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1. INTRODUCTION 
 
Interferometric techniques belong to the standard methods in the field of optical metrology to give 
quantitative results for investigation of transparent objects or measuring surface displacements. 
Meanwhile holographic interferometric methods have also found its application in the field of 
microbiology [1] [2] [3], where their qualitative nature gives an advantage to phase contrast or DIC 
microscopy [4], which have high resolution but can give only qualitative results. 
There exist a variety of temporal and spatial phase based interferogram analysis methods. In this paper we 
concentrate us on phase shifting and phase modulated techniques. Our interferometer enables us to 
perform both versions in one setup. In both applications we have the problem of unwrapping for the 
analysis of the recorded fringe patterns. We present a FFT based 2D unwrapping algorithm which allows a 
simple and fast reconstruction of the phase distribution of the objects. We apply our methods for technical 
and biological objects. 
 
 

2. MEASURING PRINCIPLE 
 
Figure 1 depicts the measuring principle for phase shift and Hilbert transform microscopy schematically.  
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Figure 1: Measuring principle for phase shift and Hilbert transformation microscopy 

 
Phase shift microscope: The mirror 2 is slightly displaced to positions between ±λ/2 (λHeNe = 632 nm). 
Due to this displacement the optical length in the reference path is changing and so the phases difference 
Δφ of the two electromagnetic waves (probe- and reference beam) is changing ±π. This causes a 



modulation of the intensity I for each pixel of the CCD camera according to Equ. 1. This kind of 
modulation could also be done by a Pockels cell. 
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    I1 … intensity of the probe beam 
I2 … intensity of the reference beam 
I … intensity on the CCD 
Δφ … phase difference causes by mirror shifting 
φ … phase caused by the assay 

 
Figure 2a shows the intensity of one pixel caused by Δφ (blue line). The green line is the calculated 
intensity via Görtzel algorithm. The value of interest is the phase φ caused by the assay. The wrapped 
phases φ for each pixel are represented by the matrix P depicted in Fig. 2b. 
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Figure 2: Phase image of a glass fiber taken by the phase shift microscope;  
(a) changing of the intensity I of one pixel due to Δφ;  

(b) whole phase image P (wrapped); 
 
In phase sifting techniques, with at least three equidistant spaced shifts by summing up a large number of 
interferograms [5], with arbitrary phase shifts in ±π range the influence of the background can be reduced 
[6]. 
 
Hilbert transformation microscopy: Slightly rotation of the beam splitter 2 (Fig. 1) causes a one 
dimensional periodical sinusoidal intensity pattern on the CCD (Fig. 3a). One dimensional Hilbert 
transformation is used to calculate the wrapped phase angle (Fig. 3b).  
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Figure 3: Phase image of a glass fiber taken by the Hilbert transfomation microscope;  
(a) intensity image I; (b) phase image P (wrapped) calculated by Hilbert transformation; 



 
Frequency respectively phase modulated techniques have the advantage that the analysis can be performed 
with one recorded fringe image. This allows the recording of fast dynamic processes. On the other hand in 
technical applications they are often disturbed by background structures or diffraction patterns. Hence, a 
subtraction of the background image or a further calibration is mostly necessary.  
 
The final phase image is evaluated in 3 steps: 
 

1. Scanning of wrapped phase image by phase shift or Hilbert transformation 
2. Unwrapping of the phase image by two dimensional unwrapping 
3. Subtraction of the regression plan  

 
 

3. EXPERIMENTAL SETUP 
 
The experimental setup implemented is depicted in Fig. 4. The setup represents both: phase shift and 
Hilbert transformation microscope. It is possible to take pictures for both techniques by one measurement 
cycle. The Hilbert transformation needs only one fringe pattern picture to work fine. On the other hand the 
phase shifting algorithm can handle also fringe pattern. 
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Figure 4: Experimental setup for phase shift and Hilbert transformation microscopy  

(compare with Fig. 1) 
 
 

4. TWO DIMENSIONAL UNWRAPPING USING FFT 
 
The phase shifting and Hilbert transformation microscopy yields two dimensional wrapped images where 
the pixel values represent the phase in the range from –π to +π (Fig. 1). The real phase of the pixel can 
exceed this range. The real phase is obtained by adding integer multiply of 2π (also negative and zero).  
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Figure 1: Phase image of a glass fiber; (a) unwraped data; (b) horizontal unwraped;  
(c) vertical unwarped, (d) first vertical then horizontal unwraped 

 
Figure 1bcd show that one-dimensional unwrapping fails to build the real phase. Therefore an alternative 
algorithm for two-dimensional unwrapping is presented.  
 
