place function) of a continuous Archimedean
t-norm 7 carries all the information of the whole t-norm 7.

Knowing the structure of continuous t-norms allows us also to deduce general properties from
partial information. For instance, if for a continuous t-norm 7 and for some x, € ]0, 1] the vertical
section f:[0,1]—10, 1] given by f(»)= T(xo, y) is strictly monotone and satisfies f(y)<y for all
y€1]0,1], then T is a strict t-norm.

In this section, we demonstrate the impact of Theorems 2.1 and 3.2 on the problems of (pointwise)
comparison and convergence of continuous t-norms, and on the determination of continuous t-norms
by their diagonal sections.

The following necessary and sufficient condition for the comparison of continuous Archimedean
t-norms can be found in [37, Lemma 5.5.8] (see also [23, Theorem 6.2], for the special case of
strict t-norms it was first proved in [35] (see also [5]).

Theorem 4.1. Let Ty and T, be two continuous Archimedean t-norms with additive generators
t1, 1 :[0,1] — [0, 00], respectively. The following are equivalent:

(1) <1
(ii) The function t| o t{lz[O, t(0)] —[0,00] is subadditive, i.e., for all u,v€0,6(0)] with u +
v € [0,£(0)] we have

hoty'(ut+v) <oty (w)+n oty (v).

There exist criteria (some of which are only sufficient) for the comparability of continuous
Archimedean t-norms which sometimes are easier to check than the subadditivity in Theorem 4.1.
The following sufficient conditions can be derived easily from Theorem 4.1 and from [16, (103)]
(recall that a function f:[a,b] — [0,00] is called concave if

JUx+A=2)y) = 2f(x)+ (1 =2)f(y)
for all x, y € [a,b] and for all 1€ [0,1]).

Corollary 4.2. Let Ty and T, be two continuous Archimedean t-norms with additive generators
t1, 1 :[0,11— [0, 0], respectively. Then we have Ty <T, if one of the following conditions is satis-

fied-

(1) The function t| o 12_1 :[0,£(0)] — [0, 00] is concave.
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(i1) The function f:10,1,(0)] — [0, ] defined by

_ (o))
N X

S(x)

IS non-increasing.
(iii) The function
f
?: ]O: 1[_> [0, OO[
2

is non-decreasing.

Example 4.3. In [25, Example 2.10(i)] we have seen that for each continuous Archimedean t-norm
T with additive generator ¢:[0,1] — [0,00], and for each 4 € ]0,00[, the function ¢*:[0, 1] — [0, oc]
is an additive generator of a continuous Archimedean t-norm which was denoted there 7). Now
we are able to show that the family (7");cp0.00f is strictly increasing with respect to the parameter
/.. Indeed, for A, € ]0,00[ the composite function ¢* o (¢*)~!:[0,#(0)*] — [0,00] is given by

o (1)) = X,
and it is concave whenever A< u, showing that (7); ¢ J0,00[ 18 @ strictly increasing family of t-norms.

Consequently, the families of Yager t-norms [40], of Aczél-Alsina t-norms [3], and of Dombi t-norms
[12] are strictly increasing families of t-norms.

A nontrivial problem was the monotonicity of the family of Frank t-norms (77 );ef0.001 [13]. A
first proof thereof appeared in [7, Proposition 1.12]. In the following we give a simpler proof [22]
based on Corollary 4.2(iii) (see also [23, Proposition 6.8]).

Proposition 4.4. The family (TF);cp0.00 0f Frank t-norms is strictly decreasing.

Proof. Recall that 7§ = Ty, Tf = Tp, whose additive generator ¢ is given by ¢f(x) = — log x, and
TY =Ty, whose additive generator 75 is given by 7£,(x)=1—x. For each 2€]0,1[U[l,00], T¥ is
a strict t-norm, and its additive generator tf is given by tf(x) =log(4A — 1)/(AF —1).

Trivially we have T§ =Ty > T/ for all 1€]0,00]. From

lf ;L - 1,
if 1 €10, 1[U]1, 00l,

F y X
A log A

it follows that for each 1€ ]0, oo[ the function (¢£)/(+F) is non-decreasing, implying TX <TF and,
since TX is nilpotent and T is strict, even TX <T¥.
Now let us show that 7)f <T} whenever 1 <1<pu<oo. Observe that for all x €10, 1[ we get

()
Gyl

(At —1)log u_log pu 1 —(1/4)
(s —1)log A log A 1 —(1/py”

(x) =
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Then (tf)’ /(¢¥) is non-decreasing on 10, 1[ if and only if

1\" 1\" 1 1\" 1\"* 1
1— (- — ) log-<(1—(= — | log —,
(=) G) e = (0= G)) ) e

i.e., if and only if we have the inequality

(1/2)" log _ 1=y
(1/uylog 17 1= (1/py

Consider now the functions f,¢g:]0,1[ —[0,00[ defined by f(x)=1—(1/1)" and g(x)=1—(1/u)".
Then, by the Cauchy mean value theorem, for each x € ]0, 1] there exists a y € ]0,x[ such that

