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On Metric Equivalence for Event-Based Sampling 
Bernhard Moser 

SCCH, 3.07.2014 
 
 
 

While Shannon's paradigm of sampling is based on equidistant points in time, triggered by 
a clock, level-crossing sampling schemes are based on the evaluation of the input signal's 
amplitude. Three types of level-crossing concepts are considered: (a) absolute level-
crossings, (b) absolute level-crossings with hysteretic quantization, that ignores repeated 
crossings, and (c) thresholding changes. The latter is also referred to as send-on-delta. 
Such event-driven sampling principles are encountered in asynchronous event-based 
data acquisition of wireless sensor networks in order to reduce the amount of data transfer 
and energy consumption, in event-based imaging in order to realize high-dynamic range 
image acquisition or in biology in terms of neuronal spike trains. 
The paper addresses the similarity between the event sequences which encode the 
quantized signals resulting from such event-based sampling concepts. It is shown that 
such event-driven sampling principles induce instability effects when using dissimilarity 
measures which are state-of-the-art in this context. As an alternative metric, Hermann 
Weyl's discrepancy norm is introduced. For this norm asymptotic metric equivalence can 
be shown which guarantees stability. 
 
For details see  
Moser, B. A. and Natschläger, T., On  stability of distance measures for event sequences induced 
by level-crossing sampling, IEEE Trans. Signal Process. 62  (2014), no. 8, 1987—1999. 

    

 

 





Improving Visual Discomfort Prediction of 
Stereoscopic Images by Disparity-Based Contrast 

Werner Reisner, Bernhard Moser 
SCCH, 3.07.2014 

 
 
 

The problem of predicting the extent of visual discomfort, when watching stereoscopic 
images, is addressed. The phenomenon of visual discomfort depends on various 
influencing factors like the arrangement of the display system, the image quality and the 
design of 3D effects. Particularly, the computational efficiency of state-the-art prediction 
models is investigated. It turns out that a novel approach, based on the Haralick contrast 
feature applied on the disparity map, improves state-of-the-art computational models for 
predicting visual discomfort in terms of accuracy and, above all, time complexity. This 
result is underpinned by statistical evaluations based on public available assessment 
data. 
 
The approach of this paper relies on the introduction of the Haralick contrast feature [1] 
(HC) in this context. It turns out that the HC feature allows a substantial improvement in 
this sense. In more detail, our experimental evaluations address the validation of the 
following two claims with respect to the features used in state-of-the-art approaches of 
[2,3]: 
 
Claim 1 (Prediction Accuracy): The expected prediction accuracy, 
which can be achieved by combinations of features including HC, is significantly higher 
than for combinations without HC. 
 
Claim 2 (Time Complexity): HC allows substantial time complexity improvement without 
significant loss of prediction accuracy. 
 
These claims are underpinned by statistically significant results on two public available 
databases [4], [5]. 
 
 
Remark: Paper recently submitted to IEEE Trans. on Broadcasting. 
 
References: 
[1] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” 
IEEE Trans. Systems, Man and Cybernetics, no. 6, 1973. 
 
[2] D. Kim and K. Sohn, “Visual fatigue prediction for stereoscopic image,” IEEE Trans. Circuits and 
Systems for Video Technology, vol. 21, no. 2, pp. 231–236, 2011. 
 
[3] M. Lambooij, W. A. IJsselsteijn, and I. Heynderickx, “Visual discomfort of 3D TV: assessment 
methods and modeling,” Displays, vol. 32, no. 4, pp. 209–218, 2011. 

    
[4] Y. Jung, H. Sohn, S.-i. Lee, H. Park, and Y. Ro, Predicting visual discomfort of 
stereoscopic images using human attention model, 2013. [Online]. Available: 
http://ivylab.kaist.ac.kr/demo/3DVCA/3DVCA.htm.  
 
[5] L. Goldmann, F. De Simone, and T. Ebrahimi, “Impact of  acquisition distortions on the 
quality of stereoscopic images,”  in Proc. Int. Workshop on Video Processing and Quality 
Metrics for Consumer Electronics-VPQM, 2010, pp. 1–6. Available: 
http://mmspg.epfl.ch/3diqa.  

 

 





Design of experiments for Copula Models∗

Elisa Perrone

Abstract In applications modeling dependencies by traditional covariance func-
tions is often of limited use. Then stochastic dependence can easily and elegantly
modeled by so-called copulas, functions with very special properties that have a
strong connection with arbitrary marginal distributions (See[4]). The idea is to look
into the relationship between the optimal design theory and the copula theory in or-
der to find out what could be the best combination between the design model and the
copula family. A first application of copulas to the optimal design theory was treated
in [1]. In this work we give a general formulation for the application of copulas to
the optimal design and we show a first example in order to give a more general view
to what could be the strengths and the weakness of this approach.

Key words: Copulas, Optimal Experimental Design, Fisher Information Matrix.

1 Brief description

The collection of data requires a certain amount of effort such as time. A proper
design potentially allows to make use of the resources in the most efficient way.

The classical optimal design problem is the estimation of the model parameters
subject to the condition that a design criterion is optimized.

The choice of the design criterion will turn out to be a crucial part of an optimal
design problem.

1.1 Introduction to the Optimal Design Theory

Let us consider a vector xT = (x1, . . . ,xr) ∈X of control variables, where X ⊂Rr

is a compact set.
The result of the observations is the vector:
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2 Elisa Perrone

y(x) = (y1(x), , . . . ,ym(x)),

with
E[Y(x)] = η(x,β ) = (η1(x,β ), . . . ,ηm(x,β )),

where β = (β1, . . . ,βk) is a certain unknown parameter vector to be estimated and
ηi are known functions.

