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Abstract

The availability of cellular markers tagged with the green fluorescent protein (GFP) has recently allowed a large number of cell

biological studies to be carried out in live cells, thereby addressing the dynamic organization of cellular structures. Typically, mi-

croscopes capable of video recording are used to generate time-resolved data sets. Dynamic imaging data are complex and often

difficult to interpret by pure visual inspection. Therefore, specialized image processing methods for object detection, motion esti-

mation, visualization, and quantitation are required. In this review, we discuss concepts for automated analysis of multidimensional

image data from live cell microscopy and their application to the dynamics of cell nuclear subcompartments.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

All biological phenomena are dynamic. However, for

a long time cellular structures have been investigated

mostly in fixed specimens, e.g., by the use of immuno-

cytochemistry or fluorescence in situ hybridization, due

mainly to the lack of efficient vital markers. This has
recently changed with the cloning of green fluorescent

protein (GFP) as a universal fluorescent marker that can

be fused to many proteins to visualize virtually any

cellular structure in the environment of the living cell

[1,2].

Live cell studies have revealed the unexpectedly high

dynamics of many cellular structures including nuclear

subcompartments that were previously thought to be of
rather stable morphology (e.g., [3–5]). Early live cell

studies have characterized organelle dynamics in a

qualitative way. A simple approach to estimate mor-

phological alterations over time or the velocity with

which an organelle moves within the cell is to interpret

time-lapse movies by visual inspection. Although this

can be helpful in obtaining an overall impression of

motion patterns, it is not suitable for addressing un-

derlying mechanisms using functional assays carried out

in live cells. For example, the dynamics of several nu-

clear subcompartments have been observed to be regu-

lated within the cell [3,6–10], dependent on cell cycle
state or metabolic energy. A convincing and reproduc-

ible presentation of functional assays addressing the

dynamics of cellular structures under different experi-

mental conditions requires quantitation by automated

image processing techniques. In this review, we discuss

techniques for quantitative analysis and visualization of

live cell imaging data and exemplify their applicability

by analysis of the dynamics of several nuclear subcom-
partments.

2. Computational methods for quantitative analysis and

visualization of live cell imaging data

The analysis of live cell imaging data usually com-

prises the isolation (segmentation) and tracking of
fluorescent structures in the time series. This leads to the

extraction of space- and time-related data and further

interpretation is conducted on those data. For practical
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applications, these image analysis modules have been
combined in entirely different ways. For instance, to

characterize the movement of a cell [11] the parameters

of an affine transformation (mapping) have been esti-

mated, based directly on the image gray values, thus no

segmentation was necessary (see Section 2.2.2). For in-

terpretation, a mathematical analysis of the parameters

of the affine transformation has been carried out and the

velocity vector field has been visualized. In contrast,
other algorithms perform tracking of multiple preseg-

mented objects, taking into account only the gravity

center and some attributes of each object [12]. Still other

procedures extract the object surface or contour, quan-

tify the surface area and volume based on the extracted

data [13], and estimate the transformation that maps the

whole image volume such that corresponding surface

points in different time steps are assigned to each other,
which is called point set registration [14,15]. In the fol-

lowing, we review different elementary image processing

techniques according to the sequential order in which

they are usually applied. In particular, we discuss a se-

lected set of techniques that are especially suitable for

motion analysis of cellular structures and compart-

ments.

2.1. Image segmentation

The first step in image analysis generally is to segment

the image. Segmentation subdivides an image into its

constituent parts or objects, which are defined as ho-

mogenous and disjoint regions (image segments) that are

separated by boundaries. Therefore, a criterion of ho-

mogeneity has to be found that can be very specific in
the different areas of applications. In principle, two

opposite approaches can be distinguished. Contour-

oriented segmentation uses methods to detect differences

between neighboring image points and is therefore based

on the image gradients. Contours are drawn between

homogenous image segments at locations where the

gradient is strong. In contrast, region-oriented segmen-

tation is focused on the detection of similarities of
neighboring pixels that are then merged and assigned to

image segments. Depending on the initialization of the

contour and on the choice of the respective parameters,

both approaches should lead to the same segmentation

result. However, in practice the performance of both

approaches is often very different and strongly depends

on the specific application. To unify them a method

called ‘‘region competition’’ has been proposed [16].
Independent of the segmentation technique images often

need to be preprocessed for efficient segmentation.

2.1.1. Image preprocessing by linear convolution filters

Images acquired by live cell microscopy may be dis-

turbed by a variety of noise sources. Noise is often in-

troduced during the conversion of patterns of light

energy into electrical patterns in the recording device
(e.g., CCD camera or photomulitplier tube). Among the

different types of noise that affect an image at different

spatial frequencies, the high-frequency noise, which

causes loss of sharpness and alters the image contours,

often has to be reduced by filtering for further image

processing.

Low-pass filtering is employed to remove this high-

spatial-frequency noise from a digital image. The basic
idea is that a window of some finite size and shape is

scanned across the image. The output pixel value is the

weighted sum of the input pixels within the window

where the weights are the values of the filter assigned to

every pixel of the window itself. The window with its

weights is called the convolution kernel. A typical shape

of the convolution kernel is modeled by a Gaussian

function.

2.1.2. Nonlinear filters

Many of the noise-reducing filters are based on low-

pass filtering, and are therefore suitable for reducing the

spot noise, which is located mostly at high spatial fre-

quencies. Unfortunately, because contours and edges in

an image are mainly high frequency, while using low-

pass filters to reduce noise, one loses information about
important features of an image (blurring effect). This

occurs because of the nonspecificity of the filters used

that simply cut off high spatial frequencies, no matter

what the pixel can represent in an image. In contrast to

linear filters, with nonlinear filters any function of the

neighborhood pixels can be defined, enabling noise re-

duction without blurring.

The median filter is the most common nonlinear filter
[17]. It replaces every pixel of an image with the median

of the pixel intensities in a neighborhood. For a pixel

near an edge, pixels on the same side of the edge will be

in a majority in a square or circular neighborhood, and

so the median will be within the intensity range of pixels

on that side. Thus edges remain sharp, unlike those with

the linear filters. This method is particularly effective

when the noise pattern consists of strong, spike-like
components and the characteristic to be preserved is

edge sharpness.

2.1.3. Anisotropic diffusion filters

A new generation of more sophisticated filters have

been developed, which take into account the particular

characteristics of local image features and thus perform

a filtering operation without degrading the image. The
approach of this type of filter is based on the statistical

properties of the noise. The rationale of this method is

that image areas containing structure and strong con-

trast between edges will have a higher variance than

areas containing noise only. In the statistical filtering

process, the variance value of each image segment will

determine whether noise reduction is to be applied in
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that area. Filters can thereby be designed that reduce
noise without altering the object contours (Figs. 1A, B,

E, and F).

Diffusion algorithms remove noise from an image by

modifying the image via a partial differential equation.

A simple implementation diffuses an image homoge-

neously by application of the diffusion equation (heat

equation), which is equivalent to filtering the image with

a Gaussian linear filter [17] with varying kernel size. In
contrast, anisotropic diffusion filters control the diffu-

sion process by an ‘‘edge stopping function’’ that de-

pends on local image properties, i.e., the image gradient

magnitude [12,18]. Thus, smoothing is applied at regions

of homogeneous gray value intensities and prevented at

edges. As a result of this process, noise is reduced and

sharp edges are maintained in the image.

2.1.4. Segmentation by thresholding

Thresholding is a simple but often very efficient way

to segment an image. This region-oriented segmentation

technique classifies image points as object or back-

ground according to their intensity values. Thresholding

is suitable to detect objects on a homogeneous back-

ground with a different gray value intensity than the

objects. The threshold l assigns any image point ðx; yÞ at
f ðx; yÞ > l to objects, while points f ðx; yÞ < l are re-

garded as background (Figs. 1A–D). Unless the object

in the image has extremely steep edges, the exact value

of l can have considerable effect on the boundary posi-

tion and thus the apparent size of the extracted object.

Subsequent size measurements are thus rather sensitive

to the threshold gray value. For this reason, one needs a

consistent method to establish the threshold. An image
containing an object on a contrasting background has a

bimodal gray-level histogram. The two peaks corre-

spond to the relatively large number of points inside and

outside of the object. The dip between the peaks corre-

sponds to the relatively few points around the edge of

the object. This dip is commonly used to determine the

threshold [17].

2.1.5. Confinement trees and connected operators

For a given level l, thresholding provides a binary

image and assumes that each object is formed by a white

region (with f ðx; yÞ > l) entirely separated from other

white pixels by black background pixels. Such regions

are called confiners. Calculated for different levels l the

confiners define a tree structure, called a confinement

tree, as illustrated in Figs. 1K and L. The identification
of each region (confiner) and the decision on whether it

is related to a region in the previous or succeeding level

in the confinement tree is computationally more de-

manding than the calculation of the binary image.

However, an algorithm was proposed for calculating the

confinement tree for all available gray levels of the im-

age but requiring only a little more additional compu-

tation time than calculation of the binary image
obtained by thresholding for one given threshold l [19].

Confiners can be deleted from the confinement tree ac-

cording to certain filtering criteria [20,21].

Connected operators are closely related to confine-

ment trees and can be obtained by filtering the tree ac-

cording to some criteria (see above) followed by

reconstruction of the image based on the filtered tree. In

this reconstruction process the gray value of each pixel is
defined depending on the levels for which the pixel is in a

confiner that has been deleted or not. According to the

filtering criteria, these operators can be ‘‘opening,’’

‘‘closing,’’ ‘‘thinning,’’ etc. [22]. They allow a more so-

phisticated and adapted choice for segmenting objects

than simple thresholding with few additional computa-

tion costs.

2.1.6. Edge-based segmentation

Edge detection algorithms are used to establish the

boundaries of objects within an image. First, each pixel

and its immediate neighborhood are examined to de-

termine whether the pixel is on the boundary of an ob-

ject. Pixels that exhibit the required characteristics are

labeled as edge points. An image with labeled edge

points normally shows each object outlined in edge
points, but generally not with closed connected bound-

aries. Thus, as a second step edge point linking is re-

quired to create closed connected boundaries.