L=y fe) =) _ /() _ (/A" leg(1/4) _ (1/4) log(1/2)

(5)

T—(1/py  gx)—g0)  ¢(»)  (/pw)2log(1/w) ~ (1/uylog(1/u)

This proves inequality (5) and, consequently, the function (¥ )'/(¢f)’ is non-decreasing, i.e., T} <Tf
and, because of T HF # TF, even T HF <T¥ in this case. Similarly we can show TF <TF for all
A€, o0l

The case 0 <A< u<1 can be transformed into 1<1/u<1/A<o0, and the case 0<i<l<pu<oo
is proved combining the two latter cases. [J

The comparison of arbitrary continuous t-norms is much more complicated, and it is fully described
in [22] (see also [23, Theorem 6.12]).

When comparing t-norms it is evident that the incomparability of their diagonal sections implies
the incomparability of the t-norms themselves. The converse, however, is not true in general, not
even in the case of continuous Archimedean t-norms.

Example 4.5. Consider the function ¢:[0, 1] — [0, cc] defined by (the index n may be any number
in Z)

o0 ifoO,

0 if x=1,

1(x) =9 2"(2 — (4x'*" = 1)?) ifxe[ L1 [

then ¢ is an additive generator of some strict t-norm 7. A simple computation shows that the
diagonal sections of 7 and 7p coincide, but the opposite diagonal sections d7,dr, :[0,1]— [0, 1]
given by dr(x)=T(x,1 —x) and dp,(x)=Tp(x,1 — x) are incomparable (see Fig. 2), implying the
incomparability of 7" and Tp.

This shows that different continuous t-norms may have identical diagonal sections. Note that there
are methods to describe all continuous t-norms having a given diagonal section [20,23,29]. Here
we only mention one of these methods applied to strict t-norms [20,29] (see also [23, Proposition
7.11]):
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S
N
0 0.25 05 ?

-
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(<))

0.2

(%]

~

1 0.5 1

Fig. 2. Contour plot of the strict t-norm 7 (left) considered in Example 4.5 together with the incomparable opposite
diagonal sections of 7 and 7p (right).

Proposition 4.6. Let 0:[0,1] — [0, 1] be a strictly increasing bijection such that o(x,x)<x for all
x€]10,1[. Then a continuous t-norm T has diagonal section o if and only if T is strict and the
Sfunction t:[0,1] — [0,00] given by

00 if x=0,
t(x) = < 20 (x)) if x €16"TD(0.5),6M(0.5)],
O lf\ 'x — 15

is an additive generator of T, where f:[5(0.5),0.5]1—[1,2] is a strictly decreasing bijection,
0O =idpy3, 6" =05006""Y whenever n€ N, and 6" = (5"~ whenever —n € N.

As a consequence of Proposition 4.6, two different strict t-norms with the same diagonal section are
necessarily incomparable, compare also Example 4.5 (the same result holds for arbitrary continuous
t-norms).

Additive generators characterize also analytical properties of the continuous Archimedean t-norms.
For instance, a continuous Archimedean t-norm is 1-Lipschitz if and only if it has a convex additive
generator [31,37].

Also, convergence properties can be expressed by means of additive generators [18] (see also [23,
Corollary 8.21]).

Proposition 4.7. Let (T,),en be a sequence of continuous Archimedean t-norms and let T be a
continuous Archimedean t-norm. Then the following are equivalent:

(i) lim, .o T,=T.
(ii) There exists a sequence of additive generators (t,:[0,1]— [0,00])en of (Ty)nen such that the
restriction

(Jtim 1)

coincides with the restriction of some additive generator of T to 10,1].

10.1]
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Note that, whenever in Proposition 4.7 the limit t-norm 7 is strict, then lim,_, ., ¢, is an additive
generator of 7.
For example, for each n>1 the function ¢,:[0, 1] — [0,00] given by

- 1 o n—1
T 2log(1 + Vi) w1

is an additive generator of the (strict) Frank t-norm 7F [13]. Then for all x€]0,1] we have
lim, o #,(x)=1—x, i.e., the sequence (Z,]1,11),>1 converges to the restriction of an additive genera-
tor of the L.ukasiewicz t-norm Tf, to ]0, 1]. Therefore, the sequence (7)), converges to Ti.(=TE).

Finally we mention that the continuous Archimedean t-norms form a dense subclass of the class
of all continuous t-norms (with respect to the uniform topology), i.e., each continuous t-norm can
be approximated by some continuous Archimedean t-norm with arbitrary precision [19,23,32]. More
precisely we have:

1u(x)

Theorem 4.8. Let T be a continuous t-norm. Then for each ¢>0 there is a strict t-norm T, and
a nilpotent t-norm T, such that for all (x,y)€[0,1]?

| T(x,y)—Ti(x,y)| <e
| T(x,y) — Ta(x, y)| < e
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