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Abstract

This paper investigates the applicability of clustering methods to perform object extraction from
digital images as they occur in industrial vision applications like surface inspection. Especially, the
ability of these methods to find non-connected objects like discontinous scratches or widespread
ink splashes is examined.

The introduction describes the problem of object extraction and the commonly used algorithm
for solving this task. In the following chapter, clustering methods, originally developed in the
fields of statistics and data mining, are presented as an alternative approach for object extraction.
In the next chapter, the previously described methods are applied on artificial as well as on real
images from various surface inspection applications and the results are discussed. The last chapter
gives a conclusion based on the gained experience and provides some outlook on future work.

Keywords: object extraction, clustering, cluster tendency, cluster validation
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1 Introduction

One of the major steps in image processing is image segmentation, which means to extract regions
from the image that correspond to the objects the user is interested in. In surface inspection,
these interesting objects are all deviations from the "perfect" part, because they may represent an
unacceptable imperfection or even a severe defect. Figure 1a shows the partial image of a thin-film
sensor as it should look like. It therefore serves as a master image. In Figure 1b an arbitrary test
image is displayed. There are two areas in the test image, which are different compared to the
master and therefore should be detected during image segmentation.

(a) (b)

Figure 1: a) Master image, b) Test image

The first step now is to calculate the absolute difference between master and test image. The
resulting values make up a difference image, where all non-zero pixels represent a deviation from
the ideal master. Figure 2 shows an 8-bit grayscale difference image derived from the sample
presented in Figure 1a and 1b. Most of the image is black, whereas the two deviating regions
consist of rather bright grayvalues.

Figure 2: Difference image.

As next step, a global thresholding, which is the simplest segmentation algorithm, is applied
on the difference image. The threshold operation sets all pixels, which have a grayvalue above
a certain level to one and the remaining pixels to zero. So thresholding produces a binary image
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with a black (0) background and a white (1) foreground, which contains the objects of interest.

When the thresholding operation was carried out successfully, the foreground of the binary
image contains multiple (interesting) objects, that should be returned individually. In other words,
the white pixels have to be grouped together somehow, in order to extract distinct regions. Typ-
ically, the objects of interest are characterized by forming a connected set of pixels. Two pixels
are considered to be connected, if they are next to each other on the rectangular pixel grid a digital
image consists of. If the diagonal adjacent pixels are excluded it is called 4-connectivity, if all 8
neighbors are considered, it is called 8-connectivity. Every set of pixels that are connected accord-
ing to either of this two definitions is called a connected component.

To obtain the individual regions, all connected components of the binary image have to be
computed. In [1] various implementations of the connected component algorithm are discussed.
The outcome can either be a list of sets of connected pixels or a colored image (aka labeled image)
with different colors assigned to the distinct objects. Figure 3 shows the result of the connected
component algorithm on the sample test image.

Figure 3: Labeled image with two objects found.

Till now is was assumed, that an object consists of a connected set of pixels. But in a variety of
surface inspection environments, non-connected objects like discontinous scratches or widespread
ink splashes can occur. Figure 4a shows an example from a CD imprint inspection. In this case the
connected component algorithm finds way too many objects (like 1090 objects as in Figure 4b).

For a human it is quite easy to find the natural groupings in the thresholded image, because he
or she is able to perceive patterns, even if they are very fragmented. So, the challenge is to exploit
new methods, able to find correctly all objects, which consist of white pixels that visually belong
together, but need not necessarily be connected.

2 Object Extraction with Clustering Methods

Clustering methods have been used in a variety of disciplines leading from statistics and numerical
analysis to data mining and machine learning. Generally speaking, clustering can find "natural"
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(a) (b)

Figure 4: a) Thresholded image, b) Labeled image (1090 objects found)

groupings (clusters) in data. Each of these clusters consist of data points that are similar between
themselves and dissimilar to those of other groups with respect to a previously choosen simi-
larity/dissimilarity measure. In other words, clustering represents an unsupervised classification
technique, that assigns each data point into a previously unknown category. A comprehensive de-
scription of clustering can be found i.e. in [2], [3], [4] or [5].

These characteristics make clustering a candidate for solving the object extraction task de-
scribed in the previous chapter. The basic idea is to consider the white pixels in the binary dif-
ference image as data points, which serve as input for the clustering algorithm. In this case, the
original task, namely the extraction of objects, becomes equivalent to the problem of finding clus-
ters in the set of data points. The question, which pixels belong together or to the same object
respectively, is now addressed by the clustering algorithm and on how it partitions the data points.

How clustering methods can be integrated in the object extraction process in shown in Figure 5.

Figure 5: Clustering methods for object extraction.

After the binary difference image has been "converted" into a data matrix, a cluster tendency
analysis checks for the presence of a clustering structure. If the image contains more than one
object, a clustering algorithm is applied on the data points in order to extract the individual ob-
jects. Finally, cluster validation techniques can be used to tune the parameters of the clustering
algorithm.
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Cluster tendency

Before applying a clustering algorithm, various tests, that indicate whether the available data pos-
sess a clustering structure at all, can be performed. These methods examine the data to see if there
is any merit to a cluster analysis or not.

In the image processing context, cluster tendency addresses the question, whether there is
more than one object in the image. In the case of a single object, clustering is not really useful.
All white pixels can be grouped together and the object extraction is finished.

A very intuitive cluster tendency test based on nearest neighbor distances is the calculation of
the Hopkins index (aka Hopkins test) as described by [6] and [7]. How the Hopkins index can
be incorporated in the object extraction application flow is shown in Figures 6a and 6b. It can
be used as a stand-alone test for cluster tendency (Figure 6a) or be combined with the connected
component algorithm (Figure 6b).

(a)

(b)

Figure 6: Verifying the existance of (multiple) objects a) one-stage approach, b) two-stage ap-
proach

Clustering algorithm

After checking the existance of clustering structures, or in other words, after having verified that
there exists more than one object in the binary image, a clustering algorithm can be applied in
order to extract the distinct objects. It’s major task is to find the natural grouping of the white
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pixels and to assign each pixel to a cluster (object).

For the object extraction task, a clustering algorithm is needed, which can detect clusters of
arbitrary shape, because the white pixel areas in the binary image can exhibit any form. After
the grouping, each white pixel should be assigned to a distinct object. In terms of clustering, a
crisp partition is needed as output. Also, if the algorithm returns a hierarchy of partitions, a cutoff
level has to be determined in order to get a single partition. Depending on the cycle times of the
application, the computational complexity of the algorithm has to be considered.

