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Discrepancy Norm as Fitness Function for Defect
Detection on Regularly Textured Surfaces

Gernot Stübla, Jean-Luc Bouchotb, Peter Haslingera and Bernhard Mosera

aSoftware Competence Center Hagenberg,
Softwarepark 21, A-4232 Hagenberg, Austria

bDepartment of Knowledge-based Mathematical Systems,
Altenbergerstr. 69, A-4040 Linz, Austria

ABSTRACT

This paper addresses the problem of quality inspection of regular textured surfaces as e.g.
encountered in industrial woven fabrics. The motivation for developing a novel approach
is to utilize the template matching principle for defect detection in a way that does not
need any particular statistical, structural or spectral features to be calculated. It is shown
that in this context template matching becomes both feasible and effective by exploiting the
so-called discrepancy measure as fitness function, leading to a defect detection method that
shows advantages in terms of easy configurability and low maintenance efforts.

The proposed concept is a further development of the approach presented by Bouchot et
al.1 which is based on the the registration of test patches in a reference image by optimization
methods. The original approach has been underpinned and refined by additional theoretical
considerations, regarding estimation of an appropriate window size and the initial guess
of the local optimization algorithm. While the latter was achieved by a global optimizer
before, it is now performed by a faster randomized initialization step which is inspired by
Randomized Sampling Consensus (RANSAC)2 and the Patchmatch3 algorithm.

Furthermore a new method for analysing the convergence radius of a (dis-)similarity
measure is proposed which allows theoretical statements about the algorithms convergence
properties and an optimal parametrization. Evaluations on real world textures complete the
paper.
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Automatic Segmentation and Clustering of

Spectral Terahertz Data
Henrike Stephani

henrike.stephani@itwm.fraunhofer.de

Abstract

Due to the novelty of the technical approach there still is a big necessity to improve the analysis of hyperspectral

Terahertz images. Although it would be desirable to have methods that can be applied on all spectral areas, this is

impossible. Depending on the spectroscopic technique, the way the data is acquired differs as well as the characteristics

that are to be detected. For these reasons, methods have to be developed or adapted to be especially suitable for the

THz range and its applications. Among those are particularly the security sector and the pharmaceutical industry.

Due to the fact that in many applications the volume of spectra to be organized is high, manual data processing is

difficult. Especially in hyperspectral imaging, the literature is concerned with various forms of data organization such

as feature reduction and classification. In all these methods, the amount of necessary influence of the user should be

minimized on the one hand and on the other hand the adaption to the specific application should be maximized.

Therefore, we aim at automatically segmenting or clustering THz-TDS data. To achieve this, we propose a course

of action that makes the methods adaptable to different kinds of measurements and applications. State of the art

methods will be analyzed and supplemented where necessary, improvements and new methods will be proposed. This

course of action includes preprocessing methods to make the data comparable. Furthermore, feature reduction that

represents chemical content in about 20 channels instead of the initial hundreds will be presented. Finally the data

will be segmented by efficient hierarchical clustering schemes. Various application examples will be shown.

Further work should include a final classification of the detected segments. It is not discussed here as it strongly

depends on specific applications.
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Performance Optimization of Electrical Drives

with Multi-Objective Evolutionary

Algorithms and Artificial Neural Networks
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Erich Peter Klement a
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Abstract

Performance optimization of electrical drives implies a lot of degrees of freedom in
the variation of design parameters, which in turn makes the process overly complex
and sometimes impossible to handle for classical analytical optimization approaches.
This, and the fact that multiple non-independent design parameter have to opti-
mized synchronously, makes a soft computing approach based on multi-objective
evolutionary algorithms (MOEAs) a feasible alternative. In this paper, we are ap-
plying the MOEA algorithm NSGA-II in order to obtain high-quality Pareto fronts
for three optimization scenarios. One key aspect is the usage of artificial neural net-
works (ANNs) in order to reduce the very huge computational effort caused by using
finite element (FE) simulations in the fitness evaluation function. The ANNs are
representing non-linear mappings between the design parameters and the targets to
be optimized such as material costs, efficiency and torque behavior of the electrical
drive. For a large portion of the optimization process, a fitness function based on
the ANN mappings is used to perform very fast estimations of target parameter
values for newly generated individuals. The results show that the computation time
for a single optimization run can be reduced from a few days to several hours while
achieving Pareto fronts with similar quality as those obtained when conducting FE
simulations over the whole life-time of the optimization process.

Key words: electrical drives, performance optimization, design parameters,
multi-objective genetic algorithms, feed-forward artificial neural networks
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1 Approach

One main method aimed at improving the computational time of a multi-
objective evolutionary process (InitialOpt) that uses a very time-intensive
evaluation function is to approximate the actual function through means of
meta-models or surrogate functions [1]. These should provide a very accurate
estimation of the original evaluation function at a fraction of the computa-
tional effort required by the latter.

In our case, the idea is to substitute the NSGA-II time-intensive evaluation
function based on finite element simulations with a very fast approximation
function based on highly accurate regression models, i.e. mappings between the
design parameters and the target values which should be estimated. As these
mappings are specific for each optimization scenario considered, they will be
constructed on-the-fly at each run of the evolutionary algorithm. This means
that only individuals from the first few generations will be evaluated with the
time-intensive FE-based evaluation function in order to construct a training
set for the target mappings. For the remaining generations, the mappings will
substitute the finite element simulation as the basis of the fitness function.
This will yield a significant reduction in computation time, from a few days
to several hours, as we verified during empirical tests.

