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On Theoretical Limits in Parallel Magnetic
Resonance Imaging

Frank Bauer and Christian Clason

Abstract—Based on a Fourier series expression of
true image, receiver sensitivities, and measurements,
it is possible to give theoretical limits for the perfect
reconstructability of image and sensitivities in parallel
magnetic resonance imaging. These limits depend on
the smoothness of the sensitivities, number of receiver
coils, and size of the acquired k-space measurement
window. Different types of a priori information can be
incorporated in the determination of these limits. Fur-
thermore, the method employed is constructive and can
serve as the basis for a nonlinear reconstruction scheme,
as is shown using data from a simulated phantom.

Index Terms—Magnetic resonance imaging, Image
reconstruction, Fourier series, Newton method

I. Introduction

MAGNETIC Resonance Imaging (MRI) is a medical
imaging method which employs radio pulse echoes

to measure the hydrogen atom density, which allows the
discrimination of different types of tissue. The spatial
information is encoded, using a combination of gradient
magnetic fields, in the phase and frequency of the time-
dependent echo, which is then measured by coils sur-
rounding the patient. A Fourier transform of the recorded
signal will therefore yield – line by line – an image of the
investigated area (for a full discussion of the principles of
MRI, see, e.g., [1], [2]). One of the major drawbacks of MRI
in current practice is the speed of the image acquisition,
since each line has to be acquired separately. The standard
approach for speeding up the process acquires a subset
of the lines (e.g., every second or every fourth). This,
however, leads to aliasing, as the two-dimensional signal
is now sampled below the Nyquist frequency (cf. Fig. 1
and the above references). As a remedy, Parallel Magnetic
Resonance Imaging (PMRI) measures the radio echo using
multiple complementary coils, which are usually placed in
a circle around the patient. Since these coils have only
limited aperture compared to a single coil, the resulting
measurements are non-uniformly modulated. In this way
one hopes to make up for the lost information.

Reconstruction strategies currently in use in daily clin-
ical practice include SENSE [3], which is an algebraic
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linear least-squares recovery of the unaliased image using
sensitivities taken from a fully sampled reference scan,
and GRAPPA [4], where the missing Fourier coefficients
are interpolated using an interpolation kernel fitted to
additionally acquired lines around the zero frequency (in
effect this is also fully sampled low-resolution reference
scan). The quality of reconstruction therefore depends on
the number of these so-called center lines, which reduces
the speed-up gained from subsampling. Recently, nonlinear
least squares methods for PMRI have been proposed [5],
[6], [7], which treat the sensitivities as additional un-
knowns and were shown to allow improved reconstructions.
Common to all algebraic reconstruction techniques is the
danger of ghost respectively overfolding artifacts, which
arise from incomplete separation of the superimposed
parts in the aliased image (illustrated in Fig. 1d for a
naive Tikhonov-regularized least squares solution using
known sensitivities). In practice, of course, achievable
reconstruction is also limited by physical constraints such
as the signal-to-noise ratio (SNR), see, e.g., [8]. In the
case of well known sensitivities there exists an extensive
literature ( e.g. [9], [10], [11]) giving account on the SNR
of the reconstructions. In particular the noise imposed
by measurement noise just depends mildly [9] on the
undersampling.

In contrast to these works, we consider, as in GRAPPA
and [7], the sensitivities as unknown and focus on the
error imposed by the overfolding artifacts. We start by
considering theoretical limits for the acceleration factor, in
the sense that we derive algebraically necessary conditions
under which it is in principle still possible, with a given
number of receiver coils, to reconstruct image and sensitiv-
ities perfectly. It will be shown that this limit also depends
in non-trivial ways on the smoothness of the sensitivities
and the desired resolution. The main contribution of this
work is thus to give guidelines for choosing appropriate
set-ups for parallel imaging, which might be helpful both
for SENSE and GRAPPA like methods. Additionally, the
presented constructive approach can serve as the basis for
the development of new reconstruction methods.

II. Theory

A. Mathematical model and problem formulation

We consider the true image P as a function in
L2([−1, 1]2). Since usually subsampling is only performed
in one direction, we will treat the image as being composed
of independent lines parallel to the aliasing direction,
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Fig. 1. Illustration of modulation and aliasing applied to a phantom: (a) True image, (b) modulated coil image, (c) modulated and
sub-sampled (factor 2) coil image, (d) naive reconstruction suffering from ghost artifacts.

which can be expressed as a Fourier series

P (x) =
∞∑

k=−∞
pke

ikx,

where we assume that at most NP +1 coefficients are non-
zero. This allows us to write

P (x) =
dNP /2e∑

k=−bNP /2c
pke

ikx,

where w.l.o.g. for odd NP , we distribute the additional
asymmetric coefficient to the positive part of the sum.

Similarly, let C be the number of receiver coils, with
corresponding coil sensitivities Rj ∈ L2([−1, 1]2), j =
1, . . . , C, each of which can be written as

Rj(x) =
bNR/2c∑

k=−dNR/2e
rjke

ikx, j = 1, . . . , C.

Again, NR + 1 is the maximal number of non-zero co-
efficients for all sensitivities. We make the additional
assumption that the sensitivities are much smoother than
the image, i.e., that NR � NP , which in practice is always
the case. Here, the excess coefficient for odd NR is counted
for the negative part of the sum.

A full measurement now consists of the Fourier coeffi-
cients of the point-wise multiplication of P and Rj . This
is expressed as:

dNP /2e+bNR/2c∑

k=−bNP /2c−dNR/2e
mj
ke
ikx = M j(x) = Rj(x) · P (x)

=
dNP /2e∑

k=−bNP /2c

bNR/2c∑

l=−dNR/2e
plr

j
ke
i(l+k)x

Simple manipulation then yields

mj
k =

∑

a+b=k
−bNP /2c≤a≤dNP /2e
−dNR/2e≤b≤bNR/2c

par
j
b (1)

In parallel MRI, only a subset of these coefficients are mea-
sured, which we denote by the index set U ⊂ {−bNP /2c−

dNR/2e, . . . , dNP /2e + bNR/2c} which yields for j =
1 . . . , C

SU
(
Rj(x) · P (x)

)
= M j

U (x)

=
dNP /2e+bNR/2c∑

k=−bNP /2c−dNR/2e
δk∈U m

j
ke
ikx.

In standard applications we normally have an equidistant
subsampling, i.e.

U =
{
−bNP

2
c−dNR

2
e ≤ k ≤ dNP

2
e+bNP

2
c
∣∣∣ k/S ∈ Z

}
,

where S is the so-called acceleration factor. In all other
cases we define S := (NP +NR + 1)/|U |.

Actually, an MR scanner physically determines exactly
these coefficients mj

k; the sampling strategy (i.e., the
decision which lines to measure) directly corresponds to
a specific choice of U .

Since we are interested in theoretical limitations, we
assume in the following that, regardless of subsampling,
all NR +NP + 1 coefficients are acquired. Lower numbers
(e.g., NP + 1) can easily be treated by a modification of
the index set U .

The problem we consider is now the following:
Problem 2.1: Given NP , NR and C, find the largest

number S such that knowledge of

mj
k , k ∈ U, j = 1 . . . , C

can still determine uniquely

pk , k = −bNP /2c, . . . , dNP /2e

and for j = 1 . . . , C

rjk , k = −dNR/2e, . . . , bNR/2c.

B. Minimum requirements for PMRI

Now we make use of the representation (1) to derive
bounds on the acceleration factor S for which the resulting
system of algebraic equations is uniquely solvable for pk
and rjk. To be precise, we derive necessary conditions
which hold in the absence of any a priori information
(like positivity or upper physical bounds) which might
implicitly be used in specific algorithms.
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1) Number of unknowns: A number of important MRI
applications rely on image phase to provide critical infor-
mation. A partial list includes proton resonance-based MR
temperature mapping, phase-contrast velocity mapping
for flow imaging in MR angiography, Dixon water/fat
imaging, and phase-sensitive inversion recovery MRI (cf.
[12]). Hence, in general, we have to assume that not only
the coil sensitivities (and hence the measurements) but
also the image is complex.