If a pixel lies on the boundary of an object, its

neighborhood is a zone of gray-level transition. The two

characteristics of principal interest are the slope and the

direction of that transition, that is, the magnitude and

direction of the gradient vector. Edge detection opera-
tors are often convolution kernels (see Section 2.1.1)

that implement directional derivatives, examining each

pixel neighborhood, and quantify the slope and direc-

tion of the local gray-level transition. The nonmaximum

suppression algorithm [12,23] determines candidate edge

pixels if the gradient is maximal compared with the two

neighbors in the direction of the gradient and if it has a

potential predecessor and successor (Fig. 1G). There-
fore, multiple responses to a single edge are suppressed

and the formation of closed contours is assisted. To

obtain closed borderlines, edges can be traced by taking

into account local orientation (direction of the gradient)

and equal probability of pixels belonging to adjacent

regions (Fig. 1H). As a result of the tracing algorithm,

closed borderlines enclosing homogeneous regions are

obtained that can be used to build a region neighbor-
hood graph [12]. Each node of the graph is associated

with morphological parameters such as mean intensity,

shape, and size according to the assigned region within

the image. Objects can finally be detected by application

of a selection criterion for these nodes, e.g., local max-

imal intensity (Figs. 1I and J).
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2.1.7. Active contours

If the initial segmentation is suboptimal, it can of-

ten be improved by methods that refine the boundary

initially assigned to an object by integrating global

image features. The active contour or snake is a

common tool for such refinement, which is particularly

well suited when the object—moving globally and lo-

cally—has to be tracked through an image sequence

because the contour (/surface) determined at the cur-
rent time step can be used as initialization for the next

step.

The active contour or snake has originally been in-

troduced by Kass et al. [24]. An initial curve is put into

the image according to the segmentation result of a

previous time step or derived from an initial simpler

segmentation method. Alternatively, it is placed inter-

actively or automatically just roughly around the ob-
ject�s borders. An energy function is associated with the

curve, which has an internal term penalizing stretching

or bending and an external term assessing the fit into the

image in each point of the curve. The external term can

be calculated based on local properties of the image

(e.g., gray level, gradient) or on previously extracted

edges. During minimization of the energy function, the

snake reacts to the image, and moves in a smooth,
continuous manner toward the desired object boundary.

Active contour techniques have also been used for the

precise detection of object surfaces in 3D recordings, by

minimizing an appropriate energy function expressing

the quality of the fit of the deformable surface to the

image [25–28]. Although snakes can accurately detect

object boundaries in principle, a general limitation is the

strong dependence on precise parameter settings that
have to be determined for any specific application, es-

pecially when the 3D topology is complex and noise

levels are high. Recent efforts have been made for au-

tomatic parameter adjustments and therefore snakes

have become more generally applicable [27,28].

2.2. Motion estimation

In the center of a quantitative analysis of the motion

in image sequences stands the estimation of the motion

appearing in the sequence, if possible for each point and

at each time step. In this section, we review three ap-

proaches to estimating the motion depending on the

situation represented in the images. For tracking a large

number of small particles that move individually and

independently from each other, single-particle tracking

approaches on previously segmented particles are most

appropriate. Thus, often only the movement of the

gravity center of a particle is considered but not the

movement of the different points within the particle. For

the determination of a more complex movement for

each detected object or in the whole image scene two

other approaches have been developed. On the one

hand, image registration enables a computer to ‘‘regis-
ter’’ (apprehend and allocate) certain objects in the real

world as they appear in the computer�s internal model.
At first, only rigid mappings (rotation and translation)

have been used to superimpose the images. Now, re-

search is focused more on the integration of local de-

formations. On the other hand, techniques to estimate

the local motion directly based on the pixel�s gray values
have been developed in image sequence analysis, a
method referred to as optical flow estimation.

2.2.1. Single-particle tracking

For image sequences containing small objects with

large displacements (with respect to the object�s diame-
ter) dynamic analysis can be achieved by single-particle

tracking in time–space [29,30]. For each object in a given

time frame corresponding objects in a previous time
frame have to be found. Importantly, for an object in

the current frame not necessarily the nearest object in

the previous frame is the corresponding one (‘‘corre-

spondence problem’’). Therefore, the correspondence is

established based either on object features or on inter-

object relationships of the objects inside a frame. In

Hassan [31] the distances and the angles of the objects in

the same frame have been taken into account. Object
features can be dynamic criteria such as displacement

and acceleration of an object as well as area/volume or

mean gray value of the object. Assuming that optical

flow is continuous (see Section 2.2.2), corresponding

objects in subsequent images should be similar. Because

noise sources during the imaging process distort this

assumption, standard region-based matching techniques

do not give satisfactory results [32]. A more reliable
tracking approach involves fuzzy logic-based analysis of

the tracking parameters [33].

Fuzzy theory assumes that all things are a matter of

degree [34]. Fuzzy systems behave as associative mem-

ories mapping close inputs to close outputs without re-

quiring a mathematical description of how the output

functionally depends on the input. A fuzzy system relies

on linguistic ‘‘rules’’ encoded in a numerical fuzzy as-
sociative memory mapping, the FAM rules. According

to a dynamic particle model the velocity of an object is

assumed to remain relatively constant. To compare two

objects in consecutive images differences in velocity and

deviation of expected extrapolated position from the

potential new position are measured. In addition dif-

ferences in total intensity and area are computed and

translated into fuzzy rules.

2.2.2. Estimation of the local motion flow

The optical flow has been defined as the motion flow

that can be derived from two consecutive images in a

time series and is expressed by the motion vector field

[17]. It is not equivalent to the real motion occurring in

the image scene as, for instance, movements inside a
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Fig. 1. Segmentation and motion estimation of fluorescently labeled structures in live cell recordings. (A–D) Segmentation of daughter nuclei in

mitotic anaphase cells by thresholding. Normal rat kidney (NRK) cells expressing histone 2B fused to cyan fluorescent protein (H2B-CFP) were

imaged on a confocal microscope setup as described in [13]. (A) Raw image. (B) Image after anisotropic diffusion filtering. (C) Binary image after

thresholding of (B). (D) Contour of extracted objects overlaid on original image. (E–J) Edge-based segmentation of centromeres. HeLa cells ex-

pressing centromeric protein CENP-A fused to enhanced GFP (CENP–A–EGFP, [56]) were imaged on a confocal microscope. (E) Raw image:

arrowheads mark centromeres with a low gray value. (F) Image after anisotropic diffusion filtering. (G) Candidate edge pixels detected by non-

maximum suppression edge detection. (H) Closed contours after tracing of edges. (I) Regions extracted by selection of local maxima of mean gray

value intensities. (J) Overlay of the object contours on the original image. Arrowheads mark same centromeres as in (E). (K, L) Definition of

confiners (K) and the confinement tree (L). (M, N) Visualization of the extracted motion of an anaphase cell nucleus labeled with H2B-CFP by

deformation grids (reproduced from [42]). Bars¼ 5 lm.
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region of homogenous gray intensity cannot be detected.
Classic approaches to estimate the optical flow [35] are

based on the motion constraint equation (MCE), which

is derived as a first-order Taylor development [36] from

the equation expressing the conservation of the lumi-

nous intensity (called continuity of the optical flow): If

vðx; y; tÞ is the velocity of point ðx; yÞ at time t (the dis-

placement during 1 time unit) and f is the gray value

function we have

DFDðx; y; v; tÞ ¼ f ððx; yÞ þ vðx; y; tÞ; t þ 1Þ � f ððx; yÞ; tÞ
¼ 0:

Here, DFDðx; y; v; tÞ is called the displaced frame dif-

ference (DFD). The MCE relates the spatial and the

temporal derivatives of f linearly with v. However, it is

valid only for small displacements. The latter is known

under the notion ‘‘problem of large displacements.’’

Moreover, MCE is an underdetermined equation (with

respect to v) and either a so-called regularization has to

be applied to relate the velocities in different points or a
parametric approach as described in Section 2.2.3 has to

be used. A synopsis of methods based on the hypothesis

of intensity conservation is provided in [35].

2.2.3. Parametric image registration

A spatial transformation maps each point in the 2- or

3D space to another point in the same space. In the

context discussed here, the considered transformations
are given in a closed and parametric form; i.e., for a

given parameter value a transformation is specified that

allows the calculation, for each point in the space, of the

transformed point by simple algebraic operations. An

example is a rotation where, after specification of the

rotation angles, the transformation of each point can be

calculated by a matrix multiplication. A parametric

image registration algorithm specifies the parameters of
a given parameterized transformation in a way that

physically corresponding points at two different time

steps are brought as close as possible together. Such

algorithms have been formulated in various ways: Some

algorithms operate on previously extracted surface

points [37,38] while others register the images directly

based on the gray value differences and inbetween, fea-

tures at a intermediary level, e.g., confiners or the con-
finement tree (Section 2.1.5, are extracted and

indentified) [39]. Most commonly, a cost or error func-

tion is defined and an optimization method is chosen

that iteratively adjusts the parameters until an optimum

has been reached (minimum of the cost function). A

classic similarity criterion based on extracted point

features measures the Euclidean distance of nearest

points in the two data sets. The squared sum of these
distances can be minimized using the Levenberg–Mar-

quardt optimization algorithm [37]. Furthermore, sev-

eral intensity-based similarity measures, e.g., the sum of

squared intensity differences, or the mutual information,
are described in [40].

In cell biology, parametric registration has been used

mainly for automated correction of rotational and

translational movements in a time series. This allows

enhancement of the visual interpretation of continuous

time–space reconstructions by revealing only local dy-

namics, especially if the movement is a result of the

superposition of two or more independent motions. It
also makes estimation of the local dynamics more robust

in this case. For example, when tracking particles inside

the cell nucleus the global movements of the nucleus as a

whole have to be compensated. The inverse case can be

true as well: Only the global movements are of interest

and the local movements are considered to be artifacts.

In both cases rigid transformations need to be com-

pensated for. When dealing with deformations, nonrigid

registration algorithms have to be applied, which differ

with respect to the so-called ‘‘motion model’’ [41,42] and

the strategy to find the desired parameters varies.

