
Advances in 
Knowledge-Based Technologies 

 

Proceedings of the 

 Master and PhD Seminar 

Summer term 2019, part 1 

 

 

 

 

 

 

Johannes Kepler University Linz 

Kopfgebäude, KG 519 

3 May 2019 

 

 

 

 
 

Software Competence Center Hagenberg  Fuzzy Logic Laboratorium Linz 
Softwarepark 21 Softwarepark 21 
A-4232 Hagenberg A-4232 Hagenberg 
Tel. +43 7236 3343 800 Tel. +43 7236 3343 431 
Fax +43 7236 3343 888 Fax +43 7236 3343 434 
www.scch.at www.flll.jku.at 



Program

Session 1 — Chair: Susanne Saminger-Platz

09:00 Ulrike Anlauf:
The Steiner Tree Problem considering Obstacles

09:30 Laura Peham:
Deep learning for advanced OCT image classification

Coffee Break: 10:00—10:15

Session 2 — Chair: Bernhard Moser

10:15 Katrin Treitinger:
Transfer Learning with Fuzzy Systems

10:45 Georgios C. Chasparis:
Perturbed Learning Automata in Coordination Games and Resource Allocation Problems

1



The Steiner Tree Problem considering Obstacles 
 
This talk deals with the exact solution of industrial shortest path problems, i.e. the so-called Ascent 
Assembly Problem. The company partners provided us with models of harbour cranes and asked for 
an optimal assembly of an ascent to reach all points of interest for safety or repair purposes. Not all 
areas of such a crane are fit to attach such staircases. Those prohibited areas will be considered as 
obstacles and the solution should not cross any of them. This real-life problem leads to the Steiner 
Tree Problem considering also obstacles. Beside this crane scenario there exists a lot of other 
applications especially in Network Design. Those contain a wide range of industrial problems like the 
planning of roads, telephone line installations and electric circuits. The Steiner Tree Problem itself 
was most prominently discussed by Jakob Steiner in the 18th century, based on the early work of 
Fermat. Most of the progress in recent history can be credited to Winter who studied this problem 
from different perspectives (heuristics and exact solutions). The Steiner Tree Problem is difficult to 
solve and is NP hard, therefore most solutions are provided by meta-heuristic-solvers. The best 
heuristic solutions for the Steiner Tree Problem are within 4% from the exact solution  
This talk is based on an investigation and adoption of results by Winter et al. for finding an optimal 
solution and comparison to known results.  



Deep learning for advanced OCT image classification

Laura Peham

Department of Knowledge-Based Mathematical Systems - Johannes Kepler University Linz
and

RECENDT - Research Center for Non Destructive Testing GmbH
Altenberger Straße 69, 4040 Linz, Austria

April 30, 2019

Abstract

Optical coherence tomography (OCT) is a non destructive and non-contacting imaging
technology and can visualize the internal structures of various materials. It works similar
to ultrasound but it uses light waves instead of sound waves and has the great advantage
over other imaging modalities that state-of-the-art systems can reach an axial resolution of
1-10µm. But a disadvantage is that because of the scattered light the imaging depth limits
to about 2mm. OCT-imaging is used primary for biomedical issues e.g. in ophthalmology
to view the retina layers or in dermatology for the detection of skin diseases. In recent years
it also became popular for industrial applications for the non destructive testing of materials
which is needed in quality assurance and for the development of new materials.
Deep Learning models are able to learn from very complex datasets and make predictions
for new data based on this knowledge without the need of user-defined mathematical rules
describing the task to solve. It is a machine learning method which deals with deep artificial
neural networks. To get output values for each input value neurons (= units) are arranged
in layers and each layer takes the output of the former layer as input and passes it forward
to the next layer. Different kinds of architectures can be used to handle different input
structures e.g. for the classification of images convolutional layers are used in addition to
fully connected layers.
Medical specialist literature has already covered the successful application of deep learning
on OCT-images for biomedical issues but the application of deep learning for OCT-image
classification in an industrial context has not been covered by specialist literature so far. As
the analysis and categorization of different materials is an important issue in many industrial
processes I will examine the use of deep learning on OCT-images for material classification
in two different tasks: The first task is to categorize 3D-printed objects with respect to their
material (expressed by different color pigments) with only their (greyscale) OCT-image as
input. Given are objects in the colors green, grey, red and transparent with two different
objects in each color where in most of the cases the OCT-recordings of these four colors are
well distinguishable. Therefore I recorded 12800 images (3200 per color) of different areas
on the objects including surface defects, interior defects, plain surfaces and different slopes.
Evaluating different model architectures obtained at most 99,5% accuracy on the test set
until now, but the hyper-parameter optimization is still running.
The second task will be the categorization of OCT-images of different materials with respect
to their coating-thickness.

1



Transfer Learning with Fuzzy Systems

Katrin Treitinger

LCM - Linz Center of Mechatronics

Linz, Austria

katrin.treitinger@lcm.at

April 29, 2019

Abstract

Before beginning with the transfer learning, Takagi-Sugeno Fuzzy Mod-
els have to be defined and the corresponding membership functions. In
this regard the differences between the “Conventional Gaussian Member-
ship Functions”, which lead to axis-parallel ellipsoids and the “General-
ized Gaussian Membership Functions”, which lead to arbitrary ellipsoids,
will be discussed. The resulting generalized fuzzy rules exhibit a bet-
ter accuracy, but the rules become less interpretable. In order to find
the principle rule structure, i.e. the adequate number of rules for the
(transfer) learning problem at hand, a clustering of the data samples is
carried out in the Source Task. Thus, in a first step a similar rule struc-
ture is assumed, consequently a fixed number of rules over both tasks.
Four kinds of clustering methods are mentioned and also how an adequate
number of clusters can be estimated: The ”Fuzzy c-Means” algorithm and
the ”Gustafson-Kessel” algorithm are representing the clustering methods
with fixed numbers of rules, where a second evaluation step is needed to
find the best number of clusters. The ”evolving Vector Quantization” and
the ”evolving Vector Quantization for arbitrary ellipsoids” are represent-
ing the clustering methods, where the numbers of clusters are determined
on the fly. After the numbers of clusters are calculated, consequent pa-
rameters (for the Source Tasks) can be determined with the ”Weighted
Least Squares” WLS method for every rule individually (local learning)
or the ”Least Squares” LS method for one solution over all rules (global
learning). The definitions of these optimization problems serve as starting
point for a joint optimization (over Source and Target Task) for transfer
learning. Three variants for a joint optimization are presented to establish
transfer learning in fuzzy systems, all of which are relying on the concept
of feature space representation learning through distribution matching of
rule activation levels:
Variant 1 will match the distributions only in the consequent space, local
for each rule separately, while the WLS Part will minimize the error on
source task.
Variant 2 will match the distribution in the consequent space and in the
antecedent space, local for each rule, while the WLS part will minimize
the error on source task.
Variant 3 will match the distribution in the consequent space and in the
antecedent space, global over all C rules, while the LS part will minimize
the error on source task.
The local variants are expected to run more stable and quickly, because
they have to deal with smaller optimization problems, but they can be
”blind” for the global performance and perhaps won’t find the global op-
timum. Matching only in the consequent space is expected to produce
more precise result, because of a linear optimization problem, but only
if the rules are close and only the functional tendency is different. The
global variant will probably need more processing power because it has to
deal with high-dimensional distributions.

1



Abstract: Perturbed Learning Automata in Coordination Games and Resource Allocation 

Problems 

Georgios C. Chasparis 

 

Recently, multi-agent formulations have been utilized to tackle distributed optimization 

problems, due to the increased communication and computational complexity of 

centralized schemes. In such multi-agent formulations, decisions are usually taken in a 

repeated fashion, where agents select their next actions based on their own prior 

experience (i.e., performance measurements). In this seminar, I will present a class of 

reinforcement-based learning (namely, perturbed learning automata) for convergence to 

efficient outcomes in (multi-agent) coordination games. Prior work in this class of 

learning dynamics primarily analyzes asymptotic convergence through stochastic  

approximations, where convergence can be associated with the  limit points of an 

ordinary-differential equation (ODE). However, analyzing global convergence through an 

ODE-approximation requires the existence of a potential function, which naturally 

restricts the analysis to a fine class of games. To overcome these limitations, an 

alternative framework is proposed for analyzing asymptotic convergence that is based 

upon an explicit characterization of the invariant p robability measure of the induced 

Markov chain (i.e., stochastic stability). We further describe a methodology for computing 

the invariant probability measure in positive-utility games, together with an illustration in 

the context of coordination games.  

In the second part of this seminar, I will briefly present an experimental study of this 

class of dynamics in the context of resource allocation for massively parallel applications 

in many-core computing platforms. Comparison is performed with the standard Linux 

scheduler. 



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

1

Stochastic Stability of Perturbed Learning Automata
in Positive-Utility Games

Georgios C. Chasparis

Abstract—This paper considers a class of reinforcement-based
learning (namely, perturbed learning automata) and provides a
stochastic-stability analysis in repeatedly-played, positive-utility,
finite strategic-form games. Prior work in this class of learning
dynamics primarily analyzes asymptotic convergence through
stochastic approximations, where convergence can be associ-
ated with the limit points of an ordinary-differential equation
(ODE). However, analyzing global convergence through an ODE-
approximation requires the existence of a Lyapunov or a potential
function, which naturally restricts the analysis to a fine class
of games. To overcome these limitations, this paper introduces
an alternative framework for analyzing asymptotic convergence
that is based upon an explicit characterization of the invariant
probability measure of the induced Markov chain. We further
provide a methodology for computing the invariant probability
measure in positive-utility games, together with an illustration in
the context of coordination games.

I. INTRODUCTION

Recently, multi-agent formulations have been utilized to
tackle distributed optimization problems, since communication
and computational complexity might be an issue under cen-
tralized schemes. In such formulations, decisions are usually
taken in a repeated fashion, where agents select their next
actions based on their own prior experience. In the case of
finite number of actions for each agent, such multi-agent
interactions can be designed as strategic-form games, where
agents are repeatedly involved in a strategic interaction with
a fixed payoff or utility function. Such framework finds
numerous applications, including, for example, the problem
of distributed overlay routing [2], distributed topology control
[3] and distributed resource allocation [4].

Given the repeated fashion of the involved strategic in-
teractions in such formulations, several questions naturally
emerge, including: a) Can agents “learn” to asymptotically
select optimal actions?, b) What information should agents
share with each other?, and c) What is the computational
complexity of the learning process? Under the scope of en-
gineering applications, it is usually desirable that each agent

An earlier version of parts of this paper appeared in [1]. This work has
been partially supported by the European Union grant EU H2020-ICT-2014-
1 project RePhrase (No. 644235). It has also been partially supported by
the Austrian Ministry for Transport, Innovation and Technology, the Federal
Ministry of Science, Research and Economy, and the Province of Upper
Austria in the frame of the COMET center SCCH.

G. C. Chasparis is with the Department of Data Analysis Systems, Software
Competence Center Hagenberg GmbH, Softwarepark 21, A-4232 Hagenberg,
Austria, E-mail: georgios.chasparis@scch.at.

shares minimum amount of information with other agents,
while the computational complexity of the learning process is
small. Naturally, payoff-based learning has drawn significant
attention. Under such class of learning dynamics, each agent
receives only measurements of its own utility function, while
the details of this function (i.e., its mathematical formula) are
unknown. Furthermore, each agent cannot access the actions
selected or utilities received by other agents.

In such repeatedly-played strategic-form games, a popular
objective for payoff-based learning is to guarantee convergence
(in some sense) to Nash equilibria. Convergence to Nash
equilibria may be desirable, especially when the set of optimal
centralized solutions belongs to the set of Nash equilibria.

Reinforcement-based learning has been utilized in strategic-
form games in order for agents to gradually learn to play Nash
equilibria. It may appear under alternative forms, including
discrete-time replicator dynamics [5], learning automata [6],
[7] and Q-learning [8]. In all these classes of learning dy-
namics, deriving conditions under which convergence to Nash
equilibria is achieved may not be a trivial task especially in
the case of large number of agents (as it will be discussed in
detail in the forthcoming Section II).

In the present paper, we consider a class of reinforcement-
based learning introduced in [9] that is closely related to both
discrete-time replicator dynamics and learning automata. We
will refer to this class of dynamics as perturbed learning
automata. The main difference with prior reinforcement-based
learning schemes lies in a) the step-size sequence, and b) the
perturbation (or mutations) term. The step-size sequence is
assumed constant, thus introducing a fading-memory effect
of past experiences in each agent’s strategy. On the other
hand, the perturbation term introduces errors in the selection
process of each agent. Both these two features can be used
for designing a desirable asymptotic behavior.

We provide an analytical framework for deriving conclu-
sions over the asymptotic behavior of the dynamics that is
based upon an explicit characterization of the invariant prob-
ability measure of the induced Markov chain. In particular,
we show that in all finite strategic-form games satisfying
the Positive-Utility Property (i.e., games with strictly positive
utilities), the support of the invariant probability measure
coincides with the set of pure strategy profiles. Furthermore,
we provide a methodology for computing the set of stochas-
tically stable states in all positive-utility games. We illustrate



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

2

this methodology in the context of coordination games and
provide a simulation study in distributed network formation.
This illustration is also of independent interest since it extends
prior work in coordination games under reinforcement-based
learning, where convergence to mixed strategy profiles may
only be excluded under strong conditions in the utility function
(e.g., existence of a potential function).

In the remainder of the paper, Section II presents the
investigated class of learning dynamics, related work and the
main contributions. Section III provides a simplification in
the characterization of stochastic stability, while Section IV
presents its technical derivation. This result is utilized for
computing the stochastically stable states in positive-utility
games in Section V. In Section VI, we present an illustration
of the proposed methodology in the context of coordination
games, together with a simulation study in distributed network
formation. Finally, Section VII presents concluding remarks.

Notation:
− For a Euclidean topological space Z ⊂ Rn, let Nδ(x)

denote the δ-neighborhood of x ∈ Z , i.e., Nδ(x)
.
=

{y ∈ Z : |x− y| < δ}, where | · | denotes the Euclidean
distance.

− ej denotes the unit vector in Rn where its jth entry is
equal to 1 and all other entries are equal to 0.

− ∆(n) denotes the probability simplex of dimension n,
i.e., ∆(n)

.
=
{
x ∈ Rn : x ≥ 0,1Tx = 1

}
.

− For some set A in a topological space Z , let IA : Z →
{0, 1} denote the index function, i.e.,

IA(x)
.
=

{
1 if x ∈ A,
0 else.

− For a finite set A, |A| denotes its cardinality.
− For a finite set A and any probability distribution σ ∈

∆(|A|), the random selection of an element of A will
be denoted by randσ[A]. If σ = (1/|A|, ..., 1/|A|), the
random selection will be denoted by randunif [A].

− δx denotes the Dirac measure at x.
− log(·) denotes the natural logarithm.

II. PERTURBED LEARNING AUTOMATA

A. Terminology

We consider the standard setup of finite strategic-form
games. Consider a finite set of agents (or players) I =

{1, ..., n}, and let each agent i have a finite set of actions
Ai. Let αi ∈ Ai denote any such action of agent i. The set of
action profiles is the Cartesian product A .

= A1 × · · · × An
and let α = (α1, ..., αn) be a representative element of this
set. We will denote −i to be the complementary set I\i and
often decompose an action profile as follows α = (αi, α−i).
The payoff/utility function of agent i is a mapping ui(·) :

A → R. A finite strategic-form game is defined by the triple
〈I,A, {ui(·)}i〉.

TABLE I
PERTURBED LEARNING AUTOMATA

At fixed time instances t = 1, 2, ..., and for each agent i ∈ I, the
following steps are executed recursively. Let αi(t) and xi(t) denote
the current action and strategy of agent i, respectively.

