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 Incremental Rule Splitting in Generalized Evolving Fuzzy
Regression Models 

 

 Edwin Lughofer
 

Knowledge-Based Mathematical Systems (KBMS) - Johannes Kepler University Linz 

Abstract  -  We  propose  an  incremental  rule  splitting  concept  for
generalized fuzzy rules in evolving fuzzy regression models in order to properly
react  on  gradual  drifts  and  to  compensate  inappropriate  settings  of  rule
evolution  parameters;  both  occurrences  may  lead  to  oversized  rules  with
untypically large local errors, which also usually affects the global model error.
The generalized rules are directly defined in the multi-dimensional feature space
through a  kernel  function,  and  thus  allowing  any rotated  orientation  of  their
shapes. Our splitting condition is based 1.) on the local error of rules measured
in terms of a weighted contribution to the whole model error and 2.) on the size
of the rules measured in terms of its volume. Thereby, we use the concept of
statistical process control for automatic thresholding, in order to omit two extra
parameters. The splitting technique relies on the eigendecompisition of the rule
covariance  matrix  by  adequately  manipulating  the  largest  eigenvector  and
eigenvalues in order to retrieve the new centers and contours of the two split
rules. Thus, splitting is performed along the main principal component direction
of a rule. The splitting concepts are integrated in the generalized smart evolving
learning  engine  (Gen-Smart-EFS)  and  successfully  tested  on  two  realworld
application scenarios, engine test benches and rolling mills, the latter including a
real-occurring gradual drift (whose position in the data is known). Results show
clearly improved error trend lines over time when splitting is applied: reduction of
the error by about one third (rolling mills) and one half (engine test benches). In
case of  rolling mills,  three rule  splits  right  after  the gradual  drift  starts  were
essential for this significant improvement. 





 Quasi-Isometry Theory for Threshold-Based Sampling
 
 

 Bernhard Moser
 

 Software Competence Center Hagenberg (SCCH) 

Abstract - The problem of estimating the accuracy of signal reconstruction
from threshold-based sampling, by only taking the sampling output into account,
is addressed. The approach is based on re-sampling the reconstructed signal
and the application of a distance measure in the output space which satisfies
the condition of quasi-isometry. The quasi-isometry property allows to estimate
the  reconstruction  accuracy  from  the  matching  accuracy  between  the  sign
sequences  resulting  from sampling  and  the  re-sampling  after  reconstruction.
This approach is exemplified by means of leaky integrate-and-fire. It is shown
that  this  approach  can  be  used  for  parameter  tuning  for  optimizing  the
reconstruction accuracy.
 





Efficient Dynamic Pinning of Parallelized
Applications by Distributed Reinforcement

Learning?

Georgios C. Chasparis and Michael Rossbory

Software Competence Center Hagenberg GmbH, Softwarepark 21, A-4232 Hagenberg,
Austria

{georgios.chasparis,michael.rossbory}@scch.at

Abstract. This paper introduces a resource allocation framework specif-
ically tailored for addressing the problem of dynamic placement (or pin-
ning) of parallelized applications to processing units. Under the proposed
setup each thread of the parallelized application constitutes an indepen-
dent decision maker (or agent), which (based on its own prior perfor-
mance measurements and its own prior CPU-affinities) decides on which
processing unit to run next. Decisions are updated recursively for each
thread by a resource manager/scheduler which runs in parallel to the
application’s threads and periodically records their performances and
assigns to them new CPU affinities. For updating the CPU-affinities,
the scheduler uses a distributed reinforcement-learning algorithm, each
branch of which is responsible for assigning a new placement strategy
to each thread. According to this algorithm, prior allocations are going
to be reinforced in the future proportionally to their prior performance.
The proposed resource allocation framework is flexible enough to address
alternative optimization criteria, such as maximum average processing
speed and minimum speed variance among threads. We demonstrate
analytically that convergence to locally-optimal placements is achieved
asymptotically. Finally, we validate these results through experiments in
Linux platforms.

1 Introduction

Resource allocation has become an indispensable part of the design of any engi-
neering system that consumes resources, such as electricity power in home energy
management [1], access bandwidth and battery life in wireless communications
[8], computing bandwidth under certain QoS requirements [2], computing band-
width for time-sensitive applications [5], computing bandwidth and memory in
parallelized applications [3].

When resource allocation is performed online and the number, arrival and
departure times of the tasks are not known a priori (as in the case of CPU band-
width allocation), the role of a resource manager (RM) is to guarantee an efficient
? This work has been partially supported by the European Union grant EU H2020-
ICT-2014-1 project RePhrase (No. 644235).



operation of all tasks by appropriately distributing resources. However, guaran-
teeing efficiency through the adjustment of resources requires the formulation
of a centralized optimization problem (e.g., mixed-integer linear programming
formulations [2]), which further requires information about the specifics of each
task (i.e., application details). Such information may not be available to neither
the RM nor the task itself.