At the end of the improved optimization process (EnhancedOpt), it is desired
that all Pareto solutions found using the mappings are re-evaluated using FE
calculations. The main reason for this is to assure that all the simulation
solutions presented as Pareto optimal have the same approximation error (i.e.,
the internal estimation error of FE simulation software).

Artificial Neural Networks (ANNs) [2] are among the popular methods used
for constructing mappings for surrogate functions because they possess the
universal approximation capability [3] and they offer parameterization options
that allow for an adequate degree of control over the complexity of the resulting
approximation models. Another advantage of ANNs is the fact that they are
known to perform good on non-linear and noisy data [4] and that they have
already been successfully applied in evolutionary computation for designing
mappings for surrogate functions on several instances [5] [6] [7].

The structures of the initial and of the enhanced multi-objective optimization
processes are presented in Figure 1.
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Fig. 1. Diagram of the initial optimization process - InitialOpt (left side) and of the
enhanced optimization process - EnahncedOpt (right side)

2 Results

Using 3 fairly complicated optimization scenarios, we compared the perfor-
mance of InitialOpt and EnhancedOpt after 100 generation runs with a popu-
lation of 50 individuals. The performance of our method is very good for two
scenarios as the resulting final Pareto fronts have slightly better hypervolumes
[8], better spreads [9] and were computed ≈ 65% and ≈ 72% faster than their
counterparts.

On the third, highly constrained, scenario, the enhanced optimization process
performs a little bit worse (the hypervolume is smaller by ≈ 7%). The main
reason for this is that the hard contraints determine a high ratio of geometri-
cally invalid individuals to be generated during the mapping based evaluation
stage (in our optimization processes, geometric validity is carried out during
FE simulations). However, the computation time could still be reduced by
≈ 46%.
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1 How Deep Learning Makes Sense
by Holger Schöner, Software Competence Center Hagenberg

After the initial enthusiasm when first learning Neural Networks (NNs) and their flexibi-
lity, there has been quite some potential for disillusion when practically applying them.
Beside parameter adaptations and local minima, there has always been the problem of
taking advantage of their flexibility in deep architectures. Trained by standard (or even
accelerated) backpropagation, the lower layers tend to hardly learn at all. On the other
hand, there have been a few architectures reported to perform well [6]. But only in recent
years, there have been quite a number of diverse reports about state of the art perfor-
mance of deep Neural Network architectures in several application domains, especially
computer vision.

An important question in this context is, when to use deep architectures. In principle,
two-layer NNs are universal approximators, given enough hidden neurons. But certain
problems, which are in principle perfectly learnable by a small deep network, can re-
quire exponential numbers of hidden neurons for shallow NNs [1]. In consequence it is
reasonable to use any domain knowledge available to design good features, and use the-
se in a shallow network, if the problem is made simple enough by the features. In cases,
where knowledge about the domain is too limited to design good features, deep learning
might be an option to learn good features from the structure of the data. This is done
unsupervised and is not necessarily appropriate for any supervised task one wants to
perform using these learned features; but often, these features seem to be general enough
to support a wide range of learning tasks.

Learning these representations is performed in an unsupervised greedy layerwise man-
ner: using only the input data, a single layer representation is learned using some appro-
priate unsupervised algorithm. Candidates for such algorithms are Auto-Encoders (AEs),
Restricted Boltzman Machine (RBM) layers, or Sparse Predictive Coding (SPC) layers.
Conceptually especially simple are AE architectures, with denoising Auto-Encoders and
Contractive Auto-Encoders [4] being the best known. Both take the approach of regula-
rizing the representation learned by the encoder to become insensitive to changes in the
input; of course, directions present in the training data will lead to variations in the repre-
sentation anyway (given appropriate weighting of the regularization), because otherwise
the inputs could not be reconstructed well. Denoising AEs take a stochastic approach by
feeding corrupted (noisy) inputs to the encoder, while requiring the decoder to obtain
the original inputs. Contractive AEs enforce the insensitivity in the cost function by re-
quiring the Jacobian of the hidden layer representation wrt. the inputs (corresponding to
the sensitivity of the representation wrt. the inputs) to be small.

By training one such layer after the other, with each new layer using as input the output
of the previous completely trained layer, one arrives at a deep architecture, with usually
more and more high level features in each new layer. Finally, a simple supervised me-
thod such as Logistic Regression or a linear NN layer using mean squared cost function
can be put on top of these layers, and be trained in a supervised fashion using classical
backpropagation or variants, also still slightly adapting the hidden layer representations.

Other design principles leading to well trainable deep architectures include receptive
fields, weight sharing, and pooling layers. When using receptive fields, each hidden neu-
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ron is not completely connected to all previous layer neurons/inputs, but only locally to
such corresponding to its receptive field, leading to a great reduction in parameters to
train. This can be well combined with weight sharing, in the sense, that all neurons (for
a given feature) in a hidden layer share the weights of the connections to the previous
layer, and vary just by their receptive field. This reduces the number of trainable parame-
ters greatly again. Max pooling layers reduce the number of neurons in the next layer, by
combining the outputs of neurons in their (not necessarily overlapping) receptive field by
some aggregation function (usually the max function), without introducing new trainable
parameters.

Deep architectures usually are implemented using Stochastic Gradient Descent, to achie-
ve acceptable learning times despite the usually huge number of parameters [2]. Some
examples for applications using approaches based on deep learning are given in [3], [5].
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