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Abstract

This third and last part of a series of position papers on triangular norms (for Parts I and II see (E.P.
Klement, R. Mesiar, E. Pap, Triangular norms, Position paper I: basic analytical and algebraic properties,
Fuzzy Sets and Systems, in press; E.P. Klement, R. Mesiar, E. Pap, Triangular norms. Position paper II:
general constructions and parameterized families, submitted for publication) presents the representation of
continuous Archimedean t-norms by means of additive generators, and the representation of continuous t-norms
by means of ordinal sums with Archimedean summands, both with full proofs. Finally some consequences of
these representation theorems in the context of comparison and convergence of continuous t-norms, and of
the determination of continuous t-norms by their diagonal sections are mentioned.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This is the third and ;nal part of a series of position papers on the state of the art of some
particularly important aspects of triangular norms in a condensed form. The monograph [23] provides
a rather complete and self-contained overview about triangular norms and their applications.

Part I [24] considered some basic analytical properties of t-norms, such as continuity, and im-
portant classes such as Archimedean, strict and nilpotent t-norms. Also the dual operations, the

∗ Tel.: +43-732-2468-9151; fax: +43-732-2468-1351.
E-mail addresses: ep.klement@jku.at (E.P. Klement), mesiar@math.sk (R. Mesiar), pap@im.ns.ac.yu,

pape@eunet.yu (E. Pap).

0165-0114/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0165-0114(03)00304-X

mailto:ep.klement@jku.at
mailto:mesiar@math.sk
mailto:pap@im.ns.ac.yu
mailto:pape@eunet.yu


440 E.P. Klement et al. / Fuzzy Sets and Systems 145 (2004) 439–454

triangular conorms, and De Morgan triples were mentioned. Finally, a short historical overview on
the development of t-norms and their way into fuzzy sets and fuzzy logics was given.

Part II [25] is devoted to general construction methods based mainly on pseudo-inverses, additive
and multiplicative generators, and ordinal sums, including also some constructions leading to non-
continuous t-norms, and to a presentation of some distinguished families of t-norms.

In this third part we ;rst present the representation of continuous Archimedean t-norms by means
of additive generators, and then the representation of continuous t-norms by means of ordinal sums
with Archimedean summands. These theorems were ;rst proved in the framework of triangular norms
in [28]. However, they can also be derived from results in [30] in the framework of semigroups. We
include full proofs of the representation theorems mentioned above, since the original sources are
not so easily accessible and/or they heavily use the special language of semigroup theory. Finally
we include some results and examples which follow from these representation theorems.

Several notions and results from Parts I and II will be needed in this paper, and they can be
found there in full detail [24,25]. For the convenience of the reader, we brieGy recall some of them.

Recall that a triangular norm (brieGy t-norm) is a binary operation T on the unit interval [0; 1]
which is commutative, associative, monotone and has 1 as neutral element, i.e., it is a function
T : [0; 1]2 → [0; 1] such that for all x; y; z ∈ [0; 1]:

(T1) T (x; y) =T (y; x),
(T2) T (x; T (y; z)) =T (T (x; y); z),
(T3) T (x; y)6T (x; z) whenever y6z,
(T4) T (x; 1) = x.

Observe that for a continuous t-norm T the Archimedean property is equivalent to T (x; x)¡x for
all x∈ ]0; 1[, and that each continuous Archimedean t-norm is either strict or nilpotent [24, Theorem
6.15]. Given a t-norm T , an element x∈ [0; 1] is said to be idempotent if T (x; x) = x (clearly, 0 and
1 are idempotent elements of each t-norm, the so-called trivial idempotent elements).

Observe that the pseudo-inverse is de;ned for arbitrary monotone functions [25, De;nition 2.1].
In our special setting we mostly deal with continuous, decreasing function t : [0; 1]→ [0;∞] with
t(1) = 0, in which case the pseudo-inverse t(−1) reduces to

t(−1)(x) = t−1(min(x; t(0))):

2. Representation of continuous Archimedean t-norms

For the class of all t-norms (which includes non-continuous t-norms and even t-norms which are
not Borel measurable) the only existing characterization is by the axioms (T1)–(T4). The important
subclass of continuous t-norms, however, has nice representations in terms of one-place functions
and ordinal sums.