Thus, we need to reconstruct all Nc unknown coeffi-
cients,

Nc = NP + CNR + C + 1.

2) Available equations: By the given Fourier coefficients
of the measurement, we have in total

NE := C · |U | = C
NP +NR + 1

S

algebraic equations.
3) Algebraic conditions: According to the discussion

above, we have in total NE equations to determine Nc
unknown coefficients. On the one hand, a system of n
polynomials of degree m in n complex variables will have
(with probability 1) exactly mn different solutions [13].
On the other hand, a system of n + 1 polynomials in n
variables will in general have no solution. However, since
we know that (in the absence of noise) the right hand side
is by construction equal to the left hand side for the true
image and sensitivities, we are in this special case always
guaranteed the existence of at least one solution.

Therefore, a necessary condition for the unique solv-
ability of this system of equations, and hence the recon-
structability of P and Rj , is that the number of equations
is strictly greater than the number of unknowns:

NE > Nc.

This, of course, assumes that the receivers are linearly
independent in the mathematical sense (for this, it is
sufficient for the coil sensitivities to have complementary
spatial variation, even if the receivers are not completely
independent due to electromagnetic coupling and common
noise). Due to the bilinear structure of the problem, adding
a linearly dependent receiver does not contribute any
additional information and hence will not increase NE . In
particular, this means that for the purpose of increasing
the possible acceleration factor, at most NR + 1 receivers
can be used. (Naturally, more coils can be useful in other
respects like noise reduction).

III. Results

If C,NP , NR are given, that means the highest possible
acceleration factor S must satisfy

S <
CNP + CNR + C

NP + CNR + C + 1

This allows us immediately to make the following ob-
servations:

1) Given arbitrarily fine resolution, i.e., NP → ∞, the
maximal acceleration factor is equal to the number of
coils, as expected. However, in any finite setting the
maximal acceleration factor is always strictly smaller
than the number of coils.

2) If NP and C is fixed, S is determined by the smooth-
ness of Rj . Specifically, the lower NR, the larger the
acceleration factor can be chosen. For twelve coils,
NP = 256 and NR = 16 will theoretically allow
S = 7, while the same NP and NR = 128 limits
the acceleration factor to S = 2.
In general, if NR = αNP for some 0 < α ≤ 1, we
have

SC(α) =
NPC(1 + α) + C

CαNP +NP + C + 1
(2)

Fig. 2a shows this function for different values of C
and NP = 256.
This behavior is understandable, since given the
product M = P · R, any factor of M having only
NR non-zero Fourier coefficients could be part of
either P or R, and a unique recovery is not possi-
ble without additional constraints (such as adding
additional independent measurements) or a priori
information (such as an approximate measurement
of the sensitivities).
Another interesting observation is, that adding more
receivers does not give as much information as de-
sired when the receivers are not very smooth (i.e. NR
is very small).

If, on the other hand, a specific acceleration factor S is
desired, we can give a lower bound on the number of
receiver coils necessary:

C >
SNP + S

NP +NR + 1− SNR − S
.

Commonly, only NP +1 frequencies are acquired. In this
case, we have the following limits:

S <
CNP + C

NP + CNR + C + 1

For arbitrarily fine image resolution, the maximal accel-
eration factor is still equal to the number of coils. For
finite NP , however, the achievable acceleration factor will
be lower

SC(α) =
NPC + C

CαNP +NP + C + 1

(in the example above, S = 6 and S = 1, respectively).
Fig. 2b gives the maximal S in for various coil numbers and
NP = 256 for this situation. We see that we lose at most
one acceleration factor compared to maximal acquisition.

The minimal number of receiver coils for a desired
acceleration factor can be estimated by

C >
SNP + S

NP + 1− SNR − S
.
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Fig. 2. Maximal acceleration factor S depending on sensitivity smoothness NR = αNP for different coil numbers C and NP = 256: (a)
NP +NR + 1 lines are acquired, (b) NP + 1 lines are acquired.

A. Incorporating a priori information
If one has further a priori information on the image or

the sensitivities, it is possible to use this information to
improve reconstructability. In our model, such information
can be considered as additional equations.

1) Scaling invariance: The image and the sensitivities
are only unique up to a constant factor, and one is in
general only interested in relative, not absolute contrast
in the image. Usually, this is treated by renormalization
of the recovered image. Hence we can fix this factor by
setting, e.g. p0 = 1, which yields one additional equation.

This consideration also indicates that the bounds de-
rived above are really just necessary conditions, as we
cannot rule out that there are much more complicated
hypersurfaces in the space of possible coefficients which
all yield the same measurement and hence are not distin-
guishable.

2) Real images: If we can assume the image to be real
(as, e.g., in standard MRI situations), we have additional
information which gives us in total another bNP /2c equa-
tions

p−k = pk

for 0 ≤ k ≤ bNP /2c (in particular, p0 is real).
Now we have

NE =
C(NP +NR + 1)

S
+ bNP /2c

conditions, which lead to the bound

S <
C(NP +NR + 1)
dNP /2e+ CNR + C

.

1) Surprisingly, for NP →∞, we have now that S can
be equal to 2C.

2) The maximum achievable acceleration factor for fi-
nite resolutions is higher as well, but profits the

less the coarser the sensitivities are: e.g., S = 9 for
NP = 256 and NR = 16, but still only S = 2 for
NP = 256 and NR = 128. In general:

SC(α) =
CNP (1 + α) + C

NP (1/2 + Cα) + C
,

the behavior of which is shown in Fig. 3a.
Again, acquiring only NP + 1 instead of NP + NR + 1
k-space coefficients will at most decrease the maximum
achievable acceleration factor by one.

3) Receiver normalization: In many MR scanners one
tries to guarantee pointwise approximately the following
identity:

C∑

j=1

Rj = 1

which yields an additional set of NR + 1 equations
C∑

j=1

rjk = δ0k.

When one just tries to guarantee pointwise
C∑

j=1

|Rj |2 = 1

the underlying equations get a bit more complicated,
however, this yields effectively just a set of another NR/2
equations.

B. A numerical reconstruction scheme
The representation (1) can also be used as the basis for a

numerical reconstruction scheme for parallel MR imaging,
by considering (1) as a nonlinear system of equations

f(P,R) =M
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Fig. 3. Maximal acceleration factor S depending on sensitivity smoothness NR = αNP for real images: (a) NP +NR + 1 lines are acquired,
(b) NP + 1 lines are acquired.

for the unknown P = (pl)l and R = (rjk)j,k and given
M = (mj

k)j,k∈U . In matrix notation, this can be written
as

f(P,R) = ((f(P,R))1, . . . , (f(P,R))C)T ,

(f(P,R))j =

SU




rj
−dNR

2 e
rj
−dNR

2 e+1
rj
−dNR

2 e
...

...
. . .

...
rj
bNR

2 c







p−bNP
2 c

...
pdNP

2 e


 (3)

or equivalently as

(f(P,R))j =

SU




p−bNP
2 c

p−bNP
2 c+1

p−bNP
2 c

...
...

. . .
...

pdNP
2 e







rj
−dNR

2 e
...

rj
bNR

2 c


 .

where SU is the subsampling operator as described before-
hand (which removes rows corresponding to not measured
coefficients).

