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One can find several equivalent definitions of the standard Sugeno inte-
gral, based on clasical capacities (i.e. monotone set function satisfying the
boundary condition m(∅) = 0 and m(X) = 1), see [6], for equivalent defini-
tions see also [1] and [5].
In this contribution we present possible generalized forms of Sugeno integrals
based on level dependent capacities, which are not equivalent in general, and
their relationships.

Consider an arbitrary fix measurable space (X,A) and denote by F the
class of all A−measurable functions f : X → [0, 1]. If m is a capacity, then
Sugeno integral is a functional Sum(f) : F → [0, 1], given by

Sum(f) = sup{min(a,m(A))|a · 1A ≤ f}. (1)

Equivalently, Sum can be expressed as

Sum(f) = sup{min(a,m(f ≥ a))|a ∈ [0, 1]}, (2)

or
Sum(f) = sup{min(m(A),min(f(x)|x ∈ A)|A ∈ A)}. (3)

In [3] and in [1] another equivalent definition of Sugeno integral was intro-
duced, namely

Sum(f) = inf{max(a,m(f ≥ a))|a ∈ [0, 1]}. (4)

The concept of capacities was extended to level dependent capacities [2],
see also [4, 5].



Definition Let (X,A) be a measurable space. A mapping M : A× [0, 1] →
[0, 1] such that for each t ∈ [0, 1],M(·, t) = mt is a capacity, is called a level
dependent capacity.

Klement at al. have proposed in [5] (see also [4]) the function
hm,f : [0, 1]→ [0, 1]

hm,f (t) = m(f ≥ t) = m({x ∈ X|f(x) ≥ t}),

which summarizes all information contained in a capacity m and in a mea-
surable function f . The function hM,f : [0, 1] → [0, 1] is given analogically
by

hM,f (t) = M({f ≥ t}, t) = mt(f ≥ t).

Then we can get the greatest Sugeno integral based on level dependent
capacities (SuM)∗ : F → [0, 1], and the smallest one (SuM)∗ : F → [0, 1],
respectively, given by

(SuM)∗(f) = sup{min(t, hM,f (v))|0 ≤ t ≤ v ≤ 1} (5)

and
(SuM)∗(f) = sup{min(t, hM,f (u))|0 ≤ u ≤ t ≤ 1}. (6)

If we generalize formulae (1)-(4) for level dependent capacities we get the
next possible forms of level dependent capacities based Sugeno integral:

Su
(1)
M (f) = sup{min(a,ma(A))|a · 1A ≤ f}, (7)

Su
(2)
M (f) = sup{min(a,ma(f ≥ a))|a ∈ [0, 1]}, (8)

Su
(3)
M (f) = sup{min(t,mt(A))|A ∈ A, t = min(f(x)|x ∈ A)}, (9)

Su
(4)
M (f) = inf{max(a,ma(f ≥ a))|a ∈ [0, 1]}. (10)

We can show that it holds

Su
(1)
M (f) = Su

(2)
M (f) = Su

(3)
M (f). (11)

Moreover, we can consider the level dependent capacity-based universal
Sugeno integral KMin constructed similarly as minimum copula-based uni-
versal integral (see [5]). KMin is given by

KMin(M, f) = PMin({(x, y) ∈ ]0, 1]2 | y ≤ hM,f (x)}). (12)

Then we get
(SuM)∗(f) ≤ KMin(M, f) ≤ (SuM)∗(f). (13)



One can show on an example that both inequalities in (13) are strict.

Theorem Let (X,A) be a measurable space, f : X → [0, 1] a measurable
function on (X,A), and M a level dependent capacity. Then

(SuM)∗(f) = Su
(i)
M (f), i = 1, 2, 3 and (SuM)∗(f) = Su

(4)
M (f).

Summarizing, we have shown that there are exactly three different types of
the level dependent capacities-based Sugeno integrals.
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We propose the concept of superadditive and of subadditive transforma-
tions of aggregation functions acting on non-negative reals, in particular of
integrals with respect to monotone measures. We discuss the concept on
various examples based on everyday needs connected to linear programming.
Also the properties of the superadditive and of subadditive transformations
are studied with connections to other integrals (for more details on integrals
see [1], [2], [3]). Moreover, subadditive transformations of distinguished in-
tegrals are also discussed. In discrete cases we can speak about motivation
from economics.
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Archimedean copulas, additive generators and

distance functions

Tomáš Bacigál1 and Mária Žd́ımalová2

Abstract

We discuss a new construction method for obtaining additive genera-
tors of Archimedean copulas of a fixed dimension n (or of any dimension
n ≥ 2) proposed by McNeil and Nešlehová [1], the so-called Williamson
n-transform (and its limit Laplace transform). These methods are illus-
trated on several examples. We show that due to equivalence of the weak
convergence of positive distance functions, of the pointwise convergence
of related additive generators fixed in point 0.5, and of the pointwise
convergence of related copulas, we may approximate any n-dimensional
Archimedean copula by a transformation of a convex sum of Dirac dis-
tance functions concentrated in certain suitably chosen points.

Introduction

A function C : [0, 1]n → [0, 1], n ≥ 2 is called a (n-dimensional) copula whenever
it satisfies boundary conditions (i.e. it has 0 as annihilator and 1 as neutral ele-
ment) and it is an n-increasing function, for more details see, e.g., [2]. A copula
C belongs to the class of Archimedean copulas whenever it can be generated by a
n-monotone continuous strictly decreasing function f : [0, 1]→ [0,∞], f(1) = 0,
via

C(x1, . . . , xn) = f (−1)
(

n∑

i=1

f(xi)

)
,

where f (−1) : [0,∞] → [0, 1] given by f (−1)(u) = f−1
(

min(u, f(0))
)

is the
pseudo-inverse.

McNeil and Nešlehová in [1] not only provides necessary and sufficient con-
ditions for f to be an additive generator of an n-dimensional copula, they
also describe in details an interesting link between additive generators f of
Archimedean copulas C and positive distance functions F (distribution func-
tions with support on ]0,∞[), which will be called the Williamson n-transform
and is given by

F (x) = 1−
n−2∑

k=0

xkg(k)(−x)

k!
− xn−1g(n−1)− (−x)

(n− 1)!

