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Abstract — In this talk we empirically show the feasibility of the discrepancy norm used in the
context of image registration. We base our approach on a log-polar image representation which
allows to convert any scale or rotational transformations into shift. A two steps optimization proce-
dure which combines global optimization, based on the Direct algorithm, with local optimization
techniques is then done which should gives us a reasonable coarse registration. A perfect registra-
tion, allowing more complex transformation can then easily be carried over based on the fast and
efficient guess of our procedure.

Key words — Discrepancy norm, image registration, optimization

Institut für Wissensbasierte Mathematische Systeme Fuzzy Logic Laboratorium Linz

Johannes Kepler Universität Linz
Altenberger Str. 69
A-4040 Linz
Austria

Softwarepark 21
A-4232 Hagenberg

Austria



1 Introduction 1

1 Introduction

Image registration is of main interest in the computer vision community. It is the problem of
aligning two images coming from 1) different view points, 2) different sensors (known as multi-
modal image registration), 3) different illumination, or different time of the day.

Nowadays, and since the development of the feature detection and matching, most of the
methods try to connect keypoints from each of the input image. Those keypoints are of different
kind (binary or floating points values), different size (128, 64 up to 512 dimensions) and allow
different invariants (scale, rotation, translation, etc...) We refer the reader to [BETG08, CLSF10,
DT05, HS88, Low04, Low99, MS05] for some examples of keypoints detection and keypoints
description. The matching process, which goes out of the scope of this paper, is then done with
some classical classifier (Tree based, Support Vector Machines, k-Nearest Neighbors for instance)
after an outlier detection.

On the other hand, it is reasonable to think that having more information, or more control
points, should allow to improve the robustness of the registration. This is the idea we want to
develop here: image registration can be done directly on the pixel intensities, without the need of
keypoints. Some efforts have been done in the past year for this task and we refer the reader to
[BBL02] for some example. Of particular interest to us is the work of Wolberg and Zokai [WZ00,
ZW05] and their log-polar registration. It indeeds allow to transfer zooming and rotation into
shiftings. This idea combined with the monotonicity property of the discrepancy norm allows a
general framework for the tasks of image registration.

This paper is structured as follows. We first give some basics about log-polar image represen-
tation and its property. Then we review the definition and property of the discrepancy norm as
introduced in [NW87] and extended by Moser [Mos09] later. Sec. 3 will deal with some use-cases
and examples and finally conclusion and future work will be given in Sec. 4.

2 Background

Before we study deeper the use of the discrepancy norm for image registration, we give some
motivations for our work, starting with some basics on the log-polar transform (Sec. 2.1) and then
motivate the choice of the discrepancy norm for this task, based on the work of Moser [Mos09]
(Sec. 2.2).

2.1 Log-Polar transform

The log-polar transform was first used in Wolbergs and Zokais work[WZ00]. It converts a 2
dimensional cartesian image into an image with polar coordinate system. The log-polar transform
needs a starting point to fix the origin of the polar coordinate system. Denote by c this point whose
cartesian coordinates are (xc, yc) then the log polar transform is defined as:

LPTc[I](ρ, θ) = I(xc + eρ cos θ, yc + eρ sin θ) (1)

where I is the image being analysed.
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The term log-polar comes from the fact that the change of variable ρ = log r yields a classical
polar representation. An example of application is shown on Figs. 1 and 2. Eq. 1 is of particu-
lar interest in the context of image registration as it allows to transform scaling and orientation
changes into shift in this new space. Denotes Zs a zooming function and Rα a rotation, we have:

Zs[I](x, y) = I(esx, esy) (2)

Rα[I](x, y) = I

((
cosα sinα
− sinα cosα

)(
x
y

))
(3)

If we assume now that an image is being rotated and zoomed, we write

Ĩ = Zs [Rα[I]] (4)

and we can compute the LPT of this image which yields to:

LPT [Ĩ](ρ, θ) = LPT [I](ρ+ s, θ + α) (5)

Eq. 5 shows that rotation and scale changes in the spatial cartesian domain are converted in
shifts in the log-polar domain. This property is going to be usefull to us to develop our algorithm.
But before giving the different steps, we first want to introduce a new (dis-)similarity measure for
image registration.

2.2 Discrepancy Norm

While the discrepancy measurements has been studied for a very long time and dates back to Her-
mann Weyl’s theory [Wey16], its interest for pattern recognition [NW87] and vision community is
relatively recent. Proofs and more details on this topic can be found in [Mos09], and we will here
recall only the properties and definitions which are interesting for our task.