1) (action update) Agent i selects a new action αi(t + 1) as
follows:

αi(t+1) =

{
randxi(t)[Ai], with probability 1− λ,
randunif [Ai], with probability λ,

(1)

for some small perturbation factor λ > 0.
2) (evaluation) Agent i applies its new action αi(t + 1) and

receives a measurement of its utility ui(α(t+ 1)) > 0.
3) (strategy update) Agent i revises its strategy xi ∈ ∆(|Ai|)

as follows:

xi(t+ 1)
= xi(t) + ε · ui(α(t+ 1)) · [eαi(t+1) − xi(t)].
= Ri(α(t+ 1), xi(t)), (2)

for some constant step-size ε > 0.

For the remainder of the paper, we will be concerned
with finite strategic-form games that satisfy the Positive-Utility
Property.

Property 2.1 (Positive-Utility Property): For any agent i ∈ I
and any action profile α ∈ A, ui(α) > 0.

This property is rather generic and applies to a large
family of games. For example, games at which some form of
alignment of interests exists between agents (e.g., coordination
games [10] or weakly-acyclic games [11]), can be designed
to satisfy this property, since agents’ utilities/preferences are
rather close to each other at any given action profile. However,
in the forthcoming analysis, we do not impose any structural
constraint but Property 2.1.

B. Perturbed Learning Automata

We consider a form of reinforcement-based learning that
belongs to the general class of learning automata [7]. In
learning automata, each agent updates a finite probability
distribution xi ∈ Xi .= ∆(|Ai|) representing its beliefs about
the most profitable action.

The proposed learning model is described in Table I. At
the first step, each agent i updates its action given its current
strategy vector xi(t). Its selection is slightly perturbed by a
perturbation (or mutations) factor λ > 0, such that, with a
small probability λ agent i follows a uniform strategy (or,
it trembles). At the second step, agent i evaluates its new
selection by collecting a utility measurement, while in the last
step, agent i updates its strategy vector.

Here, we identify actions Ai with vertices of the simplex,
{e1, ..., e|Ai|}. For example, if agent i selects its jth action
at time t, then eαi(t) ≡ ej . To better see how the strategies
evolve, let us consider the following toy example. Let the
current strategy of agent i be xi(t) =

(
1/2 1/2

)T
, i.e.,



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

3

agent i has two actions, each assigned probability 1/2. Let also
αi(t+ 1) = 1, i.e., agent i selects the first action according to
rule (1). Then, the new strategy vector for agent i is:

xi(t+ 1) = 1/2

(
1 + εui(α(t+ 1))

1− εui(α(t+ 1))

)
.

Note that the strategy of the selected action increased by
an amount that is proportional to the reward received. In
other words, the dynamics reinforce repeated selection, and
the reinforcement size, εui(α(t+ 1)), depends on the reward
received.

By playing a strategic-form game repeatedly over time,
players do not always experience the same reward when
selecting the same action, since other players may also change
their actions. This dynamic element of the reinforcement size
is the factor that complicates its convergence analysis, as it
will become clear in the forthcoming Section II-C.

Note that by letting the step-size ε to be sufficiently small
and since the utility function ui(·) is uniformly bounded in A,
xi(t) ∈ ∆(|Ai|) for all t.

In case λ = 0, the above update recursion will be referred
to as the unperturbed learning automata.

C. Related work

In this section, we provide a short overview of alterna-
tive payoff-based learning schemes specifically designed for
repeatedly-played strategic-form games with a finite set of
actions and a fixed utility function for each player. We have
identified four main classes of payoff-based dynamics under
such structural assumptions, namely discrete-time replicator
dynamics, learning automata, Q-learning, and aspiration-
based learning. Note that payoff-based learning has also been
applied to static games with continuous action sets, e.g.,
extremum-seeking control [12], [13] or actor-critic reinforce-
ment learning [14]. The focus here instead is only on finite
action sets.

Discrete-time replicator dynamics: A type of learning dy-
namics which is quite closely related to the dynamics of
Table I is the discrete-time version of replicator dynamics
(cf., [15]). There have been several variations with respect to
the selection of the step-size sequence. For example, Arthur
[5] considered a similar rule, with λ = 0 and step-size
εi(t) = 1/(ctν + ui(α(t + 1)), for some positive constant
c and for ν ∈ (0, 1) (in the place of the constant step-size ε of
(2)). A comparative model is also used by Hopkins and Posch
in [16], with εi(t) = 1/(Vi(t) + ui(α(t+ 1))), where Vi(t) is
the accumulated benefits of agent i up to time t, which gives
rise to the urn process of Erev-Roth [17]. Some similarities
are also shared with the Cross’ learning model of [18], where
εi(t) = 1 and ui(α(t)) ≤ 1, and its modification presented by
Leslie in [19], where ε(t), instead, is decreasing with time.

The main difference of the proposed dynamics of Table I lies
in the perturbation parameter λ > 0 which was first introduced

and analyzed in [9]. A state-dependent perturbation term has
also been investigated in [20]. The perturbation parameter
may serve as an equilibrium selection mechanism, since it
may exclude convergence to action profiles that are not Nash
equilibria (briefly, non-Nash action profiles) [9]. It resolved
one of the main issues of discrete-time replicator dynamics,
that is the positive probability of convergence to non-Nash
action profiles.

Although excluding convergence to non-Nash action profiles
can be guaranteed by sufficiently small λ > 0, establishing
convergence to action profiles that are Nash equilibria (pure
Nash equilibria) may still be an issue. This is desirable in
the context of coordination games [21], where Pareto-efficient
outcomes are usually pure Nash equilibria (see, e.g., the
definition of a coordination game in [10]). As shown in [20],
convergence to pure Nash equilibria can be guaranteed only
under strong conditions in the utility function. For example,
as shown in [20, Proposition 8], and under the ODE-method
for stochastic approximations, it requires a) the existence
of a potential function, and b) conditions over the Jacobian
matrix of the potential function. Even if a potential function
does exist, verifying conditions (b) is practically infeasible for
games of more than 2 players [20].

On the other hand, an important side-benefit of using this
class of dynamics is the indirect “filtering” of the utility-
function measurements (through the formulation of the strat-
egy vectors in (2)). This is demonstrated, for example, in
[16] for the Erev-Roth model [17], where the robustness of
convergence/non-convergence asymptotic results is presented
under the presence of noise in the utility measurements.

Learning automata: Learning automata, as first introduced
by [6], have been used to the control of complex systems due
to their simple structure and low computational complexity
(cf., [7, Chapter 1]). Variable-structure stochastic automata
may incorporate a form of reinforcement of favorable actions,
similarly to the replicator dynamics discussed above. An
example is the linear reward-inaction scheme [7, Chapter 4].
Comparing it with the reinforcement rule of (2), the linear
reward-inaction scheme accepts a utility of the form ui(α) ∈
{0, 1}, where 0 corresponds to an unfavorable response and
1 corresponds to a favorable one. More general forms can
also be used when the utility function may accept discrete or
continuous values in the unit interval [0, 1].

Analysis of learning automata in games has been restricted
to zero-sum and identical-interest games [7], [22]. In identical
interest games, convergence analysis has been derived for
small number of players and actions, due to the difficulty in
deriving conditions for absolute monotonicity, which corre-
sponds to the property that the expected utility received by
each player increases monotonically in time (cf., [7, Defini-
tion 8.1]). Similar are the results presented in [22].

The property of absolute monotonicity is closely related to
the existence of a potential function, as in the case of potential



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

4

games [23]. Similarly to the discrete-time replicator dynamics,
convergence to non-Nash action profiles cannot be excluded
when the step-size sequence is constant, even if the utility
function satisfies ui(α) ∈ [0, 1]. (The behavior under decreas-
ing step-size is different as [20, Proposition 2] has shown.)
Furthermore, deriving conditions for excluding convergence
to mixed strategy profiles in coordination games continues to
be an issue, as in discrete-time replicator dynamics.

Recognizing these issues, reference [24] introduced a class
of linear reward-inaction schemes in combination with a coor-
dinated exploration phase so that convergence to the efficient
(pure) Nash equilibrium is achieved. However, coordination
of the exploration phase requires communication between the
players, an approach that does not fit to the distributed nature
of dynamics pursued here.
Q-learning: Similar questions of convergence to Nash equi-

libria also appear in alternative reinforcement-based learning
formulations, such as approximate dynamic programming and
Q-learning. Usually, under Q-learning, players keep track of
the discounted running average reward received by each action,
based on which optimal decisions are made (see, e.g., [25]).
Convergence to Nash equilibria can be accomplished under a
stronger set of assumptions, which increases the computational
complexity of the dynamics. For example, in the Nash-Q
learning algorithm of [8], it is indirectly assumed that agents
need to have full access to the joint action space and the
rewards received by other agents.

More recently, reference [26] introduced a Q-learning
scheme in combination with either adaptive play or better-
reply dynamics in order to attain convergence to Nash equilib-
ria in potential games [23] or weakly-acyclic games. However,
this form of dynamics requires that each player observes the
actions selected by the other players, since a Q-value needs
to be assigned to each joint action.

When the evaluation of the Q-values is totally independent,
as in the individual Q-learning in [25], then convergence to
Nash equilibria has been shown only for 2-player zero-sum
games and 2-player partnership games with countably many
Nash equilibria. Currently, there exist no convergence results
in multi-player games. To overcome this deficiency of Q-
learning, in the context of stochastic dynamic games, reference
[27] employs an additional feature (motivated by [11]), namely
exploration phases. In any such exploration phase, all agents
use constant policies, something that allows for an accurate
computation of the optimal Q-factors. We may argue that
the introduction of common exploration phases for all agents
partially destroys the distributed nature of the dynamics, since
it requires synchronization between agents.

Aspiration-based learning: Recently, there have been sev-
eral attempts to establish convergence to Nash equilibria
through alternative payoff-based learning dynamics, e.g., the
benchmark-based dynamics of [11] for convergence to Nash
equilibria in weakly-acyclic games, the trial-and-error learn-

ing [28] for convergence to Nash equilibria in generic games,
the mood-based dynamics of [29] for maximizing welfare
in generic games and the aspiration learning in [10] for
convergence to efficient outcomes in coordination games. We
will refer to such approaches as aspiration-based learning.
For these types of dynamics, convergence to Nash equilibria
or efficient outcomes can be established without requiring any
strong monotonicity properties (as in the multi-player weakly-
acyclic games in [11]).

The case of noisy utility measurements, which are present
in many engineering applications, has not currently been ad-
dressed through aspiration-based learning. The only exception
is reference [11], under benchmark-based dynamics, where
(synchronized) exploration phases are introduced through
which each agent plays a fixed action for the duration of
the exploration phase. If such exploration phases are large
in duration (as required by the results in [11]), this may
reduce the robustness of the dynamics to dynamic changes
in the environment (e.g., changes in the utility function).
One reason that such robustness analysis is currently not
possible in this class of dynamics is the fact that decisions
are taken directly based on the measured performances (e.g.,
by comparing the currently measured performance with the
benchmark performance in [11]).

D. Contributions

The aforementioned literature in payoff-based learning dy-
namics in finite strategic-form games can be grouped into two
main categories, namely reinforcement-based learning (includ-
ing discrete-time replicator dynamics, learning automata and
Q-learning) and aspiration-based learning. Summarizing their
main advantages/disadvantages, we may argue the following
high-level observations.

(O1) Strong asymptotic convergence guarantees for large
number of players, even for generic games, are currently
possible under aspiration-based learning. Similar results
in reinforcement-based learning are currently restricted
to games of small number of players and under strong
structural assumptions (e.g., the existence of a potential
function). See, for example, the discussion on discrete-
time replicator dynamics or learning automata in [20],
or the discussion on Q-learning in [27].

(O2) Noisy observations can be “handled” through
reinforcement-based learning due to the indirect
filtering of the observation signals (e.g., through the
formulation of the strategy-vector in the dynamics of
Table I or through the formulation of the Q factors
in Q-learning). This is demonstrated, for example, in
the convergence/non-convergence asymptotic results
presented in [16] for a variation of the proposed learning
dynamics of Table I (with λ = 0 and decreasing ε)
and under the presence of noise. Similar effects in



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

5

aspiration-based learning can currently be achieved only
through the introduction of synchronized exploration
phases, as discussed in Section II-C.

Motivated by these two observations (O1)–(O2), and the
obvious inability of reinforcement-based learning to provide
strong asymptotic convergence guarantees in large games, this
paper advances the asymptotic convergence guarantees for a
class of reinforcement-based learning described in Table I. Our
goal is to go beyond common restrictions of small number of
players and strong assumptions in the game structure (such as
the existence of a potential function).

The proposed dynamics (also perturbed learning automata)
were first introduced in [9] to resolve stability issues in the
boundary of the domain appearing in prior schemes [5], [16].
This was achieved through the introduction of the perturbation
factor λ of Table I. However, strong convergence guarantees
(e.g., w.p.1 convergence to Nash equilibria or efficient out-
comes) is currently limited to small number of players and
under strict structural assumptions, e.g., the existence of a
potential function and conditions on its Jacobian matrix [20].

In this paper, we drop the assumption of a decreasing step-
size sequence, and instead we consider the case of a constant
step-size ε > 0. Such selection increases the adaptivity of the
dynamics to varying conditions (e.g., the number of agents
or the utility function). Furthermore, we provide a stochastic-
stability analysis that provides a detailed characterization of
the invariant probability measure of the induced Markov chain.
In particular, our contributions are as follows:

(C1) We provide an equivalent finite-dimensional charac-
terization of the infinite-dimensional induced Markov
chain of the dynamics, that simplifies significantly the
computation of its invariant probability measure. This
simplification is based upon a weak-convergence result
and it applies to any finite strategic-form game with the
Positive-Utility Property 2.1 (Theorem 3.1).

(C2) We capitalize on this simplification and provide a
methodology for computing stochastically stable states
in positive-utility finite strategic-form games (Theo-
rem 5.1).

(C3) We illustrate the utility of this methodology in establish-
ing stochastic stability in a class of coordination games
with no restriction on the number of players or actions
(Theorem 6.1).

These contributions significantly extend the utility of
reinforcement-based learning given observation (O1). Note
that (C2) does not impose any structural assumptions other
than the positive-utility property. Furthermore, (C3) is of
independent interest. To the best of our knowledge, (C3) is the
first convergence result in the context of reinforcement-based
learning in repeatedly-played finite strategic-form games with
the following features: a) a completely distributed setup (i.e.,
without any information exchange between players), b) more

than two players, and c) a weakly-acyclicity condition that
does not require the existence of a potential function.

The derived convergence results may not be as strong as
the ones currently derived under aspiration-based learning,
as discussed in Section II-C. However, reinforcement-based
learning may better incorporate noisy observations (as dis-
cussed in observation (O2)). Moreover, additional features may
allow for stronger convergence guarantees, even to Pareto-
efficient outcomes, as presented in [9]. Given the simplified
analytical framework presented here, the prospects of even
stronger convergence guarantees are promising.

This paper is an extension over an earlier version appeared
in [1], which only focused on contribution (C1) above.

III. STOCHASTIC STABILITY

In this section, we provide a characterization of the invariant
probability measure µλ of the induced Markov chain Pλ of
the dynamics of Table I. The importance lies in an equivalence
relation (established through a weak-convergence argument) of
µλ with an invariant distribution of a finite-state Markov chain.
Characterization of the stochastic stability of the dynamics
will follow directly due to the Birkhoff’s individual ergodic
theorem. This simplification in the characterization of µλ will
be the first important step for providing specialized results for
stochastic stability in strategic-form games.

A. Terminology and notation

Let Z .
= A × X , where X .

= X1 × . . . × Xn, i.e., pairs
of joint actions α and strategy profiles x. We will denote the
elements of the state space Z by z.