12Faculty of Civil Engineering, Slovak university of Technology in Bratislava, Slovakia
Email: bacigal@math.sk, zdimalova@math.sk
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Figure 1: The Williamson 2-transform with illustration of approximation by the
convex sum of m = 2 Dirac positive distance functions.

where the auxiliary function g : [−∞, 0]→ [0, 1] is defined by g(x) = f (−1)(−x)

and g
(n−1)
− is the left-derivative of order n − 1. The inverse transformation is

provided by

f (−1)(x) =

∫ ∞

x

(
1− x

t

)n−1
dF (t).

Approximation and convergence

Let us first illustrate the transform on an example. Consider a positive dis-
tance function F (x) = min(1, x2) and the corresponding density F ′(x) = 2x on

[0, 1]. Then for x ∈ [−1, 0], f (−1)(x) =
∫∞
x

(
1− x

t

)2−1
dF (t) =

∫ 1

x
(t− x) 2t

t dt =[
(t− x)2

]1
x

= (1 − x)2, and f (−1)(x) = 0 for 1 < x. Thus we can write

f (−1)(x) = max(1−x, 0)2 on [0,∞], and the generator f(x) = 1−√x, x ∈ [0, 1],
is the generator of Clayton copula for parameter λ = − 1

2 .
Now consider a function

F2(x) = F

(
1

2

)
δ 1

2
(x) +

(
F (1)− F

(
1

2

))
δ1(x) =





0 x < 1
2

1
4

1
2 ≤ x < 1

1 1 ≤ x

that approximates F by means of a convex sum of m = 2 Dirac functions

δx0(x) =

{
0 x < x0

1 x ≥ x0

concentrated in respective points
(
1
2 ,

1
4

)
,
(
1, 34
)
. Then the Williamson transform

with n = 2 yields

f
(−1)
2 (x) =

1

4
max

(
0, 1− x

1
2

)
+

3

4
max

(
0, 1− x

1

)
=





1− 5
4x x < 1

2
3
4 − 3

4x
1
2 ≤ x < 1

0 1 ≤ x

as illustrated on Figure 1.
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We can prove that when with m → ∞ the convex sum of Dirac positive
distance functions

Fm(x) =

m∑

i=1

p(ai)δai(x)

(where p : [0,∞] → [0, 1] is the corresponding probability mass function with
support in points 0 < ai) weakly converges to F then also the related generator
for which the pseudo-inverse is given by

f (−1)m (x) =
∑

x<ai

p(ai)

(
1− x

ai

)n−1
=

m∑

i=1

p(ai) max

(
0, 1− x

ai

)n−1

converges point-wisely to f and the corresponding Archimedean copula Cm

converges point-wisely to C given that f(x) is fixed in, say, x = 1
2 . The fixation

is required due to the fact that all multiplications of a generator by some positive
constant yield the same copula.

As an example, take the simplest case ai = i
m and p(ai) = 1

m , i = 1, . . .m

(evenly spaced and uniformly distributed), we get f
(−1)
m (x) =

∑m
i=1

1
m max

(
1− mx

i

)
.

If f
(−1)
m (x) is to converge to f (−1)(x) = 1−x+x log x for x < 1 and 0 elsewhere,

it needs to converge in any point x ∈]0, 1[. Let us examine the convergence e.g.
in x = 1

2 ,

f (−1)m

(
1

2

)
=

1

m

m∑

i=1

max

(
1− m 1

2

i

)
=

1

m

m∑

i=bm2 c+1

(
1− m

2i

)
=

1

m

m
2∑

i=1

i

i+ m
2

.

The above sum with m approaching infinity equals approximately 0.153426
which is also the value of f (−1)(1/2).
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Abstract

The aim of this article is to illustrate connections between the class
of conic copulas and the class of Archimax copulas based on the lower
Frechet-Hoeffding bound, copula W . For the chosen example we will show
the transition from selected Pickands dependence function in definition of
Archimax copula to related conic copula. Afterwards we demonstrate the
transition from arbitrary conic copula to appropriate Pickands dependence
function.

Keywords: Aggregation function, Archimax Copula, Conic Copula,
Dependence function.

1 Introduction and preliminaries

In many areas of practice we are encountered with the objective to model re-
lationships between random variables. The copulas theory is one of possible
approaches to solve this problem. The tasks with similar philosophy have shown
the similar dependence structure, hence many types of copula classes describing
specific situations have been formed. At the present time, there exist an inex-
haustible quantity of copula classes, and so it is problematic also for experts in
mathematical field to choose the correct one. Sometimes it is possible to express
the same copula in notion of different copula classes. Therefore it is desirable
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to know the possibilities of transition between different types of characteristics
in terms of various copula classes. Our field of study are copulas for which are
characteristics of Archimax copula and conic copula class fulfilled.

This paper is organized as follows. In the second section we introduced
basic definitions. In the third section we introduce the transition from Archimax
copula class to conic copula class. The fourth section describes reverse transition
between copula classes. The last section is the conclusion.

2 Basic definitions

The aggregation problem consists in aggregating n-tuples of objects all belonging
to a given set, into a single object of the same set.

First we recall minimal conditions of aggregation operatorsA :
⋃
n∈N [0, 1]

n →
[0, 1]:

• identity A(x) = x,∀x ∈ [0, 1] ,

• monotonicity A(x1, . . . , xn) ≤ A(y1, . . . , yn) iff xi ≤ yi, ∀i ∈ {1, . . . , n} ,
n ∈ N,

• boundary conditions A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

The special class of binary aggregation functions with neutral element 1 is
the class of copulas.

In this section we recall some basic definitions.

Let I = [0, 1], 1 = (1, . . . , 1), x = (x1, x2, . . . , xn).