The following clustering algorithms are all capable of finding arbitrarily shaped objects in a bi-
nary image and their performance has been investigated for a variety of different object extraction
applications, described in chapter 3:

Single linkage clustering [8] represents one common variant of the hierarchical algorithms.

DBSCAN [9] is a density-based algorithm, which can handle large data sets. Because of
its definition of clusters as high density regions, it is very suitable in the object extraction
context.

Recuced Delaunay graph [10] is representing a graph-based approach.

Normalized cut [11] is a spectral clustering method.

Cluster validation

Clustering, as well as other object extraction approaches, has at least one input parameter, which
significantly influences the number of objects found by the algorithm. As in general, every image
contains a different number of objects, it is not sufficient to determine values for these critical
parameters by a trial-and-error method applied on a small set of test images. Fortunately, in many
cases heuristic methods or estimation formulas are available to set the parameters to reasonable
values for each new image to be clustered.

Another approach is to use so-called cluster validation techniques (see [12]) to determine an
appropriate parameter setting or to perform an automatic fine-tuning of estimated parameter val-
ues during on-line operation as illustrated by Figure 7a.

Here, the most feasible methods for automatic parameter tuning are the ones based on relative
criteria, as they offer the possibility to choose the best clustering scheme out of a set of schemes
according to some criterion, reflected by a so-called cluster validation (CV) index.

Figure 7b illustrates how this procedure can be incorporated in the object extraction frame-
work. After clustering with different parameter settings, the resulting partitions are rated on-line
on the basis of the CV index and the "best" partition is selected and returned as final result. The
clustering part can be implemented as concurrent processes as shown in the figure, if this is sup-
ported by the machine vision hardware setup.
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(a) (b)

Figure 7: a) Using cluster validation for parameter tuning. b) Determining the best partition with
CV indices.

It has to be kept in mind, that also the cluster validation test has to be able to handle arbitrary
shapes like the clustering algorithm itself and the computational complexity for doing the cluster
quality assessment is again an important issue.

3 Application Examples

This chapter discusses four application examples, on which the object extraction performance of
the previously mentioned clustering methods has been tested. The first one deals with artifically
created images, where the number of objects is known and can be used to evaluate the performance
of the different approaches. The other examples operate on real images, derived from various sur-
face inspection applications. Here, no expert knowledge is available about the objects actually
contained in the images, so the assessment of the object extraction quality has been carried out
simply by visual judgement.

3.1 Artificial Data

Overview

Five data sets, each containing 20.000 artificially created difference images, have been available
for testing various object extraction methods. The images have a size of 128x128 pixels and are
grayscale, hence have to be binarized by a threshold operation. Here, in order to include all devi-
ating (non-zero) pixels, the threshold value was set to zero. The objects contained in the images
mostly possess ellipsodial and compact shapes. Since the number of objects for each image is
known, a quantitative evaluation of the clustering methods, based on the difference between the
objects found and their real number, is possible. However, the exact object locations are not avail-
able and therefore the groupings could not be checked on a pixel-wise basis.
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Evaluation

First, the performance of the Hopkins index in detecting images with single clusters was tested. In
Table 1 the results are listed.

Performance of Hopkins Index (Threshold=0.6)
# images # single clusters found [%] overdetected [%]

ArtifData01 19224 1213 99.34 0.29
ArtifData02 18579 2468 97.93 0.66
ArtifData03 19172 2337 89.52 0.13
ArtifData04 19819 2018 83.60 1.02
ArtifData05 18211 802 81.67 0.08

Table 1

Column #images shows, that not all of the 20.000 images per set were used, as some of them
have too less white pixels to compute the Hopkins Index. In #single clusters the amount of images
actually containing a single object is listed. The following column shows the detection rate, which
reflects the percentage of images with a single object correctly identified by using the Hopkins in-
dex. Not surprisingly, for ArtifData01 the percentage is very high (99.34%), because the threshold
value of 0.6 was choosen according to maximize the detection rate for this data set. The other data
sets also perform quite well with rates above 80 %. It has to be mentioned, that even if the Hopkins
Index fails in detecting an image with a single object, the subsequent clustering algorithm (at least
all methods used here) is able to handle and detect a single object. In the rightmost column the
overdetection rate is listed, which represents the percentage of images spuriously considered to
contain one object. In this case, no more clustering (object extraction) is carried out after the cal-
culation of the Hopkins Index and the white pixels are incorrectly grouped together. Fortunately,
here the overdetection rates are very low (except for ArtifData04).

When evaluating the different clustering approaches, the parameters of the algorithms were
set to fixed values or determined by automatic procedures.

In order to quantify the object extraction performance, the number of objects found was com-
pared with their real number. Table 2 shows the mean absolute error (MAE) between the number
of objects found and the real number of objects. Hence, it addresses the question, how the clus-
tering over- or underestimates the number of objects on an average. In nearly all cases except for
ArtifData04 the clustering algorithms show a smaller error than CC. In particular RDG, DBSCAN
and NCUT reduce the MAE significantly.

Of course, the results presented so far can only give a hint on how good an object extraction
methods performs, since only object numbers are compared here. Therefore on the following
pages two example images illustrate the actual grouping of the white pixels according to the dif-
ferent approaches1.

1The colors, used to mark the objects found, have no meaning and can differ between the clustering algorithms even



3 Application Examples 8

MAE between number of real and extracted objects
CC HC-SL RDG DBSCAN NCUT

ArtifData01 1.45 1.20 0.58 0.50 0.26
ArtifData02 2.07 1.16 0.66 0.58 0.41
ArtifData03 1.64 1.81 1.27 0.69 0.67
ArtifData04 0.93 1.59 1.17 1.06 0.92
ArtifData05 2.74 2.33 1.98 0.96 0.76

Mean 1.76 1.62 1.13 0.76 0.60

Table 2

Conclusion

In the case of the five artificial image data sets, clustering methods perform quite well and are
superior to the connected component algorithm. This outcome is not surprising, since the objects
contained in the images are very nice in terms of compactness and simplicity of shape.

when the objects have been extracted identically.
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Figure 8: Here a thresholded artificial image with six objects, consisting of connected pixels, is
shown. Since all clustering algorithms agree with the result of the connected component algoritm,
it can be concluded that clustering is able to find compact objects as good as CC does.
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Figure 9: In the second example, the image contains nine objects. As some of them consist of
pixels, which are not connected, the connected component algorithm finds too many objects. By
contrast, all clustering approaches extract the correct number of objects.
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3.2 Egg Inspection

Overview

In this real application hen’s eggs are inspected in order to identify dirt and yolk, which might
cover parts of the eggshell. The images have a size of 313x262 pixels and are grayscale. There
are three sets with 4342 images available: one with dirt only, one with yolk only and a third one
with both kinds of defilement. Due to the nature of dirt and yolk, their shape can be arbitrary. The
correct number of objects in the images is unknown.