Theorem 2.1. For a function T : [0; 1]2 → [0; 1] the following are equivalent:

(i) T is a continuous Archimedean t-norm.
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(ii) T has a continuous additive generator, i.e., there exists a continuous, strictly decreasing func-
tion t : [0; 1]→ [0;∞] with t(1) = 0, which is uniquely determined up to a positive multiplicative
constant, such that for all (x; y)∈ [0; 1]2

T (x; y) = t(−1)(t(x) + t(y)): (1)

Proof. Assume ;rst that t : [0; 1]→ [0;+∞] is a continuous, strictly decreasing function with t(1) = 0
and that T is constructed by (1), i.e., t is an additive generator of T . The commutativity (T1) and the
monotonicity (T3) of T are obvious. Also, the boundary condition (T4) holds since for all x∈ [0; 1]

T (x; 1) = t(−1)(t(x) + t(1)) = t(−1)(t(x)) = x:

Concerning the associativity (T2), for all x; y; z ∈ [0; 1] we obtain

T (T (x; y); z) = t(−1)(t(T (x; y)) + t(z))

= t(−1)(t(t(−1)(t(x) + t(y))) + t(z))

= t(−1)(t(x) + t(y) + t(z))

= t(−1)(t(x) + t(t(−1)(t(y) + t(z))))

= t(−1)(t(x) + t(T (y; z)))

= T (x; T (y; z));

where the third equality is a consequence of

t(t(−1)(t(x) + t(y))) = min(t(x) + t(y); t(0)):

To prove the converse, let T be a continuous Archimedean t-norm. Concerning the notion x(n)
T we

will use, recall that, for each x∈ [0; 1], we have x(0)
T = 1 and, for n∈N, by recursion

x(n)
T = T (x; x(n−1)

T ):

De;ne now for x∈ [0; 1] and m; n∈N
x(1=n)
T = sup{y ∈ [0; 1]|y(n)

T ¡ x};
x(m=n)
T = (x(1=n)

T )(m)
T :

Since T is Archimedean, we have for all x∈ ]0; 1]

lim
n→∞ x(1=n)

T = 1: (2)

Note that the expression x(m=n)
T is well-de;ned because of x(m=n)

T = x(km=kn)
T for all k ∈N. If, for some

x∈ [0; 1] and some n∈N∪{0}, we have x(n)
T = x(n+1)

T then, in the standard way by induction, we
obtain

x(n)
T = x(2n)

T = (x(n)
T )(2)

T

and, since T is continuous Archimedean, x(n)
T ∈{0; 1}. This means that we have x(n)

T ¿x(n+1)
T whenever

x(n)
T ∈ ]0; 1[.
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Now choose and ;x an arbitrary element a∈ ]0; 1[, and de;ne the function h :Q∩ [0;∞[→ [0; 1]
by h(r) = a(r)

T . Since T is continuous and since (2) holds, h is a continuous function. Moreover, we
have for all x∈ [0; 1] and m; n; p; q∈N

x(m=n)+(p=q)
T = x((mq+np)=nq)

T

= (x(1=nq)
T )(mq+np)

T

= T ((x(1=nq)
T )(mq)

T ; (x(1=nq)
T )(np)

T )

= T (x(m=n)
T ; x(p=q)

T )

and, as a consequence, for all r; s∈Q∩ [0;∞[

h(r + s) = a(r+s)
T = T (a(r)

T ; a(s)
T ) 6 a(r)

T = h(r);

i.e., h is also non-increasing. The function h is even strictly decreasing on the preimage of ]0; 1]
since for all m=n; p=q∈Q∩ [0;∞[ with h(m=n)¿0 we get

h
(
m
n

+
p
q

)
6 h

(
mq + 1
nq

)
= (a(1=nq)

T )(mq+1)
T ¡ (a(1=nq)

T )(mq)
T = h

(m
n

)
:

The monotonicity and continuity of h on Q∩ [0;∞[ allows us to extend it uniquely to a function
Kh : [0;∞]→ [0; 1] via

Kh(x) = inf{h(r) | r ∈ Q ∩ [0; x]}:
Then Kh is continuous and non-increasing, and we have for all x; y∈ [0;∞]

Kh(x + y) = T ( Kh(x); Kh(y)):

Moreover, Kh is strictly decreasing on the preimage of ]0; 1]. De;ne the function t : [0; 1]→ [0;∞] by

t(x) = sup{y ∈ [0;∞] | Kh(y) ¿ x}
with the usual convention sup ∅= 0 (observe that t is just the pseudo-inverse of Kh and vice versa).
Then t is continuous, strictly decreasing, and satis;es t(1) = 0 [23, Remark 3.4]. A combination of
all the arguments so far yields that t is indeed a continuous additive generator of T since for each
(x; y)∈ [0; 1]2