Definition 2.1. Let F : R2 → R. Then the differences of the function F are:

4x2
x1
F (x, y) = F (x2, y)− F (x1, y) (1)

4y2y1F (x, y) = F (x, y2)− F (x, y1) (2)

Definition 2.2. Function F : R2 → R is called 2-increasing if ∀x1, x2, y1, y2 ∈
D(F ) and x1 6 x2, y1 6 y2 fulfils condition:

4x2
x1
4y2y1 F (x, y) > 0. (3)

Definition 2.3. Copula is a 2-increasing function C : I2 → I fulfilling condi-
tions:

• C(0, v) = C(u, 0) = 0,

• C(1, v) = v,

• C(u, 1) = u.
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Theorem 2.1. For all copulas holds:

max(u+ v − 1, 0)︸ ︷︷ ︸
W (u,v)

6 C(u, v) 6 min(u, v)︸ ︷︷ ︸
M(u,v)

, (4)

where W (u, v) is lower Frechet-Hoeffding limit and M(u, v) is upper Frechet-
Hoeffding limit.

Definition 2.4. Let φ : I → [0,∞] be a continuous strictly decreasing function
fulfilling condition φ(1) = 0. Then the function φ(−1) : [0,∞] → I, φ(−1) =
min (t, φ(0)) is pseudo-inverse of φ.

Theorem 2.2. Let φ fulfil condition in Definition 2.4. Then the function Cφ :
I2 → I, Cφ(x, y) = φ(−1) (φ(x), φ(y)) has the property from Definition 2.3.

Theorem 2.3. Let a function f be a additive generator and A : I2 → I a
convex function with lower limit max(x, 1− x). Then

Cf,A(x, y) = f−1 (min( f(0), (f(x) + f(y))A

(
f(x)

f(x) + f(y)

)
) (5)

is a copula.

Two-dimensional Archimax copulas were introduced by Capéraá, Fougéres
and Genest [2] as a common extension of both extreme-value copulas and
Archimedean copulas.

Definition 2.5. A set Z ⊂ I2, Z? ⊆ Z is called the zero set, if it is con-
tinuous, closed and if ∀x ∈ Z, u ∈ I2 holds u ≤ x than u ∈ Z, where
Z? = {(x, y)|0 ∈ {x, y}}.

The zero set ZA of an aggregation function A is the inverse image of the
value 0, i.e.

ZA := A−1({0}) = {x ∈ [0, 1]|A(x) = 0} . (6)

Since A(1, . . . , 1) = 1, ZA is a proper subset of [0, 1]n. A point x =
(x1, . . . , xn) ∈ ZA is called weakly undominated point if there exists no y =
(y1, . . . , yn) ∈ ZA such that y1 > x1, y2 > x2, . . . , yn > xn. In the case n = 2 we
will refer to the set of weakly undominated points of the zero-set of a continuous
aggregation function as the upper boundary curve of the zero-set [3].

Now follows the general definition of a conic function. We denote the (linear)
segment with endpoints x,y ∈ [0, 1]n as

〈x,y〉 = {λx + (1− λ)y|λ ∈ [0, 1]} .

Definition 2.6. Let Z ⊂ [0, 1]n be a closed lower set containing Z?. We define
the function AZ : [0, 1]n → [0, 1] as follows:
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• AZ(1) = 1,

• AZ(x) = 0 for any x ∈ Z,

• for any weakly undominated point x ∈ Z, the function AZ is linear on the
segment 〈x,1〉.

The function AZ is called a conic function with a zero-set Z.

Theorem 2.4. [3] Let Z be a closed lower set of [0, 1]2 such that Z? ⊂ Z ⊆ Z?
with corresponding function f : [0, d]→ I, d ∈ I. The conic aggregation function
AZ is a copula if and only if the function f satisfies the following conditions:

• f(d) = 0,

• f is convex.

The field of our interest are Archimax copulas based on W copula. Additive
generator of W is a function f(x) = 1 − x, x ∈ I with defined pseudo-inverse
f (−1)(y) = max(0, 1− y). From equation (5) we get

CW,A(x, y) = max

(
0, 1− (2− x− y) ·A

(
1− x

2− x− y

))
. (7)

It’s evident that for A(z) = 1, z ∈ I the formula is

CW,A(x, y) = max (0, 1− (2− x− y) · 1) = max(0, x+ y − 1) = W (x, y).

On the contrary when we take

A(z) =





1− z if z ∈
(

0,
1

2

]
,

z if z ∈
(

1

2
, 1

]
,

then we get CW,A(x, y) = min(x, y) = M(x, y).

For both limit cases the consequent copula falls into the class of conic cop-
ulas. In the first case the corresponding function is f(x) = 1− x, x ∈ I, in the
second case is ZM = Zx, where x is weakly undominated point of ZC . In both
cases is consequent copula linear on the segments 〈x, 1〉, x ∈ I. Therefore there
is a natural question if the choice of any arbitrary convex function A(z) : I → I,
max(1− z, z) ≤ A(z) ≤ 1, ∀z ∈ I we get a conic copula.

3 Transition from the class of Archimax copulas
to the class of conic copulas

In this section we will try to verify if in the case of choice of dependence function
A the corresponding Archimax copula also belongs to the class of conic copulas.
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Let A(z) = z2 − z + 1, z ∈ I be a convex function and max(1 − z, z) ≤
A(z) ≤ 1. From (7) we get

CW,A(x, y) = max

(
0, 1− (2− x− y) ·

((
1− x

2− x− y

)2

− 1− x
2− x− y + 1

))
=

max

(
0,−x

2 + y2 + xy − 2y − 2x+ 1

2− x− y

)
. (8)

Let
x2 + y2 + xy − 2y − 2x+ 1

2− x− y = 0.

We need to obtain the formula of the margin of the zero set from the implicit
expression above, therefore y2 + (x− 2)y + x2 − 2x+ 1 = 0.

This equation has two solutions:

f1 = 1− x

2
+

√
x− 3

4
x2,

f2 = 1− x

2
−
√
x− 3

4
x2.

It holds f1(0) = 1, f1(1) = 0, therefore f1 can not describe the zero set
ZWC,A

. For the function f2 and its convexity holds:

d2f2(x)

dx2
=

−1

3(
x− 4

3

)
x

√
x− 3

4
x2

> 0,∀x ∈ (0, 1).

So the function f2 describe the zero set ZWC,A
.

Now we apply parametrization y = ax + b. In that the copula has to be
linear on 〈x, 1〉, we have ax + b = 1, x = 1 and from this we have b = 1 − a.
From (8) we prove linearity of the copula

max

(
0,

(a2 + a+ 1)x2 − (2a2 + a+ 1)x+ a2

(x− 1)(a+ 1)

)
= max


0,

x− a2

a2 + a+ 1
a+ 1


 .