Given the difficulties involved in the formulation of centralized optimization
problems, not to mention their computational complexity, feedback from the
running tasks in the form of performance measurements may provide valuable
information for the establishment of efficient allocations. Such (feedback-based)
techniques have recently considered in several scientific domains, such as in the
case of application parallelization (where information about the memory access
patterns or affinity between threads and data are used in the form of schedul-
ing hints) [4], or in the case of allocating virtual processors to time-sensitive
applications [5].

To tackle the issues of centralized optimization techniques, resource alloca-
tion problems have also been addressed through distributed or game-theoretic
optimization schemes. The main goal of such approaches is to address a cen-
tralized (global) objective for resource allocation through agent-based (local)
objectives, where, for instance, agents may represent the tasks to be allocated.
Examples include the cooperative game formulation for allocating bandwidth in
grid computing [14], the non-cooperative game formulation in the problem of
medium access protocols in communications [15] or for allocating resources in
cloud computing [17]. The main advantage of distributing the decision-making
process is the considerable reduction in computational complexity (a group of
N tasks can be allocated to m resources with mN possible ways, while a single
task may be allocated with only m possible ways). This further allows for the
development of online selection rules where tasks/agents make decisions often
using current observations of their own performance.

This paper proposes a distributed learning scheme specifically tailored for ad-
dressing the problem of dynamically assigning/pinning threads of a parallelized
application to the available processing units. Prior work has demonstrated the
importance of thread-to-core bindings in the overall performance of a parallelized
application. For example, [9] describes a tool that checks the performance of each
of the available thread-to-core bindings and searches an optimal placement. Un-
fortunately, the exhaustive-search type of optimization that is implemented may
prohibit runtime implementation. Reference [4] combines the problem of thread
scheduling with scheduling hints related to thread-memory affinity issues. These
hints are able to accommodate load distribution given information for the ap-
plication structure and the hardware topology. The HWLOC library is used to
perform the topology discovery which builds a hierarchical architecture com-
posed of hardware objects (NUMA nodes, sockets, caches, cores, etc.), and the
BubbleSched library [16] is used to implement scheduling policies. A similar
scheduling policy is also implemented by [13].



This form of scheduling strategies exhibits several disadvantages when deal-
ing with dynamic environments (e.g., varying amount of available resources). In
particular, retrieving the exact affinity relations during runtime may be an issue
due to the involved information complexity. Furthermore, in the presence of other
applications running on the same platform, the above methodologies will fail to
identify irregular application behavior and react promptly to such irregulari-
ties. Instead, in such dynamic environments, it is more appropriate to consider
learning-based optimization techniques where the scheduling policy is being up-
dated based on performance measurements from the running threads. Through
such measurement- or learning-based scheme, we can a) reduce information com-
plexity (i.e., when dealing with a large number of possible thread/memory bind-
ings) since only performance measurements need to be collected during runtime,
and b) adapt to uncertain/irregular application behavior.

To this end, this paper proposes a dynamic (algorithmic-based) scheme for
optimally allocating threads of a parallelized application into a set of available
CPU cores. The proposed methodology implements a distributed reinforcement
learning algorithm (executed in parallel by a resource manager/scheduler), ac-
cording to which each thread is considered an independent agent making de-
cisions over its own CPU-affinities. The proposed algorithm requires minimum
information exchange, that is only the performance measurements collected from
each running thread. Furthermore, it exhibits adaptivity and robustness to pos-
sible irregularities in the behavior of a thread or to possible changes in the
availability of resources. We analytically demonstrate that the reinforcement-
learning scheme asymptotically learns a locally-optimal allocation, while it is
flexible enough to accommodate several optimization criteria. We also demon-
strate through experiments in a Linux platform that the proposed algorithm
outperforms the scheduling strategies of the operating system with respect to
completion time.

The paper is organized as follows. Section 2 describes the overall frame-
work and objective. Section 3 introduces the concept of multi-agent formulations
and discusses their advantages. Section 4 presents the proposed reinforcement-
learning algorithm for dynamic placement of threads and Section 5 presents its
convergence analysis. Section 6 presents experiments of the proposed algorithm
in a Linux platform and comparison tests with the operating system’s response.
Finally, Section 7 presents concluding remarks.

Notation:

• |x| denotes the Euclidean norm of a vector x ∈ Rn.
• dist(x,A) denotes the minimum distance from a vector x ∈ Rn to a set
A ⊂ Rn, i.e., dist(x,A) .= infy∈A |x− y|.
• Bδ(A) denotes the δ-neighborhood of a set A ⊂ Rn, i.e., Bδ(A) .= {x ∈ Rn :
dist(x,A) < δ}.
• For some finite set A, |A| denotes the cardinality of A.
• The probability simplex of dimension n is denoted ∆ (n) and defined as

∆ (n)
.
=
{
x = (x1, ..., xn) ∈ [0, 1]n :

n∑

i=1

xi = 1
}
.