Since we have more equations than unknowns, we want
to solve this by an iteratively regularized Gauß-Newton
method [14], [6], [7], i.e., by computing

min
(δP,δR)

1
2
‖f ′(Pn,Rn)(δP, δR)T −M+ f(Pn,Rn)‖2

+
αk
2
‖(Pn,Rn) + (δP, δR)− (P0,R0)‖2

and setting (Pn+1,Rn+1) := (Pn,Rn)+(δP, δR), αk+1 :=
qαk with 0 < q < 1. The corresponding iteration can be

reformulated as

(Pn+1,Rn+1) = (P0,R0)

+ (f ′(Pn,Rn)∗f ′(Pn,Rn) + αn)−1

f ′(Pn,Rn)∗
[
M− f(Pn,Rn)

+ f ′(Pn,Rn)((Pn,Rn)− (P0,R0))
]
,

which in practice is slightly faster to evaluate as well as
more stable.

The derivative f ′(P,R) acting on an increment
(δP, δR)T = (Pn+1 −Pn,Rn+1 −Rn)T can be calculated
explicitly using the product rule:

(f ′(P,R)(δP, δR))k,j =
∑

a+b=k

δpar
j
b +

∑

a+b=k

paδr
j
b ,

or in brief

f ′(P,R)(δP, δR) = f(P, δR) + f(δP,R).

Hence, the derivative can be applied very quickly. Sim-
ilarly, the evaluation of the adjoint derivative is rather
straight forward and fast:

f ′(P,R)∗(δM) =
( C∑

i=1

f∗(S∗UδMi, R),

f∗(P,S∗UδM1), . . . , f∗(P,S∗UδMC)
)T
,

where f∗ is the multiplication with the Hermitian matrix
corresponding to the appropriate matrix in (3) and S∗U is
the operator inserting zeros at non-measured parts.

Note that this method parallelizes trivially, since all
lines along the fully sampled directions can be treated
independently. Additionally, since only single lines are
considered, the problem size is reduced significantly com-
pared to a full image reconstruction: For standard image
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sizes, the iteration matrices fit inside the cache memory.
In fact, due to the enormous parallelism inherent in this
approach (hundreds of independent lines for a single slice,
thousands for a full 3D data set) and the data locality,
this method is well suited for implementation on graphics
hardware. Another advantage of this approach over an
image space based method is that the receiver sensitivities
are determined by the measurements even in points x for
which P (x) = 0 holds, due to the nonlocal coupling via
the Fourier coefficients. On the other hand, it is possible to
introduce coupling between neighboring lines as a penalty,
which could be expected to give more stability in the
presence of noise. Since this reduces the parallelizability,
the trade-off should be considered in specific cases.

C. Numerical experiments

We show the feasibility of this approach by applying the
proposed method for a single aliased line of the standard
Shepp-Logan phantom (cf. Fig. 1). Setting NP = 256
and NR = 10 and measuring all NP + NR + 1 coef-
ficients, the discussion in section II-B shows that using
C = 2, 3, 4, 5 coils, the limiting acceleration factors are
S = 1.9140, 2.7621, 3.5482, 4.2788 respectively—smaller
factors should allow reconstruction, while larger factors
should lead to failure.

We illustrate this using the one-dimensional Fourier
transform of a single line from the Shepp-Logan phantom
and random sensitivities (real and imaginary part nor-
mally distributed with mean zero and variance one). We
start at a randomly perturbed image and sensitivity, and
calculate new iterates using the IRGNM until the norm
of the residual drops below 10−4. The iteration converged
in every case. We then plot the inverse Fourier transform
of P. Since the reconstruction can be unique only up to a
constant, we rescale the transform such that the maximal
value is one. The results are shown in Fig. 4, where the
blue line shows the good reconstruction achievable with
an acceleration factor chosen according to the calculations
above, while the red line shows failed reconstructions for
acceleration factors chosen too large.

To close this section, we show the reconstruction of a
full 2D image using the described method. We generated
the measurements sequentially from the (vertical) lines of a
Shepp-Logan phantom with a resolution of NP = 128. The
receiver sensitivities (with NR = 6) were independently
and randomly generated for each of these lines and C = 12
coils, and the resulting measurements subsampled with an
acceleration factor of S = 4. As is usual in parallel MRI, we
had to include center lines to achieve complete removal of
aliasing artifacts if starting too far from the true solution
(cf. Fig. 5a, which clearly shows aliasing artifacts). Here
the central 3 coefficients sufficed. The result, reconstructed
line by line, is shown in Fig. 5b, which is visually indis-
tinguishable from the true image. To show the feasibility
of parallelization, we started the computation of each line
from the same constant initial guess pi = 0, ri = 1. Taking
the previous line as the initial guess naturally leads to

faster convergence for each line. While this of course is still
far from an actual reconstruction of parallel imaging data,
it shows the promise of our approach for the development
of a novel reconstruction method.

IV. Discussion

In practical situations we face two major problems. On
the one hand, the measurements are perturbed by noise,
and on the other hand, although the sensitivities are very
smooth, they still can have a rather large (most likely
infinite) number of non-zero Fourier coefficients. Another
problem which will occur in practice is that we actually
do not know the number of relevant Fourier coefficients of
the Receivers NR exactly. This can lead to another kind
of non-uniqueness: There might be two reconstructions
with different receiver sizes which lead to exactly the same
measurements, but which are completely different when
looking at the image respectively the receiver coefficients.

However, a quick calculation using δjk as the noise on
the exact measurement mj

k shows:

mj
k =

∑

a+b=k

par
j
b + δjk

and thus

|mj
k −m

j
k| ≤ |δ

j
k|+ ‖P‖‖Rj |NR

‖
+ ‖P|NP

‖‖Rj‖+ ‖P|NP
‖‖Rj |NR

‖
where Rj |NR

denotes the high-pass filtered version of Rj
without the first NR Fourier coefficients, and similarly
P|NP

are the coefficients of the high-pass filtered image.
This means that as long as the amplitude of the higher

Fourier coefficients is lower than the noise level, we can
ignore these without further loss. Interestingly, this also
means that noise limits the theoretical possibilities of
undersampling perhaps in a severe way (cf. also [8]).

In practice, the dual issue of non-uniqueness and missing
knowledge of the number of relevant Fourier coefficients
could be dealt with by adding a sparsity constraint [15],
which was not necessary in our test problems.

1) Center Lines: Indeed, the assumption that high
frequency coefficients have lower amplitude than the cen-
tral frequencies can be observed in virtually all realistic
images and receiver sensitivities. In this case, the implicit
assumption that all measured coefficients are of equal
value, and that the sampling strategy can be completely
specified by the number of measured coefficients, is no
longer valid. Instead, it is then vital to acquire center lines,
as can be explained using equation (1): If both the image
and the sensitivity have very small Fourier coefficients
outside the central (let’s say 3) frequencies, only the
terms p1r1, p1r0, p0r1, p0r0, and the corresponding terms
involving the index −1 instead of 1 will be non-negligible.
That implies that this information is only contained in
the coefficients m−2, m−1, m0, m1 and m2, although
the coupling theoretically extends to more terms. So the
omission of any of them due to the subsampling will lead
to loss of uniqueness, even though the number of coils
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Fig. 4. Reconstructions of one line of a phantom using the proposed method with different coil numbers and acceleration factors: (a) 2 coils,
(b) 3 coils, (c) 4 coils, (d) 5 coils. Shown are the true image and two reconstructions from an acceleration factor which is smaller respectively
larger than the limiting factor according to (2).

might be large enough (based on the theoretically possible
coupling). It is therefore possible, using this relation and
an estimate of the energy distribution of the frequencies
of image and receiver, to determine the necessary center
lines. On the other hand, the numerical method described
above can be used for an efficient empirical determination
of the required number of center lines.

2) Receivers: An important problem, which we have
not understood in a quantitative way yet, is the interde-
pendence between the stability of the proposed method
and the receiver configuration. The investigations of this
issue up to this point have all been of qualitative nature
and yielded the expected results, i.e., that the less linearly
dependent the receivers are, the better the method works.