Then the roots are:

x1 = 1, x2 =
a2

a2 + a+ 1
.

The consequent copula is linear on 〈x, 1〉 out of its zero set. For chosen
function A we constructed the Archimax copula that is conical simultaneously.
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4 Transition from the class of conic copulas to
the class of Archimax copulas

Let a conic copula defined as follows [4]:

Cf (x, y) =





0 0 ≤ x ≤ 1

2
, y ≤ (1− 2x)2,

4x(1− x)− 1 + y

4(1− x)− 1 + y
(1− 2x)2 < y ∧ y ≥ 2x− 1,

min(x, y) else.

We want to derive a set where the function A attains the constant value.

Let: z =
1− x

2− x− y , y 6= 2− x.

Then holds:

y =
1− z
z

x+
2z − 1

z
, z 6= 0 (9)

for chosen constant value z.

From (8) we obtain the function A(z) =
1− Cf (x, y)

2− x− y .

From (9) we get:

A(z) =





1− z z ∈
[
0,

1

3

)
,

4z2

5z − 1
z ∈

[
1

3
, 1

]
.

The function A(z) is continuous and its convexity proof is easy to show.

FunctionA1(z) = 1−z, z ∈
[
0,

1

3

)
fulfils definition of convexity and

dA1

(
1

3

−)

dz
=

−1.

Function A2(z) =
4z2

5z − 1
is on

(
1

3
, 1

]
double differentiable,

d2A2(z)

dz2
=

8

(5z − 1)3
> 0,∀z > 1

5
, soA2(z) is convex and moreover

dA2

(
1

3

+)

dz
=

−1, therefore function A(z) = A1 ∩ A2 is convex and fulfils all conditions of
Pickands dependence function in definition of Archimax copula.

5 Conclusion

We have demonstrated both transitions between Archimax and conic copulas.
Our next work will be concerned on proof of equivalence between conic copula
class and Archimax copula class based on W .
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Abstract

In this talk, we are dealing with the automatic inclusion of new event
types in visual inspection systems. Within the context of image classi-
fication for recognizing ”OK” and ”not OK” parts, a certain event can
be directly associated with a class, as events are usually independent and
disjoint from each other. In this sense, we are dealing with the prob-
lem of integrating a new class into the image classifier on-the-fly, once
specified on-line by an operator. We are using evolving fuzzy classifiers
(EFC), which are relying on fuzzy rule bases and are able to adapt their
structure and update their parameters in incremental manner. The novel
methodological aspects lie 1.) in appropriate structural changes in the
EFC whenever a new class appears and 2.) in the estimation of the ex-
pected change in classifier accuracy on the older classes seen before, which
is based on an analysis of the expected change in the classifier’s decision
boundaries. The second point is an important aspect for operators, as
they are already familiar to work with established classifiers that have
some accuracy in classification. The new concepts will be evaluated on
a real-world visual inspection scenario, where the main tasks is to clas-
sify several event types which may occur on micro-fluidic chips and may
lead to the deterioration of their quality. The evaluation will be based on
two image streams recorded at the inspection system on-line, containing
several event types and representing the real production order.

Keywords: visual inspection, new event types, integration of new
classes on-the-fly, evolving (fuzzy) classifiers, expected change in classi-
fier’s accuracy
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Expanding the set of Residual Generators by Genetic-Fuzzy Systems
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Abstract

Data-driven fuzzy systems as systems models has been proposed in several works into the context
of Fault Detection (FD) [1] [2] [3] [4]. Data-driven fuzzy systems exhibit good approximation ca-
pabilities because of being proved as universal approximators [5], as they also offer interpretability
by readable rules [6], what appears to be important in order to validate the extracted model.

Along our previous research [3] [4], we built fuzzy systems from various data sources, using
sparse fuzzy systems (SparseFIS) training as described in [7]. This deterministic training algorithm,
could produce low quality models for certain process variables when it gets trapped in local minima.
When this happens, this models are discarded to conform the set of residuals generators, so faults
appearing in this process variables are potentially missed and not detected by the FD framework. To
overcome this limitation, we introduce the usage of Genetic Fuzzy Systems (GFSs) [8] [9], which
when creating high quality models where SparseFIS was not able to do so, allow to complete the set
of residual generators and to increase the performance of the whole residual-based FD approach.

Keywords: residual-based fault detection; fuzzy systems; genetic fuzzy systems; hybridization;
black-box modeling
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Abstract
We study the problem of sensor placement for
maximum structural fault detection and isolation
in systems with a graphical structure. In partic-
ular, we consider flow networks and sensor net-
works. We are interested in placing as few sen-
sors as possible. We get efficient approximation
algorithms and exact algorithms for computing a
smallest sensor set for maximum structural fault
detectability and isolation.

1 Introduction
In the framework of structural fault diagnosis of Frisk and
Krysander [1; 2], systems of mathematical equations de-
scribe technical systems. The systems of equations are
treated in a purely structural or combinatorial way. In par-
ticular, we mainly study the bipartite variables-in-equations
graph associated with a system of equations [1]. We
use combinatorial concepts and techniques such as the
Dulmage-Mendelsohn decomposition [3] and algorithms
for computing maximum matchings to solve fault detection,
fault isolation, and sensor placement problems [1].

The benefit of this approach is that we can apply it early
in the design phase of a system. No sensor data is necessary.
In this work we consider systems of equations which have
themselves a graphical structure. In particular, we consider
flow networks and sensor networks.

Flow networks and models thereof arise in areas such as
electrical engineering, hydraulics, and transportation. They
essentially contain two building components: Energy nodes
(voltage, pressure) which are connected by flow edges (cur-
rent, volume flow). See Fig. 1 for an example. The mathe-
matical description of flow networks follows general princi-
ples. For example, the amount of flow into a node equals the
amount of flow out of it, except for sources or sinks. This
conservation constraint or flow preservation was formalized
as Kirchhoff’s current law in the context of electrical cir-
cuits.