T (x; y) = T ( Kh(t(x)); Kh(t(y))) = Kh(t(x) + t(y)) = t(−1)(t(x) + t(y)):

To show that the continuous additive generator t of T constructed above is unique up to a posi-
tive multiplicative constant, assume that the two functions t1; t2 : [0; 1]→ [0;∞] are both continuous
additive generators of T , i.e., we have for each (x; y)∈ [0; 1]2 the equality

t(−1)
1 (t1(x) + t1(y)) = t(−1)

2 (t2(x) + t2(y)):

Substituting u= t2(x) and v= t2(y), we obtain that, for all u; v∈ [0; t2(0)] satisfying u+ v∈ [0; t2(0)[,

t1 ◦ t(−1)
2 (u) + t1 ◦ t(−1)

2 (v) = t1 ◦ t(−1)
2 (u + v): (3)

Then from the continuity of t1 and t(−1)
2 it follows that (3) holds for all u; v∈ [0; t2(0)] with u +

v∈ [0; t2(0)].
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Eq. (3) is a Cauchy functional equation (see [2]), whose continuous, strictly increasing solutions
t1◦t(−1)

2 : [0; t2(0)]→ [0;∞] must satisfy t1◦t(−1)
2 = b·id[0; t2(0)] for some b∈ ]0;∞[. As a consequence,

we get t1 = bt2 for some b∈ ]0;∞[, thus completing the proof.

Because of the special form of the pseudo-inverse t(−1), representation (1) in Theorem 2.1 can
also be written as

T (x; y) = t−1(min(t(x) + t(y); t(0))):

We already have seen in [24, Proposition 6.13 and Theorem 6.17] that a continuous Archimedean
t-norm is either strict or nilpotent, a distinction which can be made also with the help of their additive
generators. Indeed, generators t of strict t-norms satisfy t(0) =∞ while generators of nilpotent t-
norms satisfy t(0)¡∞ [25, Corollary 2.8].

Recall that for the product TP and for the  Lukasiewicz t-norm TL additive generators t : [0; 1]→
[0;∞] are given by, respectively,

t(x) = − log x;

t(x) = 1 − x:

Based on the proof of Theorem 2.1, it is possible to give some constructive way to obtain additive
generators of continuous Archimedean t-norms. As an illustrating example, we include the following
result of [11] (compare also [1,4,33]) for the case of strict t-norms which can be derived in a
straightforward manner from the proof of Theorem 2.1.

Corollary 2.2. Let T be a strict t-norm. Fix an arbitrary element x0 ∈ ]0; 1[, and de?ne the function
t : [0; 1]→ [0;∞] by

t(x) = inf
{
m− n
k

∣∣∣∣m; n; k ∈N and (x0)(m)
T ¡ T ((x0)(n)

T ; x(k)
T )

}
:

Then t is an additive generator of T .

Example 2.3. If we consider the Hamacher product T [15] de;ned by

T (x; y) =
xy

x + y − xy
;

whenever (x; y) �= (0; 0), observe that we get (taking into account 1=∞= 0 and 1=0 =∞) for all
(x; y)∈ [0; 1]2

T (x; y) =
1

(1=x) + (1=y) − 1

and, for each x∈ [0; 1] and each n∈N

x(n)
T =

1
(n=x) − n + 1

:
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For x0 = 0:5 the inequality

(x0)(m)
T ¡ T ((x0)(n)

T ; x(k)
T )

is easily seen to be equivalent to m−n¿k((1=x)−1), yielding the additive generator t : [0; 1]→ [0;∞]
of T speci;ed by

t(x) = inf
{
m− n
k

∣∣∣∣m; n; k ∈ N and
m− n
k

¿
1
x
− 1

}
=

1 − x
x

:

The representation of continuous Archimedean t-norms given in Theorem 2.1 is based on the
addition on the interval [0;+∞]. There is a completely analogous representation thereof based on
the multiplication on [0; 1], thus leading to a representation of continuous Archimedean t-norms
by means of multiplicative generators [25, Section 2]. By duality, there are also representations of
continuous Archimedean t-conorms by means of additive generators and multiplicative generators,
respectively.

Remark 2.4. (i) If T is a continuous Archimedean t-norm with additive generator t : [0; 1]→ [0;∞],
then the function � : [0; 1]→ [0; 1] de;ned by �(x) = e−t(x) is a multiplicative generator of T .

(ii) If S is a continuous Archimedean t-conorm then the dual t-norm T is continuous Archimedean
and, therefore, has an additive generator t : [0; 1]→ [0;∞]. Then s : [0; 1]→ [0;∞] de;ned by s(x) =
t(1 − x) is an additive generator of S, and � : [0; 1]→ [0; 1] de;ned by � (x) = e−t(1−x) is a multi-
plicative generator of S.