2.3. Visualization

A detailed analysis of complex dynamic processes in

cells would ideally be studied in three spatial dimensions
over time. Such 4D imaging experiments can be per-

formed e.g., on confocal or epifluorescence microscopes.

Large and complex datasets, typically 5000–10,000 sin-

gle images, are thereby generated, which cannot be an-

alyzed appropriately without computational tools for

the visual and quantitative inspection in space and time.

Early studies have explored 4D datasets by simply

browsing through an image gallery and by highlighting
interactively selected structures [43]. To facilitate inter-

pretation, many 4D experiments are preprocessed by a

projection step reducing dimensionality (e.g., projection

of image stacks to the x–y plane). A better interpretation

of 4D imaging data can often be achieved with special-

ized computational image processing tools. Two com-

monly used rendering algorithms for displaying 3D

structures are volume rendering and surface rendering
by computer graphics [44].

2.3.1. Volume rendering

Volume rendering is a technique for visualizing

complex 3D data sets without explicit definition of

surface geometry. Volume visualization is achieved in

three steps: classification, shading, and projection. The

classification step assigns a level of opacity, contrast,
and color to each voxel in the 3D volume [45,46]. Then,

shading techniques are used to simulate both the object

surface characteristics and the position and orientation

of surfaces with respect to light sources and the ob-

server. The colored, semitransparent volume is then

projected onto a plane perpendicular to the observer�s
direction. Through each grid point on the projection

8 D. Gerlich et al. / Methods 29 (2003) 3–13



plane, a ray is cast into the volume. As the ray pro-
gresses through the volume, the color and opacity at

evenly spaced sample locations are computed, finally

yielding a single pixel color. While volume rendering

techniques achieve satisfactory display of biological

structures, this method is limited to pure visualization

and does not deliver quantitative information. In addi-

tion, the high anisotropy typical of live cell imaging with

low z-resolution limits the quality of this visualization
technique (Fig. 2A).

2.3.2. Graphical surface rendering

Surface reconstructions approximate a selected

structure by a list of polygons. The structure is displayed

by projecting all the polygons onto a plane that is per-

pendicular to a selected viewing direction. The user can

examine the displayed structure by changing the viewing
direction interactively. Although the rendering algo-

rithms are well developed, the generation of a polygon

list that represents the surface appropriately can be

difficult. The most commonly used method to triangu-

late the 3D surface is the Marching Cube algorithm [47].

The 3D structure is defined by a threshold value

throughout the data set, constructing an isosurface. The

drawback of this method is that the surface of many
biological structures cannot be defined using a single

intensity value, resulting in loss of relevant information.

In addition, the anisotropic resolution characteristic of

most optical microscopic data sets becomes very obvi-

ous at viewing angles that are perpendicular to the im-

aging axis. It is a major goal to enhance image quality

by regaining spatial resolution in 4D live cell imaging

experiments.
A recent computational approach was designed to

deal particularly adequately with the high degree of

anisotropy typical of 4D live cell recordings [13]. The

visualization is based on a geometrical surface repre-

sentation that is calculated from segmented image slices.

Therefore, cellular structures have to be identified by

segmentation first. Object identification is carried out in

individual optical sections by edge-based segmentation
techniques [12] or by thresholding. For the reconstruc-

tion of a continuous 3D surface from optical slices a

parameterized contour running through all pixels of

each segmented outline is required. Therefore, interpo-

lation techniques are used that generate continuous

curves from sampled contour points. Classic interpo-

lation methods such as linear interpolation are not

Fig. 2. Visualization of cellular structures. (A) Volume rendering of anaphase NRK cells expressing H2B-CFP. Eighteen z-slices were recorded on a

confocal microscope with 1-lm steps. Volume rendering was carried out using the Amira 2.3 software (Template Graphics Software, San Diego, CA).

(B) Linear interpolation between four outline points. (C) Interpolation between the same four outline points using cubic B-splines. (D) Visualization

by surface rendering of the same data set as in (A). Outlines were detected in individual slices by anisotropic diffusion filtering and subsequent

thresholding. Three-dimensional reconstructions were calculated by connecting corresponding outline points with linear interpolation, as described in

[13]. (E) Similar to (D), but cubic B-splines were used to connect corresponding outline points. (F) Four-dimensional reconstruction of 3D stacks

recorded with a time lapse of 3min. Temporal intermediate reconstructions were obtained by cubic B-spline interpolation over time [13].

D. Gerlich et al. / Methods 29 (2003) 3–13 9



appropriate for the reconstruction of live cell imaging
data, showing sharp edges at the sample points (Figs. 2B

and D). In contrast, cubic splines allow generation of

smooth curves or surfaces with second-order continuity

(Figs. 2C and E). The idea of splines is to interpolate

between points by a smooth curve with minimal bend-

ing, which is built up from segments connected in the

given points. Splines are functions that are defined

piecewise on intervals, in particular, as cubic polyno-
mials, and fulfill smoothness criteria at the knots be-

tween individual segments. Cubic basic spline curves,

often referred to as cubic B-splines, are a generalization

of interpolating cubic polynomial splines and are more

flexible with respect to changes of the curve. A detailed

mathematical description of cubic B-splines can be

found in [48].

Cubic B-splines were thus used to generate smooth
curves approximating the contour pixels in individual

optical slices. In the next step, equally parameterized

contour points from adjacent z slices were connected,

again by using cubic B-splines. From these curves, in-

termediate contours between optical slices were ob-

tained to increase spatial resolution of the surface model

and avoid sharp edges (Figs. 2D and E). The specific

advantage of an interpolated surface rendering is a very
distinct display of small-scale features, as compared with

volume rendering (Fig. 2A). Moreover, surface recon-

struction allows direct access to quantitative data (see

Section 2.4).

2.3.3. Visualization of 4D data

A sequence of 3D reconstructions can be used to vi-

sualize a 4D dataset. However, besides the number of z

sections per stack, the temporal resolution is limited in

live cell experiments. Thus, with the surface recon-

structions of cellular structures at distinct time points at

hand, it was of great interest to infer continuous motion

from these data. Interpolation over time is especially

useful when the experiment is carried out over longer

time courses, thus enlarging the time-lapse interval be-

tween consecutive image stacks.
To achieve temporal interpolation, an algorithm has

to be developed for smooth transition from one surface

reconstruction to the next. Methods for this task are

referred to as morphing. The morphing problem consists

of two major tasks. For objects that are represented as

point meshes, such as generated by the 3D surface re-

construction, corresponding points have to be identified

in subsequent time frames. Such correspondence can be
obtained as a result of motion estimation (Section 2.2).

In the absence of a motion estimation step correspon-

dence has been established using identical parameteri-

zation in subsequent frames [25]. In the next step,

interpolation over time between these corresponding

surface points is carried out. B-Splines were used to

enhance temporal resolution by interpolation. A con-

tinuous reconstruction of entire 4D data sets was
achieved (Fig. 2F and see supplementary video material

in [13]). The animated surface reconstruction was visu-

alized in a multidimensional virtual reality viewer that

allows real-time user interaction (OpenInventor Scene-

Viewer, Template Graphics Software, San Diego, CA).

2.3.4. Visualization of the quantified motion

Several techniques have been used to depict the mo-
tion occurring in the image sequence after quantitative

evaluation. Classically, motion vectors regularly placed

on the image, trajectories, or deformed grids give the

user an impression of the occurring motion. Whereas

motion vectors provide more details, deformed grids

allow one to apprehend the global movement and the

bending of the space. An illustration of a deformed

volume grid rendered in three dimensions as proposed in
[44] is shown in Fig. 1N. To have a continuous visuali-

zation of the motion in specific points, trajectories are

well suited (Fig. 3A and B; [6,7,12,49]. Techniques to

visualize scalar quantitative values associated with each

point on a surface or in space use color, gray intensity,

or patterns [50]. They can be combined with the tech-

niques mentioned before. The statistical analysis of the

extracted quantitative values comes with further possi-
bilities of presenting these values.

2.4. Quantitative analysis

A great advantage of combined segmentation and

surface reconstruction is the immediate access to quan-

titative information that corresponds to visual data [13].

The binarized object representation can be used to di-
rectly measure volume over time. Moreover, the gray

values in the segmented area of corresponding original

images can be measured to determine the amount and

concentration of fluorescently labeled protein in the

segmented cellular compartments. After motion esti-

mation, the velocity of the detected object mass center

or, alternatively, of each point on the object surface or

even of each point in space is available. With this, ac-
celeration [6], tension or bending [51], or diffusion co-

efficients [4,8,9,12,52] can be determined. Statistical

analysis provides further possibilities of motion char-

acterization. For instance, the peaks of velocity histo-

grams report which velocity values occur most

frequently [53]. Also, the movements of different objects

(or of the same object at different time steps) can be

compared by their velocity histograms. A challenge for
future work is to extract more specific parameters by

fitting a biophysical model to the data. This has been

achieved in medical image analysis [50], where the hu-

man brain was modeled using finite element methods,

giving insight into forces occurring during brain defor-

mations.
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3. Applications

In vivo imaging with GFP-tagged constituents of

various nuclear subcompartments has revealed their

dynamic organization in the interphase nucleus. A par-

ticularly striking example is the dynamics of nuclear

speckles that consist mainly of nuclear RNA splicing

factors. Nuclear speckles can undergo regulated reor-

ganization of their morphology and dynamics [3,6].
Under normal conditions these nuclear speckles grossly

alter their surface morphology, and can show budding

of fragments and fusion to other nuclear speckles. On

treatment with the transcription inhibitor a-amanitin,
speckles round up and no budding or fusion occurs. The

computer methods for image analysis described in this

review have been used to quantitatively investigate reg-

ulated dynamics of nuclear speckles [6]. This confirmed
the results obtained from visual inspection, and allows

quantitative comparison with imaging data generated in

other laboratories.

Many studies on nuclear architecture have now

shown that other nuclear subcompartments show con-

siderable dynamics in the interphase nucleus, including
Cajal bodies [5,10], PML bodies [7], and chromatin

[4,8,9]. Quantitative image analysis showed that chro-

matin underlies slow diffusional motion [4,8,9,54], and

this movement is confined to relatively small regions in

the nucleus. Importantly, the constraint on diffusional

motion is regulated throughout the cell cycle [8,9]. A

long-standing question has been whether nuclear com-

partments can also undergo directed, energy-dependent
movements, thereby providing a potential mechanism

of regulated gene expression. Quantitative live cell im-

aging could now establish for PML bodies, Cajal

bodies, and chromatin that such transport dependent

on metabolic energy can occur in the nucleus (Fig. 3)

[7,9,10].