Sensor networks and models thereof become increasingly
important with the advent of the Internet of Things in which
systems, machines, and devices are connected via the In-
ternet. One particular type of sensor network that we con-
sider here has the property that all sensors measure the same
quantity or similar quantities, e.g. inside or outside tempera-
ture, solar radiation, consumed or produced energy. A com-
mon way to model sensor networks is to consider the geo-
graphic location of sensors. Nearby sensors have often sim-

ilar values. This can be used for fault detection. See e.g.
[4].

We study the problem of placing as few sensors as pos-
sible. That is, the results of our algorithms are smallest or
almost smallest sensor sets which allow maximum fault iso-
lation. This is in contrast to enumerating all reasonable (i.e.
minimal) sensor sets which achieve maximum fault detec-
tion or isolation [1]. We also aim at providing running time
and approximation guarantees.

We study special cases which are motivated by different
models of flow and sensor networks. Our main result reads
as follows: The Minimum Sensor Placement (MSP) prob-
lem for instances with a symmetric variables-in-equations
graph can be solved efficiently and approximatively. As far
as flow and sensor networks are concerned, we can model
the MSP problem for variable flow networks and sensor net-
works in terms of symmetric variables-in-equations graphs
and can thus solve the problem efficiently. We formulate our
special cases in terms of variables-in-equations graphs.

We provide the necessary definitions in Sec. 2, models of
flow and sensor networks in Sec. 3, and algorithms and their
analysis in Sec. 4.

1.1 Motivating Applications
Flow networks arise naturally in the study of technical sys-
tems. Here, we present a snippet of a real-world hydraulic
system and show how to apply our results to it. In con-
trast to many flow networks that describe real-world sys-
tem, sensor networks may be considerably larger. In our
applications, the graphical structure of our flow network has
a few dozen of vertices and edges. The snippet of the hy-
draulic system we present, Fig. 1, has just 5 vertices. The
sensor networks can have hundreds of vertices and edges
in our application. Sensors in our application measure the
produced energy, module temperature, plane-of-array irra-
diance of photovoltaic systems. But not every photovoltaic
system delivers data all the time. In other words, the set of
possible sensor locations changes over time. Once per day
we check for missing data and place the sensors appropri-
ately.

2 Definitions: Detection, Isolation, Sensor
Placement

The purpose of this section is to introduce the Minimum
Sensor Placement (MSP) problem.

An example of a set of equations is Eq. 1 and Eq. 2. It
describes a part of a hydraulic system. In Fig. 2 we see



its variables-in-equations graph. In general, the variables-
in-equations graph is a bipartite graph B = (U, V,E) with
U ∩ V = {} and U are the equations and V the variables in
M . Mathematically, the system of equations or model M is
a set and thusU = M . We draw an edge between e ∈ U and
v ∈ V iff variable v occurs in equation e. Note that F =
{f1, . . . , f6} are the fault variables in the example. Fault
variables do not belong to V . Moreover, every fault f occurs
in at most one equation which we denote by ef , and at most
one fault is associated with an equation. In the example, we
can set P = {v1, . . . , v6}. In general, P ⊆ V is the set of
possible sensor places or possible sensor locations and F is
the set of faults for which ef ∈ U for every f ∈ F .

Dulmage-Mendelsohn Decomposition
For every bipartite graph B there exists an integer n such
that the vertices of B and thus M can be partitioned into an
under-determined part M0, a just-determined part M0, and
an over-determined part M+. The concrete definitions of
these parts can be found in [5]. We provide them in Sec.
4. The partition is called the Dulmage-Mendelsohn (DM)
decomposition1 and was introduced in [3].

An example of a DM-decomposition with one just-
determined part, no under-determined, and no over-
determined part is depicted in Fig. 3.

Definition 1 ([1]). A fault f is structurally detectable in M
if ef ∈M+.

This definition says that we need more equations than
variables to detect faults. So, to detect faults for the example
in Fig. 3 we need to add one more equation to M . The idea
of sensor placement is to add equations of the form v = c
for some variable v ∈ P ⊆ V and a value c. For a set
S ⊆ P , define MS as the set of these equations. The goal is
to find a small set S such that ef ∈ (M ∪MS)+.

Definition 2 ([1]). A fault fi is structurally isolable from
fault fj in M if efi ∈ (M \ {efj})+.

This notion ensures that we can also identify a fault, i.e.
we can locate the fault. Here, we make the assumption that
only a single fault happens, i.e. only one fault f ∈ F can
have a value unequal to 0. See [6] for further discussion on
this topic and in particular on residual generation. A sec-
ond assumption is that sensors work correctly. See [6] for a
solution to handle faulty sensors.

We are now able to define MSP. As above we want to
find a small set S such that efi ∈ ((M \ efj ) ∪ MS)+.
Additionally we want to maximize such pairs (i, j). This
motivates the following definitions.

Definition 3. Let I = (M,F, P ), f ∈ F , and S ⊆ P .
Define

τI(f, S) := {f ′ ∈ F : ef ′ ∈ ((M \ {ef}) ∪MS)+}
and

τI(f) := max
S⊆P

τI(f, S).

We call a set S ⊆ P for which τI(f, S) = τI(f) for all
f ∈ F a correct sensor placement.

1In this work we will mainly cite [5] as it contains a presenta-
tion of the DM decomposition which is suitable for our needs. We
refer the interested reader to [5] for references of the original work
of Dulmage, Mendelsohn and others.

In words, a correct sensor placement is such that it
achieves maximum isolation for every fault. It holds
that a sensor set S ⊆ P is a correct sensor placement
iff S maximizes

∑
f∈F τI(f, S). In words, S is a cor-

rect sensor placement iff S maximizes the total number
of fault pairs (f ′, f) where f ′ is structurally isolable from f .

Minimum Sensor Placement (MSP)
Input: Equations M with faults F and sensor locations P .
Output: A smallest set S ⊆ P which is a correct sensor
placement.

3 Models for Flow and Sensor Networks
3.1 Flow Networks
Our models of flow networks, see for example Fig. 1, con-
tain energy variables (e.g. pressure, voltage) and flow vari-
ables (e.g. volume flow, current.) Energy variables are ver-
tex labels and flow variables are edge labels of a graph G.
See Eq. 1 and 2 for an example. One type of equations ex-
press flow preservation: The flow into a vertex equals the
flow out of the vertex. This is known as Kirchhoff’s current
law in the context of electrical circuits. An equivalent for
hydraulic systems are called pressure built-up equations.