(iii) Given a continuous Archimedean t-norm T and a strictly increasing bijection ’ : [0; 1]→ [0; 1],
it is clear that the function T’ : [0; 1]2 → [0; 1] given by

T’(x; y) = ’−1(T (’(x); ’(y)))

is a continuous Archimedean t-norm too. By Theorem 2.1, there are additive generators t; t’ : [0; 1]→
[0;∞] of T and T’, respectively. Taking into account [25, Proposition 2.9], t’ equals t ◦ ’ up to a
multiplicative constant.

It is straightforward that each isomorphism ’ : [0; 1]→ [0; 1] preserves (among many other prop-
erties) the continuity, the strictness and the existence of zero divisors. Therefore, each t-norm which
is isomorphic to a strict or to a nilpotent t-norm, itself is strict or nilpotent, respectively.

Conversely, if T1 and T2 are two strict t-norms with additive generators t1 and t2 (which are
bijective functions from [0; 1] into [0;∞] in this case), respectively, then ’ : [0; 1]→ [0; 1] given by
’= t−1

1 ◦ t2 is a strictly increasing bijection and T2 = (T1)’. If T1 and T2 are two nilpotent t-norms
with additive generators t1 and t2, respectively, then we have T2 = (T1)’, where the strictly increasing
bijection ’ : [0; 1]→ [0; 1] is given by ’= t−1

1 ◦ ((t1(0)=t2(0))t2) (observe that in this case the two
functions t1 and (t1(0)=t2(0))t2 can be viewed as bijections from [0; 1] into [0; t1(0)]).

We therefore have shown the following result:

Lemma 2.5. Two continuous Archimedean t-norms are isomorphic if and only if they are either
both strict or both nilpotent.
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An immediate consequence of Remark 2.4(iii) and Lemma 2.5 is that the product TP and the
 Lukasiewicz t-norm TL are not only prototypical examples of strict and nilpotent t-norms, respec-
tively, but that each continuous Archimedean t-norm is isomorphic either to TP or to TL:

Theorem 2.6. (i) A function T : [0; 1]2 → [0; 1] is a strict t-norm if and only if it is isomorphic to
the product TP.

(ii) A function T : [0; 1]2 → [0; 1] is a nilpotent t-norm if and only if it is isomorphic to the
 Lukasiewicz t-norm TL.

Each multiplicative generator � : [0; 1]→ [0; 1] of a strict t-norm T can be viewed as an isomor-
phism between TP and T , i.e., T = (TP)�. In particular, this means that there are in;nitely many
isomorphisms between TP and T . On the other hand, if T is a nilpotent t-norm with additive gen-
erator t : [0; 1]→ [0;∞], then there is a unique isomorphism ’ : [0; 1]→ [0; 1] between TL and T ,
namely, ’= 1 − (1=t(0))t.

Recall that each continuous t-norm T satisfying T (x; x)¡x for all x∈ ]0; 1[ is Archimedean [23,
Proposition 2.15].

Corollary 2.7. If T is a continuous t-norm with trivial idempotent elements only, i.e., T (x; x) = x
only if x∈{0; 1}, then T is Archimedean and, therefore, has a continuous additive generator.

Remark 2.8. Note that the representation in Theorem 2.1 holds for continuous Archimedean t-norms
only. However, there are several possibilities to show the existence of continuous additive generators
for a function T : [0; 1]2 → [0; 1] under weaker hypotheses than in Theorem 2.1.

For example, it is possible to drop the commutativity (T1) [30] (see also [23, Theorem 2.43]) or to
weaken the associativity (T2) [6,27]. In the case of left-continuous t-norms, either the Archimedean
property [26] or the existence of a (not necessarily continuous) additive generator [38] implies the
existence of a continuous additive generator. In the case of a strictly monotone Archimedean t-norm
T , the continuity of T at the point (1; 1) is suNcient for the existence of a continuous additive
generator [14].

3. Representation of continuous t-norms

The construction of a new semigroup from a family of given semigroups using ordinal sums goes
back to A. H. CliOord [8] (see also [9,17,34]), and it is based on ideas presented in [10,21]. It has
been successfully applied to t-norms in [13,24,28,36].