• Π∆(n)[x] is the projection of a vector x ∈ Rn onto ∆ (n).
• ej ∈ Rn denotes the unit vector whose jth entry is equal to 1 while all other

entries are zero;
• For a vector σ ∈ ∆ (n), let randσ [a1, ..., an] denote the random selection of

an element of the set {a1, ..., an} according to the distribution σ;

2 Problem Formulation & Objective

2.1 Framework

We consider a resource allocation framework for addressing the problem of dy-
namic pinning of parallelized applications. In particular, we consider a num-
ber of threads I = {1, 2, ..., n} resulting from a parallelized application. These
threads need to be pinned/scheduled for processing into a set of available CPU’s
J = {1, 2, ...,m} (not necessarily homogeneous).

We denote the assignment of a thread i to the set of available CPU’s by
αi ∈ Ai ≡ J , i.e., αi designates the number of the CPU where this thread is
being assigned to. Let also α = {αi}i denote the assignment profile.

Responsible for the assignment of CPU’s into the threads is the Resource
Manager (RM), which periodically checks the prior performance of each thread
and makes a decision over their next CPU placements so that a (user-specified)
objective is maximized. Throughout the paper, we will assume that:

(a) The internal properties and details of the threads are not known to the
RM. Instead, the RM may only have access to measurements related to their
performance (e.g., their processing speed).

(b) Threads may not be idled or postponed. Instead, the goal of the RM is to
assign the currently available resources to the currently running threads.

(c) Each thread may only be assigned to a single CPU core.

2.2 Static optimization & issues

The selection of a centralized objective is open-ended. In the remainder of the
paper, we will consider two main possibilities of a centralized objective in order
to emphasize the flexibility of the introduced methodology to address alternative
criteria. In the first case, the centralized objective will correspond to maximizing
the average processing speed. In the second case, it will correspond to maximizing
the average processing speed while maintaining a balance between the processing
speeds of the running threads.

Let vi = vi(α,w) denote the processing speed of thread i which depends
on both the overall assignment α, as well as exogenous parameters aggregated
within w. The exogenous parameters w summarize, for example, the impact of
other applications running on the same platform or other irregularities of the
applications. Then, the previously mentioned centralized objectives may take on
the following form:

max
α∈A

f(α,w), (1)



Resource Manager (RM)
α∗ = (α∗1, α

∗
2, ..., α

∗
n)

.
= argmaxα∈A f(α,w)

T1 T2 Tn· · ·

CPU 1 CPU 2 CPU 3 · · · CPU m

α∗1 α∗2 α∗n

w1 w2 w3 wm

α∗1 α∗2 α∗n

Fig. 1. Schematic of static resource allocation framework.

where

(O1) f(α,w) .
=
∑n
i=1 vi/n, corresponds to the average processing speed of all

threads;
(O2) f(α,w) .

=
∑n
i=1[vi − γ(vi −

∑
j∈I vj/n)

2]/n, for some γ > 0, corresponds
to the average processing speed minus a penalty that is proportional to the
speed variance among threads.

Any solution to the optimization problem (1) would correspond to an effi-
cient assignment. Figure 1 presents a schematic of a static resource allocation
framework sequence of actions where the centralized objective (1) is solved by
the RM once and then it communicates the optimal assignment to the threads.

However, there are two significant issues when posing an optimization prob-
lem in the form of (1). In particular,

1. the function vi(α,w) is unknown and it may only be evaluated through
measurements of the processing speed, denoted ṽi;

2. the exogenous influence w is unknown and may vary with time, thus the
optimal assignment may not be fixed with time.

In conclusion, the static resource allocation framework of Figure 1 presented
in (1) is not easily implementable.

2.3 Measurement- or learning-based optimization

We wish to target a static objective of the form (1) through a measurement-based
(or learning-based) optimization approach. According to such approach, the RM



reacts to measurements of the objective function f(α,w), periodically collected
at time instances k = 1, 2, ... and denoted f̃(k). In the case of objective (O1),
f̃(k)

.
=
∑n
i=1 ṽi(k)/n. Given these measurements and the current assignment

α(k) of resources, the RM selects the next assignment of resources α(k + 1)
so that the measured objective approaches the true optimum of the unknown
function f(α,w). In other words, the RM employs an update rule of the form:

{(ṽi(1), αi(1)), ..., (ṽi(k), αi(k))}i 7→ {αi(k + 1)}i (2)

according to which prior pairs of measurements and assignments for each thread
i are mapped into a new assignment αi(k+ 1) that will be employed during the
next evaluation interval.