However, the condition number of the matrix described
in (3) seems to have a non-trivial dependence on the
condition number of the matrix generated by the receivers,

R. Part of the cause might be that the solution of the
whole problem is not unique up to (at least) a constant,
and therefore ill-conditioning is always present, which
dominates the (additional) ill-conditioning introduced by
a bad choice of the receiver configuration.

It is important to remark that we have to face two
opposing effects:
• The smoother the receiver sensitivities relative to the

image, the higher the possible acceleration factor.
This follows from equation (2)ff.

• The rougher the receiver sensitivities in absolute
terms, the more receivers one can use (i.e. we have
the possibility of higher acceleration factors), and the
higher the SNR can be expected to be. This is due
to the fact that a set of rougher sensitivities will
more likely be linearly independent, and that the
coupling between the coefficients of the image and
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Fig. 5. Reconstruction of a 2D phantom with NP = 128, NR = 6, C = 12, S = 4: (a) no center lines, (b) 3 center lines.

the measurement (via the non-zero coefficients of the
sensitivities) will be stronger (cf. IV-1).

A critical task in parallel imaging is therefore to balance
these effects, for which our results can serve as a useful
guide.

V. Conclusion

As seen in section III-C, this one-dimensional model
together with the numerical method can replicate the
features and problems inherent in the reconstruction prob-
lem of parallel imaging quite well. For this reason, it
can serve as an effective tool in evaluating the feasibility
of specific measurement configurations, as specified by
the desired resolution, acceleration factor, the smoothness
and number of coils, and especially the number of center
lines, before committing to a full realization. A failure
of the one-dimensional model, which constitutes a “best
case” situation, will imply that other algorithms which do
not specifically use extra assumptions will give poor and
unreliable results as well.

Future work will be concerned with a quantitative esti-
mation of the effect of center lines on the reconstructability
of realistic data, and refining the numerical method for
use on in vivo data. Furthermore, we expect that different
sampling strategies such as radial sampling or subsampled
3D volume acquisition can be treated with a similar
approach as well.
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Abstract—We propose a method for dimensionality reduction
in hyperspectral Terahertz (THz) imaging based on Wavelet
coefficients. The spectra are simulated in shape and character-
istic peaks, a correlation analysis of the distances between the
characteristic peak positions and the distances between the full
and reduced dimensions is executed. The validity of the choice of
reduced dimensions is demonstrated. Image analysis is performed
on the remaining channels. A common foreground/background
segmentation for all channels is calculated. On the foreground
channel-wise smoothing is performed. The final visualization is
achieved by performing hierarchical clustering on the smoothed
channels. The result is an improved visualization in comparison
to classical methods.

I. I NTRODUCTION

hyperspectral imaging has been an evolving technique over
the last years. It uses bandwidth other than the ones of
visible light for image information retrieval. Usually those
bandwidth are within the infrared and ultraviolet range [1].
Therefore, rather than having a monochromatic image with
grey values or a color image, each pixel contains a vector with
hundreds of values. Depending on the recording technique
these values typically are time or frequency resolved. Instead
of only having one two-dimensional image every data set is
represented by a stack of as many two dimensional images
as there are measured frequencies or time-intervals (called
channels or slices). This fact confronts us with the problemof
finding a good two or three dimensional representation of the
data to make it visually interpretable. Different approaches are
taken to do this. One is to show single features of the signals
or spectra such as the maximal amplitude or time delay of
each one. Another possibility often applied in infrared or THz
spectroscopy is to use an integral norm. For example with
Ω being the valid frequencies using theL1-Norm for each
spectrum||f(ω)||1 =

∑
Ω

|f(ω)|. The problem with the former

approach is that most of the information is lost. The problem
with the latter that||f(ω)|| = ||g(ω)|| does not lead to the
assumption thatf is similar to g. Therefore, grouping the
data with respect to such a norm is not advisable. A distance
based approach should be used for that purpose. Here the
data is grouped according to a distance function such that
the distances between samples within one group are small
and the distances between groups are big, this procedure is
called classification. Both, supervised classification as well

as unsupervised classification also known as cluster analysis
or clustering are used in hyperspectral imaging [2], [3], [4],
we shall focus here on usupervised classification. To reduce
negative effects in high dimensional data clustering, such
as the curse of dimensionality , performing dimensionality
reduction before clustering is an elementary task [5].
Another topic in hyperspectral imaging is the combination
of spatial and spectral information. Image processing on that
many dimensions is computationally expensive and sometimes
difficult to define. Often spatial information is taken into con-
sideration after the clustering, reassigning clusters depending
on their neighborhood [4]. We shall use a different approach
here and perform image processing on the channels or the
reduced number of channels and thereby improve the actual
clustering result. This is especially advisable if the datais very
noisy. Otherwise the noise can accumulate over the multiple
dimensions and have a dominating effect on the clustering
result.

II. M ETHODS AND SIMULATION

The test data considered in this paper are hyperspectral
pulsed THz measurements. These spectra are characterized
by their broad and few peaks. For dimensionality reduction
Wavelet coefficients shall be used. The different frequency
level coefficients which the Wavelet transform provides are
ideal if only certain broad features are of interest. Thus the
typical broadness of the THz peaks is taken into consideration.
To further enhance the visualization a number of image
processing steps shall be preformed.

A. Dimensionality Reduction with Wavelet Coefficients

The high dimensionality of the information in hyperspectral
imaging makes it hard to interpret the whole amount of
image information. Hence, the main goal must be to reduce
the dimensionality with as little information loss as possible.
Terahertz spectra have some characteristics that lead to the
presumption that this must be possible. Measurements of
solids have - if any - few but broad peaks. Examples for these
spectra can be seen in Fig. 1.

The Wavelet transform of a spectrum consists in the loss-
free hierarchical decomposition with respect to certain basis
functions. In the continuous case this decomposition has the



Fig. 1. Spectra of five different chemical compounds are presented, all have
the named broad characteristics.

form γ(s, τ) =
∫
f(t)ψ∗s,τ (t)dt whereψs,τ (t) = 1√

s
ψ( t−τ

s )
are the Wavelet basis functions generated by the mother
Waveletψ(t) by translation and scaling [6], [7]. The discrete
Wavelet transform is calculated by down-sampling the amount
of channels dyadically. In Fig. 2 this is illustrated. In this
scheme the whole spectrum is iteratively filtered by the actual
Wavelet functionsφ(2jt)

∑
k

LPj+1(k)φ(2j+1t − k) and a

scaling functionψ(2jt) =
∑
k

HPj+1(k)φ(2j+1t− k).

Fig. 2. On every coarseness levelj the frequencies are represented by the sum
of Wavelet coefficients HP and scaling coefficients LP. The scaling functions
are then further represented by coarser Wavelet and scalingcoefficients and
so on.

In viewing spectra with certain characteristic peaks,
Wavelet coefficients of a coarser down-sampling level than
the support of those peaks will not necessarily show these
characteristics. At the same time coefficients of the level with
down-sampling rate finer or similar to the given support must
show them.

B. Simulating THz Spectra

The THz spectrum typically covers the frequencies from 100
GHz up to 2 THz while characteristic peaks have a width of
at least 100 GHz. To determine weather just using coefficients
of a certain decomposition level instead of the whole spectrum
as well as to determine which range of Wavelet coefficients
to use, we simulate the spectra. We start by simulating the
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Fig. 3. Left hand side shows transmission of Aspirin and the reference
measurement. Right hand side the transmittance.
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Fig. 4. Basic shape of 10 simulated spectra, focus on a region with high
variance on the right hand side.

coarse form of a transmittance spectrum, which is calculated
from the transmission spectra of both the reference as well
as the sample measurement. In Fig. 3 on the right hand side
a typical example of the shape of these measurements can
be seen. The presented spectrum is an Aspirin measurement.
The characteristic peak at about 1 THz has a width of about
100 GHz. The transmission shown on the left hand side
consists in the mere Fourier transform of a measured femto-
second pulse. The transmittance is the sample transmission
divided by the reference transmission. It is customary to use
the logarithmic spectra. The dynamic range implicated by the
reference measurement typically covers frequencies from 100
GHz up to 3 THz. At the same time the sample measurement
usually reaches the noise floor allready at 2 THz. The valid
frequency range simulated here therefore shall cover 100 GHz
up to 2 THz.
Because the goal of using the Wavelet transform is to detect
the broad peaks of the spectra, the approach on simulation is
focused on that as well. As the basic shape of the spectra we
use the following function depending onx which takes values
from 0.1 to 2, representing the THz range:

Ysimulated =

{
exp (x−4+err) if x < 2,

( (x−2)
2 )2 + y(2) else.