4. Conclusions

In this review, we have summarized concepts of

quantitative image analysis of multidimensional mi-

croscopy data. In particular, we focus on recent

Fig. 3. Quantitative analysis of metabolic energy-dependent dynamics of PML bodies. Baby hamster kidney cells expressing Sp100 protein fused to

enhanced yellow fluorescent protein (EYFP-Sp100) were imaged on a wide-field fluorescence microscope with a time lapse of 10 s [7]. (A) Selected

frames from the live cell recording. Arrows mark PML bodies that move with high velocities; arrowheads depict more static PML bodies. (B)

Graphical display of the trajectories from the PML bodies as numbered in (A). PML bodies were detected by anisotropic diffusion filtering and

thresholding, and tracked over time using fuzzy logic-based algorithms [12]. Trajectories were visualized as a graphical time–space reconstruction

[12]. Control cells were imaged, then perfused with 6mM sodium azide to deplete ATP. (C) Mean velocities of the trajectories as numbered in (A)

before (control) and after ATP depletion. Bar¼ 5 lm.
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approaches for image segmentation, motion estimation,
and visualization that were designed to suit the specific

demands of live cell microscopy (e.g., low signal-

to-noise, high anisotropy). The applicability of the

described methods is demonstrated by a number of

applications on experimental data. Most importantly,

we point out that objectivity in the interpretation of

dynamic imaging data can be achieved only through

automated computational tools, such as described in
this review. Quantitative tools for measurements of ve-

locity, acceleration, diffusion coefficients, volume chan-

ges, concentrations, and distances in 4D datasets are

now available.

Moreover, quantitative data from live cell micros-

copy can be exploited to generate mathematical models

that describe biological processes. Mathematical models

are important tools for quantitative hypothesis testing
and can support the design of further experiments [55].

In the future, modeling of cell biological processes will

certainly gain importance, since it provides a means to

integrate observations from many individual experi-

ments to a complex system. The quantitative imaging

methods presented here provide an important building

block for the description of biological phenomena on a

systems level, allowing the modeling of structural
changes in cells. Furthermore, a mathematical descrip-

tion of whole biological systems also includes models of

genetic networks, interaction networks of proteins,

metabolic processes, and signal transduction networks.

It is hoped that this general strategy, termed the systems

biology approach, will allow identification of novel

principles of cellular regulation in the huge amount of

experimental data that are currently generated.

5. Software packages

5.1. TILL photonics: visTRAC

Software package for recording and quantitative

analysis of time-resolved cellular processes on fluores-
cence microscopes. Features include automated object

identification with anisotropic diffusion filtering and

edge-based segmentation, single-particle tracking based

on fuzzy-logic algorithms, graphical visualization in an

interactive virtual reality viewer, and quantitative anal-

ysis of dynamic parameters. For more information see:

http://www.till-photonics.de.

5.2. TGS, indeed visual concepts: Amira

Powerful 3D visualization toolbox including volume

rendering and graphical surface rendering techniques.
Basic tools for quantitative analysis available. For more

information see: http://www.tgs.com.

5.3. NIH: ImageJ

Free software for quantitative image analysis. Many

specialized plug-ins available. Additional modules can be

programmed by using the Java interface. More informa-

tion and software download at: http://rsb.info.nih.gov/ij/.

5.4. Zeiss: LSM 5

Software for control of confocal microscope and

quantitative image analysis. Three-dimensional module

available for graphical display of 4D imaging data.
More information at: http://www.zeiss.com.

5.5. Bitplane AG: Voxelshop pro, Imaris, surface

Voxelshop pro is a module to separate and quantify

automatically objects characterized by gray levels or

texture. Imaris is a high-quality software package used

to process and visualize 3D images. It has been designed

to accept most microscopic image formats and offers a

range of functions. Surface automatically converts a

volume image into a geometric object made of triangles.
See: http://www.bitplane.com.

5.6. SIS: AnalySIS

Compatible with most cameras and microscopy for

image acquisition and import, image display and edit-

ing, archiving, documentation, image processing, mea-

suring, analysis, including a macro scripting language.

See: http://www.soft-imaging.net.

5.7. AnalyzeDirect: Analyze

Analyze includes volume rendering, virtual endos-

copy, segmentation, image registration, surface render-
ing, measurements, and many other imaging functions.

See: http://www.analyzedirect.com.
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The Motion of the Heart  during the  cardiac  cycle  is  complex to  describe  and involves  the 
interaction of several different structures. The analysis of the cardiac movement has various 
clinical applications and additionally, most of the techniques developed for the heart can be 
extended to the study of other biomedical objects. 

Statistical motion models involve knowledge about the statistical distribution of the motion in 
already investigated processes related to object within the same population. Such models allow, 
for example, determining if specific motion patterns are associated with certain heart diseases 
(cluster  analysis)  or  the  extraction  of  the  more  significative  motion-types  that  describe  the 
movement of a set of subjects (principal component analysis).

The aim of our research in the frame of the EU-alfa project IPECA is to develop and evaluate 
new strategies in this research field. Recently, some few attempts have been made to build 4D 
probabilistic atlases which capture both the anatomical and functional variability of biomedical 
objects  across  a  group  of  subjects  [PLC04].  This  issue  is  achieved  by  spatio-temporal 
registration  methods  which  correct  spatial  and  temporal  misalignment  of  image  sequences 
[PMR05]. Due to the restriction of the motion by the model usually the real motion in two 
consecutives images is only detected up to a residual error which accumulates when following 
the motion during the sequence [MEF01]. A further problem which has to be addressed is how 
far the spatio-temporal registration is able to resolve spatio-temporal ambiguities. These occur 
when it is not clear whether the difference between image sequences is due to spatial or/and 
temporal domain misalignment. Also, topological changes occurring in the image sequence such 
as fusion or separation of  two objects are difficult  to deal  with.  Whereas  for  the  statistical 
representation of static shape [CTC95, DTC02, PFS04] more and more experience is available 
now, for the representation of motion questions as “which parameters shall be represented by 
the  basis  of  the  field  space?”  or  “is  it  reasonable  to  decompose  the  spatial  and  temporal 
domain?” are still to clarify. 

The aim our research is  to develop and evaluate strategies  to tackle some of the problems 
mentioned above. To validate the investigated model based approach a comparison between 
parametric and non-parametric approaches [RPP04] (see also classical pixel-wise optical flow 
approaches [HoS81, GuP95]) would be of interest. Emphasis should be placed on the value for 
the investigated application. For instance, using the statistical information it should be analyzed 
which component of the heart’s motion is due to breathing. Data for a number of hearth cycles 
as well as for moving cell nuclei are available already. 
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Abstract

This paper aims to demonstrate that estab-
lished rank correlation measures are not ide-
ally suited for measuring rank correlation for
numerical data that are perturbed by noise.
We propose a robust rank correlation mea-
sure on the basis of fuzzy orderings. The su-
periority of the new measure is demonstrated
by means of illustrative examples.

Keywords: Fuzzy Orderings, Rank Corre-
lation, Robust Statistics.

1 Introduction

Correlation measures are among the most basic tools
in statistical data analysis and machine learning. They
are applied to pairs of observations (n ≥ 2)

(xi, yi)n
i=1 (1)

to measure to which extent the two observations com-
ply with a certain model. The most prominent rep-
resentative is surely Pearson’s product moment coeffi-
cient [1, 14], often nonchalantly called correlation co-
efficient for short. Pearson’s product moment coeffi-
cient is applicable to numerical data and assumes a
linear relationship as the underlying model; therefore,
it can be used to detect linear relationships, but no
non-linear ones.

Rank correlation measures [9, 11, 13] are intended
to measure to which extent a monotonic function is
able to model the inherent relationship between the
two observables. They neither assume a specific para-
metric model nor specific distributions of the observ-
ables. They can be applied to ordinal data and, if
some ordering relation is given, to numerical data too.
Therefore, rank correlation measures are ideally suited
for detecting monotonic relationships, in particular, if

more specific information about the data is not avail-
able. The two most common approaches are Spear-
man’s rank correlation coefficient (short Spearman’s
rho) [16, 17] and Kendall’s tau (rank correlation co-
efficient) [2, 10, 11].

This paper argues why the well-known rank correla-
tion measures are not ideally suited for measuring rank
correlation for numerical data that are perturbed by
noise. Consequently, we propose a robust rank corre-
lation measure on the basis of fuzzy orderings. The su-
periority of the new measure is demonstrated by means
of illustrative examples.

2 An Overview of Rank Correlation
Measures

Assume that we are given a family of pairs as in (1),
where all xi and yi are from linearly ordered domains
X and Y , respectively. Spearman’s rho is computed as

ρ = 1− 6
∑n

i=1(r(xi)− r(yi))2

n(n2 − 1)
,

where r(xi) is the rank of value xi if we sort the list
(x1, . . . , xn); r(yi) is defined analogously. So, Spear-
man’s rho measures the sum of quadratic distances of
ranks and scales this measure to the interval [−1, 1].
It can be checked easily that a value of 1 is obtained
if the two rankings coincide and that a value of −1 is
obtained if one ranking is the reverse of the respec-
tive other. Note that the above definition of r(xi) and
r(yi) was simplified, because it did not take coinciding
values, so-called ties, into account. In such a case, the
values r(xi) are usually defined as the mean value of
all ranks of consecutive coinciding values in the sorted
list.

With the same assumptions as above, Kendall’s tau is
computed as the quotient

τa =
C −D

1
2n(n− 1)

,



where C and D denote the numbers of concordant and
discordant pairs, respectively:

C = |{(i, j) | xi < xj and yi < yj}|
D = |{(i, j) | xi < xj and yi > yj}|

As above, if we have no ties and the two rankings coin-
cide, we have 1

2n(n− 1) concordant and no discordant
pairs, so τa = 1; if we have no ties and one ranking
is the reverse of the respective other, we have no con-
cordant and 1

2n(n − 1) discordant pairs, so a value of
τa = −1 is obtained.