Resource Manager (RM)
{(ṽi(1), αi(1)), ..., (ṽi(k), αi(k))}i 7→ {αi(k + 1)}i

T1 T2 Tn· · ·

CPU 1 CPU 2 CPU 3 · · · CPU m

ṽ1(k)

α1(k + 1)

ṽ2(k)

α2(k + 1)

ṽn(k)

αn(k + 1)

α1(k) α2(k) αn(k)

w1 w2 w3 wm

Fig. 2. Schematic of dynamic resource allocation framework.

The overall framework is illustrated in Figure 2 describing the flow of infor-
mation and steps executed. In particular, at any given time instance k = 1, 2, ...,
each thread i communicates to the RM its current processing speed ṽi(k). Then
the RM updates the assignments for each thread i, αi(k+1), and communicates
this assignment to them.

2.4 Distributed learning

Parallelized applications consist of multiple threads that can be controlled in-
dependently with respect to their CPU affinity (at least in Linux machines).
Recently developed performance-recording tools (e.g., PAPI [11]) also allows for



a real-time collection of performance counters during the execution time of a
thread. Thus, decisions over the assignment of CPU affinities can be performed
independently for each thread, allowing for the introduction of a distributed
learning framework. Under such a framework, the RM treats each thread as
an independent decision maker and provides each thread with an independent
decision rule.

A distributed learning approach (i) reduces computation complexity, since
each thread has onlym available choices (instead ofmN available group choices),
and (ii) allows for an immediate response to changes observed in the environ-
ment (e.g., available computing bandwidth), thus increasing the adaptivity and
robustness of the resource allocation mechanism. For example, if the load of the
jth CPU core increases (captured through the exogenous parameters wj), then
the thread(s) currently running on CPU j may immediately react to this change
without necessarily altering the assignment of the remaining threads.

Such immediate reaction to changes in the environment constitutes a great
advantage in comparison to centralized schemes. In the absence of an explicit
form of the centralized objective (1), a centralized framework would require a
testing period over which all possible assignments are tested over an evalua-
tion period and then compared with respect to their performance. When all
possible assignments have been tested and evaluated, then the best one can be
selected. Even if such optimization is repeated often, it is obvious that such
exhaustive-search approach will suffer from slow responses to possible changes
in the environment.

It is also evident that the large evaluation period required by an exhaustive-
search framework cannot provide any performance guarantees during the eval-
uation phase. In particular, since all alternative assignments need to be tested
over some evaluation interval, bad assignments also have to be tried and evalu-
ated. This may have an unpredictable impact in the overall performance of the
application, thus reducing the impact of the optimization itself.

On the other hand, distributed learning schemes can be designed to allow only
for small variations in the current assignment. For example, threads may exper-
iment independently for alternative CPU assignments, however the frequency
of such experimentations can be tuned independently for each thread. At the
same time, an experimentation that leads to a worse assignment may always
be reversed by the thread performing this experimentation, thus maintaining
good performance throughout the execution time. Hence, distributed learning
may allow for (iii) a more direct and careful experimentation of the alternative
options.

At the same time, distributed learning schemes can be designed to (iv) grad-
ually approach at least locally optimum assignments, which include all solutions
to the static centralized optimization (1). Thus, such schemes may provide guar-
antees over the performance of the overall parallelized application.

Points (i)–(iv) discussed above constitute the main advantages of a dis-
tributed learning scheme compared to a centralized approach.



2.5 Objective

The objective in this paper is to address the problem of adaptive or dynamic
pinning through a distributed learning framework. Each thread will constitute
an independent decision maker or agent, thus naturally introducing a multi-
agent formulation. Each thread selects its own CPU assignments independently
using its own preference criterion (although the necessary computations for such
selection are executed by the RM).

The goal is to design a preference criterion and a selection rule for each
thread, so that when each thread tries to maximize its own (local) criterion then
certain guarantees can be achieved regarding the overall (global) performance of
the parallelized application. Furthermore, the selection criterion for each thread
should be adaptive and robust to possible changes observed in the environment
(e.g., the resource availability).

In the following sections, we will go through the design for such a distributed
scheme, and we will provide guarantees with respect to its asymptotic behavior.

3 Multi-Agent Formulation

The first step towards a distributed learning scheme is the decomposition of the
decision making process into multiple decision makers (or agents). Naturally,
in the problem of placing threads of a parallelized application into a set of
available processing units, a thread may naturally constitute an independent
decision maker.