The following example is the snippet of a hydraulic sys-
tem. It is graphically depicted in Fig. 1. The energy vari-
ables p represent pressure. The flow variables c represent
the volume flow through some hydraulic component, e.g.
pipe, valve, etc.

p1

p2

p3

p4

p5

c1

c2

c3

c4

c5c6

Figure 1: Flow network GFN

The direction of each edge in the flow network graphGFN
determines the sign of the corresponding flow summand.
The mathematical description of the flow network in Fig.
1 is given by

e1 : ṗ1 = c1 + c4 − c6
e2 : ṗ2 = c3

e3 : ṗ3 = −c1 + c2
e4 : ṗ4 = −c4 + c5
e5 : ṗ5 = −c2 − c3 − c5 + c6

(1)

We assume that the possible sensors are located at the
energy variables pi and that only the flow variables cj are
affected by faults. The variables f1, . . . , f6 are faults.

e6 : c1 = c′1(p1, p3) + f1

e7 : c2 = c′2(p3, p5) + f2

e8 : c3 = c′3(p2, p5) + f3

e9 : c4 = c′4(p1, p4) + f4

e10 : c5 = c′5(p4, p5) + f5

e11 : c6 = c′6(p1, p5) + f6

(2)

The flow variables cj depend on the energy variables pi
which are adjacent to cj in the network flow graph G. The



functions c′(·) may be known. But we do not need to know
them for sensor placement. It makes however a difference if
the functions c′ are independent of the energy variables.

The variables-in-equations graph B = (U, V,E) for our
example is depicted in Fig. 2: U = {e1, . . . , e11}, V =
{p1, . . . , p5, c1, . . . , c6} and we draw an edge between e ∈
U and v ∈ V if v occurs in e.

We make an interesting case distinction in Fig. 2. On the
left, we see the variables-in-equations graph in case of con-
stant flow, i.e. the functions c′ are independent of the energy
variables. On the right, we see the variables-in-equations
graph for variable flow. We call such a bipartite graph sym-
metric which has the same structure if we exchange the left
and right side. We provide the exact definition in Sec. 4.3.

We can easily generalize the above sample derivation of
the set of equations from our graph in Fig. 1 to arbitrary
graphs G. We call these systems constant flow networks if
the functions c′(·) are constants and variable flow networks
in the other case.

e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11

p1
p2
p3
p4
p5
c1
c2
c3
c4
c5
c6

e1
e2
e3
e4
e5
e6
e7
e8
e9

e11

p1
p2
p3
p4
p5
c1
c2
c3
c4
c5
c6

e10

Figure 2: Variables-in-equations graphs for the flow net-
work examples with constant flow (left) and variable flow
(right), resp.

3.2 Sensor Networks
In sensor networks, we model variables as the vertex labels
of an undirected graph G. Equations are of the form xi =
f(Xi) where Xi is the set of adjacent variables to xi in G.
See Fig. 3 for an example.

x1

x2

x3

x4

x5

x1x2

x3

x4 x5

e1

e2

e3

e4

e5

Figure 3: Sensor network GSN (left) and its variables-in-
equations graph B = B(MSN) (right)

We can derive the system of equations directly from the
graph G in Fig. 3. We have 5 equations in our example. A
sample equation is e1 withX1 = {x2, x3}: x1 = g1(x2, x3)
if f1 6∈ F and x1 = g1(x2, x3) + f1 if f1 ∈ F . We may
read the latter equation in two ways: The derivation of the
value of x1 from its neighboring variables in G is possibly
faulty. Or, the value of x1 is possibly faulty.

In applications, the measured quantities are for example
temperature, solar radiation, consumed or produced energy.
The functions gi are often linear in the variables from Xi.

In the above way we can derive for a given sensor net-
work GSN with variables x1, . . . , xn and faults F a model

of sensor networks suitable for fault detection and isolation.
We call such a system a sensor network.

4 Algorithms: Description and Analysis
4.1 Sensor Placement as Graph Reachability
We show how sensor placement reduces to graph reacha-
bility. This is similar to Lemma 1 in [1]. We also provide
the formal definition of the DM decomposition here. The
presentation follows [5].

We recall thatX ⊆ E is a (perfect) matching in a bipartite
graph B = (U, V,E) if every vertex in B occurs in (exactly
one) at most one edge inM . LetX be a maximum matching
inB. An alternating path w.r.t.X is a path inB such that no
two neighboring edges in it are both from X or both from
E \ X . A vertex is called matched by X if it occurs in
X and unmatched otherwise. We define VR (HR) as the
set of all vertices from U which are reachable from some
unmatched vertex in U (V ) via some alternating path w.r.t.
X . We define VC (HC) as the set of all vertices from V
which are reachable from some unmatched vertex in U (V )
via some alternating path w.r.t.X . Set SR := U \(HR∪VR)
and SC := V \ (HC ∪ VC).

Let M be a set of equations and B = B(M) =
(U, V,E) the corresponding variables-in-equations graph.
Since |HR| < |HC|, |SR| = |SC|, and |VR| > |VC| (see
[5]), we call the respective subgraphs of B which are in-
duced by HR ∪ HC, SR ∪ SC, and VR ∪ VC as the under-
determined part M0, the just-determined part M0, and the
over-determined part M+. This partition of B and thus M
is independent of the choice of X , see Theorem 2.1 in [5].

Proposition 1. Any two maximum matchings X1 and
X2 in a bipartite graph B yield the same sets
HR,HC,VR,VC,SR,SC.

This completes the formal definition of structural de-
tectability, Def. 1, and structural isolability, Def. 2.

Next, we define for B with a perfect matching X the
graph G(B,X). It is B where edges not in X are directed
from equation vertices U to variable vertices V and edges
in X are shrunk into a single vertex. Thus, G(B,X) is a
directed graph and we can naturally identify the vertices in
G(B,X) from U and V .