(1)

In this equationerr represents an error term for the gradient
of the measurements, as different samples do usually not have
the exact same shape. The error consist in a random variable
of Gaussian distribution with expectation0 and variance1

5 ,
its effect can be seen in Fig. 4. We now simulate a number
of one-peak-spectra as exemplified at the top of Fig. 5. The
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Fig. 5. On top: Simulation of spectrum with only one peak situated around
the same center of width 100 GHz. Bottom left: Wavelet coefficients 17 to
32, right: coefficients 33 to 64.

peak simulation is done using splines. The bottom level of
Fig. 5 shows the Wavelet decomposition coefficients 17 to 32
and the coefficients from 33 to 64, i.e. the levels wherej = 3
and j = 2. Both coefficients give a good impression of the
position of the peak, though the finer coefficients at the bottom
level give a more specific outline of the form of the peak, its
existence is visible in both plots.

To further justify this impression by a quantitative analysis,
systematic simulation of the spectra is done. We assume
that in most applications a number of measurements of the
same component is taken, e.g. in hyperspectral images we
assume, that more than one pixel contains very similar spectral
information. Therefore, over the valid frequency range we
randomly distribute a number of centers and then use random
values of Gaussian distribution with their expectation value
at the respective center-points and variance0.15. We then
compare the distance between the thus produced points -
i.e. the basis of the simulation - with the Euclidean distance
between the spectra and the Euclidean distance between the
chosen Wavelet coefficients. As a measure of quality the mean
correlation between the distances is used. In mathematical
terms:
Let ci with i ∈ {1, ..., n} be a random variable withci ∼
U [0.1, 2] andpj with j ∈ {1, ...,m ∗n} be a random variable
with pj ∼ N [c(j mod n), 0.15]. The distance matrix of these
pointsD(i, j) = d(pi, pj) = |pi − pj | is used as the basis for
the quality measure. To this distance we compare the distance
between the spectra. On the one hand over the whole frequency
range, represented byDSp on the other hand over the Wavelet
coefficientsDWa. These distances between two spectraSi and
Sj are defined as follows:

DSpij
=

√∑

x∈X

(Si(x)− Sj(x))2,

whereX = {0.1, 0.1 + 1.9
N , 0.1 + 2∗1.9

N , ..., 2} andN is the
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Fig. 6. Correlation of distance between points and distancebetween spectra
and Wavelet coefficients respectively, depending on the number of centers
chosen appearing in this simulation.

number of simulated channels.

DWaij
=

√√√√
32∑

k=17

(Wi(k)−Wj(k))2,

As the measure of accuracy of the distance matrixDSp

we compare it with the distance matrix of the pointsD by
estimating Pearson’s correlation coefficient between eachtwo
columnsDSp(:, Sj) andD(:, j) by:

CDjDSpj
=

∑
i∈I

(D(i,j) −D(:,j))(DSp(i,j) −DSp(:,j))

(m ∗ n− 1)s(:,j)ssp(:,j)

,

where

s(Sp)(:,j) =
√
n ∗m

∑

i∈I

(D(Sp)(i,j)
)2 − (

∑

i∈I

D(Sp)(i,j)
)2

andI = {1, ...,m ∗ n}. The accuracy measure then is defined
as the mean correlation over all columnsCDjDSpj

. For the
Wavelet coefficientsCDjDW aj

is calculated analogously.
One problem in performing the Wavelet transform and using
only coefficients of a certain coarseness is that the values
strongly depend on the starting point of the down-sampling
window. If a peak appears closer to the edge of such a
window the values are lower than if it is situated in the center
of such a window. To reduce this effect we shift the windows
by the mean number of points contained in a peak and use
the mean of the respective coefficients as our features. As
we use simulated spectra with about 256 points covering
100 GHz to 2 THz, i.e. 1.9 THz, the mean width of one
peak would be 13 points. Therefore the Wavelet transform is
performed from 13 different starting points.

Fig. 6 shows the plot of the above described correlations
between the distances of the simulated spectra and the points
chosen for the simulation. The x-Axis shows the numbern of



centersci chosen. For each centerm = 30 spectra are simu-
lated that are situated around it. One can see that choosing only
one center, the mean distance between the points has a higher
correlation with the mean distance of the whole spectrum than
the distance of the Wavelet coefficients. But as soon as spectra
with different center locations are simulated this changes. This
can be interpreted as small distances between peak-positions
- as in the case of 30 spectra situated around the same
center - being suppressed by just using a limited number of
coefficients. At the same time bigger distances are enhanced,
making the correlation between the down-sampled spectra and
their peak position higher than between the original spectra
and the peak position. The correlation was also calculated for
the previous wavelet-levels (containing 64 and 128 wavelet
coefficients), it was almost equal to the correlation with 32
coefficients, no improvement was achieved.

C. Image Processing

THz images - as they are measured pixel wise and the
spatial resolution is low - show a variance in each pixels
neighborhood. It is desirable to apply smoothing that considers
the spatial and not only the spectral information of the image.
Therefore, before the clustering, image smoothing will be
performed. Otherwise the noise contained in each channel
might be accumulated in the clustering and lead to wrong
results.
The measurements usually show one or more objects which
contain certain interesting features. While the different content
of each object might only be visible in some channels, the
objects themselves should be detected in every one of them.
By using the common information of the given slices a
first segmentation into foreground and background is done.
This is achieved by channel-wise entropy based thresholding
and binarization. The joint segmentation into foreground and
background is done by assigning each pixel to the class the
majority of the channels assigns it to. Thus we gain a mask that
can be used to enhance the contrast between foreground and
background and simplify the smoothing of the channels. Now
an anisotropic diffusion filter is used on each two dimensional
image. That means that the smoothing is applied according to
the diffusion function:

∂tu = div(g(|∇u|2)∇u).
To influence the degree of edge preservation the diffusivity
g is used. With constantg the diffusion would be linear and
the image smoothed equally everywhere independently from
the position of the respective pixel in the image. To avoid
smoothing over edges the diffusivity usually is chosen in
dependence of the gradient. Here the Perona Malik diffusivity
is used [8]. It has the form:

g(|∇u|)2 :=
1

1 + |∇u|2/λ2
.

D. Clustering

There is a broad variety of clustering algorithms, they are
separated in at least two groups: partitional and hierarchical

Fig. 7. Left hand side shows a plastic figure, right hand side an envelope
containing different objects.

ones. In partitional clustering the number of clusters needs to
be known beforehand and often initializing parameters needto
be chosen. Therefore although hierarchical algorithms aregen-
erally computationally more expensive they have the advantage
of being more easily applicable on unknown data [9], [10]. In
our case an agglomerative hierarchical clustering algorithm is
used. It is initialized by assigning each sample point to an own
cluster and then iteratively uniting the clusters closest together.
The main influence parameters in hierarchical clustering are
the distances between the samples and the distances between
the clusters. The sample-vectors used consist of the calculated
Wavelet coefficients calculated for each pixel spectrum. To
determine the distance between each two, Euclidean distance
is taken. This is sensible as an emphasis on high distances and
a suppression of low distances is desirable. For the distance
between the clusters the so called “complete” link functionis
used. When merging the clustersCj andCk the distance of
the resulting clusterCjk to another clusterCl will be:

D(Cjk, Cl) = max(D(Cj , Cl),D(Ck, Cl)).