3.1 Strategy

Since each agent (or thread) selects actions independently, we generally assume
that each agent’s action is a realization of an independent discrete random vari-
able. Let σij ∈ [0, 1], j ∈ Ai, denote the probability that agent i selects its jth ac-
tion in Ai. If

∑|Ai|
j=1 σij = 1, then σi

.
= (σi1, ..., σi|Ai|) is a probability distribution

over the set of actions Ai (or strategy of agent i). Then σi ∈ ∆ (|Ai|). To provide
an example, consider the case of 3 available CPU cores, i.e., Ai = {1, 2, 3}. In
this case, the strategy σi ∈ ∆ (3) of thread i may take the following form:

σi =




0.2
0.5
0.3


 ,

such that 20% corresponds to the probability of assigning itself to CPU core 1,
50% corresponds to the probability of assigning itself to CPU core 2 and 30%
corresponds to the probability of assigning itself to CPU core 3. Briefly, the
assignment selection will be denoted by

αi = randσi
[Ai] .



We will also use the term strategy profile to denote the combination of strate-
gies of all agents σ = (σ1, ..., σn) ∈∆ where ∆

.
= ∆ (|A1|)× ...×∆ (|An|) is the

set of strategy profiles.
Note that if σi is a unit vector (or a vertex of ∆ (|Ai|)), say ej , then agent

i selects its jth action with probability one. Such a strategy will be called pure
strategy. Likewise, a pure strategy profile is a profile of pure strategies. We will
also use the term mixed strategy to denote a strategy that is not pure.

3.2 Utility function & expected payoff

A cornerstone in the design of any measurement-based algorithm is the prefer-
ence criterion or utility function ui for each thread i ∈ A. The utility function
captures the benefit of a decision maker (thread) as resulting from the assign-
ment profile α selected by all threads, i.e., it represents a function of the form
ui : A → R. Often, we may decompose the argument of the utility function
as follows ui(α) = ui(αi, α−i), where −i .= I\i. The utility function introduces
a preference relation for each decision maker where ui(αi, α−i) ≥ ui(α

′
i, α−i)

translates to αi being more desirable/preferable than α′i.
It is important to note that the utility function ui of each agent/thread i is

subject to design and it is introduced in order to guide the preferences of each
agent. Thus, ui may not necessarily correspond to a measured quantity, but it
could be a function of available performance counters.

For example, a natural choice for the utility of each thread is its own execution
speed vi. Other options may include more egalitarian criteria, where the utility
function of each thread corresponds to the overall global objective f(α,w). The
definition of a utility function is open-ended.

3.3 Assignment Game

Assuming that each thread (or agent) may decide independently on its own
CPU placement, so that its preference criterion is maximized, a strategic-form
game between the running threads can naturally be introduced. We define it as
a strategic interaction or game because the strategy of each thread indirectly
influences the performance of the other threads, thus introducing an interdepen-
dence between their utility functions. We define the triple {I,A, {ui}i} as an
assignment game.

3.4 Nash Equilibria

Given a strategy profile σ ∈ ∆, the expected payoff vector of each agent i,
Ui : ∆→ R|Ai|, can be computed by

Ui(σ)
.
=
∑

αi∈Ai

eαi

∑

α−i∈A−i

(∏

s∈−i
σsαs

)
ui(αi, α−i). (3)



We may think of the jth entry of the expected payoff vector Ui, denoted Uij(σ),
as the expected payoff of agent i playing action j at strategy profile σ. Finally,
let ui(σ) be the expected payoff of agent i at strategy profile σ ∈ ∆, which
satisfies:

ui(σ) = σT
i Ui(σ). (4)

Definition 1 (Nash Equilibrium). A strategy profile σ∗ = (σ∗1 , ..., σ
∗
n) ∈ ∆

is a Nash equilibrium if, for each agent i ∈ I,

ui(σ
∗
i , σ
∗
−i) ≥ ui(σi, σ∗−i), (5)

for all σi ∈ ∆ (|Ai|) with σi 6= σ∗i .

In other words, a strategy profile is a Nash equilibrium when no agent has the
incentive to change this strategy (given that every other agent does not change
its strategy). In the special case where for all i ∈ I, σ∗i is a pure strategy, then
the Nash equilibrium is called pure Nash equilibrium.

3.5 Efficient assignments vs Nash equilibria

As we shall see in a forthcoming section, Nash equilibria can be potential attrac-
tors of several classes of distributed learning schemes, therefore their relation to
the efficient assignments becomes important.

Nash equilibria correspond to locally stable equilibria (with respect to the
agents’ preferences), i.e., no agent has the incentive to alter its strategy. On the
other hand, efficient assignments correspond to strategy profiles that maximize
the global objective (1). As probably expected, a Nash equilibrium does not
necessarily coincide with an efficient assignment and vice versa. Both the utility
function of each agent i, ui, as well as the global objective f(α,w) are subject to
design, and their selection determines the relation between Nash equilibria and
efficient assignments.