Evaluation

Here the evaluation of the clustering approaches was carried out by visual inspection of the results.
On the following pages, two examples are given to demonstrate the object extraction performance
of the clustering algorithms. The parameters were set to fixed values or determined by automatic
procedures.

Conclusion

As the object shapes are rather simple (similar to the artifical images from the previous section), all
clustering methods produce meaningful results and again do better than the connected component
algorithm.
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Figure 10: In this case, yolk covers a part of the egg. As the defilement is unconnected, CC finds
a too large number of objects. By contrast, the clustering algorithms show better results. HC-SL
and DBSCAN return a rather fine clustering, whereas RDG and NCUT produce a coarse one.
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Figure 11: In this image, the challenge is to extract the arc-type structure at the egg’s border
correctly. As it consists of non-connected pixels, the connected component algorithm fails here
as expected, but three of the clustering algorithms are able to successfully detect this thin, curved
object.
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3.3 CD Imprint Inspection

Overview

The images in this application example come from a CD imprint inspection process. In order to
guarantee the quality of the imprints, a color matrix camera is installed in the production line,
which takes an image of each CD. These images are compared with the image from the corre-
sponding fault-free master CD and each deviation is marked as a probable defect. The outcome
is a grayscale image of size 768x576 pixels, where the graylevels correspond to the amount of
deviation from the master. Obviously, the defective areas have arbitray size and shape and often
exhibit some kind of scattered structures, i.e. like they occur in the case of ink splashes. After a
(hopefully) successful object extraction, features are calculated for the objects found. They serve
as input for a classfier, which decides whether the imprint is okay or has to be rejected. The whole
process from image aquisition to the final classification result takes place in less than half a second.

Evaluation

Before clustering could be performed, the grayscale images were binarzed with a threshold op-
eration using a threshold value of zero. Because the image size is quite high, the amount of
white pixels in the binary image sometimes gets too large for the current implementation of the
clustering algorithms. In these cases, a random selection of points is applied prior to the clustering.

The parameters of the algorithms again were set to fixed values or determined by automatic
procedures.

As the number of objects is unknown, the object extraction performance was judged by visual
inspection of the results. In many cases even an expert was not able to decide which clustering
performs best, since various ways of grouping pixels seemed to be meaningful.

It turned out that the choice of the parameter values strongly influences the quality of the ob-
ject extraction. Figure 12 shows the impact of varying the cutoff value when using hierarchical
clustering. In Figure 12a the cutoff was automatically set according to a rule of thumb, which
leads to three objects. When the cutoff is changed manually to a higher value, much better results
were obtained as it can be seen in Figure 12b.

Also the automatic setting of DBSCAN’s ε parameter via an estimation formula produces
sometimes very unsatisfying results, as illustrated by Figure 13. When the value is set according
to the formula, far too many objects are found (figure 13a). After a manual tuning of ε, the object
extraction results become nearly perfect (figure 13).

The same observations were made for the parameters of the RDG algorithm.
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(a) (b)

Figure 12: Using HC-SL with a) automatic cutoff = 44.8 (3 objects) and b) manual cutoff =
8.0 (14 objects).

(a) (b)

Figure 13: Using DBSCAN with a) automatic ε = 7.6336 (97 objects) and b) manual ε = 20.0 (8
objects).

On the following pages two examples are given to demonstrate the object extraction perfor-
mance of the clustering algorithms on imprint images with defects of various shape.

Conclusion

For the CD imprint images, the connected component algorithm fails completely, because the
objects in this application are highly discontinous and scattered. By contrast, all clustering algo-
rithms presented here, have the potential to perform a meaningful object extraction even in this
tough case. However, in practice the applicability of these approaches depends strongly on how
an appropriate parameter setting can automatically be determined for each image.
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Figure 14: In this case all clustering algorithms work well, but produce different pixel groupings
from very fine (DBSCAN) to coarse (HC-SL). Which result is best, is a matter of argumentation.
The arc at the border of the CD is extracted perfectly by all methods. Again, the connected
component algorithm returns worse results.
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Figure 15: This image contains many objects of different shape. Only DBSCAN and NCUT
produce satifactory results, while HC-SL and RDG seem to fail here. As previously mentioned,
this is caused by an improper automatic parameter setting. If the parameter values are tuned
manually, both approaches can keep up with DBSCAN and NCUT (see Figure 12). As expected,
the connected component algorithm identifies too many objects.
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3.4 Thin-Film Sensor Inspection

Overview

The last application deals with images from the prototype of an automatic inspection system for
thin-film sensors, where defects like holes or scratches have to be identified. Here, a grayscale line
camera with 2048 pixels, mounted on top of a microscope, together with a motor-driven scanning
stage represent the main components of the image aquisition equipment. As light source, the
bright field illumination of the microscope is used. Again, the obtained images are compared with
an image of a fault-free master part, in order to detect any deviations. Like in the case of the CD
imprints, the objects to be found can have arbitrary size and shape. When a defect, i.e. a scratch,
streches out across different sensor structures, it is very often split up in a couple of pieces, which
have to be grouped together again by the object extraction algorithm.

Evaluation

As the original images from the inspection process are very big (up to 1500x9550 pixels1), the
resolution was decreased (down to one-third) and only a small (interesting) area of 256x256 pix-
els was selected for evaluation. The thresholding operation to binarize the grayscale images, was
carried out manually, in order to suppress any undesirable noisy artifacts.

The parameters of the clustering algorithms were set to fixed values or determined by auto-
matic procedures.

Figure 16 gives an overview on the two example images, discussed on the following pages.
The left column shows the (probably) defective test images, the right column illustrates the cor-
responding fault-free master images. As the number of objects is unknown, the object extraction
performance was again judged by visual inspection of the results.

Conclusion

Due to the huge variety of possible defects, only some representative cases could be investigated.
But the results obtained so far, seem very promising. The clustering algorithms again outperform
the simple connected component approach and are able to produce resonable groupings, if the
parameters can be determined correctly during on-line operation.