This link function is especially well applicable when edges
between clusters are blurry and tend to blend into each other.

III. A PPLICATION

The test data consists of two hyperspectral THz images.
One of a plastic toy figure the other one of an envelope
containing chemicals and highly absorbing material. THz
spectroscopy and hyperspectral imaging are mainly based on
pulsed THz systems where time domain signals (pulses) are
recorded. From these pulses the transmittance is calculated
by windowing, Fourier transformation, filtering, and division
through a reference measurement. The transmittance of both
measurements consists of about 300 channels from 0.1 up
to 3 THz. The goal is to find a better visualization than
the mere main amplitude plot that can be seen in Fig. 7.
To achieve that, the above mentioned image processing
steps are performed. The simulation showed that choosing
16 Wavelet coefficients as representatives for this spectrum
already provides us with the main characteristic information.



Fig. 8. Masks of foreground and background segmentation calculated by
thresholding of all slices.

Fig. 9. Coefficients 1,5,10, and 15. On the left hand side of each pair the
unfiltered channel of the plastic toy figure measurement is shown, on the right
hand side the smoothed and masked coefficient.

Therefore all following steps are only performed on these 16
channels. Fig. 8 shows the binarization of the images. As can
be seen, by simple entropy maximization thresholding over
all channels and morphological closing of the foreground, the
resulting segmentation shows the shapes of the actual objects
clearly.

The mask is then multiplied with the single slices and
each two dimensional slice is smoothed with a diffusion
filter. Some examples of this filtering can be seen in Fig.
9 and Fig. 10. Of both images coefficients that represent
the low, medium, and high frequencies of the spectrum are
presented. It can be seen that more differentiating features
within the object are visible at the low frequency regions.
The outline is clearer at the medium frequencies while at
the high frequencies around 2 THz the outline of the objects
becomes more and more blurry.
After image processing the clustering algorithm is applied

to the data, the result is presented in Fig. 11. Both pictures

Fig. 10. Coefficients 1,5,10, and 15. The top shows the unfiltered channels
of the envelope measurement, the bottom the smoothed and masked ones.

Fig. 11. Coefficients 1,5,10 and 15 of the Wavelet Masks of foreground and
background segmentation calculated by thresholding of all slices.

show more information than the amplitude visualization in
Fig. 7. In the plastic toy figure the different thicknesses of
the object can be seen. Especially the core structure of the
figure is detected. In the envelope the difference between the
chemical - represented by the biggest object - and the other
materials is detected by the clustering as well. This difference
was not visible in the classical visualization.

IV. CONCLUSION AND FURTHER WORK

It was shown for simulated spectra of similar basic form
and characteristics as THz transmittance spectra, that using a
reduced number of Wavelet coefficients instead of the whole
range of 256 channels simulated, is representative for the
position of characteristic peaks within the spectrum. The
quality measure applied for this was the correlation between
the distances of the original position of the peaks and the
distances between the respective coefficients. Using only 16
coefficients for a 2 THz spectrum lead to a slightly higher
correlation with the peak position distances than using the
original spectra. Using 32 or more improved the result even
more. It can be concluded that Wavelets are an adequate
method for dimensionality reduction in hyperspectral THz
imaging. Further work should include analysis of the stability
of this method towards noise and also the smoothing capacity
of choosing these coefficients. Noise with higher frequencies
than the characteristic peaks should automatically be smoothed
by the choice of the coarseness level. The possibility of not
choosing all coefficients of one coarseness level but only
extreme values should also be further investigated.
Image analysis was performed to combine spatial and spectral
information. It was executed in two steps: firstly by find-
ing a foreground/background segmentation of the image and
secondly by applying a diffusion filter on the thus masked
channels. Afterwards clustering was performed. The clustering
result presented an improved visualization of the hyperspectral



image in comparison with usual techniques. Further possi-
bilities for combining multi dimensional image information
should be investigated. Furthermore the advantages and disad-
vantages of performing multidimensional smoothing as well
as interchanging the single steps should be investigated, such
as for example interchanging clustering and spatial smoothing
[4].
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Abstract

Among manufacturing companies there is a
widespread consensus that women are better
suited to perform visual quality inspection,
having higher endurance and making deci-
sions with better reproducibility. We will
utilize machine learning classifiers to model
human decisions and analyze gender-related
differences in this task. The analysis will be
based on data gathered during thoroughly de-
signed experiments with approximately 100
subjects.

1. Introduction

Quality control typically involves the visual inspection
of products at the end of a production line. This task
is quite often done exclusively by women. Their job is
to make a quick good/bad decision and to sort out the
bad products. Manufacturing companies often argue
that women have more endurance in performing this
task and also make decisions with better reproducibil-
ity.

This project aims at a mathematical description of
decision-making processes in men and women during
quality inspection tasks. It is focused on highlight-
ing and quantifying the differences of male and fe-
male decision-making processes. The major goals of
the project are:

1. Provide an answer to the question whether the
gender-related differences in decision-making can
be reproduced mathematically for visual inspec-
tion tasks.

2. Analyze the quantitative and structural nature of
those variations in human decision-making.

3. Use the above results to guide development of
machine learning classifiers specifically tailored to
those applications.

Good Bad

55 min

Figure 1. Preliminary sketch of the user interface presented
during the experiments. The central part of the window
will show the images the user classifies into good and bad.
A queue of parts waiting for inspection is displayed to
the left, stimulating subjects to maintain a preset average
throughput.

2. Experiments

The analysis will be based on data gathered dur-
ing thoroughly designed and controlled experiments
with approximately 100 subjects, equally split between
women and men. The subjects will be asked to per-
form quality inspection on synthetic images according
to a predefined set of rules. The images will be cre-
ated by samlping from a fault distribution Df . Each
subject will be shown the same sequence of images to
eliminate the influence of variations due to finite sam-
pling from Df .

A preliminary sketch of the user interface presented
during the experiments is depicted in Figure 1. While
there will be no time limit on individual images, a
certain overall throughput has to be reached. The re-
quired throughput and the complexity of the rules will
be chosen such that typical subjects cannot stick to the
rules exactly but need to devise simplifications. Con-
versly, the level of difficulty will be chosen such as to
avoid degradation of the decisions into pure guessing.
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Figure 2. Classifiers modeling human decisions in visual in-
spection. During training the classifier parameters (dis-
played as tuning knobs) are adjusted to minimize the dis-
crepancy between human and classifier decisions.

3. Analysis

There is vast literature on modeling the problem of
separating parts into good and bad in the fields of
pattern recognition and machine learning. Various
model architectures, so-called classifiers, have been de-
vised along with suitable learning algorithms to iden-
tify the model parameters. However, these classifiers
are mainly based on considerations of statistics and
probability distributions of the features that they clas-
sify. The fact that the decision is originally made by
a human is often neglected.

We will utilize and adapt classifiers to analyze the
gender-related variations in human decision-making.
On the input side, the classifiers will be fed with fea-
tures vectors calculated from the images used during
the experiment (Figure 2). The set of features will be
chosen such as to represent the image characteristics
relevant to the good/bad decision.

Classifiers create a decision boundary in feature space
F to separate good from bad samples. The shape and
position of the boundary are controlled by the classi-
fier parameters ω ∈ W (Figure 3). During training
these parameters and therefore the boundary are ad-
justed such as to minimize mis-classifications, i.e. sam-
ples laying on the wrong side of the boundary.

In fact, we seek to minimize the empirical risk of mis-
classifying new samples from Df by controlling classi-
fier complexity to enforce proper generalization from
the given samples. The resulting decision boundary
and classifier parameters approximate a subject’s de-
cision behavior on the given fault distribution Df , not
only on the samples presented during the experiments.