The RM can be designed to have access to the performances of all threads.
Thus, a natural choice for the utility of each thread can be the overall objective
function, i.e.,

ui(α)
.
= f(α,w), (6)

for some given exogenous factor w. Note that this definition is independent of
whether objective (O1) or (O2) is selected. Such classes of strategic interactions
where the utilities of all independent agents are identical, are referred to as
identical interest games and they are part of a larger family of games, namely
potential games. It is straightforward to check that in this case, the set of efficient
assignments belongs to the set of Nash equilibria (locally optimal allocations). In
this case, it is desirable that agents learn to select placements that correspond to
Nash equilibria, since a) it provides a minimum performance guarantee (since all
non-locally optimal placements are excluded), and b) it increases the probability
for converging to the solution(s) of the global objective (1).



4 Reinforcement Learning (RL)

In the previous section, we introduced utility functions for each thread (or agent),
so that the set of efficient assignments (1) are restricted within the set of Nash
equilibria. However, as we have already discussed in Section 2.3, the utility func-
tion of each thread is not known a-priori, rather it may only be measured after
the selection of a particular assignment is in place. Thus, the question that nat-
urally arises is how agents may choose assignments based only on their available
measurements so that eventually an efficient assignment is established for all
threads.

To this end, we employ a distributed learning framework (namely, perturbed
learning automata) that is based on the reinforcement learning algorithm intro-
duced in [6, 7]. It belongs to the general class of learning automata [12].

The basic idea behind reinforcement learning is rather simple. If agent i
selects action j at instance k and a favorable payoff results, ui(α), the action
probability σij(k) is increased and all other entries of σi(k) are decreased.

The precise manner in which σi(k) changes, depending on the assignment
αi(k) performed at stage k and the response ui(α(k)) of the environment, com-
pletely defines the reinforcement learning model.

4.1 Strategy update

According to the perturbed reinforcement learning [6, 7], the strategy of each
thread at any time instance k = 1, 2, ... is as follows:

σi(k) = (1− λ)xi(k)−
λ

|Ai|
(7)

where λ > 0 corresponds to a perturbation term (or mutation) and xi(k) cor-
responds to the nominal strategy of agent i. The nominal strategy is updated
according to the following update recursion:

xi(k + 1) = Π∆(|Ai|)
[
xi(k) + εui(α(k))[eαi(k) − xi(k)]

]
, (8)

for some constant step-size ε > 0. Note that according to this recursion, the
new nominal strategy will increase in the direction of the action αi(k) which is
currently selected and it will increase proportionally to the utility received from
this selection. For sufficiently small step size ε > 0 and given that the utility
function ui(·) is uniformly bounded for all action profiles α ∈ A, the projection
operator Π∆(|Ai|)[·] can be skipped.

In comparison to [6, 7], the difference here lies in the use of the constant step
size ε > 0 (instead of a decreasing step-size sequence). This selection increases
the adaptivity and robustness of the algorithm to possible changes in the envi-
ronment. This is because a constant step size provides a fast transition of the
nominal strategy from one pure strategy to another.

Furthermore, the reason for introducing the perturbation term λ is to provide
the possibility for the nominal strategy to escape from pure strategy profiles, that



is profiles at which all agents assign probability one in one of the actions. Setting
λ > 0 is essential for providing an adaptive response of the algorithm to changes
in the environment.

5 Convergence Analysis

In this section, we establish a connection between the asymptotic behavior of the
nominal strategy profile x(k) with the Nash equilibria of the assignment game,
when the utility function ui for each thread i is defined by (6) and the objective is
given by either (O1) or (O2). Let us denote Sλ to be the set of stationary points
of the mean-field dynamics (cf., [10]) of the recursion (8) (when the projection
operator has been skipped), defined as follows

Sλ .
=
{
x ∈∆ : gλi (x)

.
= E

[
ui(α(k))[eαi(k) − xi(k)]|x(k) = x

]
= 0,∀i ∈ I

}
.

The expectation operator E[·] is defined appropriately over the canonical path
space Ω = ∆∞ with an element ω being a sequence {x(0), x(1), ...} with x(k) =
(x1(k), ..., xn(k)) ∈∆ generated by the reinforcement learning process. Similarly
we define the probability operator P[·]. In other words, the set of stationary points
corresponds to the strategy profiles at which the expected change in the strategy
profile is zero.

According to [6, 7], a connection can be established between the set of sta-
tionary points Sλ and the set of Nash equilibria of the assignment game. In par-
ticular, for sufficiently small λ > 0, the set of Sλ includes only λ-perturbations of
Nash-equilibrium strategies. This is due to the fact that the mean-field dynamics
{gλi (·)}i are continuously differentiable functions with respect to λ.1

The following proposition is a straightforward extension of [6, Theorem 1] to
the case of constant step-size.