De(nition 3.1. Let (T�)�∈A be a family of t-norms and (]a�; e�[)�∈A be a family of non-empty,
pairwise disjoint open subintervals of [0; 1]. The t-norm T de;ned by

T (x; y) =


 a� + (e� − a�)T�

(
x − a�
e� − a�

;
y − a�
e� − a�

)
if (x; y) ∈ [a�; e�]2;

min(x; y) otherwise;
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is called the ordinal sum of the summands 〈a�; e�; T�〉, �∈A, and we shall write

T = (〈a�; e�; T�〉)�∈A:
Observe that the index set A is necessarily ;nite or countably in;nite. It also may be empty, in

which case the ordinal sum equals the idempotent t-norm TM.

Note that the representation of continuous Archimedean t-norms by means of multiplicative gen-
erators can be derived directly from more general results for I -semigroups (see [23,28,30,37]).
Similarly, the following representation of continuous t-norms by means of ordinal sums follows also
from results of [30] in the context of I -semigroups.

Theorem 3.2. A function T : [0; 1]2 → [0; 1] is a continuous t-norm if and only if T is an ordinal
sum of continuous Archimedean t-norms.

Proof. Obviously, each ordinal sum of continuous t-norms is a continuous t-norm.
Conversely, if T is a continuous t-norm, we ;rst show that the set IT of all idempotent elements

of T is a closed subset of [0; 1]. Indeed, if (xn)n∈N is a sequence of idempotent elements of T which
converges to some x∈ [0; 1], then the continuity of T implies

x = lim
n→∞ xn = lim

n→∞ T (xn; xn) = T (x; x);

so x is also an idempotent element of T , and IT is closed.
In the case IT = [0; 1] we have T =TM, i.e., an empty ordinal sum. If IT �= [0; 1] it can be written

as the (non-trivial) union of a ;nite or countably in;nite family of pairwise disjoint open subintervals
(]a�; e�[)�∈A where, of course, each a� and each e� (but no element in ]a�; e�[) is an idempotent
element of T .

For the time being, assume that A �= ∅ and ;x an arbitrary �∈A. Then the monotonicity of T
implies that for all (x; y)∈ [a�; e�]2

a� = T (a�; a�) 6 T (x; y) 6 T (e�; e�) = e�

and, for all x∈ [a�; 1]

a� = T (a�; a�) 6 T (x; a�) 6 T (1; a�) = a�;

showing that ([a�; e�]; T |[a�;e�]2) is a semigroup with annihilator a� and with trivial idempotent ele-
ments only (actually, a� acts as an annihilator on [a�; 1]). Because of the monotonicity and continuity
of T we also have for each �∈A

{T (z; e�) | z ∈ [0; 1]} = [0; e�];

which means that each x∈ [0; e�] can be written as x=T (z; e�) for some z ∈ [0; 1]. This, together
with the associativity of T , implies that

T (x; e�) = T (T (z; e�); e�) = T (z; T (e�; e�)) = T (z; e�) = x;

showing that e� acts as a neutral element on [0; e�] and, subsequently, in the I -semigroup
([a�; e�]; T |[a�;e�]2).
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Let ’� : [0; 1]→ [a�; e�] be the strictly increasing bijection given by

’�(x) = a� + (e� − a�)x;

then for each �∈A the function T� : [0; 1]2 → [0; 1] de;ned by

T�(x; y) = ’−1
� (T (’�(x); ’�(y))

is a continuous t-norm which has only trivial idempotent elements, and which is also Archimedean
because of Corollary 2.7. A simple computation veri;es that for all �∈A and for all (x; y)∈ [a�; e�]2

we have

T (x; y) = a� + (e� − a�)T�

(
x − a�
e� − a�

;
y − a�
e� − a�

)
:

If (x; y)∈ [0; 1]2 (without loss of generality we may assume x6y) is contained in none of the
squares [a�; e�]2 then there exists some idempotent element b∈ [x; y] which acts as a neutral element
on [0; b] and as an annihilator on [b; 1], and we have

T (x; y) = T (T (x; b); y) = T (x; T (b; y)) = T (x; b) = x = min(x; y);

completing the proof that T = (〈a�; e�; T�〉)�∈A.
The uniqueness of the representation of T is an immediate consequence of the one-to-one

correspondence between the set of idempotent elements of T and the family of intervals
(]a�; e�[)�∈A.

The combination of Theorem 3.2 and of the results of Section 2 yields the following representations
of continuous t-norms:

Corollary 3.3. For a function T : [0; 1]2 → [0; 1] the following are equivalent:

(i) T is a continuous t-norm.
(ii) T is isomorphic to an ordinal sum whose summands contain only the t-norms TP and TL.