1Not the full width of the line camera (2048px) is used here because of vignetting.
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(a) (b)

(c) (d)

Figure 16: The two test images (left column) with their corresponding master images (right col-
umn).
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Figure 17: Here, mainly tilted, discontinuous lines are present together with a single compact
object in the lower middle. Except RDG, which obviously fails to automatically find the right
threshold, all clustering approaches produce meaningful groupings, while the connected compo-
nent algorithm returns far too many objects.
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Figure 18: The last image contains three small compact objects on the right and a single blob-
shaped object on the left, which has been split up into serveral pieces. Of course, the connected
component algorithm is not able to merge the individual pieces together. But all clustering ap-
proaches recombine correctly the parts of the blob into a single object.
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4 Conclusion and Outlook

In this paper the applicability of clustering methods for object extraction from images, as they oc-
cur in industrial machine vision applications, has been investigated. After an overview about the
object extraction task and its specific challenges, a possible way to incorporate clustering meth-
ods in the object extraction process has been presented. Starting with cluster tendency analysis
to verify the existance of objects in an image, followed by clustering algorithms for the object
extraction itself, the discussion finally leads to cluster validation techniques used for determining
optimal parameter settings. After that, most of the methods presented, have been evaluated on
artificial as well as on real images.

When using clustering methods in this field of application, one has to deal with two major
challenges: their high computational cost (depending on algorithm and implementation) and the
problem of automatically finding an optimal parameter setting. Especially, the latter turns out
to be of utmost importance, since the performance of most of the clustering algorithms depends
strongly on the choice of their parameters. So, future work will have to put its main focus on these
two issues.

Also the object extraction quality still can be improved by enhancing the clustering itself. In
the following, a selection of ideas is listed:

Extension of the data set to be clustered (currently consisting only of pixel coordinates) by
adding extra information like the pixel’s color value in the test and/or master image.

Switching to object features instead of pixel coordinates. Here, after inital objects are iden-
tified by CC, features like the center of gravity, orientation, roundness, etc. are calculated
and used for clustering.

Incorporation of application-specific background knowledge in terms of clustering con-
straints [13].

Combination of different clustering results using so-called cluster ensembles [14].

To summarize, using clustering methods for object extraction, especially when the objects to
be found are disconnected and wide-spread, seems to be a very promising and feasible approach.
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Abstract

There is a broad variety of clustering algorithms applied
on both text as well as spectroscopic test data. Hierarchi-
cal clustering methods hold the advantage of good inter-
pretability and choice of depth of clustering. The two areas,
text mining and spectral analysis are rather distinct but both
high dimensional in the feature space. It is tried in this short
paper to enlighten the possibilities of common methods.

1 Introduction

With increasing data volume available, the task of
organising it in a sensible way is becoming more and more
important. Often the supplied data is unlabelled as it is
easier to obtain data than to label it. The latter generally
requires a certain amount of expertise which is not always
at hand. Therefore, coping with unlabelled information
shall be the issue here.
In machine learning organising unlabelled data is called
unsupervised classification or clustering as opposed to
supervised classification. In supervised classification some
training data is required, i.e. the classes and a sufficiently
big amount of samples from these classes have to be known
beforehand to build the classifier. The most prominent
among the applied algorithms in this area are decision trees
and Support Vector Machines (SVM). [4].
On the other hand in unsupervised classification the
classes are not known, neither in shape, nor position,
nor number [11, 2, 20]. All this information needs to be
derived from the clustering algorithm. There is a great
variety of algorithms for unsupervised classification such
as K-means, neural networks, single and complete link,
and more. Considering the multitude of different kinds of
data, unsupervisedly finding these inherent characteristics
and groupings is no easy task. Therefore like in supervised

learning expertise is needed. It is put into deciding which
method to use for which set of data or how to preprocess
the data in an appropriate way [20, 11].
Another approach to classification is to not sharply divide
the algorithm in supervised and unsupervised learning but
to leave room for semi supervised methods [9]. In this
approach, a certain amount of labelled data is given but
relatively small in comparison to the unlabelled patterns.
Research is being done on how to adapt existing algorithms
to this problem. As a result there are for example transduc-
tive SVM [12]. It is a drawback though, that usually it is
presumed that the labelled data contains at least one sample
from each evolving class.

In this paper ideas on how to cluster different sets of
data are developed. On the one hand there is clustering
of spectral data obtained from Terahertz measurements of
chemical compounds. On the other hand high volume sets
of text documents. In both cases have the high dimen-
sionality in common, therefore in introducing some basic
clustering methods in this paper, there shall be a focus on
methods that are applicable on high dimensional data.

2 Methods

To build a sensible and comparable method for data
grouping, the clustering algorithm itself is only one step in
a process. In general the steps are divided into feature se-
lection, finding an appropriate proximity measure, the clus-
tering, and evaluation of the clustering [20, 11]. The steps
shall be briefly described.

2.1 Feature Selection

Feature selection consists of deciding which are the rel-
evant features to represent the given pattern. For example
it has to be considered whether to use binary or metric at-
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Figure 1. Steps of K-means Algorithm.

tributes. Taking into account how the patterns are obtained
further preprocessing or denoising might be sensible [19].
If the dimensionality is very high, means of reducing the
dimensionality should be taken [14]. Preprocessing takes
an important role within the clustering task and usually re-
quires some kind of expert knowledge. However it is very
dependent on the application [15].

2.2 Proximity Measure

As in clustering one seeks to group similar things close
together and different things far apart, so a measure of sim-
ilarity or distance has to be defined. The search of the right
similarity measure varies in importance depending on the
clustering algorithm and therefore is often combined with
the search of the clustering algorithm [20].

2.3 Clustering Algorithms

This work shall focus on this aspect. A short review of
the relevant methods shall be given here.
There is a big variety of clustering methods in use and an
even bigger variety being developed. In literature methods
are usually categorised at least in hierarchical and parti-
tional clustering.

2.3.1 Partitional Clustering

In partitional clustering the goal is to distribute the patterns
on different classes. Based on some distance measure the
data is assigned to its nearest cluster. The most important
representative of these algorithms is the K-means algorithm.
In its classical version, illustrated in figure 1, the number K
of clusters has to be known beforehand. The initial K cluster
centres are distributed randomly over the feature space and
the patterns assigned to their closest centre. Of the obtained
clusters new centres are calculated and the whole process of
assigning the patterns to the new cluster centres iterated and
so on.

There are different implementations of this algorithm.
There are also versions in fuzzy clustering [5]. Although
in worst case scenarios K-means has exponential perfor-
mance [1] in average case it works quite well (complexity
O(NK)) and gives good results [3] also in high volume
data sets. Furthermore it is quite easy to implement but
there are some drawbacks. The strong dependence on the

Figure 2. Random Net of Nodes Self Organ-
ised by Uniformly Distributed Input Patterns.

similarity measure leads to a confrontation with the “curse
of dimensionality” [2]. The algorithm is sensitive to outliers
and unstable. Also the choice of the initial cluster centres
is an important issue of research. Most of these drawbacks
have been worked on. In general, K-means is one of the
best researched clustering algorithm.