Proposition 1. Let the RM employ the strategy update rule (8) and placement
selection (7) for each thread i. Updates are performed periodically with a fixed
period such that ṽi(k) > 0 for all i and k. Let the utility function for each thread
i satisfy (6) under either objective (O1) or (O2), where γ ≥ 0 is small enough
such that ui(α(k)) > 0 for all k.

Then, for some λ > 0 sufficiently small, there exists δ = δ(λ), with δ(λ) ↓ 0
as λ ↓ 0, such that

P
[
lim inf
k→∞

dist(x(k),Bδ(Sλ)) = 0

]
= 1. (9)

Proof. The proof follows the exact same steps of the first part of [6, Theorem 1],
where the decreasing step-size sequence is being replaced by a constant ε > 0.

1 For more information regarding the sensitivity of stationary points to λ > 0, see [6,
Lemma 6.2].



Proposition 1 states that when we select λ sufficiently small, the nominal strategy
trajectory will be approaching the set Bδ(Sλ) infinitely often with probability
one, that is a small neighborhood of the Nash equilibria. We require that the
update period is large enough so that each thread is using resources within each
evaluation period. Of course, if a thread stops executing then the same result
holds but for the updated set of threads.

However, the above proposition does not provide any guarantees regarding
the time fraction that the process spends in any Nash equilibrium. The following
proposition establishes this connection.

Proposition 2 (Weak convergence to Nash equilibria). Under the hy-
potheses of Proposition 1, the fraction of time that the nominal strategy profile
x(k) spends in Bδ(Sλ) goes to one (in probability) as ε→ 0 and k →∞.

Proof. The proof follows directly from [10, Theorem 8.4.1] and Proposition 1.

Proposition 2 states that if we take a small step size ε > 0, then as the
time index k increases, we should expect that the nominal strategy spends the
majority of the time within a small neighborhood of the Nash equilibrium strate-
gies. According to Section 3.5, we know that when the utility function for each
thread is defined according to (6), then the set of Nash equilibria includes the
set of efficient assignments, i.e., the solutions of (1). Thus, due to Proposition 2,
it is guaranteed that the nominal strategies xi(k), i ∈ I, will spend the major-
ity of the time in a small neighborhood of locally-optimal assignments, which
provides a minimum performance guarantee throughout the running time of the
parallelized application.

Note that due to varying exogenous factors, the Nash-equilibrium assign-
ments may not stay fixed for all future times. The above proposition states that
the process will spend the majority of the time within the set of the Nash-
equilibrium assignments for as long as this set is fixed. If, at some point in
time, this set changes (due to, e.g., other applications start running on the same
platform), then the above result continues to hold but for the new set of Nash
equilibria. Hence, the process is adaptive to possible performance variations.

6 Experiments

In this section, we present an experimental study of the proposed reinforce-
ment learning scheme for dynamic pinning of parallelized applications. Experi-
ments were conducted on 20×Intel c©Xeon c©CPU E5-2650 v3 2.30 GHz run-
ning Linux Kernel 64bit 3.13.0-43-generic. The machine divides the physical
cores into two NUMA nodes (Node 1: 0-9 CPU’s, Node 2: 10-19 CPU’s).

6.1 Experimental Setup

We consider a computationally intensive routine that executes a fixed number of
computations (corresponding to the combinations of M out of a set of N > M



numbers). The routine is being parallelized using the pthread.h (C++ POSIX
thread library), where each thread is executing a replicate of the above set of
computations. The nature of these computations does not play any role and in
fact it may vary between threads (as we shall see in both of the forthcoming
experiments).

Throughout the execution, and with a fixed period of 0.3 sec, the RM collects
measurements of the total instructions per sec (using the PAPI library [11]) for
each one of the threads separately. Given the provided measurements, the update
rule of Equation (8) with the utility function (6) under (O2) is executed by the
RM. Placement of the threads to the available CPU’s is achieved through the
sched.h library (in particular, the pthread_setaffinity_np function). In the
following, we demonstrate the response of the RL scheme in comparison to the
Operating System (OS) response (i.e., when placement of the threads is not
controlled by the RM). We compare them for different values of γ ≥ 0 in order
to investigate the influence of more balanced speeds to the overall running time.

In all the forthcoming experiments, the RM is executed within the master
thread which is always running in the first available CPU (CPU 1). Further-
more, in all experiments, only the first one of the two NUMA nodes are utilized,
since our intention is to demonstrate the potential benefit of an efficient thread
placement when the effect of memory placement is rather small.

6.2 Experiment 1: Non-Identical Threads under Limited Resources

In this experiment, we consider the case of limited resources (i.e., when the
number of threads is larger than the number of available CPU’s). However,
one of the threads requires CPU time with smaller frequency than the rest of
the threads (i.e., executes its computations with smaller frequency). We should
expect that in an optimal setup, threads that do not require CPU time often
should be the ones sharing a CPU. On the other hand, threads that require
larger bandwidth, they should be placed alone.