The set A is endowed with the discrete topology, X with
its usual Euclidean topology, and Z with the corresponding
product topology. We also let B(Z) denote the Borel σ-field
of Z , and P(Z) the set of probability measures (p.m.) on
B(Z) endowed with the Prohorov topology, i.e., the topology
of weak convergence. The learning algorithm of Table I defines
an Z-valued Markov chain. Let Pλ : Z × B(Z) → [0, 1]

denote its transition probability function (t.p.f.), parameterized
by λ > 0. We refer to the process with λ > 0 as the perturbed
process. Let also P : Z ×B(Z) → [0, 1] denote the t.p.f. of
the unperturbed process, i.e., when λ = 0. We also define the
t-step t.p.f. P t : Z ×B(Z)→ [0, 1] recursively as:

P t(z,D) =

∫
Z
P (z, dy)P t−1(y,D).

We let Cb(Z) denote the Banach space of real-valued
continuous functions on Z under the sup-norm (denoted by
‖ · ‖∞) topology. For f ∈ Cb(Z), define

Pλf(z)
.
=

∫
Z
Pλ(z, dy)f(y),

and
µ[f ]

.
=

∫
Z
µ(dz)f(z), for µ ∈ P(Z).



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

6

The unperturbed process governed by the t.p.f. P will be
denoted by Z

.
= {Zt : t ≥ 0}. Let Ω

.
= Z∞ denote the

canonical path space, i.e., an element ω ∈ Ω is a sequence
{ω(0), ω(1), . . . }, with ω(t) = (α(t), x(t)) ∈ Z . We use the
same notation for the elements (α, x) of the space Z and for
the coordinates of the process Zt = (α(t), x(t)). Let also Pz[·]
denote the unique p.m. induced by the unperturbed process
P on the product σ-field of Z∞, initialized at z = (α, x),
and Ez[·] the corresponding expectation operator. Let also θ :

Ω → Ω denote the shift operator, such that (Z ◦ θt)(ω)
.
=

Z(θt(ω)) = {Zt, Zt+1, ...}. Furthermore, for D ∈ B(Z), let
τ(D) be the first hitting time of the unperturbed process to D,
i.e., τ(D)

.
= inf{t ≥ 0 : Zt ∈ D}.

B. Stochastic stability

First, we note that both P and Pλ (λ > 0) satisfy the weak
Feller property (cf., [30, Definition 4.4.2]).

Proposition 3.1: Both the unperturbed process P (λ = 0)
and the perturbed process Pλ (λ > 0) have the weak Feller
property.
Proof. See Appendix A. �

The measure µλ ∈ P(Z) is called an invariant probability
measure (i.p.m.) for Pλ if

(µλPλ)(A)
.
=

∫
Z
µλ(dz)Pλ(z,A) = µλ(A), A ∈ B(Z).

Since Z defines a locally compact separable metric space and
P , Pλ have the weak Feller property, they both admit an i.p.m.,
denoted µ and µλ, respectively [30, Theorem 7.2.3].

We would like to characterize the stochastically stable states
z ∈ Z of Pλ, that is any state z ∈ Z for which any collection
of i.p.m.’s {µλ ∈ P(Z) : µλPλ = µλ, λ > 0} satisfies
lim infλ→0 µλ(z) > 0. As the forthcoming analysis will show,
the stochastically stable states will be a subset of the set of
pure strategy states (p.s.s.) defined as follows:

Definition 3.1 (Pure Strategy State): A pure strategy state is
a state s = (α, x) ∈ Z such that for all i ∈ I, xi = eαi , i.e.,
xi coincides with the vertex of the probability simplex ∆(|Ai|)
which assigns probability 1 to action αi.

We will denote the set of pure strategy states by S.
Theorem 3.1 (Stochastic Stability): There exists a unique

probability vector π = (π1, ..., π|S|) such that for any col-
lection of i.p.m.’s {µλ ∈ P(Z) : µλPλ = µλ, λ > 0}, the
following hold:

(a) limλ→0 µλ(·) = µ̂(·) .
=
∑
s∈S πsδs(·), where conver-

gence is in the weak sense.
(b) The probability vector π is an invariant distribution of

the (finite-state) Markov process P̂ , such that, for any
s, s′ ∈ S,

P̂ss′
.
= lim
t→∞

QP t(s,Nδ(s′)), (3)

for some δ > 0 sufficiently small, where Q is the
t.p.f. corresponding to only one agent trembling (i.e.,
following the uniform distribution of (1)).

The proof of Theorem 3.1 requires a series of propositions
and it will be presented in detail in Section IV.

Theorem 3.1 implicitly provides a stochastically stability
argument. In fact, the expected asymptotic behavior of the
dynamics can be characterized by µ̂ and, therefore, π. In
particular, by Birkhoff’s individual ergodic theorem [30, The-
orem 2.3.4], the weak convergence of µλ to µ̂, and the fact
that µλ is ergodic, we have that the expected percentage
of time that the process spends in any O ∈ B(Z) such
that ∂O ∩ S 6= ∅ is given by µ̂(O) as the experimentation
probability λ approaches zero and time increases, i.e.,

lim
λ↓0

(
lim
t→∞

1

t

t−1∑
k=0

P kλ (x,O)

)
= µ̂(O) .

C. Discussion

Theorem 3.1 establishes “equivalence” (in a weak conver-
gence sense) of the original (perturbed) learning process with
a simplified process, where only one agent trembles at the
first iteration and then no agent trembles thereafter. This
simplification in the analysis has originally been capitalized
to analyze aspiration learning dynamics in [31], [10], and
it is based upon the observation that under the unperturbed
process, agents’ strategies will converge to a pure strategy
state, as it will be shown in the forthcoming Section IV.

The limiting behavior of the original (perturbed) dynamics
is characterized by the (unique) invariant distribution of the
finite-state Markov chain {Pss′}, whose states correspond to
the pure strategy states S . In other words, we should expect
that as the perturbation parameter λ approaches zero, the
algorithm spends the majority of the time on pure strategy
states. The importance of this result lies on the fact that no
constraints have been imposed in the payoff matrix/function
of the game other than the Positive-Utility Property 2.1.

In the forthcoming Section V, we will use this result to
provide a methodology for computing the set of stochastically
stable states. Then, in Section VI, this methodology will be
illustrated in the context of coordination games.

IV. TECHNICAL DERIVATION

In this section, we provide the main steps for the proof of
Theorem 3.1. We begin by investigating the asymptotic behav-
ior of the unperturbed process P , and then we characterize the
i.p.m. of the perturbed process with respect to the p.s.s.’s S.

A. Unperturbed Process

For t ≥ 0 define the sets

At
.
= {ω ∈ Ω : α(τ) = α(t) , for all τ ≥ t} ,

Bt
.
= {ω ∈ Ω : α(τ) = α(0) , for all 0 ≤ τ ≤ t} .



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

7

Note that {Bt : t ≥ 0} is a non-increasing sequence, i.e.,
Bt+1 ⊆ Bt, while {At : t ≥ 0} is non-decreasing, i.e.,
At+1 ⊇ At. Let A∞

.
=
⋃∞
t=0At and B∞

.
=
⋂∞
t=1Bt. In other

words, A∞ corresponds to the event that agents eventually
play the same action profile, while B∞ corresponds to the
event that agents never change their actions. The following
proposition discusses convergence of the unperturbed process
to the set of p.s.s.’s, S.

Proposition 4.1 (Convergence to p.s.s.): Let us assume that
the step-size ε > 0 is sufficiently small such that 0 < εui(α) <

1 for all α ∈ A and i ∈ I. Then, the following hold:

(a) infz∈Z Pz[B∞] > 0,
(b) infz∈Z Pz[A∞] = 1.

Proof. See Appendix B. �

Statement (a) of Proposition 4.1 states that the probability
that agents never change their actions is bounded away
from zero, while statement (b) states that the probability that
eventually agents play the same action profile is one. This
also indicates that any invariant measure of the unperturbed
process can be characterized with respect to the pure strategy
states S, which is established by the following proposition.

Proposition 4.2 (Limiting t.p.f. of unperturbed process): Let
µ denote an i.p.m. of P . Then, there exists a t.p.f. Π on Z ×
B(Z) with the following properties:

(a) for µ-a.e. z ∈ Z , Π(z, ·) is an i.p.m. for P ;
(b) for all f ∈ Cb(Z), limt→∞ ‖P tf −Πf‖∞ = 0;
(c) µ is an i.p.m. for Π;
(d) the support1 of Π is on S for all z ∈ Z .

Proof. The state space Z is a locally compact separable metric
space and the t.p.f. of the unperturbed process P admits an
i.p.m. due to Proposition 3.1. Thus, statements (a), (b) and (c)
follow directly from [30, Theorem 5.2.2 (a), (b), (e)].

(d) Let us assume that the support of Π includes points in Z
other than the pure strategy states in S. Then, there exists an
open set O ∈ B(Z) such that O ∩ S = ∅ and Π(z∗, O) > 0

for some z∗ ∈ Z . According to (b), P t converges weakly to Π.
Thus, from Portmanteau theorem (cf., [30, Theorem 1.4.16]),
we have that lim inft→∞ P t(z∗, O) ≥ Π(z∗, O) > 0. This
is a contradiction of Proposition 4.1(b), which concludes the
proof. �

Proposition 4.2 states that the limiting unperturbed t.p.f.
converges weakly to a t.p.f. Π which accepts the same i.p.m.
as P . Furthermore, the support of Π is the set of pure strategy
states S. This is a rather important observation, since the
limiting perturbed process can also be “related” (in a weak-
convergence sense) to the t.p.f. Π, as it will be shown in the
following section.

1The support of a measure µ on Z is the unique closed set F ⊂ B(Z)
such that µ(Z\F ) = 0 and µ(F ∩O) > 0 for every open set O ⊂ Z such
that F ∩O 6= ∅.

B. Perturbed process

According to the definition of perturbed learning automata
of Table I, when an agent updates its action, there is a small
probability λ > 0 that it “trembles,” i.e., it selects a new action
according to a uniform distribution. Thus, we can decompose
the t.p.f. induced by the one-step update as follows:

Pλ = (1− ϕ(λ))P + ϕ(λ)Qλ

where ϕ(λ) = 1− (1−λ)n is the probability that at least one
agent trembles (since (1−λ)n is the probability that no agent
trembles), and Qλ corresponds to the t.p.f. when at least one
agent trembles. Note that ϕ(λ)→ 0 as λ ↓ 0.

Define also Q as the t.p.f. where only one agent trembles,
and Q∗ as the t.p.f. where at least two agents tremble. Then,
we may write:

Qλ = (1− ψ(λ))Q+ ψ(λ)Q∗, (4)

where ψ(λ)
.
= 1− nλ(1−λ)n−1

1−(1−λ)n corresponds to the probability
that at least two agents tremble given that at least one agent
trembles. It also satisfies ψ(λ)→ 0 as λ ↓ 0, which establishes
an approximation of Qλ by Q as the perturbation factor λ
approaches zero.

Let us also define the infinite-step t.p.f. when trembling only
at the first step (briefly, lifted t.p.f.) as follows:

PLλ
.
= ϕ(λ)

∞∑
t=0

(1− ϕ(λ))tQλP
t = QλRλ (5)

where Rλ
.
= ϕ(λ)

∑∞
t=0(1 − ϕ(λ))tP t, i.e., Rλ corresponds

to the resolvent t.p.f.
In the following proposition, we establish weak-convergence

of the lifted t.p.f. PLλ to QΠ as λ ↓ 0, which will further allow
for an explicit characterization of the weak limit points of the
i.p.m. of Pλ.

Proposition 4.3 (i.p.m. of perturbed process): The following
hold:

(a) For f ∈ Cb(Z), limλ→0 ‖Rλf −Πf‖∞ = 0.

(b) For f ∈ Cb(Z), limλ→0 ‖PLλ f −QΠf‖∞ = 0.
(c) Any i.p.m. µλ of Pλ is also an i.p.m. of PLλ .
(d) Any weak limit point in P(Z) of µλ, as λ → 0, is an

i.p.m. of QΠ.

Proof. (a) For any f ∈ Cb(Z), we have

‖Rλf −Πf‖∞
= ‖ϕ(λ)

∞∑
t=0

(1− ϕ(λ))tP tf −Πf‖∞

= ‖ϕ(λ)
∞∑
t=0

(1− ϕ(λ))t(P tf −Πf)‖∞,

where we have used ϕ(λ)
∑∞
t=0(1− ϕ(λ))t = 1. Note that

ϕ(λ)
∞∑
t=T

(1− ϕ(λ))t‖P tf −Πf‖∞
≤ (1− ϕ(λ))T sup

t≥T
‖P tf −Πf‖∞.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

8

From Proposition 4.2(b), we have that for any δ > 0, there
exists T = T (δ) > 0 such that the r.h.s. is uniformly bounded
by δ for all t ≥ T . Thus, the sequence

ΘT
.
= ϕ(λ)

T∑
t=0

(1− ϕ(λ))t(P tf −Πf)

is Cauchy and therefore convergent (under the sup-norm). In
other words, there exists Θ ∈ R such that limT→∞ ‖ΘT −
Θ‖∞ = 0. For every T > 0, we have

‖Rλf −Πf‖∞ ≤ ‖ΘT ‖∞ + ‖Θ−ΘT ‖∞.

Note that

‖ΘT ‖∞ ≤ ϕ(λ)
T∑
t=0

(1− ϕ(λ))t‖P tf −Πf‖∞.

If we take λ ↓ 0, then the r.h.s. converges to zero. Thus,

lim
λ↓0
‖Rλf −Πf‖∞ ≤ ‖Θ−ΘT ‖∞, for all T > 0,

which concludes the proof.
(b) For any f ∈ Cb(Z), we have

‖PLλ f −QΠf‖∞
≤ ‖Qλ(Rλf −Πf)‖∞ + ‖QλΠf −QΠf‖∞
≤ ‖Rλf −Πf‖∞ + ‖QλΠf −QΠf‖∞.

The first term of the r.h.s. approaches 0 as λ ↓ 0 according to
(a). The second term of the r.h.s. also approaches 0 as λ ↓ 0

since Qλ → Q as λ ↓ 0.
(c) By definition of the perturbed t.p.f. Pλ, we have

PλRλ = (1− ϕ(λ))PRλ + ϕ(λ)QλRλ.

Note that QλRλ = PLλ and (1 − ϕ(λ))PRλ = Rλ − ϕ(λ)I,

where I corresponds to the identity operator. Thus,

PλRλ = Rλ − ϕ(λ)I + ϕ(λ)PLλ .

For any i.p.m. of Pλ, µλ, we have

µλPλRλ = µλRλ − ϕ(λ)µλ + ϕ(λ)µλP
L
λ ,

which equivalently implies that µλ = µλP
L
λ , since µλPλ =

µλ. We conclude that µλ is also an i.p.m. of PLλ .
(d) Let µ̂ denote a weak limit point of µλ as λ ↓ 0. To see

that such a limit exists, take µ̂ to be an i.p.m. of P . Then,

‖Pλf − Pf‖∞
≥ ‖µλ(Pλf − Pf)‖∞
= ‖(µλ − µ̂)(I − P )[f ]‖∞.

Thus, the weak convergence of Pλ to P implies that µλ ⇒ µ̂.
Note further that

µ̂[f ]− µ̂[QΠf ]

= (µ̂[f ]− µλ[f ]) + µλ[PLλ f −QΠf ]+

(µλ[QΠf ]− µ̂[QΠf ]).

The first and the third term of the r.h.s. approaches 0 as
λ ↓ 0 due to the fact that µλ ⇒ µ̂. The same holds for the

second term of the r.h.s. due to part (b). Thus, we conclude
that any weak limit point of µλ as λ ↓ 0 is an i.p.m. of QΠ. �

Proposition 4.3 establishes convergence (in a weak sense)
of the i.p.m. µλ of the perturbed process to an i.p.m. of QΠ.
In the following section, this convergence result will allow for
a more explicit characterization of µλ as λ ↓ 0.