Artificial neural networks are an attempt to find an anol-
ogon to neurons in the human brain which are capable
of coping with high dimensional data mapped on a one-
dimensional neural node structure. There are different ways
to initialise such a neural network. One important way are
the Self Organizing Maps (SOM) [14, 3]. Here a one or two
dimensional net of a certain size is initialised with weights
attached to each node. The weights have the same dimen-
sion as the features of the input data. One by one the in-
put data is mapped onto the nearest node. The node and
its neighbours are then assigned new weights depending on
the feature values of the assigned input pattern. This is done
in many iterations and results in a net structure with differ-
ent concentrations. In figure 2 it is shown how the aspect
of a randomly given net iteratively changes in SOM. An-
other important algorithm is the perceptron algorithm [16].
It usually consists in an input layer of nodes, a hidden layer,
and an output layer. The feedback, i.e. the reweighing, is
done in the hidden layer.

2.3.2 Hierarchical Clustering

In hierarchical clustering the given patterns are initially ei-
ther all assigned to one group or each one to an own group.
They are then getting clustered by splitting (divisive) the
farest apart or uniting (agglomerative) the closest classes
until finally all patterns are in seperate classes or all in the
same class respectively. The basic agglomerative methods
are single link and complete link. In these methods the dis-
tance between two clusters is defined as the minimum or the
maximum distance of its cluster points respectively [2, 11].
As a result of hierarchical clustering one gets a so called
dendrogram, as is shown in figure 3, which shows the point
of the algorithm where patterns are united or divided.
These algorithms work well for different kinds of features
and similarity measures, but it is hard to find a termination
criterion and usually the results are not revisited [6]. Also
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Figure 3. Patterns Clustered by Single-Link
Method to a Dendrogram.

in classical methods the scalability is quite bad.
In grid based methods the main idea is to put a grid over the
input data and eliminate grid cells which contain less data
points than a certain threshold. By merging neighbouring
cells again, the clusters are obtained. The basic grid based
method suffer from the curse of dimensionality as the data
often is too sparsely distributed in some areas. The hierar-
chy is achieved by using different sizes of grid cells.
A relatively new approach in hierarchical clustering is the
Balanced Iterative Reducing and Clustering using Hierar-
chies (BIRCH) Algorithm [21]. It is especially designed
to handle large data sets. It puts a major part of its calcu-
latory cost in the data uploading phase. In this phase the
data is grouped in a feature tree structure in dense sub clus-
ters which represent the data in the further process. The
following clustering algorithm usually is agglomerative hi-
erarchical [20]. Thus it is fast, can handle noise and does
not require much memory.

2.4 Evaluation

In nearly all these methods, some more than others, sev-
eral problems have to be faced. In clustering in general there
is the problem of scalability, order dependence, the valida-
tion of the clusters, the curse of dimensionality, the com-
putational complexity of the algorithms and how they deal
with new data i.e. if incremental work is possible [18].
Thus a big part of evaluating the clustering is judging if
the algorithm works, i.e. if it gives any formally sensi-
ble result and how fast this result is given. If the result,
when achieved, is correct, is usually evaluated by testing
the method with labeled data.

3 Data

During this work, two sources which will provide data
samples are considered. On the one hand there is a coop-
eration with a governmental program, called ORDO (Orga-
nize your Digital Life). Other data will be provided by the
Fraunhofer Institute for Physical Measurement Techniques

(IPM).

3.1 ORDO

In this project it needs to be dealt with text documents
like for example patent data. Organising big amounts of
text documents is known as data mining. Mostly statistical
methods are used to achieve a structure. Here this task shall
be looked upon as a case of high dimensional data clus-
tering. The dimensionality is given by the amount of used
words. In working with the high volume raw data, it has
to be coped with 10.000s of dimensions. There have been
different attempts to handle this amount of data.
K-means is a common device. It also has been tested on
unpreprocessed patterns. Without any dimensionality re-
duction key words of a set of 6.000 words could be iden-
tified [11]. In another approach an adaptation of the SOM
has been developed to cope with high dimensional high vol-
ume data [14]. This was tested on a data set of more than
6.000.000 patent abstracts. Preprocessing like dimension-
ality reduction had to be done. The resulting map had an
accuracy of about 60% which requires human post process-
ing.
Nevertheless this shows that the SOM algorithm works on
such data amounts and gives evaluable results. Grid based
methods, like BIRCH, are not so easily applicable, because
they usually require a metric input space [21, 2], which is
not given here.
Hierarchical methods, as mentioned before, have the disad-
vantage of bad scalability. A new promising method in clus-
tering seems to be the Frequent Itemset based Hierarchical
Clustering (FIHC) [8] where frequently appearing itemsets
are identified and the patterns are assigned to the itemset
which they contain with the highest score. Finding the item-
sets is a well researched method from data mining. The fur-
ther clustering works with hierarchical method. FIHC was
evaluated on common test data and emerged as being more
accurate, efficient and scalable than its competitors in clus-
tering high dimensional, high volume text documents [7].

3.2 IPM

The Fraunhofer IPM investigates in the relatively new
area of Terahertz spectroscopy. Terahertz waves cover the
frequencies between infrared and microwave, that is 0.3 to
20 THz. For a long time it was not possible to measure
these waves due to lack of power or sensitivity of transmit-
ter and receiver respectively. Terahertz waves will proba-
bly increase in importance over the next decades. Reasons
for their importance are, that they are non ionising which
means that they do not change or influence the materials
which are exposed to them. The radiation is not absorbed
by cloth, paper, wood, plastic or ceramics. The last aspect
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Figure 4. Spectra of salicylic acid and As-
pirin. Fourier transformed and plotted rela-
tive to a reference measurement. Both spec-
tra seem quite similar. In quality control one
would want a machine to be able to differ-
entiate these two, i.e. to find characteristics
which Aspirin do have and salicylic acid does
not.

makes it especially interesting for security and quality con-
trol. On the other hand absorbing materials are metal and
water. Another aspect is that chemical compounds do have
a characteristic absorbance spectrum. Therefore it is theo-
retically possible to detect chemical compounds in an item
without destroying or changing it. For further information
on the chemical and physical sides of Terahertz measure-
ments see [10, 17].