The algorithm relays on a mechanical model. The pixels of the phase image are assumed to be solid 
elements. Each element is linked with its neighbors via springs (Figure 1 a and c).  
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Figure 1: Mechanical model; (a) top view; (b) side view of two elements; (c) unwrapped side view 

 
The difference of the phase between two adjacent elements Δp is in the range from –2π to +2π. Now Δp is 
limited to the range [–π +π]  by equation 2 (Figure 1 c). 
 

πππ −+Δ=Δ )2,mod( ppu      (2) 
 
The static position of the elements u can be calculated by solving a set of linear equations (one for every 
pixel!). For normal image sizes this isn’t suitable. But set of equations can be written in the form of 
Eqn. 3-5. 
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P … wrapped phase 
H … Laplace filter operand 
L … unwrapped Laplace filtered phase P 
U … unwrapped phase 

 
The set of Eqn. 3-5 assume that the boundary of the phase image P is equal zero. Equation 5 can be solved 
in the Fourier domain by Equ. 6. 
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The mean intensity of the Laplace filter L is zero. To avoid a division by zero in the Fourier domain 

 is set to one. The Fourier transformation works for periodical signals. This can be used to 
correct the boundary condition by mirroring the phase image in both directions to fourfold size before 
calculation the unwrapped phase U. This is according to boundary condition of second kind [9]. Figure 3a 
shows the unwrapped phase U (Fig. 3a) of the phase image P. 
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Figure 3: Phase image of a glass fiber; (a) unwraped data U; (b) U-P;  
(c) histogram of U-P, (d) U with rounded U-P 

 



Figure 3b shows the image U-P. These are the values added to P to get the unwrapped phase. The 
histogram of U-P (Fig. 3c) demonstrates that the unwrapping is mainly an addition of multiples of 2π to 
the wrapped phase. Fig. 3d is the rounded values U-P of Fig 3 b to multiples of 2π plus the unwrapped 
phase P (Fig. 1a). Keep in mind that there is no loss of information between Fig. 1a and Fig. 3d. 
 
 

5. RESULTS 
 

6. CONCLUSIONS 
 

•  
• The two dimensional unwrapping algorithm works fine also for mean phase images.  
• The algorithm is simple and fast (the most time is needed to calculate the two dimensional FFT) 
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The characterization of the spatial lipid droplet distribution and aggregation in yeast cells 
plays an important rule for investigation of fat metabolism. To avoid multiple staining only 
lipid droplets are fluorescently marked, whereas the whole yeast cells are imaged by DIC 
microscopy simultaneously. By conventional DIC microscopy there is no linear relation 
between the measured intensity and the original phase gradient because of combined 
amplitude and phase response of. this type of microscopy. Although several proposals for 
technical improvements of DIC microscopy based on phase shifting [1;2] or different shear 
directions [3] exist, commercial microscopes specialized for fluorescence imaging are often 
equipped only with a combined conventional DIC imaging modality. After linearization of the 
problem we can perform a deconvolution to get approximately quantitative values for the 
optical path length (OPL) map from the measured phase gradient. We use two different 
approaches for deconvolution: the first is based on a Maximum Likelihood deconvolution 
algorithm, the second approach is an iterative projection based method to reconstruct the 
phase values of the cells. Lipid droplets can be clearly recognized as peaks in OPL maps due 
to their slightly different refractive index. 

  
3D OPL  reconstruction  of a yeast cell by ML 

deconvolution 

3D OPL  reconstruction  of a yeast cell by iterative 

projection based deconvolution 

Additionally to the DIC images, fluorescence image stacks of the stained lipid droplets are 
analyzed. The goal is to reconstruct the 3D configuration of the droplets inside the cell. À 
trous wavelets based techniques are successfully used for spot detection in 2D fluorescence 
microscopy images[4]. The technique is particularly well suited for the detection of isotropic 
features. Due to the spherical appearance of the lipid droplets, we apply the 3D version of the 
à trous wavelets to the image stack, combined with hard threshold shrinkage. A brief 
statistical analysis of the detected droplets features is performed. 
The potential for a more accurate analysis of the distribution of lipid droplets by combining 
the two techniques presented above is discussed in the conclusion of this work. 
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Abstract 

 

In this contribution we describe an approach for fault detection and isolation for rotating 
machines. The method is based on using application specific characteristic frequencies 
of the sliding FFT as inputs for a neural network whose outputs will be used to classify 
the state (ok, failure, kind of failure) of the monitored machine. 