The computation of the discrepancy norm on a 2 dimensional image I can be done with the
use of integral images with the following formula:

‖I‖D = max
δ1,δ2∈{−1,1}

max
m,n∈Z

∣∣∣∣∣∣
∑

i∈Iδ1 (m)

∑

j∈Iδ2 (n)
Ii,j

∣∣∣∣∣∣
(6)

where we have Iδk(l) = {i : δki ≤ δkl}
The autocorrealation function ∆[I](t, λ) = ‖I ◦Tλt− I‖D, where Tλt represents a translation

of parameter λt, t being a vector, has an interesing monotonicity property for positive signals:

∀I ≥ 0, ∀λ1, λ2 ∈ R, |λ1| ≤ |λ2| ⇒ ∆[I](t, λ1) ≤ ∆[I](t, λ2) (7)

This property is illustrated on Fig 3. One clearly sees the monotonic behaviour of the autocorrela-
tion function. The different colors show two different size of the cropped area. This property 7 is
going to be the key of our algorithm presented in the next section.
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Figure 1: Image of a friendly
monkey

Figure 2: Log-polar transfor-
mation of the center

Figure 3: Monotonicity be-
havior in the scale direction

3 Contents of the talk

Some tests have been done on two different tasks:

Localization. This is the problem of finding an image in another with different scale and
rotation. Typical applications are in the field of orthogonal images or any aerial image.

Alignment. This is the problem of aligning two images of the same object but taken from
different conditions. This would be the case in some medical applications where the images
could come from MRI and SPECT for instance. This allows a user to combine information
contained in both images into a single representation.

Examples of both use cases will be given in the talk with more details on the procedure.

4 Conclusion - Future

This talk describes a first appraoch to image registration using the discrepancy norm. However
some efforts have to be done in order to improve the whole process:

How do we choose the center of the log polar registration? It seems clear out of the ex-
periments, that this parameter has a critical impact on the accuracy and that only small
displacements will yield completely different transformations. This idea chosen so far is the
use of a sliding window, which is time consuming.

How can we get a more uniform grid? At the moment, there is a critical bias between the
points at the center which have a high importance and the one far away from it. This implies
a loss of information with the radius of transformation getting bigger.

How can we improve the optimization procedure to be perfectly adapted to the discrepancy
norm?

A last point that is worth mentioning is that the discrepancy norm could also be used to find
the ideal center of the transformation. However, this is the chicken and egg problem: knwoing the
center allows us to find the scale and rotation of the images, and knowing those allows us to align
(in translation) the corrected images.
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1. Introduction

The idea behind Active Learning (AL) is to induce
more accurate models using less training samples by
letting the learning algorithm chose instances to be
annotated in a supervised learning setting. Interest
in AL has been driven by the fact that while training
instances as such are often abundant, acquiring labels
for those instances is costly.

There exist a number of different strategy to iden-
tify the most informative sample for querying, in-
cluding uncertainty sampling (Lewis & Catlett, 1994),
query-by-committee (Abe & Mamitsuka, 1998), ex-
pected model change and expected error reduction (Set-
tles, 2009). All of these strategies are selecting samples
solely from the viewpoint of the learning algorithm.
The effectiveness of those sampling is demonstrated
in simulation studies, where only an initial set of pre-
labeled data is provided to start training and labels for
further instances are selectively queried. Thereby, it
is implicitly assumed that the oracle always provides
the correct answer and that there is no influence from
the query strategy to the oracle (Donmez & Carbonell,
2008).

However, if we think of a realistic case, where the task
is to learn from humans neither of the two assump-
tions holds. Recent results from an empirical study
(Baldridge & Palmer, 2009) in fact suggest that effec-
tiveness of AL is dependent on oracle expertise and
that for a non-expert random sampling is superior to
uncertainty sampling. The authors conclude that deal-
ing with variations in annotators may be more impor-
tant than devising better selection strategies.

2. Our Approach

To indicate the difference to the predominant assump-
tion of machine-like oracles where AL is only concerned
with selecting the most informative sample we propose

This work has been supported by the FEMtech pro-
gram of The Federal Ministry for Transport, Innovation
and Technology under FFG grant No. 318113. It reflects
only the authors’ views.

to consider annotators are Soft Oracles whose perfor-
mance is influenced by the selection strategy. Specifi-
cally we assume that Soft Oracles are

• Fallible: they will not always answer correctly,
their answers are increasingly random for difficult
annotations.

• Learning: during the annotation process oracles
become acquainted with the task at hand. Their
efficiency and accuracy is to some extent depen-
dent on reassuring, easy samples.