(iii) There is a family (]a�; e�[)�∈A of non-empty, pairwise disjoint open subintervals of [0; 1] and
a family h� : [a�; e�]→ [0;∞] of continuous, strictly decreasing functions with h�(e�) = 0 for
each �∈A such that for all (x; y)∈ [0; 1]2

T (x; y) =

{
h(−1)
� (h�(x) + h�(y)) if (x; y) ∈ [a�; e�]2;

min(x; y) otherwise:
(4)

Example 3.4. Consider the continuous t-norm T (see Fig. 1) given by

T (x; y) =




max
(

3x + 3y + 9xy − 1
6

; 0
)

if (x; y) ∈ [0; 1
3 ]2;

4x + 4y − 3xy − 4
9x + 9y − 9xy − 8

if (x; y) ∈ [ 2
3 ; 1]2;

min(x; y) otherwise:
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Fig. 1. Contour plots of the isomorphic t-norms T (left) and T0:7;0:8 from Example 3.4.

This t-norm T can be written as the ordinal sum (〈0; 1=3; T1〉; 〈2=3; 1; T2〉) with T1 and T2 being
given by

T1(x; y) = max
(
x + y + xy − 1

2
; 0
)
;

T2(x; y) =
xy

x + y − xy
:

Observe that the nilpotent t-norm T1 was introduced in [39], and that the strict t-norm T2 is the
Hamacher product TH

0 [25], and that the functions t1; t2 given by

t1(x) = − log
1 + x

2
;

t2(x) =
1 − x
x

:

are continuous additive generators of T1 and T2, respectively. De;ning the functions h1 : [0; 1=3]→
[0;∞] and h2 : [2=3; 1]→ [0;∞] by

h1(x) = − log
1 + 3x

2
;

h2(x) =
3 − 3x
3x − 2

;

we can represent our t-norm T in form (4). For any numbers a; b∈ ]0; 1[ with a¡b consider the
t-norm Tab = (〈0; a; TL〉; 〈b; 1; TP〉) (see Fig. 1). Then T is isomorphic to Tab, i.e., we have T = (Tab)’
where the strictly increasing bijection ’ : [0; 1]→ [0; 1] is given by

’(x) =




a
log (1 + 3x)

log 2
if x ∈ [0; 1

3 ];

a + (b− a)(3x − 1) if x ∈] 1
3 ;

2
3 ];

b + (1 − b)e(3x−3)=(3x−2) otherwise:
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Analogous representations for continuous t-conorms can be obtained by duality (making the nec-
essary changes, e.g., replacing min by max).

4. Consequences of the representation theorems

Theorems 2.1 and 3.2 simplify the work with continuous t-norms in the sense that it suNces to
consider (a family of) continuous Archimedean t-norms and, subsequently, their additive generators.
In particular, the additive generator (which is a one-place function) of a continuous Archimedean
t-norm T carries all the information of the whole t-norm T .

Knowing the structure of continuous t-norms allows us also to deduce general properties from
partial information. For instance, if for a continuous t-norm T and for some x0 ∈ ]0; 1[ the vertical
section f : [0; 1]→ [0; 1] given by f(y) =T (x0; y) is strictly monotone and satis;es f(y)¡y for all
y∈ ]0; 1], then T is a strict t-norm.

In this section, we demonstrate the impact of Theorems 2.1 and 3.2 on the problems of (pointwise)
comparison and convergence of continuous t-norms, and on the determination of continuous t-norms
by their diagonal sections.

The following necessary and suNcient condition for the comparison of continuous Archimedean
t-norms can be found in [37, Lemma 5.5.8] (see also [23, Theorem 6.2], for the special case of
strict t-norms it was ;rst proved in [35] (see also [5]).

Theorem 4.1. Let T1 and T2 be two continuous Archimedean t-norms with additive generators
t1; t2 : [0; 1]→ [0;∞], respectively. The following are equivalent:

(i) T16T2.
(ii) The function t1 ◦ t−1

2 : [0; t2(0)]→ [0;∞] is subadditive, i.e., for all u; v∈ [0; t2(0)] with u +
v∈ [0; t2(0)] we have

t1 ◦ t−1
2 (u + v) 6 t1 ◦ t−1

2 (u) + t1 ◦ t−1
2 (v):

There exist criteria (some of which are only suNcient) for the comparability of continuous
Archimedean t-norms which sometimes are easier to check than the subadditivity in Theorem 4.1.
The following suNcient conditions can be derived easily from Theorem 4.1 and from [16, (103)]
(recall that a function f : [a; b]→ [0;∞] is called concave if

f($x + (1 − $)y) ¿ $f(x) + (1 − $)f(y)

for all x; y∈ [a; b] and for all $∈ [0; 1]).