In the above definition of τa, ties, no matter whether in
the first or in the second list, are not counted. So ties
lower the absolute value of τa. Therefore, τa is best
suited for detecting strictly monotonic relationships,
but not ideally suited in the presence of ties. A well-
established second variant [11],

τb =
C −D√

1
2n(n− 1)− T

√
1
2n(n− 1)− U

,

where

T = |{(i, j) | xi = xj}|, U = |{(i, j) | yi = yj}|,

takes ties into account, but is still not fully robust to
ties. A simple and tie-robust rank correlation measure
is the gamma rank correlation measure according to
Goodman and Kruskal [9] that is defined as

γ =
C −D

C + D
.

3 Motivation

All rank correlation measures highlighted above have
been introduced with the aim to measure rank corre-
lation of ordinal data (e.g. natural numbers, marks,
quality classes, ranks). The measurement of rank cor-
relation for real-valued data, however, is equally im-
portant in statistics and machine learning, but raises
completely new issues. Depending on the source, nu-
merical data are almost always subject to random
perturbations—noise. The concepts introduced above
do not take this into account. Pairs are counted as
concordant or discordant only on the basis of ordering
relations, but without taking into account that only
minimal differences may decide whether a pair is con-
cordant or discordant. If one observable depends on
the other in a clearly monotonic way and if the level
of noise is low, then the rank correlation measures in-
troduced above will still reveal this strictly monotonic
relationship and will not be compromised by minor
local effects of noise. In the presence of a larger per-
centage of ties, however, already the slightest pertur-
bations may lead to situations in which the above rank
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Figure 1: Scatter plots of a simple monotonic relation-
ship with different noise levels.

correlation coefficients cannot yield meaningful results
anymore. Consider the data sets in Figure 1. We see
a monotonic, yet not strictly monotonic, relationship.
The left plot shows data without noise, i.e. yi = f(xi)
for a non-decreasing function f . For these data, we ob-
tain ρ = 0.737, τb = 0.639 and γ = 1 (which confirms
that γ is most robust to ties). The middle plot shows
the same data, but with additive normally distributed
noise with zero mean and σ = 0.001. Although it is
hard to see the noise at all, we obtain ρ = 0.519 and
τb = γ = 0.387. These results indicate that none of
the three measures can adequately handle a large pro-
portion of ties in the presence of noise. For σ = 0.01
(right plot), the values are slightly lower, but not sig-
nificantly: ρ = 0.456 and τb = γ = 0.331. So we
can conclude that it is rather the presence of noise in
general than the magnitude of noise that distracts the
three rank correlation measures.

The obvious reason for the weakness described above
is the fact that all measures only take ordering rela-
tionships into account, but neglect similarities of data
points. To illustrate that, consider the two pairs (a, c)
and (b, c), where b > a. Obviously, this is a tie in the
second component. If we add some noise to the second
component of the second pair, i.e., if we replace (b, c)
by (b, c + ε), then ε decides whether ((a, c), (b, c + ε))
is a tie (for ε = 0), concordant (ε > 0), or discor-
dant ε < 0), where the magnitude of ε plays no role at
all. So we observe a discontinuous behavior. This toy
example thereby serves as a proof that all measures in-
troduced above depend on the data in a discontinuous
way.

The question arises how we can define a robust rank
correlation measure that depends continuously on the
data by taking similarities into account, but still serves
as a meaningful measure of rank correlation. Obvi-
ously, the measure should be designed such that close-
to-tie pairs receive less attention than pairs that are
clearly concordant or discordant. A reasonable idea
would be to base such a concept on the probabilities
to which concordant/discordant pairs are observed as
such compared to the probabilities that they are falsely
observed as something else. That may be a reasonable
approach. Note, however, that such probabilities can



only be computed if we know the joint distribution of
x and y values or at least if we make distribution as-
sumptions. In practice, such information is most often
unavailable and, surely, we do not want to sacrifice the
unique feature of rank correlation measures that they
are distribution-free.

In our opinion, fuzzy orderings provide a meaningful
way to overcome the difficulties explained above.

4 Fuzzy Orderings

Before we can introduce a fuzzy ordering-based rank
correlation coefficient, we need to provide some ba-
sics of fuzzy orderings. We restrict to an absolutely
necessary minimum and refer to literature for details.
We assume that the reader is aware of the most basic
concepts of triangular norms and fuzzy relations.

A fuzzy relation L : X2 → [0, 1] is called fuzzy ordering
with respect to a t-norm T and a T -equivalence E, for
brevity T -E-ordering, if and only if it is T -transitive
and fulfills the following two axioms for all x, y ∈ X:

(i) E-Reflexivity: E(x, y) ≤ L(x, y)

(ii) T -E-antisymmetry: T
(
L(x, y), L(y, x)

)
≤ E(x, y)

Moreover, we call a T -E-ordering L strongly complete
if max

(
L(x, y), L(y, x)

)
= 1 for all x, y ∈ X [4].

Several correspondences between distances and fuzzy
equivalence relations are available [6, 7, 12, 18]. From
these results, we can easily infer that (assume r > 0
in the following)

Er(x, y) = max(0, 1− 1
r |x− y|)

is a TL-equivalence on R, where TL(x, y) = max(0, x+
y − 1) denotes the  Lukasiewicz t-norm. Analogously,

E′
r(x, y) = exp(− 1

r |x− y|)

is a TP-equivalence on R, where TP(x, y) = xy denotes
the product t-norm.

Based on a general representation theorem for strongly
complete fuzzy orderings [4], we can further prove that

Lr(x, y) = min(1, max(0, 1− 1
r (x− y)))

is a strongly complete TL-Er-ordering on R and that

L′
r(x, y) = min(1, exp(− 1

r (x− y))

is a strongly complete TP-E′
r-ordering on R. As TL ≤

TP, we can trivially conclude that L′
r is also a strongly

complete TL-E′
r-ordering.

In order to generalize the notion of concordant and
discordant pairs, we need the notion of a strict fuzzy

ordering. We call a binary fuzzy relation R a strict
fuzzy ordering with respect to T and a T -equivalence
E, for brevity strict T -E-ordering, if it is irreflexive
(i.e. R(x, x) = 0 for all x ∈ X), T -transitive, and E-
extensional, that is,

T (E(x, x′), E(y, y′), R(x, y)) ≤ R(x′, y′)

for all x, x′, y, y′, z ∈ X [5].

Given a T -E-ordering L,

R(x, y) = min(L(x, y), NT (L(y, x))), (2)

where NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0} is the
residual negation of T , is the most appropriate choice
for extracting a strict fuzzy ordering from a given
fuzzy ordering L (for a detailed argumentation, see
[5]). From this construction, we can infer that the
fuzzy relation

Rr(x, y) = min(1, max(0, 1
r (y − x)))

is a strict TL-Er-ordering and that

R′
r(x, y) = max(0, 1− exp(− 1

r (y − x)))

is a strict TL-E′
r-ordering.

If a given TL-E-ordering L is strongly complete, it can
be proved that the fuzzy relation R defined as in (2)
simplifies to

R(x, y) = 1− L(y, x)

and that the following holds:

R(x, y) + E(x, y) + R(y, x) = 1 (3)
min(R(x, y), R(y, x)) = 0 (4)

5 A Fuzzy Ordering-Based Rank
Correlation Coefficient

The previous section has provided us with the appa-
ratus that is necessary to define a generalized rank
correlation measure. Assume that the data are given
as in (1) again (with xi ∈ X and yi ∈ Y for all i =
1, . . . , n). Further assume that we are given two TL-
equivalences EX : X2 → [0, 1] and EY : Y 2 → [0, 1],
a strongly complete TL-EX -ordering LX : X2 → [0, 1]
and a strongly complete TL-EY -ordering LY : Y 2 →
[0, 1]. Therefore, we can define a strict TL-EX -ordering
on X as RX(x1, x2) = 1−LX(x2, x1) and a strict TL-
EY -ordering on Y as RY (y1, y2) = 1− LY (y2, y1).

Spearman’s rho is based on rankings. Rankings are
crisp concepts in which it is not easy to accommodate
degrees of relationship in a straightforward way. Thus
it is more meaningful to use pairwise comparisons to



define a concept of rank correlation, just like Kendall’s
tau and the gamma measure do.

Given an index pair (i, j), we can compute the degree
to which ((xi, yi), (xj , yj)) is a concordant pair as

C̃(i, j) = min(RX(xi, xj), RY (yi, yj))

and the degree to which ((xi, yi), (xj , yj)) is a discor-
dant pair as

D̃(i, j) = min(RX(xi, xj), RY (yj , yi)).

If we adopt the simple sigma count idea to measure
the cardinality of a fuzzy set [8], we can compute the
numbers of concordant pairs C̃ and discordant pairs
D̃, respectively, as

C̃ =
n∑

i=1

∑
j 6=i

C̃(i, j),

D̃ =
n∑

i=1

∑
j 6=i

D̃(i, j).

The question arises whether we should attempt to gen-
eralize τa, τb or γ. As the main motivation is to get
rid of the influence of close-to-ties pairs in the pres-
ence of noise, it is immediate that the idea behind γ
is the most promising one. So, with the assumptions
from above, we define our fuzzy ordering-based rank
correlation measure γ̃ as

γ̃ =
C̃ − D̃

C̃ + D̃
.

To interpret the meaning of γ̃, we note that, for all
index pairs (i, j), the equality

C̃(i, j) + C̃(j, i) + D̃(i, j) + D̃(j, i) + T̃ (i, j) = 1 (5)

holds, where T̃ (i, j) denotes the degree to which (i, j)
is a tie in either variable:

T̃ (i, j) = max(EX(xi, xj), EY (yi, yj))

Moreover, we can infer the following:

C̃ =
n∑

i=1

∑
j>i

(C̃(i, j) + C̃(j, i))

D̃ =
n∑

i=1

∑
j>i

(D̃(i, j) + D̃(i, j))

Thus, by (5), C̃ +D̃ equals the number of non-tie pairs
if we consider each choice of indices i, j only once (in
contrast to considering (i, j) and (j, i) independently
for each i and j). So γ̃ measures the difference of
concordant and discordant pairs relative to the number
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Figure 2: C̃(i, j)+ C̃(j, i) (left), D̃(i, j)+ D̃(j, i) (mid-
dle), and T̃ (i, j) (right) plotted as functions of xj and
yj for fixed xi and yi (using the relations Er and Rr).
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of non-tie pairs; the concept of “tiedness” is a fuzzy
one, however.