A key question for the analysis will be how to de-
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F

W

Figure 3. Classifiers trained on different subjects. The de-
cision boundary in feature space F (depicted to the left)
and corresponding parameters ω ∈ W (right) of classifiers
trained on indivudual subjects represent these subject’s de-
cision behavior. We hypothesize that the parameters repre-
senting male and femal subject’s decisions are more similar
within gender groups than across those groups.

fine an expressive distance measure between the pa-
rameters/structure of instances within one family of
classifiers. Once such a distance measure is estab-
lished, analyis can be performed in the induced space
of subject-classifier parameters. We will then train a
meta-classifier taking subject-classifier parameters as
input and predicting the subjects’s gender. The pre-
diction accuracy of this classifier will be used to mea-
sure the correlation between subjects’ gender and their
decision behavior on images samples from Df . If the
meta-classifier perfoms significantly better than ran-
dom, the gender-related variation in visual quality in-
spection will be verified mathematically.

In order to analyze the nature of those variations we
will resort to classifiers that yield interpretable struc-
tures such as decision trees, (fuzzy) rule systems, and
nearest neighbor classifiers. To allow for analysis be-
yond computing the ‘mean’ female and male decision
behavior, we will devise distance measures on classifier
parameters that are in turn interpretable.

4. Classifiers tailored to human
decisions

For the thrid project goal we will use the insights into
human decision making from goal two to develop clas-
sifiers tailored to reproduce human decision bound-
aries for visual inspection tasks. At the core of these
classifiers will be a grammar-like architecture similar
to decision trees. Unlike decision trees we will allow for
a broader spectrum of operations at the nodes, such
as similarity-measures and trainable transformations,
based on multiple variables of the input data.
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SparseFIS: Data-driven Learning of Fuzzy Systems

with Sparsity Constraints
Edwin Lughofer1*, Stefan Kindermann2

Abstract

In this paper, we are dealing with a novel data-driven learning method (SparseFIS) for Takagi-Sugeno fuzzy

systems, extended by including rule weights. Our learning method consists of three phases: the first phase conducts

a clustering process in the input/output feature space with iterative vector quantization and projects the obtained

clusters onto one-dimensional axes to form the fuzzy sets (centers and widths) in the antecedent parts of the rules.

Hereby, the number of clusters = rules is pre-defined and denotes a kind of upper bound on a reasonable granularity.

The second phase optimize the rule weights in the fuzzy systems with respect to least squares error measure by

applying a sparsity-constrained steepest descent optimization procedure. This is done in a coherent optimization

procedure together with elicitation of consequent parameters. Depending on the sparsity threshold, more or less

rules weights can be forced towards 0, switching off some rules. In this sense, a rule selection is achieved. The

third phase estimates the linear consequent parameters by a regularized sparsity constrained optimization procedure

for each rule separately (local learning approach). Regularization is necessary, as the learning problem might be

ill-posed (in case of a singular covariance matrix to be inverted), leading to instable and incorrect results. Sparsity

constraints are applied in order to force linear parameters to be 0, triggering a feature selection mechanism per rule.

In some cases, this may also yield a global feature selection, whenever the linear parameters of some features in

each rule are near 0. The method is evaluated based on high-dimensional data from industrial processes and based

on benchmark data sets from the internet and compared to well-known batch training methods in terms of accuracy

and complexity of the fuzzy systems.

Index Terms

Takagi-Sugeno fuzzy systems, iterative vector quantization, rule weight optimization, sparsity constraints, rule

selection, feature selection
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Abstract

Continuing from the short introduction paper Generic image processing we
delve into the further analysis of plugin frameworks, here FxEngine and LADSPA
for C/C++, both with a focus on signal processing. A specific look is taken at
the solutions to resource management and the overall architecture. Furthermore
we present available tools for plugin interconnection and composition.

1 Introduction

In the quest for important plugin environment properties and solutions to common
issues we analyze the frameworks of two products freely available. The first free
as in “no cost”, the second free as in “freedom” concerning open source software.

2 FxEngine Framework

The FxEngine Framework[1] is a closed-source C++ plugin framework licensed
with an attribution clause and required author’s permission for bundled distri-
bution. It can be used on Linux and Windows platforms with DLLs and shared
objects.

Signal processing is an important application area of the framework and the
underlying concept of plugins reflects this fact, as they have multiple “Pins”: for
parameters and for the main input/output data. The architecture of the engine
which connects and drives the plugins - which are here also called “Fx” - augments
this impression of an signal processing system:

Figure 1: FxEngine architecture (FxEngine Doc)

∗
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The principal different plugin categories and their interconnection in one Fx-
Engine instance are shown in figure 1 on the preceding page with Renderer being
a sink. Based on this network, arbitrarily large systems can be developed using
the multiplicity of FxEngine objects illustrated in figure 2.

Figure 2: FxEngine multiplicity (FxEngine Doc)

FxEngine Framework uses an enum-based runtime type information for the
media that is passed between plugins (by itself untyped). An interesting point
hereby is, that multiple media types which are supported can be specified per pin.
A wide variety of types in the field of audio and video as well as text are predefined
and implementations of plugin types using that media are available.

Media data itself is intended to be transferred in data chunks allocated and
managed by the IFxMedia class. The chunk size can be adjusted and filled with
user-defined data, so that the passing of preallocated data is possible although it
doesn’t seem intended by the framework.

The basic work-flow is to instantiate an FxEngine, load plugins through its in-
terface and then to establish plugin interconnection through that same interface.
Then by running the engine the data processing starts. A visual editor, “FxEngi-
neEditor” comes with the software package which performs this tasks and is able
to store and load the network information in a proprietary file format. In figure 3
on the following page the connected input and output port of two plugins can be
seen in the editor with “Hello World” as processed text data.
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Figure 3: FxEngineEditor

Another interesting aspect of the Framework is the propagation of the pro-
cessed data: the synchronization of the plugins. This can occur either by clock
signals or a media request signal - a pushing versus pulling approach. The er-
ror handling and interface requesting bears strong similarity with the COM error
handling of checking return values with macros and predefined error values.

Resource management, especially of memory shared between the plugins, which
is another big concern for C++ module systems is managed by allocation and re-
lease functions. It can be observed, as with many other plugin and library systems
that the problems with cross-module memory-management and possible inconsis-
tencies with type definitions of objects crossing the boundary, due to the separate
compilation of modules, drives or forces many developers into the direction of a
C-style interface rather than an object-oriented one.

Amongst the available plugins also a LADSPA wrapper can be found enabling
the integration of a wide variety of Audio plugins, which brings us to the next
framework.

3 LADSPA

The “Linux Audio Developer’s Simple Plugin API”[2], in short LADSPA, defines
a simple C interface ( ladspa.h ) for audio-processing plugins under Linux. The
framework only consists of this header file, which is licensed under LGPL[3]. It
is settled in an open source environment, aimed at providing an VST - Virtual
Studio Technology by Steinberg - replacement for Linux. A large number of plu-
gins are available implementing this interface and a number of prominent hosts
like “audacious” can make use of them. LADSPA does itself not introduce any
dependencies.