This approach was successfully applied in a case study whose goal it was do monitor a 
piston pump. In this study we were able to achieve a classification accuracy of more than 
99% when using labeled data. 

However in a real situation one is faced with the situation that only data from the normal 
state of the machine is available (e.g. recorded during the setting up of the machine). We 
show that also under this circumstances it is possible to train a neural network which 
models the normal state and to derive an error signal from the network outputs which al-
lows to determine the detection of a failure. However no classification is possible in this 
situation. We will present the highly satisfactory results achieved with this approach in 
the above mentioned case study. 
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1 Introduction

For our purpose, a multivariate statistical model S is formed by the pair (P,X),
where:

• P = (Ω,F , P) is a probability space (in the classical Kolmogorov’s sense);

• X = (X1, . . . , Xn) is a vector of n ≥ 2 continuous random variables
(=r.v.’s) taking values on R.

To each multivariate statistical model, we can associate an n–dimensional dis-
tribution function (=d.f.) F : Rn → R defined by

F (x1, x2, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn).

From F we can derive, for each i ∈ {1, 2, . . . , n}, the d.f. Fi of each component
of X defined by

Fi(x) = P(Xi ≤ x) = F (+∞, . . . ,+∞, xi,+∞, . . . ,+∞).

Such Fi are called (univariate) marginals of F .
In practice, F expresses the behaviour of the random phenomena that we

would model, being the probability space just a mathematical fiction (see [9] for
a complete discussion about this point of view).

For many years, a problem of interest to statisticians has been the construc-
tion of special families of multivariate d.f.’s that can be, conveniently, fitted to
real data in order to describe our random phenomena. Specifically, a multivari-
ate d.f. contains two kinds of information: the behaviour of each component
of the random vector, captured by the marginals, and the dependence among
these components. In view of the following Theorem due to A. Sklar [12], these
two aspects can be treated separately.

Theorem 1. Let X1, X2, . . . , Xn be r.v.’s with joint d.f. F and marginal d.f.’s
F1, F2, . . . , Fn. Then there exists a d.f. Cn : In → I whose univariate marginals
are uniformly distributed on I := [0, 1], called copula, such that, for all x ∈ Rn,

F (x) = Cn(F1(x1), F2(x2), . . . , Fn(xn)). (1)

Conversely, if Cn is an n–copula and F1, F2, . . . , Fn are univariate d.f.’s, then
the function F defined by (1) is an n–d.f. with marginals F1, F2, . . . , Fn.
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In particular, the second part of the Sklar’s Theorem takes a great im-
portance. In fact, if the marginals are known, then the choice of a suitable
multivariate statistical model can be restricted to the construction of a suitable
family of copulas. This fact has been recently discovered in many statistical
applications. For many years, in fact, multivariate models had been often con-
structed either under the assumption of the independence of their components
or by assuming that the components are connected by a multivariate normal
distribution. Copulas, instead, allow to study models with a more flexible and
wide range of dependence. For an overview of the applications of copulas, see
[1, 6, 7, 10].

In this paper, we introduce some definitions and basic properties about cop-
ulas and, then, we construct a new family of multivariate copulas, which can
be used in the construction of a family of multivariate d.f.’s with prescribed
marginals.

2 Multivariate copulas

Let n be in N, n ≥ 2, and denote by x = (x1, . . . , xn) any point in Rn. An
n–dimensional copula (shortly, n–copula) is a mapping Cn : In → I satisfying
the following conditions:

(C1) Cn(u) = 0 whenever u ∈ In has at least one component equal to 0;

(C2) Cn(u) = ui whenever u ∈ In has all the components equal to 1 except the
i–th one, which is equal to ui;

(C3) Cn is n–increasing, viz., for each n–box B = ×n
i=1[ui, vi] in In with ui ≤ vi

for each i ∈ {1, . . . , n},

VCn
(B) :=

∑
z∈B

sgn(z)Cn(z) ≥ 0, (2)

where the sum is taken over all vertices z in B, zi ∈ {ui, vi} for each i
in {1, 2, . . . , n}, and sgn(z) equals −1, if the number of ui’s among the
coordinates of z is odd, and equals 1, otherwise.