It is obvious that, in case that EX and EY are crisp
equalities and that RX and RY are crisp linear strict
orderings, that γ̃ coincides with γ. So what is the
difference if RX and RY are non-trivial fuzzy rela-
tions? The above interpretation shows that concor-
dant/discordant pairs are counted more if they are
dissimilar and less if they are similar—which perfectly
corresponds to our intention. Let us demonstrate this
fact with an example.

Assume X = Y = R, EX = EY = Er, and RX =
RY = Rr for some r > 0. Fixing some xi and yi

and considering C̃(i, j) + C̃(j, i), D̃(i, j) + D̃(j, i), and
T̃ (i, j) as functions of the two variables xj and yj , the
graphs shown in Figure 2 can be obtained. It can be
seen that pairs are counted fully if |xi − xj | > r and
|yi − yj | > r (i.e. like in the classical γ measure). If
one of the two distances is smaller than r, the pair is
considered as a tie to the corresponding degree T̃ (i, j)
and only counted to a degree of 1 − T̃ (i, j). One also
sees that, if r is chosen so large that |xi − xj | ≤ r
and |yi − yj | ≤ r for all pairs, all pairs are counted
to a degree proportionally to the minimum of these
two distances. If the relations EX = EY = E′

r, and
RX = RY = R′

r are used, the effect is qualitatively
similar, r also controls to which degree a close-to-tie
pair is counted, also in a monotonic, yet asymptotic
fashion (see Figure 3).

It is clear from the above examples that, the smaller
r, the more γ̃ resembles to γ. For both, the variant
based on Er/Rr and the variant based on E′

r/R′
r, it

can be proved that γ̃ converges to γ for r → 0.
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Figure 4: Different data sets obtained from contami-
nating a non-decreasing relationship by normally dis-
tributed noise with different standard deviations.

Another property of γ̃ is immediate to see: if the fuzzy
relations RX and RY are continuous (assuming that
this notion makes sense on X and Y ), then γ̃ depends
continuously on the data set (xi, yi)n

i=1.

6 Experiments

Let us first reconsider the example from Section 3.
More specifically, we are given 100 uniformly dis-
tributed random values (x1, . . . , x100) from the unit
interval. The list (y1, . . . , y100) is computed as yi =
f(xi), where f is a simple, piecewise linear, non-
decreasing function that has a relatively large flat area.
In order to study how different rank correlation mea-
sures react to noise, we contaminated the data points
with additive, independent, normally distributed noise
with 0 mean and standard deviation σ. Figure 4 shows
these data sets. Figure 6 displays the results that we
obtained for different rank correlation measures. We
compared ρ, τb, γ and different variants of γ̃. Every
line in Figure 6 corresponds to the results obtained by
one rank correlation measure depending on the noise
level σ. The two lines for τb (dotted, black) and γ (dot-
ted, light gray) coincide except for no noise (σ = 0).
Both lines reveal that these two measures react to noise
in an non-robust way. More or less the same is true
for ρ (dotted, medium gray). The other lines corre-
spond to different variants of γ̃. Solid lines correspond
to γ̃ using Rr and dashed lines denote the results for
γ̃ using R′

r (where we use the same r for both compo-
nents). We used r = 0.05 (black), r = 0.2 (medium
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Figure 5: Noisy data sets that correspond to mono-
tonic (q ≤ 0.5) and non-monotonic relationships (q >
0.5).

gray), and r = 0.5 (light gray). We see that all six
different variants react to the noise in a more robust
way than the three crisp measures. Clearly, the higher
r, the more noise is neglected. Note, however, that,
the larger r, the more difficult it is for γ̃ to find out
whether there are slightly non-monotonic parts in the
data.

So let us consider a different setting. Now we fix the
noise level σ = 0.01 and use different functions to cre-
ate the second list (y1, . . . , y100). Right of x = 0.5,
we use f(x) = x

2 + 1
4 and to the left or x = 0.5, we

linearly interpolate between (0, q) and (0.5, 0.5). It is
clear, that this relationship is monotonic if and only
if q ≤ 0.5. The data sets are displayed in Figure 5
and the results are presented in Figure 7, where we
use the same conventions to distinguish the lines as
in Figure 6. We see that all variants of γ̃ show ac-
ceptable results for q ≤ 0.5, whereas ρ, τb and γ again
have problems to handle the noise in case of the large
proportion of ties that occurs for q = 0.5. We also
see that γ̃ already yields significantly lower values for
q = 0.6 in the case r = 0.05 (no matter which of the
two variants is considered). For larger r, however, we
see that γ̃ cannot detect the slight non-monotonicity
for q = 0.6 that well. These two examples demonstrate
that, when choosing r, there is a trade-off between ro-
bustness (the larger r, the better) and sensitivity (the
smaller r, the better).

As a third set of experiments, we have tried to figure
out the variance of γ̃. For this study, we have com-
puted all rank correlation measures used in the above
experiments for different test data several times and
computed the variance of the results. In all experi-
ments, we have encountered that τb and γ had higher
variances than all variants of γ̃. The variances we
obtained for different variants of γ̃ obeyed a simple



and unsurprising rule: the larger r, the smaller the
variance. Interestingly, the variances we obtained for
Spearman’s ρ were also very low, comparable to the
lower values for γ̃ with a large r.

Note that the authors have carried out numerous ex-
periments to solidify the above claims. As the space
in this paper is limited, we just quoted the most inter-
esting and demonstrative results.

7 Concluding Remarks

This paper, as the appellative term “towards” in the
title suggests, attempts to present first ideas that the
authors consider promising. The examples of the pre-
vious section are intended to support this viewpoint.
They are illustrative and indicative, but they cannot
replace a formal investigation of the properties of γ̃. As
it has been done exhaustively for Spearman’s rho and
Kendall’s tau, a significance analysis and a variance
analysis have to be carried out. Note, however, that
this cannot be done analogously for γ̃. Both Spear-
man’s rho and Kendall’s tau are fully determined by
the ranking of the lists (x1, . . . , xn) and (y1, . . . , yn).
Thus, combinatorial techniques can be used to study
variances and significance levels [11]—not so for γ̃ that
always depends on the distance relationships of the
values, too, so this analysis can only be done by some
distribution assumptions. These studies are left to fu-
ture research.

To determine the right choice for the parameter r
is another open question. As we have noted above,
there is a trade-off between robustness on the one side
and sensitivity/significance on the other side. So this
topic goes hand in hand with a more formal statistical
analysis. Profound results concerning the choice of r,
again, can only be expected with specific distribution
assumptions. In any case, we want to note in advance
that γ̃ depends continuously on r, so at least we can
be sure that γ̃ will react robust to slightly sub-optimal
choices of r.

Finally, we would like to remark that this investi-
gation was inspired by a problem in bioinformatics:
how to infer sets of co-transcribed genes in procaryotic
genomes (so-called operons) from the gene expression
levels measured by microarray experiments [3, 15, ?].
It will also be subject of future research to evaluate the
rank correlation measures introduced in this paper in
this domain.
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Figure 6: Results obtained by applying different rank correlation measures to the data sets shown in Figure 4.

0 0.2 0.4 0.6 0.8 1
q

-0.5

-0.25

0

0.25

0.5

0.75

1

C
o
r
r
e
l
a
t
i
o
n

Figure 7: Results obtained by applying different rank correlation measures to the data sets shown in Figure 5.
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Abstract

Nowadays, classification plays a very important role in data mining problems, and
has been studied comprehensively in some research communities. During the re-
cent decades, classification has also been successfully applied to various fields such
as marketing management, credit approval, customer segment, medical diagnosis,
performance prediction and Shopping options. The scientists developed several clas-
sification models like Bayesian classification, neural networks, statistical models such
as linear or quadratic discriminants, genetic models and decision trees. Decision trees
are one of the most popular techniques of data mining among these models.

A decision tree is a model of a decision procedure for discriminating the class of
given instances. Every node of the decision tree determines either a class or a spe-
cific test which partitions the space of instances. In these tree structures, a leaf node
is a node containing a class name and a non-leaf node is a node that contains an
attribute test with a branch to another decision tree for each possible value of the
attribute. One of the most famous and valuable algorithms for building an optimal
decision tree is ID3, which served as a basis for plenty of variations and improve-
ments.

This kind of methods have a good performance in batch mode(off-line) problems.
However, sometimes, the data set involves millions of records or grows as a stream.
Non-incremental algorithms could hardly operate in this situation, while incremental
ones provide an effective tool to deal with the problems in a step-by-step way. Based
on ID3 algorithm, ID4 and ID5R were designed to learn decision trees incremen-
tally, and under certain circumstances, they can build the same decision tree as their
off-line version ID3 algorithm.
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RANSAC – model estimation algorithm  
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Abstract 

Finding mathematical model in data 

where are many outliers can be 

difficult problem. RANSAC is simple 

but robust solution for this kind of 

problems. Algorithm was developed in 

1981 and its usability was proven on 

many real world examples.  

Introduction 

RANSAC is an abbreviation for 
"RANdom SAmple Consensus". It is 
an algorithm to estimate parameters of 
a mathematical model from a set of 
observed data which contains outliers. 
The algorithm was first published by 
Fischler and Bolles in 1981. 

A basic assumption is that the data 
consists of "inliers", i. e., data points 
which can be explained by some set of 
model parameters, and "outliers" 
which are data points that do not fit the 
model. In addition to this, the data 
points can be subject to noise. The 
outliers can come, e. g., from extreme 
values of the noise or from erroneous 
measurements or incorrect hypotheses 
about the interpretation of data. 
RANSAC also assumes that, given a 
(usually small) set of inliers, there 
exists a procedure which can estimate 
the parameters of a model that 
optimally explains or fits this data. 