C. Equivalent finite-state Markov process

Define the finite-state Markov process P̂ as in (3).
Proposition 4.4 (Unique i.p.m. of QΠ): There exists a

unique i.p.m. µ̂ of QΠ. It satisfies

µ̂(·) =
∑
s∈S

πsδs(·) (6)

for some constants πs ≥ 0, s ∈ S. Moreover, π =

(π1, ..., π|S|) is an invariant distribution of P̂ , i.e., π = πP̂ .
Proof. From Proposition 4.2(d), we know that the support of
Π is the set of pure strategy states S. Thus, the support of QΠ

is also on S . From Proposition 4.3, we know that QΠ admits
an i.p.m., say µ̂, whose support is also S. Thus, µ̂ admits the
form of (6), for some constants πs ≥ 0, s ∈ S.

For any two distinct s, s′ ∈ S, note that Nδ(s′), δ > 0, is
a continuity set of QΠ(s, ·), i.e., QΠ(s, ∂Nδ(s′)) = 0. Thus,
from Portmanteau theorem, given that QP t ⇒ QΠ,

QΠ(s,Nδ(s′)) = lim
t→∞

QP t(s,Nδ(s′)) = P̂ss′ .

If we also define πs
.
= µ̂(Nδ(s)), then

πs′ = µ̂(Nδ(s′)) =
∑
s∈S

πsQΠ(s,Nδ(s′)) =
∑
s∈S

πsP̂ss′ ,

which shows that π is an invariant distribution of P̂ .
It remains to establish uniqueness of the invariant

distribution of QΠ. Note that the set S of pure strategy
states is isomorphic with the set A of action profiles. If
agent i trembles (as t.p.f. Q dictates), then all actions
in Ai have positive probability of being selected, i.e.,
Q(α, (α′i, α−i)) > 0 for all α′i ∈ Ai and i ∈ I. It follows by
Proposition 4.1 that QΠ(α, (α′i, α−i)) > 0 for all α′i ∈ Ai
and i ∈ I. Finite induction then shows that (QΠ)n(α, α′) > 0

for all α, α′ ∈ A. It follows that if we restrict the domain
of QΠ to S, it defines an irreducible stochastic matrix.
Therefore, QΠ has a unique i.p.m. �

D. Proof of Theorem 3.1

Theorem 3.1(a)–(b) is a direct implication of Proposi-
tions 4.3–4.4.

V. STOCHASTICALLY STABLE STATES

In this section, we capitalize on Theorem 3.1 and we further
simplify the computation of the stochastically stable states in
strategic-form games satisfying Property 2.1.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

9

s s

s s

Fig. 1. Examples of s-graphs in case S contains four states.

A. Background on finite Markov chains

In order to compute the invariant distribution of a finite-
state, irreducible and aperiodic Markov chain, we are going to
consider a characterization introduced by [32]. In particular,
for finite Markov chains an invariant measure can be expressed
as the ratio of sums of products consisting of transition
probabilities. These products can be described conveniently by
means of graphs on the set of states of the chain. In particular,
let S be a finite set of states, whose elements will be denoted
by sk, s`, etc., and let a subset W of S.

Definition 5.1: (W-graph) A graph consisting of arrows
sk → s` (sk ∈ S\W, s` ∈ S, s` 6= sk) is called a W-graph if
it satisfies the following conditions:

1) every point k ∈ S\W is the initial point of exactly one
arrow;

2) there are no closed cycles in the graph; or, equivalently,
for any point sk ∈ S\W there exists a sequence of
arrows leading from it to some point s` ∈ W .

Fig. 1 provides examples of {s}-graphs for some state s ∈ S
when S contains four states. We will denote by G{W} the set
of W-graphs and we shall use the letter g to denote graphs. If
P̂sks` are nonnegative numbers, where sk, s` ∈ S, define also
the transition probability along path g as

$(g)
.
=

∏
(sk→s`)∈g

P̂sks` .

The following Lemma holds:
Lemma 5.1 (Lemma 6.3.1 in [32]): Let us consider a Markov

chain with a finite set of states S and transition probabilities
{P̂sks`} and assume that every state can be reached from any
other state in a finite number of steps. Then, the stationary
distribution of the chain is π = [πs], where

πs =
Rs∑

si∈S Rsi
, s ∈ S (7)

where Rs
.
=
∑
g∈G{s}$(g).

In other words, in order to compute the weight that the
stationary distribution assigns to a state s ∈ S, it suffices to
compute the ratio of the transition probabilities of all {s}-
graphs over the transition probabilities of all graphs.

B. Approximation of one-step transition probability

We wish to provide an approximation in the computation
of the transition probabilities under P̂ , in order to explicitly
compute the stationary distribution π of Theorem 3.1. Based
on the definition of the t.p.f. QΠ, and as λ ↓ 0, a transition
from s to s′ influences the stationary distribution only if s
differs from s′ in the action of a single agent. This observation
will be capitalized by the forthcoming Lemmas 5.2–5.3, to
approximate the transition probability from s to s′ under P̂ .

Let us define τ∗s(D) to be the minimum number of steps
that the process QΠ needs in order to reach D when starting
from s ∈ S (i.e., the minimum possible first hitting time to
D).

Lemma 5.2 (One-step transition probability): Consider any
two action profiles α, α′ ∈ A which differ in the action of
a single agent j, and let s, s′ ∈ S be the p.s.s.’s associated
with α and α′, respectively. Set z′ = (α′, x′), where x′j

.
=

eαj + εuj(α
′)(eα′j −eαj ), which corresponds to the state after

agent j perturbed once starting from s and played α′j . Define
also

P̆ss′(δ)
.
= Pz′ [τ(Nδ(s′)) ≤ ∞]

which corresponds to the probability that the process eventu-
ally reaches Nδ(s′) starting from z′. For sufficiently small ε
such that 0 < εuj(α

′) < 1, the following hold:

(a) The transition probability from s to s′ under QΠ can be
approximated as follows:

P̂ss′ = γj · lim
δ↓0

P̆ss′(δ), (8)

where γj
.
= 1/(n |Aj |) corresponds to the probability

that agent j trembled and selected action α′j under Q.
(b) P̆ss′(δ) coincides with the probability of the shortest

path, i.e.,

P̆ss′(δ) = Pz′ [α(t+ 1) = α′ ,∀t < τ∗s(Nδ(s′))] .

(c) There exists negative constant η(δ), such that for any
transition step s → s′ (with the above properties) and
for sufficiently small ε > 0,

P̆ss′(δ) ≈ exp

(
η(δ)

εuj(α′)

)
. (9)

Proof. See Appendix C. �

Note that for sufficiently small ε, the larger the destination
utility uj(α′), the larger the transition probability to s′, since
η(δ) < 0. In a way, the inverse of the destination utility at s′

represents a measure of “resistance” of the process to transit to



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

10

s′. Lemma 5.2 provides a tool for simplifying the computation
of stochastically stable pure strategy states as it will become
apparent in the following section.

C. Approximation of stationary distribution

In this section, using Lemma 5.2 that approximates one-
step transition probabilities, we provide an approximation
of the i.p.m. of the t.p.f. QΠ. By definition of QΠ, this
approximation is based upon the observation that for the
computation of the quantities Rs of Lemma 5.1, it suffices
to consider only those paths in G{s} which involve one-step
transitions as defined in Lemma 5.2.

Define G(1){s} ⊆ G{s} to be the set of s-graphs consisting
solely of one-step transitions, i.e., for any g ∈ G(1){s} and
any arrow (sk → s`) ∈ g, the associated action profiles, say
α(k), α(`), respectively, differ in a single action of a single
agent. It is straightforward to check that G(1){s} 6= ∅ for any
s ∈ S.

Lemma 5.3 (Approximation of stationary distribution): The
stationary distribution of the finite Markov chain {P̂sks`}, π =

[πs], satisfies

πs = lim
δ↓0

R̆s(δ)∑
si∈S R̆si(δ)

, s ∈ S, (10)

where R̆s(δ)
.
=
∑
g∈G(1){s} $̆(g; δ), and

$̆(g; δ)
.
= γ̄g

∏
(sk→s`)∈g

P̆sks`(δ), (11)

for some constant γ̄g ∈ (0, 1).
Proof. According to Lemma 5.1, for any s ∈ S, we have
πs = Rs/

∑
si∈S Rsi . Given the definition of the t.p.f. Q,

where only one agent trembles, we should only consider one-
step transition probabilities (as defined in Lemma 5.2). Thus,

Rs =
∑

g∈G(1){s}

$(g) =
∑

g∈G(1){s}

∏
(sk→s`)∈g

P̂sks` .

According to Lemma 5.2 and Equation (8), we have

Rs = lim
δ↓0

∑
g∈G(1){s}

∏
(sk→s`)∈g

γj(sk,s`)P̆sks`(δ)

= lim
δ↓0

∑
g∈G(1){s}

γ̄g
∏

(sk→s`)∈g

P̆sks`(δ)

where j(sk, s`) denotes the single agent whose action changes
from sk to s`, and γ̄g

.
=
∏

(sk→s`)∈g γj(sk,s`) ∈ (0, 1). Thus,
the conclusion follows. �

Note that Lemma 5.3 provides a simplification to Theo-
rem 3.1, since it suffices to compute the transition probabilities
of the W-graphs consisting solely of one step transitions.
Furthermore, the transition probability of any such graph,
$̆(g; δ), can be computed by Lemma 5.2, which provides
an explicit formula for one-step transitions. In the following
section, the computation of the stationary distribution will

further be simplified and related to the resistance of one-step
transitions.

D. δ-resistance

We have shown in Lemma 5.2, that the one-step transi-
tion probability P̆ss′(δ) increases as the destination utility
increases. Informally, the inverse destination utility at s′

represents a form of “resistance” to approaching state s′. In
this section, we will formalize this notion.

Definition 5.2 (δ-resistance): For a pure strategy state s ∈ S,
let us consider any graph g ∈ G(1){s}. For any δ > 0, the δ-
resistance associated with s ∈ S in graph g, is defined as
follows:

ϕδ(s|g)
.
=

∑
(sk→s`)∈g

1

εuj(α(`))
. (12)

In other words, the δ-resistance of a state s along a graph
g corresponds to the sum of the inverse utilities of the
destination states along that graph, scaled by 1/ε. We further
denote by ϕ∗δ(s) the minimum δ-resistance, i.e., ϕ∗δ(s)

.
=

ming∈G(1){s} ϕδ(s|g) and by g∗(s) the {s}-graph that attains
this minimum resistance.

E. Stochastically stable states

The stochastically stable states can be identified as the states
of minimum resistance.

Theorem 5.1 (Stochastically stable states): As ε ↓ 0, the set
of stochastically stable p.s.s.’s S∗ is such that, for any δ > 0

Φδ(S∗) .
= max
s∗∈S∗

ϕ∗δ(s
∗) < min

s∈S\S∗
ϕ∗δ(s)

.
= Φδ(S\S∗). (13)

Proof. By Lemmas 5.2–5.3, for any state s ∈ S and for any
graph g ∈ G(1){s}, we have that, as ε ↓ 0,

$̆(g; δ) = γ̄g
∏

(sk→s`)∈g

P̆sks`(δ) ≈ γ̄geη(δ)ϕδ(s|g),

and
R̆s(δ) =

∑
g∈G(1){s}

γ̄ge
η(δ)ϕδ(s|g).

Thus, for the states in S\S∗, and for sufficiently small ε ↓ 0,
we have ∑

s∈S\S∗
R̆s(δ) = eη(δ)Φδ(S\S

∗)·∑
s∈S\S∗

∑
g∈G(1){s}

γ̄ge
η(δ)(ϕδ(s|g)−Φδ(S\S

∗)).

Note that the second part of the r.h.s. approaches a finite value
as ε ↓ 0, since ϕδ(s|g) ≥ Φδ(S\S∗) for each s ∈ S\S∗.
Analogously, for the states in S∗, we have∑

s∈S∗
R̆s(δ) = eη(δ)Φδ(S∗)·∑
s∈S∗

∑
g∈G(1){s}

γ̄ge
η(δ)(ϕδ(s|g)−Φδ(S∗)).



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

11

Thus, for sufficiently small ε,∑
s∈S\S∗ R̆s(δ)∑
s∈S∗ R̆s(δ)

= eη(δ)(Φδ(S\S
∗)−Φδ(S∗))· ∑

s∈S\S∗
∑
g∈G(1){s} γ̄ge

η(δ)(ϕδ(s|g)−Φδ(S\S
∗))∑

s∈S∗
∑
g∈G(1){s} γ̄ge

η(δ)(ϕδ(s|g)−Φδ(S∗))
.

Given that Φδ(S\S∗)−Φδ(S∗) > 0, the first part of the r.h.s.
approaches 0 as ε ↓ 0. Also, the numerator of the ratio of the
r.h.s. approaches a finite value, due to the definition of Φδ(S∗).
On the other hand, each term of the denominator approaches
either a finite value or ∞ as ε ↓ 0. Thus,∑

s∈S\S∗ R̆s(δ)∑
s∈S∗ R̆s(δ)

ε↓0−−→ 0. (14)

Denote by πS∗ the probability assigned by the stationary
distribution π to S∗. Then, according to (10), we have:

lim
ε↓0

πS∗

= lim
ε↓0

lim
δ↓0

∑
s∗∈S∗ R̆s∗(δ)∑
s∈S R̆s(δ)

= lim
δ↓0

lim
ε↓0

∑
s∗∈S∗ R̆s∗(δ)∑
s∈S R̆s(δ)

= lim
δ↓0

lim
ε↓0

1

1 +
∑
s∈S\S∗ R̆s(δ)/

∑
s∗∈S∗ R̆s∗(δ)

.

Note that the interchange of limits in the second equality
is valid due to the finiteness of the limits of the transition
probabilities (according to Lemma 5.3). Given (14), we
conclude that limε↓0 πS∗ = 1. Conversely, limε↓0 πS\S∗ = 0.
Thus, the stochastically stable states may only be contained
in S∗. �

In other words, Theorem 5.1 says that, in order for a p.s.s.
set S∗ to be stochastically stable, it suffices to show that for
any s ∈ S∗ there exists a {s}-graph with strictly smaller
δ-resistance from any other state s′ ∈ S\S∗. Note that this
theorem applies to any game that satisfies the positive-utility
property. In the following section, we illustrate the utility of
Theorem 5.1 in computing the stochastically stable states in
coordination games.

VI. ILLUSTRATION IN COORDINATION GAMES

A. Stochastic stability

In this section, we will be using the notion of best response
of a agent i into an action profile α = (αi, α−i), as well as
the notion of Nash equilibrium. In particular, we define:

Definition 6.1 (Best response): The best response of a player
i to an action profile α = (αi, α−i) is defined as the following
set of actions: BRi(α)

.
= arg maxa∈Ai ui(a, α−i).

Definition 6.2 (Nash equilibrium): An action profile α∗ =

(α∗i , α
∗
−i) is a Nash equilibrium, if for every player i, α∗i ∈

BRi(α
∗).

A best-response of a player i to an action profile will often
be denoted by α∗i . Note that, according to the above definition,

the best response of a player is never empty. We also introduce
the following notion of a coordination game.

Definition 6.3 (Coordination game): A strategic-form game
satisfying the positive-utility property (Property 2.1) is a
coordination game if, for every action profile α and player
i, uj(α′i, α−i) ≥ uj(αi, α−i) for any α′i ∈ BRi(α).

In other words, a coordination game is such that at any
action profile, if a player plays a best response, then no other
player gets worse-off. This is satisfied by default when the
current action profile is a Nash equilibrium, since a player’s
best response is to play the same action.

In order to address stochastic stability, we will further need
to introduce the notion of the best-BR (briefly, BBR).

Definition 6.4 (Best-BR): Let i∗ : A → I be defined as:

i∗(α)
.
= arg max

i∈I
{ui(αi, α−i) : αi ∈ BRi(α)} .

The one-step transition α = (αi∗ , α−i∗)→ (α∗i∗ , α−i∗), where
α∗i∗ ∈ BRi∗(α), is the best-BR to the current action profile α
and will briefly be denoted by BBR(α).

In other words, BBR(α) corresponds to the one-step tran-
sition, where the player which changes its action receives the
largest utility among all possible one-step transitions from α.