Notice that, if Cn : In → I admits derivatives up to order n, then property
(C3) is equivalent to

∂Cn(u1, . . . , un)
∂u1 . . . ∂un

≥ 0

for every u ∈ In.
For the case n = 2, property (C3) is equivalent to

C2(u1, u2) + C2(v1, v2) ≥ C2(u1, v2) + C2(u2, v1)

for all u1 ≤ v1 and u2 ≤ v2.
We denote by Cn the set of all n–dimensional copulas (n ≥ 2). For every

Cn ∈ Cn and for every u ∈ In, we have that

Wn(u) ≤ Cn(u) ≤ Mn(u), (3)
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where

Wn(u) := max

{
n∑

i=1

ui − n + 1, 0

}
, Mn(u) := min{u1, u2, . . . , un}.

Notice that Mn is in Cn, but Wn is in Cn only for n = 2. Another important
n–copula is the product Πn(u) :=

∏n
i=1 ui. The following result characterizes

some properties of random vectors in terms of copulas.

Theorem 2. Let X1, X2, . . . , Xn be continuous r.v.’s with copula Cn.

• X1, X2, . . . , Xn are independent if, and only if, Cn = Πn.

• Each of the r.v.’s X1, X2, . . . , Xn is a strictly increasing function of any
of the others if, and only if, Cn = Mn.

• If α1, α2, . . . , αn are strictly increasing mappings, respectively, on RanX1,
RanX2, . . . , RanXn, then Cn is the copula of (α1(X1), . . . , αn(Xn)).

For more details about copulas, see [8, 11].

3 A new family of copulas

Given a continuous function f : I → I, we define the mapping Cn
f : In → I given

by

Cn
f (u1, u2, . . . , un) = u[1]

n∏
i=2

f(u[i]), (4)

where u[1], . . . , u[n] denote the components of (u1, u2, . . . , un) ∈ In rearranged
in increasing order, i.e. for instance

u[1] = min(u1, u2, . . . , un) and u[n] = max(u1, u2, . . . , un).

It is easy to note that Cn
f is symmetric, viz. it is invariant under any permutation

of his arguments. Moreover, Πn and Mn can be constructed by means of (4):
it suffices to take f(t) = t and f(1) = 1, respectively. The following result
characterizes the copulas of type (4).

Theorem 3. Let f : I −→ I be a continuous function and let Cn
f be the function

defined by (4). Then Cn
f is an n-copula if, and only if,

(i) f(1) = 1;

(ii) f is increasing;

(iii) the function t → f(t)/t is decreasing on (0, 1].

Example 1. Let α be in I and consider the function f(t) = αt + α, with
α := 1− α. Then, the n-copula Cn

f , denoted by Cα, is given by

Cα(u1, u2, . . . , un) = u[1]

n∏
i=2

(αu[i] + α).

In particular, for n = 2, we obtain a convex combination of Π2 and M2.
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Example 2. Let α be in I and consider the function f(t) = tα. Then, the
n-copula Cn

f , denoted by Cα, is given by

Cα(u) = (min(u1, u2, . . . , un))1−α
n∏

i=1

uα
i ,

which is a (weighted) geometric mean of the copulas Πn and Mn. This fam-
ily generalizes the Cuadras-Augé family of bivariate copulas (see [2]). Notice
that every copula Cα is a multivariate extreme copula, viz. for every t > 0
Cα(ut

1, u
t
2, . . . , u

t
n) = (Cα(u1, u2, . . . , un))t [8].

In Table 1, we collect several examples of generators of copulas of type (4).

Table 1: Some generators for the new class of n-copulas.