Corollary 4.2. Let T1 and T2 be two continuous Archimedean t-norms with additive generators
t1; t2 : [0; 1]→ [0;∞], respectively. Then we have T16T2 if one of the following conditions is satis-
?ed:

(i) The function t1 ◦ t−1
2 : [0; t2(0)]→ [0;∞] is concave.
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(ii) The function f : ]0; t2(0)]→ [0;∞] de?ned by

f(x) =
(t1 ◦ t−1

2 )(x)
x

is non-increasing.
(iii) The function

t′1
t′2

: ]0; 1[→ [0;∞[

is non-decreasing.

Example 4.3. In [25, Example 2.10(i)] we have seen that for each continuous Archimedean t-norm
T with additive generator t : [0; 1]→ [0;∞], and for each $∈ ]0;∞[, the function t $ : [0; 1]→ [0;∞]
is an additive generator of a continuous Archimedean t-norm which was denoted there T ($). Now
we are able to show that the family (T ($))$∈]0;∞[ is strictly increasing with respect to the parameter
$. Indeed, for $; %∈ ]0;∞[ the composite function t $ ◦ (t%)−1 : [0; t(0)%]→ [0;∞] is given by

t$ ◦ (t%)−1(x) = x$=%;

and it is concave whenever $6%, showing that (T ($))$∈ ]0;∞[ is a strictly increasing family of t-norms.
Consequently, the families of Yager t-norms [40], of AczQel–Alsina t-norms [3], and of Dombi t-norms
[12] are strictly increasing families of t-norms.

A nontrivial problem was the monotonicity of the family of Frank t-norms (T F
$ )$∈[0;∞] [13]. A

;rst proof thereof appeared in [7, Proposition 1.12]. In the following we give a simpler proof [22]
based on Corollary 4.2(iii) (see also [23, Proposition 6.8]).

Proposition 4.4. The family (T F
$ )$∈[0;∞] of Frank t-norms is strictly decreasing.

Proof. Recall that T F
0 =TM; T F

1 =TP, whose additive generator tF1 is given by tF1 (x) = − log x, and
T F∞ =TL whose additive generator tF∞ is given by tF∞(x) = 1 − x. For each $∈ ]0; 1[∪ [1;∞]; T F

$ is
a strict t-norm, and its additive generator tF$ is given by tF$ (x) = log ($− 1)=($x − 1).

Trivially we have T F
0 =TM¿T F

$ for all $∈ ]0;∞]. From

(tF∞)′

(tF$ )′
(x) =




x if $ = 1;
$x − 1
$x log $

if $ ∈]0; 1[∪]1;∞[;

it follows that for each $∈ ]0;∞[ the function (tF∞)′=(tF$ )′ is non-decreasing, implying T F∞6T F
$ and,

since T F∞ is nilpotent and T F
$ is strict, even T F∞¡T F

$ .
Now let us show that T F

%6T F
$ whenever 1¡$¡%¡∞. Observe that for all x∈ ]0; 1[ we get

(tF% )′

(tF$ )′
(x) =

%x($x − 1) log %
$x(%x − 1) log $

=
log %
log $

1 − (1=$)x

1 − (1=%)x
:
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Then (tF% )′=(tF$ )′ is non-decreasing on ]0; 1[ if and only if

(
1 −

(
1
%

)x)(
1
$

)x

log
1
$
6

(
1 −

(
1
$

)x)(
1
%

)x

log
1
%
;

i.e., if and only if we have the inequality

(1=$)x log 1
$

(1=%)x log 1
%

¿
1 − (1=$)x

1 − (1=%)x
: (5)

Consider now the functions f; g : ]0; 1[→ [0;∞[ de;ned by f(x) = 1− (1=$)x and g(x) = 1− (1=%)x.
Then, by the Cauchy mean value theorem, for each x∈ ]0; 1[ there exists a y∈ ]0; x[ such that

1 − (1=$)x

1 − (1=%)x
=

f(x) − f(0)
g(x) − g(0)

=
f′(y)
g′(y)

=
(1=$)y log (1=$)
(1=%)y log (1=%)

¡
(1=$)x log (1=$)
(1=%)x log (1=%)

:

This proves inequality (5) and, consequently, the function (tF% )′=(tF$ )′ is non-decreasing, i.e., T F
%6T F

$

and, because of T F
% �= T F

$ , even T F
% ¡T F

$ in this case. Similarly we can show T F
1 ¡T F

$ for all
$∈ ]1;∞[.