Lemma 6.1: Let SNE be the set of p.s.s.’s which correspond
to the set of pure Nash equilibria. In any coordination game,
the {SNE}-graph that attains the minimum δ-resistance is:
g∗(SNE) =

{
(sk → s`) : α(`) ∈ BBR(α)

}
.

Proof. Under the coordination property, and starting from any
state s /∈ SNE, we can construct a path starting from s and
leading to SNE that consists only of one-step best-BR’s. Such
a path will include no cycles (since the utility of all players
may not decrease along such path). Furthermore, such path of
best-BR’s may only terminate at a Nash equilibrium.

By Definition 5.1 of a {SNE}-graph, a state s /∈ SNE is
the source of exactly one arrow. Among the possible arrows
with source s, the one that corresponds to a best-BR is the
one with the minimum δ-resistance (since it provides the
maximum possible destination utility). We conclude that the
{SNE}-graph(s) consisting only of best-BR’s provide the
minimum δ-resistance. �

Lemma 6.1 shows that the {SNE}-graph of minimum δ-
resistance is the graph consisting of the one-step best-BR’s
starting from any non-Nash action profile. Using this property,
we can show that the set of Nash equilibria are the stochasti-
cally stable states in any coordination game.

Theorem 6.1 (Stochastic stability in coordination games): In
any coordination game of Definition 6.3, as ε ↓ 0 and λ ↓ 0,
the stochastically stable pure strategy states satisfy S∗ ⊆ SNE.

Proof. It suffices to show that all p.s.s.’s outside SNE provide
a δ-resistance which is strictly higher than the δ-resistance of
any Nash equilibrium in SNE (as Theorem 5.1 dictates).



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

12

Consider an action profile α which is not a Nash equilibrium
and the corresponding p.s.s. s. Consider the part of the optimal
{SNE}-graph which leads to s, i.e.,

g∗(s|SNE)
.
= {(sk → s`) ∈ g∗(SNE) : ∃ path from s` to s} .

In other words, g∗(s|SNE) corresponds to the part of the
minimum-resistance graph g∗(SNE) whose arrows lead to s.
This graph might be empty if s is not a recipient of any
arrow in g∗(SNE). For the remainder of the proof, define the
graphs: g1

.
= g∗(SNE)\g∗(s|SNE), g2

.
= g∗(s)\g∗(s|SNE).

Note that, g∗(s|SNE) ⊂ g∗(s), i.e., the graph that leads to s

through the minimum resistance graph of SNE is also part of
the minimum resistance graph of s. By construction, we also
have g∗(s|SNE) ⊂ g∗(SNE). Thus, the exact same arrows (i.e.,
the ones in g∗(s|SNE)) are subtracted from g∗(SNE) and g∗(s)
to define the graphs g1 and g2, respectively.

By definition of the {SNE}-graphs, a node within the set
{SNE} cannot be the source of any arrow in g1. Similarly, node
s may not be the source of any arrow in g2. Since |SNE| ≥ 1,
and the fact that only a single arrow may stem from any given
node, we conclude that |g1| ≤ |g2|, i.e., g2 contains at least as
many arrows as g1.

Furthermore, by construction of graphs g1 and g2, there
exists at least one node s′ /∈ SNE with the following property:
(s′ → s′′) ∈ g1 such that α′′ ∈ BBR(α′), and (s′ → s′′′) ∈ g2

such that α′′′ /∈ BBR(α′). This is due to the fact that any path
in g2 should eventually lead to s /∈ SNE.

Thus, we conclude that g2 contains at least as many arrows
as g1, and g2 contains arrows which are not best-BR steps.
Since only best-BR transition steps achieve the minimum
resistance, we conclude that ϕ(s|g2) > ϕ(s|g1), which
implies that any {s}-graph may only have larger δ-resistance
as compared to the minimum δ-resistance of g∗(SNE). �

B. Simulation study in distributed network formation

In this section, we perform a simulation study of the
proposed learning dynamics in a class of network formation
games [33]. We consider n nodes deployed on the plane and
assume that the set of actions of each node or agent i, Ai,
contains all possible combinations of neighbors of i, denoted
Ni, with which a link can be established, i.e., Ai = 2Ni ,
including the empty set. Links are considered unidirectional,
and a link established by node i with node j, denoted (j, i),
starts at j with the arrowhead pointing to i. A graph G is
defined as a collection of nodes and directed links. Define
also a path from j to i as a sequence of nodes and directed
links that starts at j and ends to i following the orientation of
the graph, i.e.,

(j → i) =
{
j = j0, (j0, j1), j1, . . . , (jm−1, jm), jm = i

}
for some positive integer m. In a connected graph, there is a
path from any node to any other node.

1

2 3

1

2 3

Fig. 2. Nash networks in case of n = 3 agents and 0 < ν < 1.

Let us consider a utility function ui : A → R, such that

ui(α)
.
=

∑
j∈I\{i}

χα(j → i)− κ |αi| , (15)

i ∈ I, where |αi| denotes the number of links corresponding
to αi and κ is a constant in (0, 1). Also,

χα(j → i)
.
=

{
1 if (j → i) ⊆ Gα ,
0 otherwise,

where Gα denotes the graph induced by joint action α. As it
was shown in Proposition 4.2 in [33], a network G∗ is a Nash
equilibrium if and only if it is critically connected, i.e., i) it is
connected, and ii) for any (s, i) ∈ G, (s → i) is the unique
path from s to i. For example, the Nash equilibria for n = 3

agents and unconstrained neighborhoods are shown in Fig. 2.
Proposition 6.1: The network formation game defined by

(15) is a coordination game.
Proof. First, note that any network formation game with the
utility of (15) satisfies the positive-utility property. This is
due to the fact that for any single link of cost κ ∈ (0, 1),
an agent receives utility of at least 1. For any joint action
α /∈ A∗ assume that a node i picks its best response. Then
no other agent becomes worse off, since a best response of
any node i always retains connectivity. Note that this is not
necessarily true for any other change in actions. Thus, the
coordination property of Definition 6.3 is satisfied. �

Fig. 3 depicts the response of the learning dynamics in the
network formation game. We consider 6 nodes deployed on
the plane, where the neighbors of each node are defined as
the two immediate nodes (e.g., the neighbors of node 1 are
N1 = {2, 6}). According to Theorem 6.1, in order for the
average behavior to be observed, λ and ε need to be sufficiently
small. We choose: ε = λ = 0.005, and κ = 1/2.

Given the large number of actions, we do not plot the
strategy vector for each node. Instead, we plot the inverse total
distance from each node to its neighboring nodes. In a wheel
structure (and only under this structure), the inverse total dis-
tance to the neighboring nodes is equal to 1/1+5 = 1/6 ≈ 0.167.
The wheel structure is among the Nash equilibria of this game
(as shown in [33]) and the unique payoff-dominant equilibrium
(i.e., every node receives its maximum utility). The wheel
structure is the emergent structure as shown in Fig. 3.

The simulation of Fig. 3 verifies Theorem 6.1, since conver-
gence (in a weak sense) is attained to the set of Nash equilibria.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

13

1

2

3

4

5

6

Final Graph

(a) 0 0.2 0.4 0.6 0.8 1

·104
0

0.1

0.2

0.3

0.4

0.5

Time step

Running average of inverse total distance

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

(b)
Fig. 3. (a) Final graph and (b) running-average inverse total distance with time under the perturbed learning automata dynamics of Table I when applied to
the network formation game.

However, it also demonstrates the potential of this class of
dynamics for stronger convergence results, since the emergent
Nash equilibrium is also payoff-dominant.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we considered a class of reinforcement-based
learning dynamics that belongs to the family of discrete-time
replicator dynamics and learning automata, and we provided
an explicit characterization of the invariant probability measure
of the induced Markov chain. Through this analysis, we
demonstrated convergence (in a weak sense) to the set of
pure strategy states, overcoming prior limitations of the ODE-
method for stochastic approximations, such as the existence
of a potential function. Furthermore, we provided a simplified
methodology for computing the set of stochastically stable
states, and we demonstrated its utility in the context of
coordination games. This is the first result in this class of dy-
namics that demonstrates global convergence properties with
no restrictions in the number of players and without requiring
the existence of a potential function. Thus, it opens up new
possibilities for the use of reinforcement-based learning in
distributed control of multi-agent systems.

APPENDIX A
PROOF OF PROPOSITION 3.1

Let us first consider the perturbed process Pλ. Let us also
consider any sequence {z(k) = (α(k), x(k))} such that z(k) →

z = (α, x) ∈ Z . For any open set O ∈ B(Z),

Pλ(z(k) = (α(k), x(k)), O)

=
∑

α∈PA(O)

{ n∏
i=1

x̃
(k)
iαi
·
n∏
i=1

Pz(k) [Ri(α, x(k)
i ) ∈ PXi(O)]

}
=

∑
α∈PA(O)

{ n∏
i=1

IPXi (O)(Ri(α, x(k)
i ))x̃

(k)
iαi

}
,

where PXi(O) and PA(O) are the canonical projections de-
fined by the product topology, and x̃(k)

iαi

.
= (1−λ)x

(k)
iαi

+λ/|Ai|.
Similarly, we have:

Pλ(z,O) =
∑

α∈PA(O)

{ n∏
i=1

IPXi (O) (Ri (α, xi)) x̃iαi

}
.

To investigate the limit of Pλ(z(k), O) as k → ∞, it
suffices to investigate the behavior of the sequence ζ

(k)
i

.
=

IPXi (O)(Ri(α, x(k)
i )). We distinguish the following (comple-

mentary) cases:
(a) Ri(α, xi) /∈ PXi(O) and Ri(α, xi) /∈ ∂PXi(O): In this

case, there exists an open ball about the next strategy vector
that does not share any common points with PXi(O). Due to
the continuity of the function Ri(α, ·), we have that ζ(k)

i →
ζi
.
= IPXi (O)(Ri(α, xi)) ≡ 0.
(b) Ri(α, xi) ∈ PXi(O): In this case, there exists an open

ball about the next strategy vector that belongs to PXi(O),
since O ∈ B(Z). Due to the continuity of the function
Ri(α, ·), we have that ζ(k)

i → ζi = 1.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

14

(c) Ri(α, xi) /∈ PXi(O) and Ri(α, xi) ∈ ∂PXi(O): In this
case, ζi ≡ 0. We conclude that lim infk→∞ ζ

(k)
i ≥ ζi = 0,

since ζ(k)
i ∈ {0, 1}.

In either one of the above (complementary) cases, we
have that lim infk→∞ ζ

(k)
i ≥ ζi. Finally, due to the con-

tinuity of the perturbed strategy vector x̃iαi with respect
to xiαi , we conclude that for any sequence z(k) → z,
lim infk→∞ Pλ(z(k), O) ≥ Pλ(z,O). Thus, by [30, Propo-
sition 7.2.1], Pλ satisfies the weak Feller property.

The above derivation can be generalized to any selection
probability function f(xiαi) in the place of x̃iαi , provided that
it is a continuous function. Thus, the proof for the unperturbed
process P follows the exact same reasoning by simply setting
f(xiαi) = xiαi .

APPENDIX B
PROOF OF PROPOSITION 4.1

(a) Let us consider an action profile α = (α1, ..., αn) ∈
A, and an initial strategy profile x(0) = (x1(0), ..., xn(0))

such that xiαi(0) > 0 for all i ∈ I. Note that if the same
action profile α is selected consecutively up to time t, then
the strategy of agent i satisfies:

xi(t) = eαi − (1− εui(α))t(eαi − xi(0)). (16)

Given that Bt is non-increasing, from continuity from above
we have

Pz[B∞] = lim
t→∞

Pz[Bt] = lim
t→∞

t∏
k=0

n∏
i=1

xiαi(k). (17)

Note that Pz[B∞] > 0 if and only if
∞∑
t=0

log(xiαi(t)) > −∞, for all i ∈ I. (18)

Let us introduce the variable yi(t)
.
= 1 − xiαi(t), which

corresponds to the probability of agent i selecting any action
other than αi. Condition (18) is equivalent to

−
∞∑
t=0

log(1− yi(t)) <∞, for all i ∈ I. (19)

Note that yi(t+1)/yi(t) = 1−εui(α) < 1, which (by the Ratio
test, cf., [34, Theorem 6.2.4]) implies that the series of positive
terms

∑∞
t=1 yi(t) is convergent. Hence, limt→∞ yi(t) = 0.

Thus, from L’Hospital’s rule (cf., [35, Theorem 5.13]),

lim
t→∞

− log(1− yi(t))
yi(t)

= lim
t→∞

1

1− yi(t)
= 1 > 0. (20)

From the Limit Comparison Test (cf., [34, Theorem 6.2.2]), we
conclude that condition (19) holds, which equivalently implies
that Pz[B∞] > 0. Lastly, due to (16), Pz[B∞] is continuous
with respect to x(0) which takes values in a bounded and
closed set X . Thus, by [34, Theorem 3.2.2], we conclude that
infz∈Z Pz[B∞] > 0.

(b) Define the set C`
.
=
{
z ∈ Z : |xi|∞ > 1− ε` ,∀i ∈ I

}
,

where |xi|∞ .
= max{xiαi , αi ∈ Ai}, i.e., C` corresponds to a

strategy being close to a vertex of X . For ` > 0,

Pz[At] ≥
t∑

k=1

Pz[τ(C`) = k , Z ◦ θk ∈ B∞]

=
t∑

k=1

Pz[Z ◦ θk ∈ B∞|τ(C`) = k] · Pz[τ(C`) = k]

≥ inf
z∈C`

Pz[B∞] ·
t∑

k=1

Pz[τ(C`) = k]

≥ inf
z∈C`

Pz[B∞] · inf
z∈Cc`

Pz[τ(C`) ≤ t], (21)

where the second inequality is due to the Markov property.
Consider the subsequence tk = k`m, for some m = m(`) > 0

such that, the time block of `m iterations is sufficiently large
so that C` can be reachable from any state in Cc` . Then,

Pz[τ(C`) ≤ tk|τ(C`) > tk−1] ≥ inf
z∈Cc`

Pz[B`m ] ≥ inf
z∈Cc`

Pz[B∞],

where the last inequality is due to (17). Given (a), and for
any ` > 0, the r.h.s. of the above inequality is bounded away
from zero. Hence, from the counterpart of the Borel-Cantelli
Lemma (cf., [36, Section 3.3]) and the fact that {τ(C`) ≤
tk} ⊆ {τ(C`) ≤ tk+1}, we have that, for any ` > 0,

lim
k→∞

inf
z∈Cc`

Pz[τ(C`) ≤ tk] = 1. (22)

Finally, set k = `. Then, tk = t` = `m+1. Given (21)–(22)
and from continuity from below, we have

Pz[A∞] = lim
`→∞

P[At` ] ≥ lim
`→∞

inf
z∈C`

Pz[B∞] = 1,

where the last equality is due to the definition of C` and (17).

APPENDIX C
PROOF OF LEMMA 5.3

(a) The state z′, realized after agent j trembled and played
α′j starting from s, is uniquely defined as z′ .

= (α′, eαj +

εuj(α
′)(eα′j − eαj )). Thus, we can write:

QP t(s,Nδ(s′))
=

∫
Z
γjδz′(dy)P t(y,Nδ(s′)) = γjP

t(z′,Nδ(s′)).

Given that Nδ(s′) is a continuity set of QΠ(s, ·), from
Portmanteau theorem we have that, for any δ > 0,

P̂ss′ = QΠ(s,Nδ(s′)) = γj lim
t→∞

P t(z′,Nδ(s′)).