Let us consider some example. We derive the variables-
in-equations graph BSN = B(MSN) in Fig. 3 from the sen-
sor networkGSN. A maximum and actually a perfect match-
ing X in B is given by the edges {ei, xi}, i ∈ {1, . . . , 5}.
We make two observations.

First, G(BSN, X) is equivalent to GSN in our example.
The difference is that G(BSN, X) does have edge orien-
tations. Second, there is no under-determined part M0

and no over-determined part M+ in BSN. In particular,
SR = SC = {} and thus no fault is detectable.

Adding sensor measurement equations MS , S ⊆ P ⊆ V ,
to MSN is equivalent to adding new vertices to U in BSN.
In our example, the measurement of a single sensor vari-
able suffices to yield maximum fault detectability. We just
note that the perfect matching in our example is a maximum
matching in M ∪MS .

This result holds in general if we have a set of equations
M and B = B(M) has a perfect matching. The situation
is however more complicated if we first remove an equation



from M and then add equations for a sensor measurement –
the situation that arises in case of fault isolation.

We will need the concept of an augmenting path. We re-
call that an augmenting path p of a matching X is an al-
ternating path w.r.t. X that begins and ends with vertices
which are unmatched by X (see e.g. [5].) We observe that
the symmetric difference p ⊕ X is a new matching of size
|X|+ 1.

Lemma 1. Let M be a set of equations and B = B(M) =
(U, V,E) its variables-in-equations graph. Let F be the set
of faults and P be a set of possible sensor locations. Assume
that B is connected and has a perfect matching X . For
every fault f ∈ F , let vf be the corresponding vertex in
G(B,X).

1. Let f ∈ F and S ⊆ P ⊆ V . The fault f is structurally
detectable in M ∪MS iff there exists s ∈ S such that vf is
reachable from s in G(B,X).

2.a. Let f, f ′ ∈ F and S ⊆ P ⊆ V . Assume that the
size of a maximum matching inB(M \{ef}∪MS) is |X|−
1. The fault f ′ is structurally isolable from f in M ∪MS

iff there exists s ∈ S such that vf ′ is reachable from s in
G(B(M), X) \ {vf}.

2.b. Let f, f ′ ∈ F and S ⊆ P ⊆ V . Assume that the
size of a maximum matching in B(M \ {ef} ∪MS) is |X|.
The fault f ′ is structurally isolable from f in M ∪MS iff
there exist s, t ∈ S such that vf ′ is reachable from s in
G(Bf,t, Xt) with Bf,t := B(M \ {ef} ∪M{t}). Here, Xt

is a perfect matching in Bf,t and it emerges from X ′ :=
X \ {ef} via an augmented path p of X ′ in Bf,t, i.e. Xt =
X ′ ⊕ p.

Proof. We start with (1). Let ef be the equation associated
with f . By the definition of structural fault detection, fault f
is detectable if ef ∈M+ with M := M ∪MS . We observe
that X is a maximum matching in B(M ∪MS), i.e. the ad-
dition of a measurement equation will not increase the size
of a matching. Moreover, there is a one-to-one correspon-
dence between an alternating path in B(M) w.r.t. X and a
path in G(B(M), X).

We continue with (2). By the definition of structural fault
isolation, fault f ′ is isolable from fault f if ef ′ ∈M ′+ with
M ′ := (M \ {ef}) ∪ MS . Let X ′ be X with the edge
removed which contains ef . We observe that X ′ is a maxi-
mum matching inB(M \{ef}) and that a maximum match-
ing in B(M ′) either has size |X ′| or |X ′|+ 1.

Assume the former, case (2.a). This is the simple case
since X ′ is a maximum matching in B(M ′). Thus, reach-
ability in B(M ′) via an alternating path w.r.t. X ′ starting
from unmatched equations in B(M ′) corresponds to reach-
ability in G(B(M), X ′) \ {vf} starting from a vertex in
S. Just note that the unmatched equations in B(M ′) are
the measurement equationsMS and that every measurement
equation vertex is connected to exactly one variable vertex.

Assume that the size of a maximum matching in B(M ′)
is |X ′| + 1, case (2.b). This case is more complicated
since a maximum matching in B(M ′) can be rather differ-
ent from X ′. However, the following holds: There exists
an augmenting path p of X ′ such that the induced match-
ing X ′′ = p ⊕ X ′ is maximum in B(M ′). This result is
known as Berge’s Lemma. We observe that p starts with
an unmatched equation vertex e ∈ MS . It is connected to a
variable vertex. Let t be this vertex. Thus,Xt = X ′′ is max-
imum in B(M ′) and a perfect matching in Bf,t. The claim

follows from the above correspondence between alternating
paths in Bf,t w.r.t. Xt and paths in G(Bf,t, Xt).

4.2 Sensor Placements as Hitting Sets
We show how sensor placement reduces to the computation
of hitting sets. It is similar to Theorem 2 in [1]. In particular,
we are going to show that a sensor set S ⊆ P is a correct
sensor placement, Def. 3, iff S is the hitting set of a set
system D, i.e. S ∩D 6= {} for all D ∈ D.

We start with some simplifications. Let I = (M,F, P ).
In the definition of τI(f) we take the maximum over all S ⊆
P . It follows from the definition of fault isolation that, for
fixed f ∈ F , τI(f, ·) is monotone, i.e., τI(f, S) ≤ τI(f, S′)
if S ⊆ S′.
Proposition 2. It holds that τI(f) = τI(f, P ).

The following lemma characterizes correct sensor place-
ments as hitting sets. We describe the algorithm Reduce
first. Its input is a model M and a perfect matching X of
B(M). It computes G(B,X) from M and X . For every
fault f ∈ F , it checks if an augmenting path p of X \ {ef}
exists in B(M \ {ef} ∪MS). If no augmenting path ex-
ists we set G′ := G(B,X) \ {vf}. Otherwise, we set
G′ := G(Bf,t, Xt) with Bf,t, Xt as in Lemma 1, and t
is some vertex from P such that we can reach vf from t.
Define Df,f ′ as the set of all vertices s ∈ P in G′ such that
vf ′ is reachable from s. The output of Reduce is

D := {Df,f ′ : f, f ′ ∈ F, Df,f ′ 6= {}}.
Lemma 2. LetM be a set of equations andB its variables-
in-equations graph. Let F be the set of faults and P be a set
of possible sensor locations. Assume that B is connected
and has a perfect matching X . A set S ⊆ P is a correct
sensor placement iff S is a hitting set of

D := {Df,f ′ : f, f ′ ∈ F, Df,f ′ 6= {}}.
Moreover, algorithm Reduce computes D in time O(n2m)
where n is number of variables andm is the number of vari-
able occurrences in M .