A module can contain multiple plugins, whose functionality is accessed by
requesting descriptors. Plugins have input/output ports for control and audio
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data, which is passed simply as float arrays.
Plugins are controlled by functions specified by function pointers in the de-

scriptor. See the listing below for the definitions.
1 /* only export */

2 const LADSPA_Descriptor * ladspa_descriptor(unsigned long Index);

3

4 typedef struct _LADSPA_Descriptor {

5 /* author info etc. */

6

7 /* port data */

8

9 LADSPA_Handle (* instantiate)(const struct _LADSPA_Descriptor *

Descriptor ,

10 unsigned long

SampleRate);

11

12 void (* connect_port)(LADSPA_Handle Instance ,

13 unsigned long Port ,

14 LADSPA_Data * DataLocation);

15

16 void (* activate)(LADSPA_Handle Instance);

17

18 void (*run)(LADSPA_Handle Instance ,

19 unsigned long SampleCount);

20

21 void (* run_adding)(LADSPA_Handle Instance ,

22 unsigned long SampleCount);

23

24 void (* set_run_adding_gain)(LADSPA_Handle Instance ,

25 LADSPA_Data Gain);

26

27 void (* deactivate)(LADSPA_Handle Instance);

28

29 void (* cleanup)(LADSPA_Handle Instance);

30

31 } LADSPA_Descriptor;

An issue mentioned also in the documentation is the limited error handling
capability. As solely the user’s language C is assumed, no exceptions are expected
or defined and no return values are designated to this. However this keeps the
design very simple which is one of the stated goals. Resource management happens
again with an allocation and release function pair.

For module interconnection, the LGPL’ed mixing software package GDAM -
“Geoff & Dave’s Audio Mixer” [4] contains functionality to chain LADSPA plu-
gins visually by defining a flow graph. This mini-network can then be saved to
XML whereof an encapsulating LADSPA plugin can be generated automatically,
allowing for easy chaining and composing of plugins. In figure 4 on the next page
an instance of this editor can be seen.
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Figure 4: GDAM flow graph editor

4 Cross-Module Error Handling

In general, error handling in C++ is performed via return values, exceptions or
a state information of some kind, where a module-level state and a function level
result does not replace each other and can be complementary. Within modules -
applications and libraries alike - often exceptions are preferred, as they blend in
naturally with the RAII pattern[5].

However with module boundaries, problems arise. As the C++ Standard does
not concern itself with modules - they being an operating system concept - no
ABI for them is specified. And also it is not specified how exception handling is
implemented. Sutter and Alexandrescu in [6] even define as C++ coding standard
rule #62: Don’t allow exceptions to propagate across module boundaries.

This results from the fact the the exception handling code that is generated
may be compiler/compiler-version and even compiler-flag dependent and can thus
not be reliably guaranteed to the same across different modules.

With this in mind, it seems we best resort to error handling with return values.
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5 Conclusion

We analyzed the FxEngine and LADSPA plugin environment with regards to
Resource Management, Module Interconnection, Error handling, the interface and
available tools in general. It was observed that error handling has a significant role
and needs to be considered during plugin framework design. We also discussed
synchronization and plugin composition as part of plugin frameworks, which may
be required but the former introducing some additional complexity.

The work on plugin frameworks as part of “Generic Image Processing” will be
continued in the same-titled bachelor thesis 1.
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ABI . . . . . . . . . . . . . . . Application Binary Interface
Fx . . . . . . . . . . . . . . . . Plugin
Host . . . . . . . . . . . . . . A plugin hosting environment (application)
LADSPA . . . . . . . . . . Linux Audio Developer’s Simple Plugin API
RAII . . . . . . . . . . . . . . Resource Acquisition Is Initialization
VST . . . . . . . . . . . . . . Virtual Studio Technology

1To be available at http://klambauer.info by August 2009
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A Lightweight Model Driven Development Process  
based on XML Technology 
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Abstract: Model Driven Development and domain specific 
languages attract the attention of the industrial 
practitioners. Recently also more and more tools have 
become available to support these. Unfortunately these 
paradigms are typically discussed in the frame of the water-
flow development process, which does not fit for small and 
mid sized agile teams. 

 
To fill this gap, this article presents a lightweight, iterative, 
model driven software development process which was 
implemented and tested in industrial projects. After a short 
summary of the state-of-art of that field, we present the 
process in an abstract form. Then we give a detailed 
description of the actual realization based on XML 
technology. Finally we describe how the explained process 
and technology was applied in a real-world project. 
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The purpose of this project is to:

1. Research and make a connection between established computer-aided de-
sign (CAD) work�ows, geometric dimensioning and tolerancing (GD&T)
and inline quality control.

2. Conceive a set of tools for de�ning quality requirements on a CAD1 model:
CAD primitives, model relations, usage concepts and work�ows.

3. Propose and possibly create these tools by extending an existing CAD
system, BRL-CAD2. This is the third part of the thesis, done as much as
possible in the remaining time after doing the �rst two parts. The most
important part of the work is the addition of unlimited custom properties
to BRL-CAD primitives and sets of primitives, a functionality that all the
studies open-source CAD programs is missing.

These tools are required for implementing generic inline quality control.

1 Introduction to Inline Quality Control

Inline quality control is the inspection that is done for all the instances of a com-
ponent manufactured on the industrial line, rather than inspecting by sampling
tests.

1.1 Failure rate, defect rate.

The complexity of the engineering products manufactured grows with time. The
failure rate of a complex system is computed (with engineering assumptions) as
the sum of failures of individual components3. Thus, the failure rate increases
with complexity, and a lower failure rate of individual components must be
obtained. The defect rate increases in a similar way to the failure rate, and

1Computer-aided design, http://en.wikipedia.org/wiki/Computer-aided_design
2http://brlcad.org/
3http://en.wikipedia.org/wiki/Failure_rate

1



as such the rate of defects in individual components must be small, or defect
components should be found before assembly.

1.2 Quality control for 3D objects

The quality control of 3D objects is done by discovering the interesting proper-
ties of the objects using techniques like: using images to measure distances or
�nd obvious defects (like cracks), doing a 3D reconstruction 4 (reconstruction
is usually partial, because of occlusions).

When having the three-dimensional model of the real object, a series of
automated veri�cations can be done: measure distances between the parts of
the object and general tolerances, measure lengths and diameters, verify the
quality of the surfaces (absence of holes and bumps, respecting of planarity
or of other geometrical shape), measure quality of rigid joints, approximate
volumes.

2 The connection between CAD, GD&T and in-

line quality control

CAD tools evolve into covering the entire product engineering process, this
process being facilitated by: the increase in computing power, the advances in
the computer vision �eld and the establishment of CAD standards, together with
already established techniques in dimensioning and tolerancing for mechanical
engineering projects.

The increase of the computing power of processors, together with the ad-
vances is computer vision, make the veri�cation of more and more mechanical
parts feasible.

Geometric dimensioning and tolerancing is an already established domain,
although it lacks certain mathematical rigour. CAD formats and techniques
have standardised and are being used in more of the production phases. By
adding strong dimensioning and tolerancing capabilities to CAD programs, CAD
software can move to also help with inline quality control

3 Conceive tools for de�ning quality requirements

for CAD models

The following concepts will be de�ned during this project:

• Means of de�ning quality requirements by using primitives and other mod-
elling techniques, based on existing CAD concepts. Also think of NURBS

43D reconstruction is the process of creating a three-dimensional model of
an object from images of the object taken from di�erent angles. More at
http://en.wikipedia.org/wiki/3D_reconstruction
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surfaces and plus any other existing BRL-CAD primitives and modelling
tools.

• Relations between primitives/model parts and properties for sets of prim-
itives/model parts.

• Tolerance5 properties.

• Work�ows and concepts as similar as possible to those already established
in computer-aided design.

4 Propose means of extending BRL-CAD

The paper will propose a set of modi�cations for BRL-CAD, and implement a
part of them in the remaining time.

1. Tolerance properties and means to store custom data along with BRL-
CAD primitives, sets of primitives and objects. The open source 3D mod-
elling software studied in the course of the project is missing this type of
functionality.

2. The interface for adding the tolerances and speci�c properties.

3. Means of specifying quality properties other than by using tolerance val-
ues, using the existing BRL-CAD primitives and tools.

4. Primitives that are required for specifying quality properties that do not
exist in BRL-CAD.

5Engineering tolerance: http://en.wikipedia.org/wiki/Engineering_tolerance
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