Note also that P t(z′,Nδ(s′)) ≤ Pz′ [τ(Nδ(s′)) ≤ t]. Since the
sequence of events {τ(Nδ(s′)) ≤ t}t is non-decreasing, then
from continuity from below, we have that, for any δ > 0,

lim
t→∞

P t(z′,Nδ(s′)) ≤ Pz′ [τ(Nδ(s′)) ≤ ∞]. (23)

On the other hand, we have

P t(z′,Nδ(s′)) ≥
t∑

k=1

Pz′ [τ(Nδ(s′)) = k, Z ◦ θk ∈ B∞]



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

15

≥ inf
z∈Nδ(s′)

Pz[B∞] · Pz′ [τ(Nδ(s′)) ≤ t],

where in the second inequality we have used the Markov
property. Given that limδ↓0 infz∈Nδ(s′) Pz[B∞] = 1, we get

lim
δ↓0

lim
t→∞

P t(z′,Nδ(s′)) ≥ lim
δ↓0

Pz′ [τ(Nδ(s′)) ≤ ∞]. (24)

The conclusion follows directly from (23)–(24).
(b) Consider the unperturbed process initiated at state z′,

i.e., Z0 = z′. Let us also define the set

Dj,`(α
′)
.
=
{

(α, x) ∈ Z : xjα′j > 1−Hj(α
′)`
}
,

where Hj(α
′)
.
= 1−εuj(α′). The set Dj,`(α

′) is the unreach-
able set in the strategy space of agent j when starting from
xjα′j = 0 and playing action α′j for ` consecutive steps. Define
also the set

Ej,`(α
′)
.
= Dj,`+1(α′)c ∩Dj,`(α

′).

One possibility for realizing a transition from z′ to Nδ(s′)
is to follow the shortest path, that is, the path of playing action
α′ consecutively. Thus,

P̆ss′(δ) ≥ Pz′ [α(t+ 1) = α′,∀t < τ∗s(Nδ(s′))] . (25)

When the process reaches Nδ(s′) for the first time, action
profile α′ has been played for at least τ∗s(Nδ(s′)) times.2

Define an iteration subsequence {tk}, with Zt0 = Z0 = z′,
such that, at any time tk action α′ is selected for the next
iteration (i.e., α(t0 + 1) = ... = α(tk + 1) = α′). Due to the
Markov property, in order for the unperturbed process to reach
Nδ(s′), there exists time tk such that α(tk + 1) = α′ while
Ztk ∈ Ej,k(α′). Thus,

P̆ss′(δ) ≤ Pz′ [∃{tk} : α(tk + 1) = α′, Ztk ∈ Ej,k(α′),

for all k < τ∗s(Nδ(s′))] .

Using the properties of the conditional probability, we also
have:

P̆ss′(δ) ≤ Pz′ [∃{tk} : α(tk + 1) = α′ ,∀k < τ∗s(Nδ(s′))|
2Let us assume that along a sample path from z′ to Nδ(s′) and at iteration

tk , the strategy of agent j with respect to action α′j is xjα′j (tk) = ρ > 0.
If agent j selects action α′j at time tk + 1, it’s next strategy will be:

xjα′j
(tk + 1) = ρ+ εuj(α

′)(1− ρ) = εuj(α
′) +Hj(α

′)ρ
.
= x∗jα′j

.

If, instead, agent j selects action αj 6= α′j at time tk+1 and then α′j at time
tk + 2, i.e., it deviates from playing action α′j , then the strategy evolves as:

xjα′j
(tk + 1) = ρ+ εuj(α)(−ρ)

= Hj(α)ρ,
xjα′j

(tk + 2) = Hj(α)ρ+ εuj(α
′)(1−Hj(α)ρ)

= (Hj(α
′)ρ)Hj(α) + εuj(α

′)
< x∗jα′j

,

since 0 < εuj(α) < 1. Informally, any single deviation from the shortest
path to s′ cannot recover the drop in the strategy at the next iteration. Thus,
along any path from z′ to Nδ(s′), when the process reaches Nδ(s′) for the
first time, action α′ has been played for at least τ∗s(Nδ(s′)) times, which is
the number of iterations required for reaching Nδ(s′) along the shortest path.

Ztk ∈ Ej,k(α′)] .

Using again the Markov property,

P̆ss′(δ)

≤
∏

t<τ∗s(Nδ(s′))

sup
z∈Ej,t(α′)

Pz′ [α(t+ 1) = α′|Zt = z]

= Pz′ [α(t+ 1) = α′, t < τ∗s(Nδ(s′))] .

Given also (25), the conclusion follows.
(c) The minimum first hitting time to the setNδ(s′) satisfies:

τ∗s(Nδ(s′)) =

⌈
log(δ)

log(Hj(α′))

⌉
.
= T (ε),

where Hj(α
′)

.
= 1 − εuj(α′). There exists correction factor

c = c(ε, δ) ∈ [0, 1), such that

T (ε) =
log(δ)

log(Hj(α′))
+ c(ε, δ).

Due to statement (b), and for sufficiently small ε > 0, we
have:

log
(
P̆ss′(δ)

)
≈
T (ε)∑
t=1

log
(
1−Hj(α

′)t
)
. (26)

In the remainder of the proof, we will approximate the r.h.s.
of (26).

To simplify notation, denote H .
= Hj(α

′). Note that

lim
ε↓0

log
(
HT (ε)

)
= lim

ε↓0

{(
log(δ)

log(H)
+ c(ε, δ)

)
log(H)

}
= log(δ),

and due to the continuity of the natural logarithm,

lim
ε↓0

HT (ε) = δ. (27)

As a result, for any ` ∈ N,

lim
ε↓0

H`T (ε) = δ`.

By Taylor series expansion of the natural logarithm (for small
argument values), we have:

log
(
1−Ht

)
≈ −

∞∑
`=1

H`t

`
.

Thus,

(1−H)

T (ε)∑
t=1

log
(
1−Ht

)
≈ −

∞∑
`=1

1

`

[
(1−H)

T (ε)∑
t=1

H`t
]

= −
∞∑
`=1

1

`

[
(1−H)

1−H`(T (ε)+1)

1−H`
− (1−H)

]
= −

∞∑
`=1

1

`

[ 1−H`(T (ε)+1)

1 +H + · · ·+H`−1
− (1−H)

]



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2895300, IEEE
Transactions on Automatic Control

16

Note that, for any ` ∈ N, H` → 1 as ε ↓ 0. Thus, we have

lim
ε↓0

(1−H)

T (ε)∑
t=1

log
(
1−Ht

)
≈ −

∞∑
`=1

1

`2
(1− δ`) .

= η(δ),

which corresponds to a negative finite constant. Hence, using
the fact that 1−H = εuj(α

′), we conclude that, for sufficiently
small ε > 0,

log(P̆ss′(δ)) ≈
η(δ)

εuj(α′)
.

REFERENCES

[1] G. C. Chasparis, “Stochastic stability analysis of perturbed learning
automata with constant step-size in strategic-form games,” in American
Control Conference, Seattle, USA, 2017, pp. 4607–4612.

[2] B. G. Chun, R. Fonseca, I. Stoica, and J. Kubiatowicz, “Characteriz-
ing selfishly constructed overlay routing networks,” in Proc. of IEEE
INFOCOM 04, Hong-Kong, 2004.

[3] R. Komali, A. B. MacKenzie, and R. P. Gilles, “Effect of selfish node
behavior on efficient topology design,” IEEE Transactions on Mobile
Computing, vol. 7, no. 9, pp. 1057–1070, 2008.

[4] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” The
Journal of Supercomputing, vol. 54, no. 2, pp. 252–269, Nov. 2010.

[5] W. B. Arthur, “On designing economic agents that behave like human
agents,” J. Evolutionary Econ., vol. 3, pp. 1–22, 1993.

[6] M. Tsetlin, Automaton Theory and Modeling of Biological Systems.
Academic Press, 1973.

[7] K. Narendra and M. Thathachar, Learning Automata: An introduction.
Prentice-Hall, 1989.

[8] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” J. Machine Learning Research, vol. 4, no. Nov, pp. 1039–1069,
2003.

[9] G. Chasparis and J. Shamma, “Distributed dynamic reinforcement of
efficient outcomes in multiagent coordination and network formation,”
Dynamic Games and Applications, vol. 2, no. 1, pp. 18–50, 2012.

[10] G. Chasparis, A. Arapostathis, and J. Shamma, “Aspiration learning in
coordination games,” SIAM J. Control and Optim., vol. 51, no. 1, 2013.

[11] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma, “Payoff
based dynamics for multi-player weakly acyclic games,” SIAM J. Control
Optim., vol. 48, no. 1, pp. 373–396, 2009.

[12] P. Frihauf, M. Krstic, and T. Basar, “Nash Equilibrium Seeking in
Noncooperative Games,” IEEE Transactions on Automatic Control,
vol. 57, no. 5, pp. 1192–1207, May 2012.

[13] M. Ye and G. Hu, “Distributed Seeking of Time-Varying Nash Equi-
librium for Non-Cooperative Games,” IEEE Transactions on Automatic
Control, vol. 60, no. 11, pp. 3000–3005, Nov. 2015.

[14] S. Perkins, P. Mertikopoulos, and D. S. Leslie, “Mixed-Strategy Learning
With Continuous Action Sets,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 379–384, Jan. 2017.

[15] J. Hofbauer and K. Sigmund, Evolutionary Games and Population
Dynamics. Cambridge: Cambridge University Press, 1998.

[16] E. Hopkins and M. Posch, “Attainability of boundary points under
reinforcement learning,” Games Econ. Behav., vol. 53, pp. 110–125,
2005.

[17] I. Erev and A. Roth, “Predicting how people play games: reinforcement
learning in experimental games with unique, mixed strategy equilibria,”
Amer. Econ. Rev., vol. 88, pp. 848–881, 1998.

[18] T. Börgers and R. Sarin, “Learning through reinforcement and replicator
dynamics,” J. Econ. Theory, vol. 77, no. 1, pp. 1–14, 1997.

[19] D. Leslie, “Reinforcement learning in games,” Ph.D. dissertation, School
of Mathematics, University of Bristol, 2004.

[20] G. C. Chasparis, J. S. Shamma, and A. Rantzer, “Nonconvergence to
saddle boundary points under perturbed reinforcement learning,” Int. J.
Game Theory, vol. 44, no. 3, pp. 667–699, 2015.

[21] D. Lewis, Convention: A Philosophical Study. Blackwell Publishing,
2002.

[22] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning
of Nash equilibria in multi-person stochastic games with incomplete
information,” IEEE Trans. Syst. Man Cybern., vol. 24, no. 5, pp. 769–
777, 1994.

[23] D. Monderer and L. Shapley, “Potential games,” Games Econ. Behav.,
vol. 14, pp. 124–143, 1996.

[24] K. Verbeeck, A. Now, J. Parent, and K. Tuyls, “Exploring selfish
reinforcement learning in repeated games with stochastic rewards,”
Autonomous Agents and Multi-Agent Systems, vol. 14, no. 3, pp. 239–
269, Apr. 2007.

[25] D. Leslie and E. Collins, “Individual Q-Learning in Normal Form
Games,” SIAM J. Control Optim., vol. 44, no. 2, pp. 495–514, Jan.
2005.

[26] A. C. Chapman, D. S. Leslie, A. Rogers, and N. R. Jennings, “Con-
vergent Learning Algorithms for Unknown Reward Games,” SIAM J.
Control Optim., vol. 51, no. 4, pp. 3154–3180, Jan. 2013.

[27] G. Arslan and S. Yuksel, “Decentralized Q-Learning for Stochastic
Teams and Games,” IEEE Transactions on Automatic Control, vol. PP,
no. 99, pp. 1–1, 2016.

[28] H. P. Young, “Learning by trial and error,” Games and Economic
Behavior, vol. 65, no. 2, pp. 626–643, Mar. 2009.

[29] J. R. Marden, H. P. Young, and L. Pao, “Achieving Pareto optimality
through distributed learning,” SIAM J. Control Optim., vol. 52, no. 5,
pp. 2753–2770, 2014.

[30] O. Hernandez-Lerma and J. B. Lasserre, Markov Chains and Invariant
Probabilities. Birkhauser Verlag, 2003.

[31] R. Karandikar, D. Mookherjee, and D. Ray, “Evolving aspirations and
cooperation,” J. Econ. Theory, vol. 80, pp. 292–331, 1998.

[32] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical
systems. New York, NY: Springer-Verlag, 1984.

[33] G. C. Chasparis and J. S. Shamma, “Network Formation: Neighbor-
hood Structures, Establishment Costs, and Distributed Learning,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1950–1962, Dec. 2013.

[34] M. Reed, Fundamental Ideas of Analysis. John Wiley & Sons, Inc.,
1998.

[35] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill Book
Company, 1964.

[36] L. Breiman, Probability. Philadelphia: SIAM, 1992.

Georgios C. Chasparis Georgios Chasparis (S’04-
M’08) was born in Athens in 1978. He received
the mechanical engineering degree from the National
Technical University of Athens, Greece, in 2001, and
the M.Sc. and Ph.D. degrees from the University
of California Los Angeles, CA, in 2004 and 2008,
respectively.

From 2008 to 2010, he was a Postdoctoral Fel-
low in the Department of Electrical and Computer
Engineering at the Georgia Institute of Technology,

GA, and from 2010 to 2012, he was a Postdoctoral Fellow in the Department
of Automatic Control at Lund University, Sweden. Since 2012, he has been
with the Department of Data Analysis Systems at the Software Competence
Center Hagenberg, GmbH, Austria, where he is currently a Research Team
Leader in Prognosis, Control and Optimization. His research interests include
evolutionary learning in games, distributed control and optimization, and
operations research.



1 23

International Journal of Parallel
Programming
 
ISSN 0885-7458
 
Int J Parallel Prog
DOI 10.1007/s10766-017-0541-y

Efficient Dynamic Pinning of Parallelized
Applications by Distributed Reinforcement
Learning

Georgios C. Chasparis & Michael
Rossbory



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Int J Parallel Prog
https://doi.org/10.1007/s10766-017-0541-y

Efficient Dynamic Pinning of Parallelized Applications
by Distributed Reinforcement Learning

Georgios C. Chasparis1 · Michael Rossbory1

Received: 31 May 2017 / Accepted: 18 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract This paper introduces a resource allocation framework specifically tailored
for addressing the problem of dynamic placement (or pinning) of parallelized appli-
cations to processing units. Under the proposed setup each thread of the parallelized
application constitutes an independent decision maker (or agent), which (based on its
own prior performance measurements and its own prior CPU-affinities) decides on
which processing unit to run next. Decisions are updated recursively for each thread
by a resourcemanager/scheduler which runs in parallel to the application’s threads and
periodically records their performances and assigns to them new CPU affinities. For
updating the CPU-affinities, the scheduler uses a distributed reinforcement-learning
algorithm, each branch of which is responsible for assigning a new placement strategy
to each thread. The proposed framework is flexible enough to address alternative opti-
mization criteria, such as maximum average processing speed and minimum speed
variance among threads. We demonstrate analytically that convergence to locally-
optimal placements is achieved asymptotically. Finally, we validate these results
through experiments in Linux platforms.

Keywords Dynamic pinning · Reinforcement learning · Parallel applications

This work has been supported by the European Union Grant EU H2020-ICT-2014-1 project RePhrase
(No. 644235). It has also been partially supported by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria
in the frame of the COMET center SCCH.

B Georgios C. Chasparis
georgios.chasparis@scch.at

Michael Rossbory
michael.rossbory@scch.at

1 Software Competence Center Hagenberg GmbH, Softwarepark 21, 4232 Hagenberg, Austria

123

Author's personal copy

http://orcid.org/0000-0003-3059-3575
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0541-y&domain=pdf


Int J Parallel Prog

1 Introduction

Resource allocation has become an indispensable part of the design of any engi-
neering system that consumes resources, such as electricity power in home energy
management [7], access bandwidth and battery life in wireless communications [8],
computing bandwidth under certain QoS requirements [1], computing bandwidth for
time-sensitive applications [4], computing bandwidth and memory in parallelized
applications [2].

When resource allocation is performed online and the number, arrival and departure
times of the tasks are not known a priori (as in the case of CPU bandwidth allocation),
the role of a resource manager (RM) is to guarantee an efficient operation of all tasks
by appropriately distributing resources. However, guaranteeing efficiency through the
adjustment of resources requires the formulation of a centralized optimization prob-
lem (e.g., mixed-integer linear programming formulations [1]), which further requires
information about the specifics of each task (i.e., application details). Such information
may not be available to neither the RM nor the task itself.