The cooperation with the IPM will focus on latter aspect.
The relevant spectra have not yet been all measured and
even less been categorised due to the newness of the meth-
ods. Until now, they mainly get processed by mere iden-
tification and manual comparison of the major peaks. The
goal of a cluster analysis would be to identify categories of
compounds and finally the compounds themselves. It is im-
portant to use methods that are working incrementally, as
there will be new data obtained constantly.
Several methods have been applied to cluster spectral data.
Before the actual clustering can take place there usually is
some preprocessing done to reduce noise and get better re-
sults. Instead of using the raw data, some Fourier or wavelet
based noise reduced data is considered [19]. Noise reduc-
tion will be of special importance as Terahertz radiation is
absorbed by water and thus very sensitive to humidity in the
measure space. Clustering these spectra is a special case of
clustering time series data. In general, time series data does
not differ much from general high dimensional data. The
special characteristics of it being time series data are put
into the preprocessing and feature selection [15]. So sim-
ilar methods as described above are applied. A difference
to text document clustering is that spectral data features are
not binary but metric. Nevertheless the feature selection is
one of the essential parts here as well. Usually the consid-
ered features are the peaks of the spectra. To find relevant

ones there are different algorithms in use. For further infor-
mation on that see [13].

4 Further Work

There seems to be a general agreement in research on
unsupervised classification, that every test case needs to be
treated with a special algorithm. Although many algorithms
are used for different kinds of data, there is still a great lack
of comparison between these methods. Therefore the area
of methodical investigation of differences, advantages and
drawbacks of the methods needs to be further researched
on.
It should be surveyed whether there exists a possibility to
shift the special needs of the different data sets to prepro-
cessing and feature selection. Therefore it will be tried to
regard both the IPM and the ORDO test data as special cases
of high dimensional samples.
We will focus on hierarchical clustering methods, as the
coarseness of the clustering can be influenced and the
amount of classes does not have to be determined before.
Another aspect is, that there are promising developments
in coping with scalability as for example the BIRCH and
the Frequent Itemset based Hierarchical Clustering (FIHC)
algorithms. In the latter it could be tried to find relevant
peaks as much as a analogon to the frequent items used in
FIHC. The research on finding peaks is a topic in mass spec-
troscopy already [13].
The missing possibiliy to work incrementally is still the ma-
jor drawback of hierarchical clustering [8]. The possibilities
in this area should also be further investigated.
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Abstract

The level of perfusion is routinely analyzed from the level of opacity in car-
diac X-ray angiograms. We propose an image enhancement method for angiogram
sequences by motion compensation and background subtraction. Moreover, we
extract a time-series describing the opacification in a given region-of-interest and
quantify perfusion by a toxicological model to automatically assign TMP opacity
level values [4]. The effect of background subtraction to angiogram enhancement is
tested as well as the performance of region tracking based on non-rigid alignment,
or the model used for quantification. The tests are performed on clinical data.

1 Introduction

We analyze a cardiac X-ray angiogram sequence in order to quantify microvascular in-
juries resulting from myocardial infarction on the TMP scale. The aim is to develop
a simple to use semi-automatic or fully automatic method to accomplish objective
measurement of perfusion, as opposed to currently used observer-dependent visual
inspection.

Cardiac angiogram sequences have four different phases [1] which are: inflow when
the dye enters the arteries, complete state when the arteries are fully opacified, washout
when the dye leaves the arteries and venuous phase when it enters the veins. An exam-
ple of an input image can be seen in Figure 3 (left). For our algorithm we need at least
the first three phases to be present in the data. During the inflow or the complete state
phases the opacity of microvasculature increases, and depending on how much and
how long the opacity persists we can determine the level of perfusion for small vessels
and thus also the level of damage. In this work we present a method to extract curves
describing the time course of the opacification and apply a perfusion model to these
curves.
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2 Methods

The proposed method is based on image registration to compensate heart motion.
Registration is followed by background estimation, search for matching cardiac cycle
frames, region-of-interest (ROI) tracking and the quantification itself.

2.1 Motion compensation and background subtraction

For movement compensation, we use a non-rigid image registration method where
deformation is represented as a B-spline transform [7, 8]. Multi-resolution is used in
both image and transformation space to improve speed and robustness, specifically
Gaussian pyramids and B-spline pyramid. The alignment error is measured using
a SSD-criterium which is optimized by L-BFGS optimizer. Non-rigid registration is
initialized by translational alignment which compensates the table shifts, if present.

After registration, we estimate the background as the mean intensity image over all
frames in the aligned sequence:

n∑

k=0

B(~x, j) = I (Tj,k(~x), k)

where I(~x, k) is the k-th frame and Tj,k is the deformation between frames j and k,
found in the preceding step. Subtracting the background removes static objects and
emphasizes opacity changes, see Figure 3 (right), similar to digital subtraction angiog-
raphy (DSA).

Unfortunately, the registration yields alignments with varying quality. We therefore
propose to take only frames which are well aligned with the current frame to get bet-
ter results. A chance for a good alignment is bigger for frames pertaining to the same
phase of the heart beat (systole, diastole) as the current frame – we call such frames
matching frames. We use the fact that the heart tissue is periodically stretched and com-
pressed which shows as different intensity levels. For each frame, we search for a set
of matching frames, one in each heart beat. Heart rate is estimated from the periodicity
of the image mean intensity

∑
~x I(~x, j) denoted by r. More specifically, we estimate the

heart beat frequency f̂ as the most prominent frequency of r after applying a high-pass
filter H using Fourier transformation (Figure 1):

f̂ = argmax
f

R(f)H(f) where R(f) = FFTt(r)

Alternatively, we could obtain f̂ from simultaneous ECG. However, in our case
ECG data is not available.

2.2 Opacity curves and perfusion model

The opacity changes are evaluated inside the ROI Ω(j) which is set by user in one
frame. Thanks to known inter-frame deformations T we can track the ROIs throughout
the sequence.

Ω(j) = Tk,j(Ω(k))
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Figure 1: Heart rate estimation from the image mean intensity.

Warped ROIs can be further adjusted by the user. We have observed that it is better to
use a ROI from a matching frame than from an arbitrary frame.

An opacity curve describing time evolution of the mean opacity in the ROI is ex-
tracted as follows:

q2(j) =

∫

Ω(j)

I(~x, j)d~x

/∫

Ω(j)

d~x

By analogy we extract an opacity curve of arteries q1. The arteries are segmented au-
tomatically using a modification of Frangi’s vesselness filter [3, 6]. And next to obtain
contrast agent transition rate between arteries and the ROI, the two curves are fitted
with the following compartment model [2]:

q̇2(t) = d (q1(t− td)− q2(t))

where d is a transition parameter and td is a delay between the two curves (Figure 2).
TMP perfusion levels are exponentially related to the parameter d.