Generator Parameters

min(αt, 1) α ≥ 1

1− (1− t)α α ≥ 1

(1 + α)t
αt + 1

α ≥ 0

1− exp(−αt)
1− exp(−α)

α > 0

βt

βt + α(1− t)
0 < α ≤ β ≤ 1

sin(αt)
sinα

0 ≤ α ≤ π/2

Finally, we give a statistical interpretation for copulas of type (4).
Let W1,W2, . . . ,Wn, Z be n+1 independent random variables such that, for

all i ∈ {1, 2, . . . , n}, Wi has d.f. f satisfying parts (i), (ii) and (iii) in Theorem
3, and Z has d.f. g(t) = t/f(t) (note that g(1) = 1 and g is increasing since
f(t)/t is decreasing). Consider the random variables Ui = max(Wi, Z), for all
i = 1, 2, . . . , n. Then, for every (u1, u2, . . . , un), the d.f. of the random vector
(U1, U2, . . . , Un) is given by

P (U1 ≤ u1, . . . , Un ≤ un) = u[1]

n∏
i=2

f(u[i]),

and, hence, it is a copula of type (4).
For more details about this class, see [3, 4, 5].
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1 Introduction

The concept of dominance has been introduced within the framework of proba-
bilistic metric spaces for triangle functions and for building cartesian products of
probabilistic metric spaces [16]. Afterwards the dominance of t-norms was stud-
ied in connection with construction of fuzzy equivalence relations [2, 3, 17] and
construction of fuzzy orderings [1]. Later on, the concept of dominance was ex-
tended to the more general class of aggregation operators [8,10]. The dominance
of aggregation operators emerges when investigating which aggregation proce-
dures applied to the system of T -transitive fuzzy relations yield a T -transitive
fuzzy relation again [8] or when seeking aggregation operators which preserve
the extensionality of fuzzy sets with respect to given T -equivalence relations [9].

Definition 1 Let (P,≥) be a poset and let A : Pm → P , B : Pn → P be two
operations defined on P with arity m and n, respectively. Then we say that A
dominates B (A � B in symbols) if each matrix (xi,j) of type m × n over P
satisfies

A(B(x1,1, x1,2, . . . , x1,n), . . . , B(xm,1, xm,2, . . . , xm,n)) ≥
B(A(x1,1, x2,1, . . . , xm,1), . . . , A(x1,n, x2,n, . . . , xm,n)).

Let us recall that a t-norm [7, 16] is a monotone, associative and commutative
binary operation T : [0, 1]2 → [0, 1] with neutral element 1. In our contribution
we pay attention mainly to these prototypical triangular norms:

TM(x, y) = min(x, y),
TP(x, y) = xy,

TL(x, y) = max(0, x+ y − 1),

We say that a t-norm T1 is stronger than a t-norm T2(T1 ≥ T2 in symbols)
if any x, y ∈ [0, 1] satisfy T1(x, y) ≥ T2(x, y). We use the notation T1 > T2

whenever simultaneously T1 ≥ T2 and T1 6= T2 hold. One can easily show that
each t-norm is weaker than TM and stronger than TD. Particularly, TP and TL



satisfy TM > TP > TL > TD. It is obvious that ≥ is a partial order on the set
of all t-norms, i.e., the reflexive, antisymmetric and transitive relation.

By Definition 1 we have that two t-norms T1 and T2 satisfy T1 � T2 iff for
each x, y, u, v ∈ [0, 1]

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)). (1)

It is easy to show that each t-norm T satisfies TM � T , T � TD and T � T .
If T1 � T2 then by inequality (1), the neutrality of 1 and the commutativity of
t-norms we have that any y, u ∈ [0, 1] satisfy

T1(y, u) = T1(T2(1, y), T2(u, 1)) ≥
≥ T2(T1(1, u), T1(y, 1)) = T2(u, y) = T2(y, u)

so that T1 ≥ T2, see [7]. This means that satisfaction of T1 ≥ T2 is a necessary
condition for T1 � T2 or, in other words, that dominance is a subrelation of ≥.
The converse implication, however, does not hold. For example in the family
of Hamacher [5, 6] or Frank t-norms [4], any two nonextremal members are
comparable while no one of them dominates the other [13]. Dominance of t-
norms is moreover an antisymmetric relation which is a consequence of the fact
that it is a subrelation of the antisymmetric relation ≥. It was a question if the
dominance of t-norms is also transitive [16, Problem 12.11.3]. It revealed oneself
only recently, that dominance is not transitive even on the relatively restricted
class of continuous t-norms [12,14].

2 Ordinal Sum T-Norms

Let [a1, a2] and [b1, b2] be intervals of real numbers. By an order isomorphism
from [a1, a2] onto [b1, b2] we mean any increasing bijection from the first interval
onto the second one. Let I be a closed interval, we denote by ψI the unique affine
order isomorphism from I onto [0, 1]. For a binary operation O : [c, d]2 → [c, d],
not necessarily a t-norm, and for the order isomorphism ϕ : [a, b] → [c, d] we
define a new operation

(O)ϕ : [a, b]2 → [a, b] : (x, y) 7→ ϕ−1
(
O(ϕ(x), ϕ(y))

)
which we call the ϕ-transform of the operation O.