Given the difficulties involved in the formulation of centralized optimization prob-
lems in resource allocation, not to mention their computational complexity, feedback
from the running tasks in the form of performance measurements may provide valu-
able information for the establishment of efficient allocations. Such (feedback-based)
techniques have recently been considered in several scientific domains, such as in
the case of application parallelization (where information about the memory access
patterns or affinity between threads and data are used in the form of scheduling hints)
[3], or in the case of allocating virtual processors to time-sensitive applications [4].

To this end, this paper proposes a distributed learning scheme specifically tailored
for addressing the problem of dynamically assigning/pinning threads of a parallelized
application to the available processing units. The proposed scheme is flexible enough
to incorporate alternative optimization criteria. In particular, we demonstrate its utility
in maximizing the average processing speed of the overall application. The proposed
scheme also reduces computational complexity usually encountered in centralized
optimization problems, while it provides an adaptive response to the variability of the
provided resources.

The paper is organized as follows. Section 2 discusses the related work and contri-
bution of this paper. Section 3 describes the overall problem formulation and objective.
Section 4 introduces the concept ofmulti-agent formulations anddiscusses their advan-
tages. Section 5 presents the proposed reinforcement-learning algorithm for dynamic
placement of threads and Sect. 6 presents its convergence analysis. Section 7 presents
experiments of the proposed resource manager in a Linux platform and compari-
son tests with the operating system’s response. Finally, Sect. 8 presents concluding
remarks.

Notation:

− |x | denotes the Euclidean norm of a vector x ∈ R
n .

− dist(x, A) denotes the minimum distance from a vector x ∈ R
n to a set A ⊂ R

n ,
i.e., dist(x, A)

.= inf y∈A |x − y|.

123

Author's personal copy



Int J Parallel Prog

− Bδ(A) denotes the δ-neighborhood of a set A ⊂ R
n , i.e., Bδ(A)

.= {x ∈ R
n :

dist(x, A) < δ}.
− For some finite set A, |A| denotes the cardinality of A.
− The probability simplex of dimension n is denoted byΔ(n) and defined asΔ(n)

.=
{x = (x1, . . . , xn) ∈ [0, 1]n : ∑n

i=1 xi = 1}.
− e j ∈ R

n denotes the unit vector whose j th entry is equal to 1 while all other entries
are zero;

− For a vector σ ∈ Δ(n), let randσ [a1, . . . , an] denote the random selection of an
element of the set {a1, . . . , an} according to the distribution σ ;

2 Related Work and Contribution

To tackle the issues of centralized optimization techniques, resource allocation prob-
lems have also been addressed through distributed or game-theoretic optimization
schemes. The main goal of such approaches is to address a centralized (global) objec-
tive for resource allocation through agent-based (local) objectives, where, for instance,
agents may represent the tasks to be allocated. Examples include the cooperative game
formulation for allocating bandwidth in grid computing [14], the non-cooperative
game formulation in the problem of medium access protocols in communications [15]
or for allocating resources in cloud computing [17]. Themain advantage of distributing
the decision-making process is the considerable reduction in computational complex-
ity (a group of n tasks can be allocated to m resources with mn possible ways, while
a single task may be allocated with only m possible ways). This further allows for the
development of online selection rules where tasks/agents make decisions often using
current observations of their own performance.

Priorworkhas demonstrated the importanceof thread-to-core bindings in theoverall
performance of a parallelized application. For example, [9] describes a tool that checks
the performance of each of the available thread-to-core bindings and searches an
optimal placement. Unfortunately, the exhaustive-search type of optimization that
is implemented may prohibit runtime implementation. Reference [3] combines the
problem of thread scheduling with scheduling hints related to thread-memory affinity
issues. These hints are able to accommodate load distribution given information for
the application structure and the hardware topology. The HWLOC library is used to
perform the topology discovery which builds a hierarchical architecture consisting of
hardware objects (NUMA nodes, sockets, caches, cores, etc.), and the BubbleSched
library [16] is used to implement scheduling policies. A similar scheduling policy is
also implemented by [13].

Contrary to this line of research, this paper proposes a dynamic (learning-based)
scheme for optimally allocating threads of a parallelized application into a set of avail-
able CPU cores. The proposed methodology implements a distributed reinforcement
learning algorithm (executed in parallel by a resource manager/scheduler), accord-
ing to which each thread is considered as an independent agent making decisions
over its own CPU-affinities. The proposed algorithm requires minimum information
exchange, that is only the performance measurements collected from each running
thread. In the current setup, we provide a design that maximizes average processing

123

Author's personal copy



Int J Parallel Prog

speed, however it can be easily modified to accommodate alternative criteria. Further-
more, it exhibits adaptivity and robustness to possible irregularities in the behavior of
a thread or to possible changes in the availability of resources.We analytically demon-
strate that the reinforcement-learning scheme asymptotically learns a locally-optimal
allocation, while it is flexible enough to accommodate several optimization criteria.
We also demonstrate through experiments in a Linux platform that the proposed algo-
rithm outperforms the scheduling strategies of the operating system with respect to its
average processing speed and completion time.

3 Problem Formulation and Objective

3.1 Framework

We consider a resource allocation framework for addressing the problem of dynamic
pinning of parallelized applications. In particular, we consider a number of threads
I = {1, 2, . . . , n} resulting from a parallelized application. These threads need to
be pinned for processing into a set of available CPU cores J = {1, 2, . . . ,m} (not
necessarily homogeneous).

We denote the assignment of a thread i to the set of available CPU cores by αi ∈
Ai ≡ J , i.e., αi designates the number of the CPUwhere this thread is being assigned
to. Let also α = {αi }i denote the assignment profile.

Responsible for the assignment of CPU cores into the threads is the Resource
Manager (RM), which periodically checks the prior performance of each thread and
makes a decision over their next CPU placements so that a (user-specified) objective
is maximized. For the remainder of the paper, we will assume that:

(a) The internal properties and details of the threads are not known to theRM. Instead,
the RMmay only have access to measurements related to their performance (e.g.,
their processing speed).

(b) Threads may not be idled or postponed. Instead, the goal of the RM is to assign
the currently available resources to the currently running threads.

(c) Each thread may only be assigned to a single CPU core.

3.2 Static Optimization and Issues

Let vi = vi (α,w) denote the processing speed of thread i which depends on both
the assignment profile α, as well as exogenous parameters aggregated within w. The
exogenous parameters w summarize, for example, the impact of other applications
running on the same platform (disturbances). Then, the previously mentioned central-
ized objectives may take on the following form:

max
α∈A

f (α,w). (1)

We consider two objectives:

123

Author's personal copy



Int J Parallel Prog

Fig. 1 Schematic of static
resource allocation framework

(O1) f (α,w)
.= ∑n

i=1 vi/n, corresponds to the average processing speed of all
threads;

(O2) f (α,w)
.= ∑n

i=1[vi − γ (vi − ∑
j∈I v j/n)2]/n, for some γ > 0, corresponds

to the average processing speed minus a penalty that is proportional to the speed
variance among threads.

Any solution to the optimization problem (1) will correspond to an efficient assign-
ment. Figure 1 presents a schematic of a static resource allocation framework sequence
of actions where the centralized objective (1) is solved by the RM once and then it
communicates the optimal assignment to the threads.

However, there are two practical issues when posing an optimization problem in
the form of (1). In particular,

1. the function vi (α,w) is unknown and it may only be evaluated through measure-
ments of the processing speed, denoted ṽi ;

2. the exogenous disturbances w = (w1, . . . , wm) are unknown and may vary with
time, thus the optimal assignment may not be fixed with time.

3.3 Measurement- or Learning-Based Optimization

We wish to address a static objective of the form (1) through a measurement- or
learning-based optimization approach. According to such approach, the RM reacts
to measurements of the objective function f (α,w), periodically collected at time
instances k = 1, 2, . . . and denoted f̃ (k). For example, in the case of objective (O1),
f̃ (k)

.= ∑n
i=1 ṽi (k)/n. Given these measurements and the current assignment α(k) of

resources, the RM selects the next assignment of resources α(k + 1) so that the mea-
sured objective approaches the true optimum of the unknown performance function
f (α,w). In other words, the RM employs an update rule of the form:

123

Author's personal copy



Int J Parallel Prog

Fig. 2 Schematic of dynamic
resource allocation framework

{(ṽi (1), αi (1)), . . . , (ṽi (k), αi (k))}i �→ {αi (k + 1)}i (2)

according to which prior pairs of measurements and assignments for each thread i
are mapped into a new assignment αi (k + 1) that will be employed during the next
evaluation interval.

The overall framework is illustrated in Fig. 2 describing the flow of information
and steps executed. In particular, at any given time instance k = 1, 2, . . ., each thread
i communicates to the RM its current processing speed ṽi (k). Then the RM updates
the assignments for each thread i , αi (k + 1), and communicates this assignment to
them.

3.4 Objective

The objective in this paper is to address the problem of adaptive or dynamic pinning
through a distributed learning framework. Each thread will constitute an independent
decision maker or agent, thus naturally introducing a multi-agent formulation. Each
thread selects its own CPU assignment independently using its own preference cri-
terion (although the necessary computations for such selection are executed by the
RM). The advantages are two-folded: (a) it reduces computational complexity, since
each thread has only m available choices (instead of mn available group choices), and
(b) it allows for a faster response to changes in resource availability.

The goal is to design a preference criterion and a selection rule for each thread, so
that when each thread tries to maximize its own (local) criterion then certain guar-
antees can be achieved regarding the overall (global) performance of the parallelized
application.

In the following sections, we will go through the design for such a distributed
scheme, and we will provide guarantees with respect to its asymptotic behavior and
robustness.

123

Author's personal copy



Int J Parallel Prog

4 Multi-agent (or Game) Formulation

Thefirst step towards a distributed learning scheme is the decomposition of the decision
making process into multiple decision makers (or agents). Naturally, in the problem
of placing threads of a parallelized application into a set of available processing units,
each thread may be considered as an independent decision maker.

4.1 Strategy

Since each agent (or thread) selects actions independently, we generally assume that
each agent’s action is a realization of an independent discrete random variable. Let
σi j ∈ [0, 1], j ∈ Ai , denote the probability that agent i selects its j th action in Ai .

If
∑|Ai |

j=1 σi j = 1, then σi
.= (σi1, . . . , σi |Ai |) is a probability distribution over the set

of actions Ai (or strategy of agent i). Then σi ∈ Δ(|Ai |). To provide an example,
consider the case of 3 available CPU cores, i.e.,Ai = {1, 2, 3}. In this case, the strategy
σi ∈ Δ(3) of thread i may take the following form: σi = (0.2, 0.5, 0.3) , such that 0.2
corresponds to the probability of assigning itself to CPU core 1, 0.5 corresponds to
the probability of assigning itself to CPU core 2 and 0.3 corresponds to the probability
of assigning itself to CPU core 3. Briefly, the assignment selection will be denoted by
αi = randσi [Ai ] .

We will also use the term strategy profile to denote the combination of strategies of
all agents σ = (σ1, . . . , σn) ∈ � where �

.= Δ(|A1|) × · · · × Δ(|An|) is the set of
strategy profiles.

Note that if σi is a unit vector (or a vertex ofΔ(|Ai |)), say e j , then agent i selects its
j th action with probability one. Such a strategy will be called pure strategy. Likewise,
a pure strategy profile is a profile of pure strategies.

4.2 Utility Function

A cornerstone in the design of any measurement-based algorithm is the preference
criterion or utility function ui for each thread i ∈ A. The utility function captures the
benefit of a decisionmaker (thread) resulting from the assignment profile α selected by
all threads, i.e., it represents a function of the form ui : A → R+ (where we restrict it
to be a positive number). Often, wemay decompose the argument of the utility function
as follows ui (α) = ui (αi , α−i ), where −i

.= I\i . The utility function introduces a
preference relation for each decisionmakerwhereui (αi , α−i ) ≥ ui (α′

i , α−i ) translates
to αi being more desirable/preferable than α′

i .
It is important to note that the utility function ui of each agent/thread i is subject

to design and it is introduced in order to guide the preferences of each agent. Thus, ui
may not necessarily correspond to a measured quantity, but it could be a function of
available performance counters.

For example, a natural choice for the utility of each thread is its own execution speed
vi . Other options may include more egalitarian criteria, where the utility function of
each thread corresponds to the overall global objective f (α,w). The definition of a
utility function is open-ended.

123

Author's personal copy



Int J Parallel Prog

5 Reinforcement Learning (RL)

We employ a distributed learning framework (namely, perturbed learning automata)
that is based on the reinforcement learning algorithm introduced in [5,6]. It belongs
to the general class of learning automata [12].

The basic idea behind reinforcement learning is rather simple. If agent i selects
action j at instance k and a favorable payoff results, ui (α), the action probability
σi j (k) is increased and all other entries of σi (k) are decreased.

According to the perturbed learning automata [5,6], the strategy of each thread at
any time instance k = 1, 2, . . . is as follows:

σi (k) = (1 − λ)xi (k) + λ

|Ai |1 (3)

where λ > 0 corresponds to a perturbation term (or mutation), xi (k) corresponds
to the nominal strategy of agent i and 1 is a vector of ones of appropriate size. The
nominal strategy is updated according to the following update recursion:

xi (k + 1) = xi (k) + ε · ui (α(k)) · [eαi (k) − xi (k)], (4)

for some constant step size ε > 0. Note that according to this recursion, the new
nominal strategy will increase in the direction of the action αi (k) which is currently
selected and it will increase proportionally to the utility received. Finally, each agent
updates its action by randomizing over the strategy σi , i.e.,

αi (k + 1) = randσi [Ai ] .

In comparison to [5,6], the difference lies in the use of the constant step size ε > 0
(instead of a decreasing step-size sequence). This selection increases the adaptivity
and robustness of the algorithm to possible changes in the environment. This is because
a constant step size provides a fast transition of the nominal strategy from one pure
strategy to another.

Furthermore, the reason for introducing the perturbation term λ is to provide the
possibility for the nominal strategy to escape frompure strategy profiles, that is profiles
atwhich all agents assignprobability one in oneof the actions. Settingλ > 0 is essential
for providing an adaptive response of the algorithm to changes in the environment.

6 Convergence Analysis

In this section, we establish a connection between the asymptotic behavior of the
nominal strategy profile x(k) with the Nash equilibria1 of the induced assignment
game, that is the set of locally stable strategy profiles.

1 A strategy profile σ∗ = (σ∗
1 , . . . , σ∗

n ) ∈ � is a Nash equilibrium if, no agent has incentive to change
unilaterally its own strategy, i.e., no agent can increase its expected utility by altering its own strategy.

123

Author's personal copy



Int J Parallel Prog

Let the utility function ui for each thread i correspond to the global objective (1),
i.e., ui (α) = f (α,w) defined by either (O1) or (O2). Let us denote Sλ to be the set of
stationary points of the mean-field dynamics (cf., [10]) of the recursion (4), defined
as follows

Sλ .= {
x ∈ � : gλ

i (x)
.= E

[
ui (α(k))[eαi (k) − xi (k)]|x(k) = x

] = 0,∀i ∈ I}
.

The expectation operator E[·] is defined appropriately over the canonical path space
Ω = �∞ with an element ω being a sequence {x(0), x(1), . . .} with x(k) =
(x1(k), . . . , xn(k)) ∈ � generated by the reinforcement learning process. Similarly
we define the probability operator P[·]. In other words, the set of stationary points cor-
responds to the strategy profiles at which the expected change in the strategy profile
is zero.

According to [5,6], a connection can be established between the set of stationary
points Sλ and the set of Nash equilibria of the induced assignment game. In particular,
for sufficiently small λ > 0, the set of Sλ includes only λ-perturbations of Nash-
equilibrium strategies [5,6].

The following proposition is a straightforward extension of [5, Theorem 1] to the
case of constant step size.