We present an approach that avoids asking too diffi-
cult questions that will result in almost random an-
swers and hinder ’coming into the game’ of oracles.
Instead of choosing between sampling the most uncer-
tain sample and random sample selection (Baldridge
& Palmer, 2009) we propose a method that naturally
varies between the two in a way adaptive to the per-
formance of soft oracles. This way, not only can we
deal with different levels of initial expertise, the sam-
pling strategy is continuously adapted as oracles learn
during an annotation session.

The problem of noisy oracles has already been recog-
nized as an important issue in real-world applications
of AL, (Sheng et al., 2008), (Dekel & Shamir, 2009).
The predominant approach in that area is to consider
multi-oracle settings, where individual oracle fidelity
can be gauged against others and annotation load al-
located to optimize overall annotation cost. Instead of
focusing on avoiding bad oracles we aim at optimizing
utilization of a given soft oracle. Better utilization of
oracles can of course also be applied in multi-oracle
setting and combined with cost-optimal allocation.

Like uncertainty sampling and query by committee,
our query strategy relies on a measure of distance to
the decision boundary, which for the former is given by
the classification (un)certainty and for the letter by the
amount of (dis)agreement among committee members.
We assume that those measures of distance produced
by the classifier are related to difficulty for an oracle
to label an instance and that the relation can be esti-
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mated from the labeled portion of the data. Instead
of selecting the sample closest to the decision bound-
ary, our strategy is to sample according to a predefined
level/distribution of subjective oracle difficulty.

3. Results

We apply our proposed active learning strategy to
sample selection in a visual inspection experiment.
Previously, in a similar experiment (Heidl et al., 2011)
sample selection was guided by a fixed decision model
and the relevant sample area around the decisions
boundary estimated from pilot experiment data. Now
active learning is employed to select samples form a
large pool, starting from a preselected set of 10% of
queried samples.

To reach a fair comparison of model accuracy between
fixed and active sample selection we estimate the ex-
pected prediction error on an independent set of 10000
samples from the same distribution. Since no true
label is known for those data we use the approach
recently proposed by Domez et al. (Donmez et al.,
2010), which estimates the prediction error of unlabled
samples from the overlap of a bimodal Gaussian dis-
tribution fitted to the discrimant value distributions
of the samples. Using our active learning approach,
the expected error on an independent set of data is al-
most halved from 17.6% to 9.4%. The resulting effect
sizes of gender differences in induced decision trees are
between 7% and 35% larger than those previously re-
ported, with the largest effect size of d = 1.02 for tree
entropy.

References

Abe, N., & Mamitsuka, H. (1998). Query learning
strategies using boosting and bagging. Proceedings
of ICML’98: Fifteenth International Conference on
Machine Learning. Madison, WI, USA: Morgan
Kaufmann Publishers Inc.

Baldridge, J., & Palmer, A. (2009). How well does
active learning actually work?: Time-based evalua-
tion of cost-reduction strategies for language docu-
mentation. Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing
(pp. 296–305). Stroudsburg, PA, USA: Association
for Computational Linguistics.

Dekel, O., & Shamir, O. (2009). Good learners for
evil teachers. Proceedings of the 26th Annual In-
ternational Conference on Machine Learning (pp.
233–240). New York, NY, USA: ACM.

Donmez, P., & Carbonell, J. G. (2008). Proactive

learning: cost-sensitive active learning with multi-
ple imperfect oracles. Proceeding of the 17th ACM
conference on Information and knowledge manage-
ment (pp. 619–628). New York, NY, USA: ACM.

Donmez, P., Lebanon, G., & Balasubramanian, K.
(2010). Unsupervised supervised learning i: Esti-
mating classification and regression errors without
labels. J. Mach. Learn. Res., 11, 1323–1351.

Heidl, W., Thumfart, S., Lughofer, E., Eitzinger, C.,
& Klement, E. P. (2011). Decision tree-based anal-
ysis suggests structural gender differences in visual
inspection. Proceedings of AIA2011, IASTED In-
ternational Conference on Artificial Intelligence and
Applications (pp. 142–149). Innsbruck, Austria.

Lewis, D. D., & Catlett, J. (1994). Heterogeneous un-
certainty sampling for supervised learning. In Pro-
ceedings of ICML’94: Eleventh International Con-
ference on Machine Learning (pp. 148–156). Morgan
Kaufmann.

Settles, B. (2009). Active learning literature sur-
veyComputer Sciences Technical Report 1648). Uni-
versity of Wisconsin–Madison.

Sheng, V. S., Provost, F., & Ipeirotis, P. G. (2008).
Get another label? improving data quality and data
mining using multiple, noisy labelers. Proceeding
of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 614–
622). New York, NY, USA: ACM.