Let {Ti} be a (possibly countably infinite) system of t-norms indexed by
i ∈ I. Let {Ii} be a system of intervals Ii = [ai, bi] ⊆ [0, 1] with pairwise disjoint
interiors, indexed by the same set. We define an ordinal sum t-norm given by
{Ti} and {Ii} to be a function

T (x, y) : [0, 1]2 → [0, 1] : (x, y) 7→

{(
Ti

)
ψIi

(x, y) if x, y ∈ Ii
TM(x, y) otherwise

. (2)

Symbolically, we denote this t-norm by (〈ai, bi, Ti〉)i∈I. Triangular norms Ti
are the so called summand operations and intervals Ii = [ai, bi] are summand
carriers. Note that this definition is sound, although in one-point overlaps of
summand carriers there are two independent ways how to define value of the
ordinal sum. Moreover, ordinal sum of (continuous) t-norm is a (continuous)
t-norm again [7].



Many results related to the dominance of ordinal sum t-norms appeared only
recently. Some of them are necessary and sufficient conditions for dominance
of ordinal t-norms in general [11, 12]. The others characterize the dominance
relation in the special classes of ordinal sum t-norms [12, 15]. The main result
of the first kind allows to treat the dominance relation between ordinal sum
t-norms summand-wisely [11]:

Theorem 2 Let {T1} be an ordinal sum t-norm , the first one with summand
operations {T1,i} and summand carriers I1,i indexed by i ∈ I1. Analogically, let
T2 be an ordinal sum t-norm given by summands {T2,i} and summand carriers
{I2,i} indexed by i ∈ I2. Then T1 � T2 if and only if

• T1 ≥ T2, and

•
(
T1 � I22,i

)
ψ−1

I2,i

� T2,i for each i ∈ I2.

�

Let us recall that an idempotent element of the t-norm T is any x ∈ [0, 1] such
that T (x, x) = x. We denote IdpT the set of all idempotent elements of T . If T
is an ordinal sum t-norm with summand carriers Ii with i ∈ I then

IdpT ⊇ [0, 1] \
⋃
i∈I

I◦i (3)

where I◦i is the interior of Ii. Another important result is a necessary condition
relating the structure of idempotent elements [11]:

Theorem 3 If a t-norm T1 dominates the t-norm T2, then IdpT1 is closed with
respect to T2. �

If we restrict ourselves to ordinal sums of special type, Theorem 3 can be
strengthened [15]:

Theorem 4 Let T1, T2 be ordinal sum t-norms which involve TL as their only
summand operation. Then T1 � T2 if and only if T1 ≥ T2 and IdpT1 is closed
with respect to T2. �

Theorem 5 Let T1, T2 be ordinal sum t-norms which involve TP as their only
summand operation. Then T1 � T2 if and only if T1 ≥ T2 and IdpT1 is closed
with respect to T2. �

Observe that, formally, both these statements have the same structure. Both of
them reduce the difficult question of dominance to much easier question whether
some special set is closed with respect some operation. That allows us to use
both these results as a construction method for special ordinal sum t-norms
which are in the relationship of dominance.



3 Construction Methods

If the ordinal sum t-norm involve either TL or TP as the only summand op-
eration, the whole structure of summand carriers is determined completely by
the set of idempotent elements. More precisely, the inclusion (3) changes to the
indentity

IdpT = [0, 1] \
⋃
i∈I

I◦i .

Therefore in order to construct pairs of dominating ordinal sums by means of
Theorem 4 and Theorem 5 it is sufficient to construct subsets of the unit interval
closed either with respect to TL or with respect to TP. For that purpose the
following lemma is useful.

Theorem 6 Let M ⊆ [0,∞] be a set closed with respect to the standard addi-
tion. Let k > 0 be an arbitrary positive constant. Then

• the set Mk =
{
1− x

k |x ∈M ∩ [0, k]
}
∪{0, 1} is closed with respect to TL,

• the set M∗ = {e−x |x ∈M} ∪ {0, 1} is closed with respect to TP.

�
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