Proposition 1 Let theRM employ the strategy update rule (4) and placement selection
(3) for each thread i . Updates are performed periodically with a fixed period such
that ṽi (k) > 0 for all i and k. Let the utility function for each thread i satisfy ui (α) =
f (α,w), under either objective (O1) or (O2), where γ ≥ 0 is small enough such that
ui (α(k)) > 0 for all k. Then, for some λ > 0 sufficiently small, there exists δ = δ(λ),
with δ(λ) ↓ 0 as λ ↓ 0, such that

P

[

lim inf
k→∞ dist(x(k),Bδ(Sλ)) = 0

]

= 1. (5)

Proof The proof follows the exact same steps of the first part of [5, Theorem 1], where
the decreasing step-size sequence is being replaced by a constant ε > 0. 
�
Proposition 1 states that when we select λ sufficiently small, the nominal strategy
trajectory will be approaching the set Bδ(Sλ) infinitely often with probability one,
that is a small neighborhood of the Nash equilibria. We require that the update period
is large enough so that each thread is using resources within each evaluation period.
Of course, if a thread stops executing then the same result holds but for the updated
set of threads.

The following proposition provides a characterization of the stochastically stable
outcomes.

Proposition 2 (Weak convergence toNash equilibria)Under the hypotheses of Propo-
sition 1, the fraction of time that the nominal strategy profile x(k) spends in Bδ(Sλ)

goes to one (in probability) as ε → 0 and k → ∞.

Proof The proof follows directly from [10, Theorem 8.4.1] and Proposition 1. 
�

123

Author's personal copy



Int J Parallel Prog

Proposition 2 states that if we take a small step size ε > 0, then as the time index k
increases, we should expect that the nominal strategy spends the majority of the time
within a small neighborhood of the Nash equilibrium strategies. Given that the utility
function satisfies ui (α) = f (α,w), for each i , then the set of Nash equilibria includes
the set of efficient assignments, i.e., the solutions of (1). Thus, due to Proposition 2, it is
guaranteed that the nominal strategies xi (k), i ∈ I, will spend the majority of the time
in a small neighborhood of locally-optimal assignments, which provides a minimum
performance guarantee throughout the running time of the parallelized application.

Note that due to varying exogenous factors (w), the Nash-equilibrium assignments
may not stay fixed for all future times. The above proposition states that the process
will spend the majority of the time within the set of the Nash-equilibrium assignments
for as long as this set is fixed. If, at some point in time, this set changes (due to, e.g.,
other applications start running on the same platform), then the above result continues
to hold but for the new set of Nash equilibria. Hence, the process is adaptive to possible
performance variations.

7 Experiments

In this section, we present an experimental study of the proposed reinforcement
learning scheme for dynamic pinning of parallelized applications. Experiments
were conducted on 20×Intel©Xeon©CPU E5-2650 v3 2.30 GHz running
Linux Kernel 64bit 3.13.0-43-generic. The machine divides the physical cores into
two NUMA nodes (Node 1: 0-9 CPU cores, Node 2: 10-19 CPU cores).

7.1 Experimental Setup

We consider a computationally intensive routine that executes a fixed number of com-
putations (corresponding to the combinations of M out of a set of N > M numbers).
The routine is being parallelized using the pthread.h (C++ POSIX thread library),
where each thread is executing a replicate of the above set of computations. The nature
of these computations does not play any role and in fact it may vary between threads
(as we shall see in the forthcoming experiments). Intentionally, the considered appli-
cation does not make extensive memory use, since the main focus is the investigation
of the utility of reinforcement learning in maximizing the overall processing speed.

Throughout the execution, and with a fixed period of 0.2 s, the RM collects mea-
surements of the total instructions per sec (using the PAPI library [11]) for each one
of the threads separately. Given the provided measurements, the update rule of Eq. (4)
with the utility function ui (α) = f (α,w) under (O2) is executed by the RM. Place-
ment of the threads to the available CPU cores is achieved through the sched.h
library (in particular, the pthread_setaffinity_np function). In the follow-
ing, we demonstrate the response of the RL scheme in comparison to the operating
system (OS) response (i.e., when placement of the threads is not controlled by the
RM). We compare them for different values of γ ≥ 0 in order to investigate the
influence of more balanced speeds to the overall running time. In all the forthcoming

123

Author's personal copy



Int J Parallel Prog

Fig. 3 Experiment 1. Running average execution speed when 4 threads run on 3 identical CPU cores.
Thread 3 requires half as much computing bandwidth as the rest of the threads, which are identical. The
strategies of the threads (x1, x2, x3 and x4) capture the nominal selection probabilities and are generated
by the RL scheme with γ = 0.04. The RL schemes of all threads run with ε = 0.005 and λ = 0.005

experiments, the RM is executed within the master thread which is always running in
the first available CPU (CPU 1).

7.2 Experiment 1: Small Number of Threads and Uniform Availability of
Resources

In this experiment, we consider the case of small number of threads and CPU cores.
Threads are non-identical with respect to the requested bandwidth, while CPU cores
are identical in the amount of provided bandwidth (uniform availability). In particular,
one of the threads requires smaller CPU bandwidth than the rest. We should expect
that in an optimal setup, threads that require smaller CPU bandwidth should be the
ones sharing a CPU core with other threads. On the other hand, threads that require
large bandwidth, they should be placed alone.

In particular, in this experiment, Thread 3 requires only half as much computing
bandwidth as the rest of the threads (i.e., Threads 1, 2 and 4). The resulting performance
is depicted in Fig. 3.

We observe indeed that Thread 1, 2 and 4 (which require larger computing band-
width) are allocated to different CPU cores (CPU 1, 3 and 2, respectively). On the other
hand, Thread 3 is switching between CPU 1 and CPU 3, since both provide almost
equal processing bandwidth to Thread 3. In other words, the less demanding thread

123

Author's personal copy



Int J Parallel Prog

Fig. 4 Experiment 2. Running average execution speed when 7 non-identical threads run on 3 CPU cores.
Thread 1 and 2 require half as much computing bandwidth as the rest of the threads, which are identical.
Thread 3 is joining after the 120s. The RL schemes of all threads run with ε = 0.005 and λ = 0.005

is sharing a CPU core with one of the most demanding threads. Note that this assign-
ment corresponds to a Nash equilibrium (as Proposition 2 states), since there is no
thread that can benefit by unilaterally changing its strategy. It is also straightforward
to check that this assignment is also efficient, in the sense that no other assignment
could increase the overall average speed.

Note, finally, that the difference with the processing speed of the OS scheme is
small, although a more balanced processing speed (γ = 0.04) improved slightly the
overall completion time. However, given that the performance index used corresponds
to the objective (O2), we may only provide a guarantee with respect to the average
processing speed.

7.3 Experiment 2: Small Number of Threads and Non-uniform Availability of
Resources

In this experiment, we demonstrate the robustness of the algorithm in a dynamic
environment. We consider 7 threads and 3 available CPU cores. The first two threads
(Thread 1 and 2) require about half as much computing bandwidth as the rest of the
threads. The rest of the threads (Thread 3, 4, 5, 6 and 7) are identical. However, Thread
3 starts running later in time (in particular, after 120s).

Figure 4 illustrates the evolution of theRL-based scheduling scheme under different
values of γ . Again, a faster response of the overall application can be achieved when
higher values of γ are selected. The difference should be attributed to the fact that
the OS fails to distinguish between threads with different bandwidth requirements.
Table 1 presents a statistical analysis of these schemes where the speed difference
between the RL (γ = 0.04) and the OS reaches approximately 5% on average.

Note that, in general, a maximization of the running average speed of the threads
should not necessarily imply a reduction in the completion time. However, in the
current setup of almost identical threads, we should expect that increasing the running
average speed increases the chances of improving the completion time.

In both Experiment 1 and 2, we do not utilize any initial smart placement of the
threads, rather the initial strategies of the threads correspond to the uniform distribu-

123

Author's personal copy



Int J Parallel Prog

Table 1 Experiment 2. Comparison between the OS performance and RL schemes when ε = 0.005 and
λ = 0.005 for different values of γ

Run # OS (s) RL (γ = 0) (s) RL (γ = 0.02) (s) RL (γ = 0.04) (s)

1 513 505 492 489

2 530 506 489 494

3 536 517 518 515

4 533 507 515 509

5 523 502 491 496

6 513 523 501 492

7 520 514 497 492

8 530 518 499 497

9 520 532 500 497

10 528 517 493 492

Aver. 524.6 514.1 499.5 497.3

SD 8.06 9.29 9.85 8.27

tion. This is the main reason that it takes some time for theRM to increase the average
speed of the threads. However, we observe that it is eventually able to reach higher
speed levels compared to the OS, which explains the shorter completion time.

7.4 Experiment 3: Large Number of Threads in a Dynamic Environment with
Multiple NUMA Nodes

In this experiment, wewould like to see how the proposed learning scheme scaleswhen
we increase the number of threads and available CPU cores. Although the considered
application does not make heavy memory use, we allow placement in both available
NUMAnodes, thus indirectly considering cache-memory relateddisturbances. Finally,
we utilize an initial round-robin placement of the threads, that intends on enhancing
the initial adjustment phase of the RM.

In particular, in this experiment, we consider 25 identical threads that can be placed
on 12 CPU cores. The resource availability in these cores is not uniform, given that in
the first 6 cores other applications are also running.

In Fig. 5, we demonstrate the evolution of the running average processing speed
under the OS scheduler and the learning-based RM. First, we observe that the initial
placement of CPU cores makes a significant difference with respect to the overall
completion time (compared to the previous experiments). Furthermore, we observe
that minimizing variance can again decrease the completion time, which is indeed
reasonable in the case of identical threads.

Lastly, it is important to point out that even though we have an increased number
of threads and CPU cores, the algorithm scales well. As expected, issues with respect
to cache-memory use should not be so apparent in this simulation example, due to the
nature of this application.

123

Author's personal copy



Int J Parallel Prog

Fig. 5 Experiment 3. Running average execution speed when 25 identical threads run on 12 CPU cores.
The first 6 available CPU cores are also occupied by other applications. The RL schemes of all threads run
with ε = 0.005 and λ = 0.005

Table 2 Experiment 3.
Comparison between the OS
performance and RL schemes
when ε = 0.005 and λ = 0.005
for different values of γ

Run # OS (s) RL (γ = 0) (s) RL (γ = 0.02) (s)

1 244 201 196

2 243 191 196

3 263 203 192

4 255 195 198

5 254 194 193

6 252 199 200

7 259 190 191

8 276 192 195

9 250 197 197

10 248 200 190

Aver. 254.44 196.78 195.44

SD 9.85 4.50 3.37

Table 2 also presents a statistical analysis of these schemes under the current setup.
We observe that the completion time difference between the RL schemes and the OS
reaches approximately 20% on average.

8 Conclusions

We proposed a measurement-based learning scheme for addressing the problem of
efficient dynamic pinning of parallelized applications into processing units. According
to this scheme, a centralized objective is decomposed into thread-based objectives,
where each thread is assigned its own utility function. ARM updates a strategy for each
one of the threads corresponding to its beliefs over the most beneficial CPU placement
for this thread. Updates are based on a reinforcement learning rule, where prior actions
are reinforced proportionally to the resulting utility. It was shown that, when we
appropriately design the threads’ utilities, then convergence to the set of locally optimal
assignments is achieved. Besides its reduced computational complexity, the proposed
scheme is adaptive and robust to possible changes in the environment.

123

Author's personal copy



Int J Parallel Prog

We demonstrated the utility of the proposed framework in the maximization of
the running average processing speed of the threads, which in the case of almost
identical threads led to a significant reduction in the completion time. Alternative
objectives may also be defined, as long as they consist of measured performance
indicators. An interesting future direction would involve the possibility of criteria
that also optimize memory placement, something that would enlarge the application
domain of the proposed learning scheme.

References

1. Bini, E., Buttazzo, G.C., Eker, J., Schorr, S., Guerra, R., Fohler, G., Årzén, K.E., Vanessa, R., Scordino,
C.: Resource management on multicore systems: The ACTORS approach. IEEE Micro 31(3), 72–81
(2011)

2. Brecht, T.: On the importance of parallel application placement in NUMA multiprocessors. In: Pro-
ceedings of the Symposium on Experiences with Distributed and Multiprocessor Systems (SEDMS
IV). pp. 1–18. San Deigo, CA (1993)

3. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.A., Namyst, R.: ForestGOMP: an efficient
OpenMP environment for NUMA architectures. Int. J. Parallel Program. 38, 418–439 (2010)

4. Chasparis, G.C., Maggio,M., Bini, E., Årzén, K.E.: Design and implementation of distributed resource
management for time-sensitive applications. Automatica 64, 44–53 (2016)

5. Chasparis,G.C., Shamma, J.S.,Rantzer,A.:Nonconvergence to saddle boundarypoints under perturbed
reinforcement learning. Int. J. Game Theory 44(3), 667–699 (2015)

6. Chasparis, G., Shamma, J.: Distributed dynamic reinforcement of efficient outcomes in multiagent
coordination and network formation. Dyn. Games Appl. 2(1), 18–50 (2012)

7. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal home energy man-
agement under dynamic electrical and thermal constraints. IEEE Trans. Ind. Inform. 9(3), 1518–1527
(2013)

8. Inaltekin, H., Wicker, S.: A one-shot random access game for wireless networks. In: International
Conference on Wireless Networks, Communications and Mobile Computing (2005)

9. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin: automated optimization of thread-to-core
pinning on multicore systems. In: Stenstrom, P. (ed.) Transactions on High-Performance Embedded
Architectures andCompilers III. Lecture Notes in Computer Science, vol. 6590, pp. 219–235. Springer,
Berlin (2011)

10. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd
edn. Springer, New York (2003)

11. Mucci, P.J.,Browne, S.,Deane,C.,Ho,G.: PAPI: a portable interface to hardware performance counters.
In: Proceedings of the Department of Defense HPCMP Users Group Conference. pp. 7–10 (1999)

12. Narendra, K., Thathachar,M.: LearningAutomata: An Introduction. Prentice-Hall, Upper Saddle River
(1989)

13. Olivier, S., Porterfield, A.,Wheeler, K.: Scheduling task parallelism onmulti-socketmulticore systems.
In: ROSS’11. pp. 49–56. Tuscon, Arizona, USA (2011)

14. Subrata, R., Zomaya,A.Y., Landfeldt, B.: A cooperative game framework forQoS guided job allocation
schemes in grids. IEEE Trans. Comput. 57(10), 1413–1422 (2008)

15. Tembine, H., Altman, E., ElAzouri, R., Hayel, Y.: Correlated evolutionary stable strategies in random
medium access control. In: International Conference on Game Theory for Networks. pp. 212–221
(2009)

16. Thibault, S., Namyst, R., Wacrenier, P.: Building portable thread schedulers for hierarchical multi-
processors: the bubblesched framework. In: Euro-Par. ACM. Rennes, France (2007)

17. Wei, G., Vasilakos, A.V., Zheng, Y., Xiong, N.: A game-theoretic method of fair resource allocation
for cloud computing services. J. Supercomput. 54(2), 252–269 (2010)

123

Author's personal copy


	Program
	Efficient Dynamic Pinning of Parallelized Applications by Distributed Reinforcement Learning
	Abstract
	1 Introduction
	2 Related Work and Contribution
	3 Problem Formulation and Objective
	3.1 Framework
	3.2 Static Optimization and Issues
	3.3 Measurement- or Learning-Based Optimization
	3.4 Objective

	4 Multi-agent (or Game) Formulation
	4.1 Strategy
	4.2 Utility Function

	5 Reinforcement Learning (RL)
	6 Convergence Analysis
	7 Experiments
	7.1 Experimental Setup
	7.2 Experiment 1: Small Number of Threads and Uniform Availability of Resources
	7.3 Experiment 2: Small Number of Threads and Non-uniform Availability of Resources
	7.4 Experiment 3: Large Number of Threads in a Dynamic Environment with Multiple NUMA Nodes

	8 Conclusions
	References