Example 

A simple example is fitting of a 2D 
line to set of observations. Assuming 

that this set contains both inliers, i.e., 
points which approximately can be 
fitted to a line, and outliers, points 
which cannot be fitted to this line, a 
simple least squares method for line 
fitting will in general produce a line 
with a bad fit to the inliers. The reason 

 

1 Data with many outliers, line has to be 

fitted. 

 

 
2 Fitted line with RANSAC, outliers have no 

influence on result.  



is that it is optimally fitted to all points, 
including the outliers. RANSAC, on 
the other hand, can produce a model 
which is only computed from the 
inliers, provided that the probability of 
choosing only inliers in the selection of 

data points is sufficiently high. There 
is no guarantee for this situation, 
however, and there are a number of 
algorithm parameters which must be 
carefully chosen to keep the level of 
probability reasonably high. 

Overview 

The input to the RANSAC algorithm is 
a set of observed data values, a 
parameterized model which can 
explain or be fitted to the observations, 
and some confidence parameters. 

RANSAC achieves its goal by 
iteratively selecting a random subset of 
the original data points. These points 
are hypothetical inliers and this 
hypothesis is then tested as follows. A 
model is fitted to the hypothetical 
inliers, that is, all free parameters of 
the model are reconstructed from the 
point set. All other data points are then 
tested against the fitted model, that is, 
for every point of the remaining set, 
the algorithm determines how well the 
point fits to the estimated model. If it 

fits well, that point is also considered 
as a hypothetical inlier. If sufficiently 
many points have been classified as 
hypothetical inliers relative to the 
estimated model, then we have a model 
which is reasonably good. However, it 
has only been estimated from the 
initial set of hypothetical inliers, so we 
reestimate the model from the entire 
set of point's hypothetical inliers. At 
the same time, we also estimate the 
error of the inliers relative to the 
model. 

This procedure is then repeated a fixed 
number of times, each time producing 
either a model which is rejected 
because too few points are classified as 
inliers or a refined model together with 
a corresponding error measure. In the 
latter case, we keep the refined model 
if its error is lower than the last saved 
model. 

Algorithm 

The generic RANSAC algorithm works as follows: 

input: 

    data - a set of observed data points 

    model - a model that can be fitted to data points 

    n - the minimum number of data values required to fit the model 

    k - the maximum number of iterations allowed in the algorithm 

    t - a threshold value for determining when a data point fits a 

        model 

    d - the number of close data values required to assert that a 

        model fits well to data 

output: 

    bestfit - model parameters which best fit the data (or nil if no 

    good model is found) 

 

iterations := 0 

bestfit := nil 

besterr := infinity 

while iterations < k  

    maybeinliers := n randomly selected values from data 

    maybemodel := model parameters fitted to maybeinliers 



    alsoinliers := empty set 

 

    for every point in data not in maybeinliers  

        if point fits maybemodel with an error smaller than t 

             add point to alsoinliers 

     

    if the number of elements in alsoinliers is > d  

        (this implies that we may have found a good model now test 

        how good it is) 

        bettermodel := model parameters fitted to all points in 

                        maybeinliers and alsoinliers 

        thiserr := a measure of how well model fits these points 

        if thiserr < besterr  

            bestfit := bettermodel 

            besterr := thiserr 

      

    increment iterations 

 

return bestfit 

 

Advantages and 

disadvantages 

An advantage of RANSAC is its 
ability to do robust estimation of the 
model parameters, i.e., it can estimate 
the parameters with a high degree of 
accuracy even when outliers are 
present in the data set. A disadvantage 
of RANSAC is that there is no upper 
bound on the time it takes to compute 
these parameters. If an upper time 
bound is used, the solution obtained 
may not be the most optimal one. 

Applications 

The RANSAC algorithm is often used 
in computer vision, e.g., to 
simultaneously solve the 
correspondence problem and estimate 
the fundamental matrix related to a 
pair of stereo cameras. 
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The solution of nonlinear operator equations F (a) = u by iterative regularization methods with determin-
istic noise has been studied intensively over the last decade. However, we are not aware of any convergence
and convergence rate results of iterative regularization methods for nonlinear inverse problems with random
noise. Moreover well-known stopping rules like Morozov’s discrepancy principle do not work in this situation.

We will present a slightly modified iteratively regularized Gauss-Newton method with the Lepskij-type
balancing principle as a-posteriori stopping rule.

We do not need any restrictive assumptions on the structure or the degree of nonlinearity of the operator
F , but only have to require Lipschitz continuity of F ′ and a sufficiently strong source condition. As a result
we obtain almost optimal rates of convergence over a range of Hölder smoothness classes.
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Summary. A new approach for finding nonlinear approximation formulas for very
high-dimensional data is presented. This method has been developed for static data
analysis, but it can be used for dynamic data analysis as well. The method is based
on linear regression, but instead of the original variables we use nonlinear terms
with these variables. Such a formula is still linear in the parameters, so ordinary
least squares methods can be applied to find the globally optimal parameters. We
use an accelerated version of genetic programming to find the optimal nonlinear
terms, and we use variable selection methods to select those terms leading to an
approximation formula which shows an optimal balance of accuracy and simplicity.
In general, evolutionary methods like genetic programming tend to produce many
individuals with low fitness. To save computation time, an early stopping strat-
egy in case of low fitness is used. The method was tested with three benchmark
data sets (the auto-mpg data set and the CPU data set in the UCI repository
http://www.ics.uci.edu/ mlearn/MLRepository.html and the friedman data set in
the KEEL repository http://sci2s.ugr.es/keel/). Although these data sets are only
low dimensional and thus not in the core application area of our method, for the
auto-mpg data set, an approximation formula has been determined, whose accuracy
is comparable to the benchmark papers, for the CPU data set, an approximation
formula has been achieved which is more exact than most of the benchmark papers,
and for the friedman data set, an approximation formula has been determined which
is more exact than all of the benchmark papers found so far.

1 Introduction

In the car industry, an engine test bench system is used which can measure up
to 1500 variables. From time to time, some parts of the measurement system
are in an invalid state, maybe because one of the sensors is overheated. To
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safe time and money, such an invalid state has to be detected as soon as
possible, and the experiment has to be aborted as soon as possible. So a
system is needed, which can detect faults.
For most of the variables measured useful expert knowledge is not available.
For this reason, only data driven methods can be used. Different methods are
available. The major challenge is that the methods have to deal with a very
high dimensionality.

The method HDFormGen (A fast nonlinear Formula Generator for
High Dimensional Data) can be used to find a nonlinear approximation
formula for very high dimensional data. To demonstrate the strength of
our approach, the following artificial data set with 201 variables and 800
entries has been constructed: The variables x1, x2, ...., x200 are filled with
independent standard normally distributed numbers. The remaining variable
(which we call y) is determined with the following formula:

y =x1 · (0.3 · x5 − 0.6 · (x3 · x5 + x2 · x6) (1)
+ 0.2 · (x2 · x4 · x6 + x2 · x3 · x7 + x3 · x4 · x5 − x5 · x6 · x7))

We want to find an approximation formula for the variable y. 1 So we want
to see if our only data driven method can find any reasonable results. After
running our algorithm for half an hour (all our results have been processed
on a 1600MHz pentium laptop) the following formula has been achieved:

y =9.4589e − 008
− 0.6 · (x6 · (x2 · x1))
− 0.6 · ((x3 · x5) · x1)
+ 0.3 · (x1 · x5) (2)
+ 0.2 · ((x7 · x3) · (x2 · x1))
+ 0.2 · (((x1 · x4) · x5) · x3)
+ 0.2 · ((x6 · x1) · (x4 · x2))
− 0.2 · ((x1 · (x5 · x6)) · x7)

This formula is nearly identical to a simplified form of the formula in 1. The
only difference is the constant 9.4589e−008, which is caused by the limitations
of machine accuracy. The most important question is: Does the algorithm still
work, when data sets containing noise have to be analyzed? To answer this
question, the data set described above is used again, but now to each vari-
able a certain amount of noise is added, before our algorithm is applied. As
noise we use independent standard normally distributed numbers, which are
divided by ten.
1 The estimated standard deviation of y is 0.81222, so it is not zero, which would

make the task trivial.
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After an average time consumption of about 4.5 hours, the following approx-
imation formula (for the noisy data set) can be achieved:

y =0.0097468
− 0.56631 · (x1 · (x2 · x6))
− 0.57815 · ((x1 · x3) · x5)
+ 0.28516 · (x1 · x5) (3)
+ 0.18876 · (x2 · ((x1 · x7) · x3))
+ 0.18276 · (x1 · (x5 · (x3 · x4)))
− 0.17787 · (x1 · (x5 · (x6 · x7)))
+ 0.18482 · (((x4 · x6) · x1) · x2)

This formula is not identical to the formulas above. But if the subterms are
compared, then we can see that all the subterms in formula 3 can also be
found in formula 2 and vice versa. So the only real differences are the exact
values of the parameters before each nonlinear subterm in the formulas. For
example for the subterm with x1, x3 and x5, we get the parameter −0.57815
instead of the parameter −0.6. This slight modification of the parameters is a
consequence of the noise that has been added to the data variables. If a data
based method is used, and if you have to deal with noisy data, then a certain
amount of error in the models achieved can never be avoided.
Conclusion: We have been able to find a formula that is ’nearly’ equivalent to
the formulas in 1 and 2. The only relevant differences are the real parameters
in the formulas. For finding the correct parameters, we use the least squares
algorithm, which finds the globally optimal parameter setting. Finally, the
correct structure of the formula is found, and the globally optimal parameter
setting!

2 The approximation formula generator HDFormGen

In this paper, the new algorithm HDFormGen (A Formula Generator for
High Dimensional Data) is introduced which is able to find an approximation
formula with nonlinear terms for a high dimensional regression data set. With
this algorithm, formulas similar to the following can been achieved:

y = β0 + β1 · x1 · x100 + β2 · sin(x77) + β3 · exp(x5/x6)

The basic idea of the algorithm is the following:

• The structure of each of the nonlinear terms in the whole formula is found
and optimized with the use of genetic programming (see [5]).