In this work we will focus on the case m = 2.
Let us call cY(y(x,β ),α) the joint probability density function of the random

vector Y, where α = (α1, . . . ,αl) are unknown parameters.

Definition 1. For a single observation the matrix J(x,β ,α), a (k+ l)×(k+ l) matrix
defined as follows

J(x,β ,α) =

(
Jββ (x) Jβα(x)
JT

βα(x) Jαα(x)

)
(1)

where the matrix Jββ (x) is the (k× k) matrix with the (i, j)th element defined as

E
(
− ∂ 2

∂βi∂β j
log cY(y(x,β ),α)

)
=

= E

((
∂

∂β
log cY(y(x,β ),α)

)(
∂

∂β
log cY(y(x,β ),α)

)T
) (2)

and so are also the matrices Jβα(x) and Jαα(x), is called the Fisher Information
Matrix.

For r independent observations at x1, . . . ,xr, the corresponding Information ma-
trix is

M(ξ ,β ,α) =
r

∑
i=1

wiJ(xi,β ,α)

where
r
∑

i=1
wi = 1 and

ξ =

{
x1 x2 . . . xn
w1 w2 . . . wn

}
.

Definition 2. A probability distribution function ξ on the actual design space Ξ ,
which is the class of all the probability distributions on the Borel set X , is called a
design measure.

The Information Matrix on a general design measure is:

M(ξ ,β ,α) = E(J(x̃,β ,α))

where x̃ is a random vector with distribution ξ .
The aim is to approximate theory is concerned with finding ξ ∗(β ,α) such that

maximizes some function φ(M(ξ ,β ,α)).
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We will consider as optimal criterion a function φ(M) = logdetM, if M is non
singular. This criterion is called D-optimality and a design that maximize this func-
tion is called D-optimal design.

1.2 Copulas generalities

Definition 3. Let I = [0,1]. A two-dimensional copula (or 2-copula) is a bivariate
function C : I× I−→ I with the following properties:

1. for every u1, u2 ∈ I

C(u1,0) = 0, C(u1,1) = u1, C(0,u2) = 0, C(1,u2) = u2; (3)

2. for every u1, u2, u3, u4 ∈ I such that u1 ≤ u3 and u2 ≤ u4,

C(u3,u4)−C(u3,u2)−C(u1,u4)+C(u1,u2)≥ 0. (4)

Theorem 1. Sklar’s Theorem
Let FY1Y2 be a joint distribution function with marginals FY1 and FY2 . Then there

exists a 2-copula C such that

FY1Y2(y1,y2) =C(FY1(y1),FY2(y2)) (5)

for all reals y1, y2.
If FY1 and FY2 are continuous, then C is unique; otherwise, C is uniquely defined on
Ran(FY1)×Ran(FY2).

Conversely, if C is a 2-copula and FY1 and FY2 are distribution functions, then the
function FY1Y2 given by (5) is a joint distribution with marginals FY1 and FY2 .

1.3 The connection between Copulas and Optimal Designs

According to the Sklar’s theorem, in the case m = 2, the joint probability density
function written in Equation (2) is exactly the density of the copula function such
that

FY1,Y2(y1,y2;α) =
∫

cY(y(x,β ),α)dy =

=C(FY1(y1),FY2(y2);α).

The general idea of this work, hence, is to use a copula function as joint distribution
function of the random vector Y and to investigate the dependence of the design
with respect to the copula choice and to the copula parameter.
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Filtering the residual space

Francisco Serdioa, Ewdin Lughofera

aDepartment of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Austria

Abstract

Departing from a Fault Detection (FD) system [1] operating on the residual space, we introduce
well-known filters from other domains to be applied to the residual signals generated by the FD
models, with a double purpose: (i) to decrease the false positives of the systems and (ii) to increase
the true positives of the system. Thus, the FD performance is increased by two means.

We have conducted experiments to demonstrate how, by using this simple technique, the resi-
dual signals are smoother due to a smaller standard deviation, but the underlying trend of the signal
is still kept whereas the significant anomalies pointing to potential fault candidates are not filtered
out. This is directly translated in a better residual-signal-tracking by means of a tolerance band,
being less prone to false positives and more sensitive to true positives, i.e. to correct detections.

The research was performed with well-known existing filters, used in other domains, such as
engineering, image processing, econometrics, etc. [2] [3].

Keywords: Fault detection, dynamic residual analysis, residual space, filters.

1. Filters

Moving average filters. They are effective filters to smooth data, and they have particular applica-
tions dealing with noisy pictures. They operate by replacing a point by an arithmetic mean of the
values within an interval (neighborhood), and are formulated by

MAV G(xi) =
∑N−1

k=0 xi−k

N
, (1)

where MAVG stands for Moving AVeraGe and N is the size of the neighborhood to consider.

Modified moving average filters. The first element is computed as a normal moving average (1)
whereas subsequent values are computed by

MMAV G(xi) = MMAV G(xi−1)+ xi−MAV G(xi−1) . (2)

MMAVG stands for Modified Moving AVeraGe.

Email addresses: francisco.serdio@jku.at (Francisco Serdio), ewdin.lughofer@jku.at (Ewdin Lughofer)
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Median average filters. They replace a neighborhood by its median value. They are widely used
to deal with impulsive noise in images [4]. They are formulated by

MMED(xi) = median{xi−1, ...,xi−N} , (3)

where MMED stands for Moving MEDian and N is the size of the neighborhood to consider.

Gaussian filters. Described in the ISO 11562 standard [5], they have applications in electronics,
signal processing and image processing [6]. A gaussian bell follows

GaussBell(x) =
1

σ ·
√

2 ·σ
· e
(
− (x−c)2

2·σ2

)

, (4)

being c and σ the center and spread of the bell.
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