3 Results

The proposed method was validated with sequences obtained from patients at the hos-
pital Na Bulovce, Prague, Czech Republic. Selected sequences are 8 bit 480x480 pixels,
containing 75–100 frames, 12.5 frames per second, produced by a single-plane X-ray
angiographic machine Philips Integris H. In the first experiment, tracked ROIs were
compared to manually defined ROIs. When initialized in a single frame the mean
overlap between automatic and manual ROIs was 59±6%, significant improvement to
84± 7% can be achieved when initializing along a complete heart beat.
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Figure 2: Compartment model with predicted ROI opacity curves for given arterial opacity
curve and various transition parameter values.

The second experiment (Figure 3) shows that background subtraction significantly
improves readability of the images. Using only matching frames in background esti-
mation gives better results as we exclude poorly aligned frames, and thus a sharper
background is obtained. Also using less frames accelerates the algorithm.

The third experiment shows results produced by the perfusion model applied to
real data (Figure 4).

We implemented an interactive tool containing the described method in C++ using
the ITK toolkit [5]. Registration is computed offline to permit interactive exploration.

4 Conclusions

We have proposed a method to enhance angiographic sequences by automatic align-
ment and background subtraction and to extract opacity curves for user-selected ROIs.
This means easier and faster visual classification as well as it enables the proposed
semi-automatic perfusion level estimation. As far as we know, there are no other meth-
ods that deal with coronary opacity quantification. Since registration is essential to
our approach, a better image registration technique less affected by auxiliary objects
(catheter, electrode) and objects not important for our application (ribcage) would im-
prove the results.

Further details can be found in [6].
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Genetic Programming and System Identification

Evolutionary computation is a subfield of computational intelligence that uses concepts inspired by nat-
ural evolution: Solutions to a given problem are represented by individuals of a population of solution
candidates, and these individuals evolve iteratively by repeated selection of parents for producing new in-
dividuals. One of the most famous evolutionary techniques is the genetic algorithm, a global optimization
technique using aspects inspired by evolutionary biology such as selection, recombination, mutation and
inheritance. Genetic programming (GP) is an extension to the genetic algorithm that is able to auto-
matically search for computer programs that solve given problems. The so-called GP cycle [3], shown in
Figure 1, represents GP’s iterative concept of repeatedly creating and testing programs in order to obtain
programs that are able to solve the given problem situation.

In principle, system identification denotes the generation of mathematical models for systems based
not on a priori knowledge, but rather on measured data; the result of a system identification algorithm
consists in a mathematical description of the behavior of the analyzed system. In the context of our
work we concentrate on system identification techniques based on genetic programming: Mathematical
expressions are produced by an evolutionary process that uses the given measurement data; what we want
to get in the end is a formula that fits the given data as well as possible. Since system models are identified
by evolutionary processes, this field is also referred to as evolutionary system identification.

 

Figure 1: The genetic programming cycle.



In general, it is well known that every model is characterized by its formula structure and of values
(parameters). System identification actually implies both, but usually the definition of the structure is
considered either obvious or as the less critical issue, while the consistent estimation of the parameters
especially in presence of noise receives the largest part of the attention. All this is quite understandable
in the case of linear systems - the structure of a model exhibiting the same input/output behavior as the
system under examination is in some sense at most a “multiple” of the actual structure - but is completely
misleading for nonlinear systems. Therefore, while many scientists consider system identification as one of
the most important research directions, in practice, however, the largest part of the nonlinear identification
community has been working on theoretical questions or on the parameter identification of specific classes.
For practical aspects, this boils down to setting up a list of candidate models and picking the best one - a
procedure which is both time-consuming and hardly optimal. Using genetic programming for data based
modeling brings along the advantage that we are able to design an identification process that automatically
incorporates variables selection, structural identification and parameters optimization in one process. The
function f which is searched for is not of any pre-specified form when applying genetic programming to
data based modeling; during the GP process, low-level functions are combined to more complex formulas.
Usually, standard arithmetical functions such as addition, subtraction, multiplication, and division are in
the set of functions, but also trigonometric, logical, exponential, and other more complex functions can be
included.

   

 Figure 2: Left: Dynamic model for NOx exhaustions of a BMW diesel engine, right: Static classification
model for a medical benchmark problem (Wisconsin data set, UCI repository).

Implementation of GP in HeuristicLab

Since 2002, members of the Heuristic and Evolutionary Algorithms Laboratory have been implementing the
optimization framework HeuristicLab, a paradigm-independent and extensible environment for heuristic
optimization. For this plugin-based framework a comprehensive implementation of GP based system
identification has been developed; this implementation has been used extensively for testing algorithmic
enhancements, especially concentrating on the following application domains:

• Analysis of nonlinear dynamic, mechatronical systems: In cooperation with the Institute for De-
sign and Control of Mechatronical Systems at Johannes Kepler University Linz, Austria, we have
intensively done research in the field of data based identification of models for the NOx and soot
exhaustions of BMW diesel engines.

• Analysis of medical machine learning datasets: We have also intensively used our GP implemen-
tation for developing classifiers for machine learning problems, especially concentrating on medical
classification problems in which the goal is to develop rules that can be used for classifying the health
status of patients.



Figure 2 shows two labeled rooted structure trees representing mathematical models and their evalua-
tion on a time series and a classification data set.

One of the most important factors that have enabled the high quality results documented in our articles
surely is the use of strict offspring selection (OS). As is schematically shown in Figure 6, the main idea
here is that individuals are (after being created and evaluated) compared to their own parents; they are
designed to become a part of the next generation’s population if and only if they are (in terms of solution
quality) better than their parents. In [1], for example, basics and empirical results showing the effects of
this enhanced selection scheme are described.
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Figure 3: Offspring selection (left: original OS as published on [1], right: strict OS).

We have used our GP implementation for the HeuristicLab framework for identifying models for various
domains; these applications include the following ones:

• Analysis of technical systems

– Modeling the emissions of diesel engines

– Prognosis of the quality of steel production products

• Analysis of bio-medical data collections

• Sales prognosis

• Generation of priority rules for production planning and optimization

In [6] a summary of respective research results in these application domains and references to respective
publications can be found; for an overview of publications of the HEAL research group please see the
HeuristicLab homepage1.

Analysis of Population Dynamics in Genetic Programming

Of course, the use of extended selection concepts and other additional optimization phases (for parameter
optimization or pruning) has strong effects on genetic processes and internal process dynamics. There
have already been a lot of theoretical investigations of process dynamics in GP: After several ad-hoc
engineering GP approaches which were developed and also published with great success in the 1990s, there
was an increasing interest in how and why GP works. Even though GP was applied successfully for solving
problems in various areas, the development of a GP theory was considered rather difficult even through
the 1990s. Since the early 2000s it has finally been possible to establish a theory of GP showing a rapid
development since then.