• The parameters of the formula can be optimized easily with a least squares
algorithm. This can only be done, if the formula is linear in the parameters,
so the genetic programming tool must not generate terms which contain
additional parameters.
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There is another aspect that has to be considered:
The terms that are used in the approximation formula finally shall be as
uncorrelated to each other as possible. We want an approximation formula
which is on the one hand as simple as possible, and on the other hand as exact
as possible. So we have to find the most important nonlinear terms, such that
the regression formula based on these terms is as good as possible. Variable
selection methods like forward selection have been designed to fulfill this task.
In HDFormGen a variant of forward selection is used. For this reason, the
basic concept of forward selection will be explained in the following rows:

• At first, the most important variable (or nonlinear term) is selected. This
is that variable (or term) which is correlated strongest to the actual de-
pendent y.

• Then the effects of the variables/terms selected so far are subtracted from
the original dependent y. This is necessary to avoid that variables that are
highly correlated to the first choice will be chosen again and again.

• Then, again the most important variable/term is selected.
• And again, the dependent is modified, such that the effects of the vari-

ables/terms chosen already are eliminated.
• Continue in this manner, until enough variables/terms are selected.

3 The new algorithm HDFormGen

3.1 The core of the new algorithm

In the following, the original dependent is called y. At the beginning, the
actual dependent is the original dependent yactual = y . Later yactual will be
modified. The constant term c = (1, . . . , 1)T is always the first variable that
is chosen. But this variable is not counted as real variable. The algorithm
performs the following steps:

1. An accelerated version of genetic programming (including a population of
individuals and a crossover operator) is used to generate millions of very
simple formulas. We select that formula xA which is best correlated with
the actual dependent yactual. We look only at the absolute value of the
correlation coefficient.

2. Then we modify yactual such that all the parts of y that can be approxi-
mated with the regressors already chosen are subtracted, setting yactual to
y − ŷ(c, xA). Here ŷ(c, xA) is the linear best approximation of y with the
use of the regressors c and xA. We can say, yactual is y made orthogonal
to the regressors already chosen.

3. Once again the accelerated version of genetic programming is used to
generate millions of very simple formulas. And now we select that formula
xB which is correlated strongest with the actual dependent yactual. We
look only at absolute values again.
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4. Then once again, yactual is made orthogonal to the regressors already
chosen, so we set yactual to y − ŷ(c, xA, xB).

5. Continue in this manner, until a given number of regressor terms is se-
lected or some other termination criterion is fulfilled.

3.2 The accelerated version of genetic programming - an overview

Stopping the calculation of the correlation coefficient as early as possible, when
it can be seen that the checked individual is not worth spending additional
time, accelerates the algorithm enormously. But how can this be carried out,
if we have a population of individuals and not a single individual? In the fol-
lowing lines the major steps of the accelerated genetic programming algorithm
are described.

1. Generate an initial population with popsize individuals.
2. Evaluate each individual for n1 points of the training data set and estimate

the correlation coefficient with the actual dependent by using only these
n1 points.

3. Determine the popsizesmall best correlated individuals out of popsize,
based on the estimated correlation coefficient. We look only at the absolute
value of the correlation coefficient.

4. For these popsizesmall chosen individuals the exact value of the fitness
function (i.e. the absolute value of the correlation coefficient) using all
the points of the training data set has to be calculated.

5. Produce a new generation of popsize out of the popsizesmall chosen indi-
viduals:
• Repeat the following, until we have enough new individuals. Choose

randomly two of the popsizesmall individuals and compare their fitness.
The better one is called the winner, and the other one is called the
loser. Let the winner produce two offsprings, one is an exact copy of
the winner, and the other offspring is made via crossover (as crossover
partner, one of the popsizesmall individuals is chosen, which is neither
the winner nor the loser).

• The individual which is the best so far is always copied into the next
generation (’elitism’).

• A small part of the new generation is produced in the same way as the
initial population. This is one way of avoiding the problem with local
optima. A mutation is not needed any more.

6. Go to step 2, until a termination criterion is fulfilled.

• As termination criterion, we usually take that a specific number of gener-
ations is reached.

• The parameter popsize determines, how many individuals are evolved in
the genetic programming algorithm. The parameter popsize can take any
positive integer number. The larger popsize is, the more computation time
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is needed, and the better the results are. In our experiments, a popsize of
5000 has been used successfully.

• The parameter n1 tells the algorithm, how many points are used to get
a quick estimation of the correlation coefficient. n1 can be an arbitrary
positive integer, but n1 shall not exceed the number of training data points.
In our experiments, settings of n1 = 30, n1 = 50 and n1 = 100 have been
used successfully.

• The parameter popsizesmall determines, how many individuals of the total
population are selected to be examined in detail. The value of popsizesmall

shall be much smaller than popsize, for example popsize/10.

4 Variants of the Formula Generator Algorithm Applied
To Standard Benchmark Data Sets

4.1 The data set cpu

The data set ’cpu’ can be found in the directory ’cpu-performance’ of the
UCI-repository, which can be found in the following address:

http://www.ics.uci.edu/~mlearn/MLRepository.html

Number of instances: 209
Number of attributes: 10
The data set contains the following attributes:

vendor name: string
model name: string
MYCT: machine cycle time in nanoseconds (integer)
MMIN: minimum main memory in kilobytes (integer)
MMAX: maximum main memory in kilobytes (integer)
CACH: cache memory in kilobytes (integer)
CHMIN: minimum channels in units (integer)
CHMAX: maximum channels in units (integer)
PRP: published relative performance (integer); the dependent variable;
ERP: estimated relative performance via linear regression (integer)

At first we deleted the attributes vendorname and modelname because our
algorithm can not handle strings. Furthermore the data set contains the at-
tribute ERP , which is an old estimation for PRP . So we have to delete the
attribute ERP , because we do not want to generate an approximation for-
mula by using the results of an old approximation. This would be too easy. So
finally we have only 7 attributes remaining. Before the core of our algorithm
has been run, we split the data into two parts: 70% of the 209 instances have
been randomly chosen to play the role of the training data. And the other 30%
play the role of the test-data.
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Our algorithm has been started 10 times. Roughly 3.7 seconds are neces-
sary per term for performing the evolutionary part of the algorithm. Totally
we received ten approximation formulas, with an average MAE of 23.33 de-
termined for the test data set. The worst MAE is only 25.15, and the best
MAE is 23.06. The best formula is the following:

PRP =16.344
+ 0.0032443 · (sqrtabs((MMIN · (MMAX · CHMAX)))) (4)
+ 0.7936 · ((CACH − CHMAX) − sin(CHMAX))

The MSE of this formula is 1394.9, and the RMSE is 37.348. In our standard
benchmark paper (see [7]), various different methods have been tried out. The
best method leads to an MAE of 38.0. So compared to this paper, our method
leads to a more exact approximation.

Additionally, newer papers (see [10], [12], [2] and [1]) have been found,
where the data set cpu is used.

Conclusion: In these papers, totally 30 variants of standard
methods have been tried out. Only in 5 out of 30 cases, our
approximation formula is outperformed.

4.2 The data set friedman

The data set ’friedman’ can be found in the KEEL repository, in the following
location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

In the keel repository, benchmark papers can be found. For the friedman
data set, a quite actual (2004) benchmark paper is mentioned via the abbre-
viation ’Lee04’ (see [6]).

We try to design our experiments as similar as possible to the benchmark
paper, to get comparable results. In the benchmark paper, the following is
done:

’This is a synthetic benchmark data set. Each sample consists of
five inputs and one output. The formula for the data generation is
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4

4 + 5x5
5 + ε, where ε is a Gaussian

random noise N(0, 1), and x1, ..., x5 are uniformly distributed over the do-
main [0, 1]. 1400 samples were created, of which 200 samples were randomly
chosen for network training and 200 samples for validation. The remaining
1000 samples were used for network testing.’

In the KEEL repository, the data sets are already available as described
in [6]. So we have a 200 sample training data set, and a 200 sample validation
data set, and a 1000 sample test data set. Unlike the benchmark paper, we do
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not need any validation data. So we only take the 200 sample training data
set to find an approximation formula, and we take the 1000 sample test data
set to determine the quality. As a quality measure, here the MSE is used,
according to the benchmark data.

Our formula detection algorithm has been run 20 times. Here we
need 13 seconds for each term, and 30 second for finding the total formula,
because the formula consists of two nonlinear terms, and four seconds are
needed in the non-evolutionary part of the algorithm. The best formula that
we get is the following:

out =4.8843
+ 10.1761 · (in4 + sin((in2 · (in1 + (in1 + in1)))))
− 5.3183 · (sin((in3 + (in3 + in3))) − in5) (5)

The MAE of this formula is 0.889281, the MSE of this formula is 1.23629,
and the RMSE is 1.11189. In the benchmark-paper (see [6]), the best method
leads to an MSE of 4.502. So our formula is much more exact.

Cross-validation and the data set friedman

For the dataset friedman, a tenfold cross validation experiment has been
performed. For this experiment, a 1200-sample version of the friedman data
set has been used, which can be downloaded from the KEEL repository, in
the following location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

After the cross-validation, we have to calculate the average error measures
on the test data files. We get an average MAE of 0.8394133, an average MSE
of 1.1127881, and an average RMSE of 1.0537323 .

So with cross validation, we finally get ten formulas. The formula, which
reaches the best quality on the corresponding test data set, is the following
formula:

out =4.9946
− 10.1215 · (sin(((in2 · in1) · (1.051813 · −2.92026))) − in4)
+ 20.4701 · ((in3 · in3) − ((−0.2465477 · in5) + in3))
+ 2.9015 · ((0.3611782 − (in1 · in2)) · (in1 · sin(in3))) (6)

This formula reached (on the test data set number 10) an MAE of 0.786382,
an MSE of 0.963263, and an RMSE of 0.981459627 . The name of the cor-
responding test data file in the KEEL repository is ’Friedman-10-10tst.dat’,
so everybody is invited to check the quality of the formula! It has to be
mentioned that here the best formula out of ten has been selected (via the
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test data), so we can not expected to get such a result in average. The
average qualities have been stated above, and are more important.

Conclusion: For the friedman data set, all the benchmark pa-
pers that we found so far (see [3], [6] and [11]), have been
outperformed by our method.
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