The case 0¡$¡%61 can be transformed into 161=%¡1=$¡∞, and the case 0¡$¡1¡%¡∞
is proved combining the two latter cases.

The comparison of arbitrary continuous t-norms is much more complicated, and it is fully described
in [22] (see also [23, Theorem 6.12]).

When comparing t-norms it is evident that the incomparability of their diagonal sections implies
the incomparability of the t-norms themselves. The converse, however, is not true in general, not
even in the case of continuous Archimedean t-norms.

Example 4.5. Consider the function t : [0; 1]→ [0;∞] de;ned by (the index n may be any number
in Z)

t(x) =




∞ if x = 0;

2n(2 − (4x1=2n − 1)2) if x ∈
[

1
22n+1 ;

1
22n

[
;

0 if x = 1;

then t is an additive generator of some strict t-norm T . A simple computation shows that the
diagonal sections of T and TP coincide, but the opposite diagonal sections dT ; dTP : [0; 1]→ [0; 1]
given by dT (x) =T (x; 1 − x) and dTP(x) =TP(x; 1 − x) are incomparable (see Fig. 2), implying the
incomparability of T and TP.

This shows that diOerent continuous t-norms may have identical diagonal sections. Note that there
are methods to describe all continuous t-norms having a given diagonal section [20,23,29]. Here
we only mention one of these methods applied to strict t-norms [20,29] (see also [23, Proposition
7.11]):
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Fig. 2. Contour plot of the strict t-norm T (left) considered in Example 4.5 together with the incomparable opposite
diagonal sections of T and TP (right).

Proposition 4.6. Let ' : [0; 1]→ [0; 1] be a strictly increasing bijection such that '(x; x)¡x for all
x∈ ]0; 1[. Then a continuous t-norm T has diagonal section ' if and only if T is strict and the
function t : [0; 1]→ [0;∞] given by

t(x) =




∞ if x = 0;
2nf('(−n)(x)) if x ∈]'(n+1)(0:5); '(n)(0:5)];
0 if x = 1;

is an additive generator of T , where f : ['(0:5); 0:5]→ [1; 2] is a strictly decreasing bijection,
'(0) = id[0;1]; '(n) = ' ◦ '(n−1) whenever n∈N, and '(n) = ('(−n))−1 whenever −n∈N.

As a consequence of Proposition 4.6, two diOerent strict t-norms with the same diagonal section are
necessarily incomparable, compare also Example 4.5 (the same result holds for arbitrary continuous
t-norms).

Additive generators characterize also analytical properties of the continuous Archimedean t-norms.
For instance, a continuous Archimedean t-norm is 1-Lipschitz if and only if it has a convex additive
generator [31,37].

Also, convergence properties can be expressed by means of additive generators [18] (see also [23,
Corollary 8.21]).

Proposition 4.7. Let (Tn)n∈N be a sequence of continuous Archimedean t-norms and let T be a
continuous Archimedean t-norm. Then the following are equivalent:

(i) limn→∞ Tn =T .
(ii) There exists a sequence of additive generators (tn : [0; 1]→ [0;∞])n∈N of (Tn)n∈N such that the

restriction(
lim
n→∞ tn

)∣∣∣
]0;1]

coincides with the restriction of some additive generator of T to ]0; 1].
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Note that, whenever in Proposition 4.7 the limit t-norm T is strict, then limn→∞ tn is an additive
generator of T .

For example, for each n¿1 the function tn : [0; 1]→ [0;∞] given by

tn(x) =
1

2 log(1 +
√
n)

log
n− 1
nx − 1

is an additive generator of the (strict) Frank t-norm T F
n [13]. Then for all x∈]0; 1] we have

limn→∞ tn(x)= 1−x, i.e., the sequence (tn|]0;1])n¿1 converges to the restriction of an additive genera-
tor of the  Lukasiewicz t-norm TL to ]0; 1]. Therefore, the sequence (T F

n )n¿1 converges to TL(=T F∞).
Finally we mention that the continuous Archimedean t-norms form a dense subclass of the class

of all continuous t-norms (with respect to the uniform topology), i.e., each continuous t-norm can
be approximated by some continuous Archimedean t-norm with arbitrary precision [19,23,32]. More
precisely we have:

Theorem 4.8. Let T be a continuous t-norm. Then for each (¿0 there is a strict t-norm T1 and
a nilpotent t-norm T2 such that for all (x; y)∈ [0; 1]2

|T (x; y) − T1(x; y) | ¡ (;

|T (x; y) − T2(x; y) | ¡ (:
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