1http://www.heuristiclab.com/publications/index.html



Still, many of these theoretical considerations are only valid under very restricted circumstances, for
example assuming no mutation, restricted function bases and very restricted terminal sets. This is why
we have developed and applied a series of functions for monitoring internal process dynamics, and are
thus able to demonstrate how the GP process is affected by additional selection or optimization stages.
As documented in [6], some of these empirical process analysis approaches are: the analysis of genetic
propagation, variables diversity and structural population diversity, e.g.

For example, similarity estimation functions can be used for estimating the structural similarity of
solutions; thus we can estimate the diversity in populations and compare diversity dynamics in standard
GP to diversity in enhanced GP implementations. We have compared standard GP with tournament
selection to enhanced GP with gender specific parents selection and strict offspring selection.
For instance, we have used GP for identifying models for the NOx emissions of a BMW diesel engine;
standard GP with tournament selection (k = 3) as well as GP with random & roulette parents selection
and strict offspring selection have been tested. Parts of the results of the analysis of these two GP strategies
are shown in Figure 4: For both strategies the mutual similarities of solutions are displayed, the mean
values being drawn as solid black lines.

• In standard GP the average mutual similarity of solution candidates (models) quickly increases and
reaches values around 0.7, and then stays approximately in this level. (This is shown in the upper
part of Figure 4).

• In the upper part of Figure 4 we exemplarily show this analysis for enhanced GP with random &
roulette parents selection and strict OS: The mutual similarity of models steadily increases and finally
reaches values of almost 1.0. Hereby we also see that the maximum possible value (1.0) is almost
reached, when the selection pressure reaches the predefined limit – at this point the algorithm is no
more able to produce offspring that outperforms its parents, and thus can be stopped.
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Figure 4: Single population diversity analysis based on the mutual similarity of solution candidates.

In the chats shown in Figure 4 we also see that the number of generations in GP with strict OS is
a lot lower than in standard GP where normally the evolutionary process is executed for 1000, 2000 or
even more iterations; in GP with strict OS the maximum selection pressure (normally set to a value as
for example 200 or 500) is often reached after 100 or even less generations. Still, the effort needed for
producing a new generation’s population is increased significantly when applying OS, so that the overall
effort (in terms of evaluated solutions or runtime consumption) is comparable for standard GP and GP
with strict OS.
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Abstract

Our aim is to present a short survey on the Diffusion Tensor Imaging
(DTI) technique, together with the challenges it implies from an image
processing point of view, as well as potential applications of this imaging
modality.

A brief explanation of the acquisition technique for magnetic resonance
and diffusion weighted images is given.

We will see that the computation of the apparent diffusion coefficients
(ADC) via the Stejskal-Tanner equations is sensitive to noise (especially
in the low intensity range). Moreover, positive definiteness constraints
have to be enforced.

Consequenlty, regularization of diffusion tensor fields is often required.
In this presentation, we consider both approaches based on the diffusion
weighted images and the tensor field. We will show that the latter case
allows for ensuring the positive definiteness constraint either by projecting
the solution at each iteration on the given subspace or by considering an
appropriate (e.g. log-euclidian) manifold.

Further tasks (e.g. fiber tracing, registration, matching with existing
atlases etc.) and several applications are concluding the talk.
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Extended Abstract

In the golden age of parallel computing, during the 80s and early 90s and
during the era of massively parallel machine based distributed computing
the “parallel world” was a luxury. Nowadays parallel computing is becoming
a widely accessible commodity technology. This process of democratization
of parallel computing is greatly facilitated by the availability of hardware not
explicitly tailored for parallelism but which is capable of massive parallelism,
especially data-parallelism.

Graphical Processing Units (GPU-s) are designed for highly parallel,
mathematically intensive computation. The scalar architecture designed for
graphics is suitable for SIMD data-parallel computing. In the last five years
the processing power of GPU-s has been dramatically increasing such that
today graphics cards are at least an order of a magnitude faster than CPU-
s. Programming GPU-s for general purpose computing has been already
used for years but this was possible only with “tricking” the GPU-s to make
data-parallel computations through rendering images.

The NVIDIA CUDA (Compute Unified Driver Architecture) is a GPGPU
technology that provides programming interface using the C language for the
last two generations of NVIDIA graphics hardware making parallel comput-
ing more accessible and bringing people closer to teraflops computing. With
this framework, a regular desktop machine with CUDA capable graphics



cards as parallel mathematical coprocessor can be turned into a massively
parallel machine capable of reaching the teraflops limit1, which a couple of
years ago was available only using traditional supercomputers.

Support Vector Machines is a supervised machine learning method for
classification and regression. SVM is between the today’s best performing
method from the point of view of accuracy and generalization capability.
The SVM algorithm carries the properties of parallelism. It operates on
data from vector space, typically with a high dimensionality, which puts
the data parallel GPU-s in a favorable position for speeding up the SVM
algorithms.

In the frame of this thesis work the goal is to supplement the image pro-
cessing framework of the SCCH company with GPGPU implementations, in
particular the implementation of the SVM classification. Achieving speedup
in the classification phase is especially important because this is the one of
the two parts (training, classification), that is generally executed on-line.
This means that most of the times the SVM classification is a time-critical
operation that needs to be as quick as possible the enable flawless opera-
tion of the application that is integrated into. Therefor in the frame of this
thesis a concept is developed for the SIMD parallelization of SMV decision
functions and adapted to the NVIDIA CUDA programming model. An im-
plementation using the aforementioned framework is made to demonstrate
the concept and experiment with the possibilities of GPGPU implementa-
tion. Testing is made on real-life data from the field of texture analysis,
provided by the company.

The results of this work show, that the great potential of GPGPU and
the CUDA framework is suitable and useful for SVM parallelization. The
current implementation, while it’s not finished yet, but shows up to 15 times
speedup compared to the single processor implementation. Although this
is not consistent and for some test data it is even below 1. This is because
the performance of the algorithm is highly dependent on dimensionality of
the input data and the saturation of the arithmetical operations in the used
method. Therefor it is hard to provide a general purpose implementation
for wide range of applications but it is easy to tune the implementation for
a specific application.

While the programming of GPUs needs adaptation to this programming
concept and the methods and algorithms have to be deeply rethought to be
massively parallel the benefits are remarkable and sometimes spectacular.

This ongoing masters thesis is done in the frame of the Intenational Mas-
ters Program Hagenberg, Austria with the support of the Software Compe-
tence Center Hagenberg.

1The G80 architecture is capable of 350 Gflops peak performance, while the G90 reaches
500 Gflops. With two G90 cards the 1 TFlops peak power is reachable.
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