In particular, in this experiment, Thread 3 requires about half the computing
bandwidth compared to the rest of the threads (Thread 1, 2 and 4). The resulting
performance is depicted in Figure 3.

We observe indeed that Threads 1, 2 & 4 (which require larger computing
bandwidths) are allocated to different CPU’s (CPU 1, 3 and 2, respectively). On
the other hand, Thread 3 is switching between CPU 1 and CPU 3, since both
provide almost equal processing bandwidth to Thread 3. In other words, the
less demanding application is sharing the CPU with one of the more demand-
ing threads. Note that this assignment corresponds to a Nash equilibrium (as
Proposition 2 states), since there is no thread that can benefit by changing its
strategy. It is also straightforward to check that this assignment is also efficient.

Note, finally, that the difference with the processing speed of the OS scheme
is small, although a more balanced processing speed (γ = 0.04) improved slightly
the overall completion time.
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Fig. 3. Running average execution speed when 4 threads run on 3 identical CPU’s.
Thread 3 requires about half the computing bandwidth compared to the rest of the
threads which are identical. The strategies correspond to the RL scheme with γ = 0.04.
The RL schemes run with ε = 0.005 and λ = 0.005.

6.3 Experiment 2: Non-Identical Threads in a Dynamic
Environment

In this experiment, we demonstrate the robustness of the algorithm in a dynamic
environment. We consider 7 threads. The first two (Threads 1 & 2) require about
half the computing bandwidth compared to the rest. The rest of the threads
(Threads 3, 4, 5, 6 and 7) are identical. However, Thread 3 starts running later
in time (in particular, after 120 sec).

Figure 4 illustrates the evolution of the RL scheduling scheme under different
values of γ. Again in this case, a fastest response of the overall application
can be achieved when higher values of γ are selected. The difference should be
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Fig. 4. Running average execution speed when 7 non-identical threads run on 3 CPU
cores. Threads 1 & 2 require about half the computing bandwidth compared to the rest
of the threads (which are identical). Thread 3 is joining after 120 sec. The RL schemes
run with ε = 0.003 and λ = 0.005.

attributed to the fact that the OS fails to distinguish between threads with
different bandwidth requirements. Table 1 presents a statistical analysis of these
schemes where the speed difference between the RL (γ = 0.04) and the OS
reaches approximately 5% on average.

Run # OS RL (γ = 0) RL (γ = 0.02) RL (γ = 0.04)
1 513 sec 505 sec 492 sec 489 sec
2 530 sec 506 sec 489 sec 494 sec
3 536 sec 517 sec 518 sec 515 sec
4 533 sec 507 sec 515 sec 509 sec
5 523 sec 502 sec 491 sec 496 sec
6 513 sec 523 sec 501 sec 492 sec
7 520 sec 514 sec 497 sec 492 sec
8 530 sec 518 sec 499 sec 497 sec
9 520 sec 532 sec 500 sec 497 sec
10 528 sec 517 sec 493 sec 492 sec

aver. 524.6 sec 514.1 sec 499.5 sec 497.3 sec
s.d. 8.06 sec 9.29 sec 9.85 sec 8.27 sec

Table 1. Comparison between the OS performance and RL schemes when ε = 0.003
and λ = 0.005 for different values of γ under Experiment 2.



7 Conclusions

We proposed a measurement-based learning scheme for addressing the problem
of efficient dynamic pinning of parallelized applications into processing units.
According to this scheme, a centralized objective is decomposed into thread-
based objectives, where each thread is assigned its own utility function. A RM
updates a strategy for each one of the threads corresponding to its beliefs over
the most beneficial CPU placement for this thread. Updates are based on a
reinforcement learning rule, where prior actions are reinforced proportionally
to the resulting utility. It was shown that, when we appropriately design the
threads’ utilities, then convergence to the set of locally optimal assignments is
achieved. Besides its reduced computational complexity, the proposed scheme is
adaptive and robust to possible changes in the environment.
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Abstract: In this contribution, we investigate approaches for analyzing patterns of 

cytoskeletal network dynamics, in particular considering the interplay of different key 

features of cell migration.  

Semi-automated computational methods to extract geometry and motion of sub-

cellular structures related to cell migration are proposed. These structures include actin or 

keratin bundles, focal adhesions or membrane protrusions. The geometry and the dynamics of 

these structures shall be quantitatively described and brought into relation in such a way that 

characteristic patterns can be identified. For the extraction of geometry and motion of the 

investigated structures we investigate methods to achieve accurate results with few user 

interactions. This quantitation of microscopy data by means of image analysis shall allow to 

get insight into the process of cellular motion which can’t be obtained by mere visual 

inspection.  

 