Proof. By Proposition 2 and Definition 3, a sensor set S ⊆
P is a correct sensor placement iff τI(f, S) = τI(f) =
τI(f, P ) for all f ∈ F . For every f ∈ F , τI(f, P ) =
|{f ′ ∈ F : Df,f ′ 6= {}}|. Here, we apply Lemma 1. In
words, a hitting set of D satisfies the properties of a correct
sensor placement and vice versa.

The running time follows since there are O(n2) pairs
(f, f ′) ∈ F × F and since a depth-first search can be done
in time O(m). Note that m is the number of edges in B and
G. Moreover, we can search for the augmenting paths in ad-
vance. Since an augmenting path is an alternating path, the
search reduces to a reachability problem, i.e. a depth-first
search. We can do this in time O(nm).

The reduction is almost optimal since D can contain
Ω(n2) sets with at least Ω(n) elements each. A possible
improvement would be O(n3 + m). We also note that our
reduction improves upon the slightly more general reduction
in [1]. It has a running time of O(n2.5m). See also [7]. We
achieve this by searching for an augmenting path instead of
computing a maximum matching.

Let S∗ ⊆ P be a smallest correct sensor placement of
some MSP instance. We call a set S ⊆ P a c-approximate
solution if |S| ≤ c · |S∗| and S is a correct sensor placement.



Theorem 1. There is a polynomial time algorithm for MSP
that, given an instance (M,F, P ) of MSP such thatB(M) is
connected and has a perfect matching, outputs aO(log(n))-
approximate solution.

Proof. The one-to-one correspondence in Lemma 2 be-
tween correct sensor placements and hitting sets allows us to
apply any algorithm which computes exact or approximate
solutions of minimum hitting sets in the following way. We
first compute a perfect matching (see e.g. [8] pg. 664) and
then apply Reduce. The result is a set system. We then
apply the algorithm in [9] for computing an approximate
solution to MHS. It has an O(log(n)) approximation guar-
antee.

4.3 Symmetric Variables-In-Equations Graphs
In this section we consider the case of symmetric variables-
in-equations graphs. Examples are variable flow networks
as defined in Sec. 3.1 and sensor networks as defined in Sec.
3.2. In particular, sensor networks motivate the results in
this section. We aim at deriving an efficient algorithm which
is capable to solve MSP for instances up to some thousands
of sensor locations.

We call a bipartite graph B = (U, V,E) symmetric w.r.t.
to some perfect matching X of B if for all {i, j} ∈ E there
exists vertices k and l such that {k, l} ∈ E, {i, k} ∈ X ,
and {j, l} ∈ X . See Fig. 3 for an example of a symmetric
bipartite graph.

A consequence of symmetry is the following: For every
edge e in the directed graph G(B,X) as defined in Sec. 4.1,
G(B,X) also contains an edge with the opposite orienta-
tion. Thus, reachability in the directed graph G(B,X) is
equivalent to reachability in the undirected graphGu(B,X)
which emerges from G(B,X) by removing edge orienta-
tions.

For our example of a sensor network, Sec. 3.2, we can
summarize the graph transformations as follows: We start
with an undirected graph GSN which describes the structure
of the sensor network. We derive the model MSN and its bi-
partite variables-in-equations graph B = B(MSN). A per-
fect matching X is naturally given. We derive G(B,X) and
thus Gu(B,X). The graph Gu(B,X) is identical to GSN.

We will need the concept of biconnected components.
We recall that a biconnected component C of an undirected
graph G is a maximal biconnected subgraph B, i.e. remov-
ing any vertex in B will yield a connected subgraph of B.
If two biconnected components have a vertex v in common
we call it a cut vertex. Removing a cut vertex in G, yields
a graph with at least two connected components. Removing
a non-cut vertex in a connected graph, yields a connected
graph. We call an undirected graph biconnected iff it con-
tains only one biconnected component.

Lemma 3. Let M be a set of equations and B = B(M) its
variables-in-equations graph. Let F be the set of faults and
P be a set of possible sensor locations. Assume that B is
symmetric.

1. If Gu(B) is connected, every sensor s ∈ P achieves
maximum fault detectability2.

2A sensor set S ⊆ P in a model M achieves maximum de-
tectability iff (M ∪MS)

+ = (M ∪MP )
+, i.e. we can structurally

detect the same set of faults if place them at sensor locations S or
if we add all possible sensors.

2. If Gu(B) is biconnected, any two sensors {s, t} ⊆ P
are a correct sensor placement.

Proof. As for case (1), we can directly apply Lemma 1. For
case (2), we make the case distinction as in Lemma 1. Let
f, f ′ ∈ F and S ⊆ P ⊆ V and assume that the size of
a maximum matching in B(M \ {ef} ∪MS) is |X| − 1;
case (2.a). Then, fault f ′ is structurally isolable from f in
M ∪MS iff there exists s ∈ S such that vf ′ is reachable
from s in G(B(M), X) \ {vf}. The latter is true due to
2-connectedness of Gu(B).

For the second case, we have to check if there exist
s, t ∈ S such that vf ′ is reachable from s in G(Bf,t, Xt)
with Bf,t := B(M \ {ef} ∪M{t}). Here, Xt is a perfect
matching in Bf,t. It emerges from X ′ := X \ {ef} via an
augmented path P of X ′ in Bf,t, i.e. Xt = X ′ ⊕ P . The
difficulty is that the graph G(Bf,t, Xt) is no longer undi-
rected since Bf,t is not symmetric. However, it holds that
G(Bf,t, Xt) consists of single strongly connected compo-
nent plus an additional vertex. To see this, we show that the
vertices of P lie on a directed cycle in G(Bf,t, Xt). First,
we recall that P corresponds to some path in Gu(B) that
starts with t and ends with vf . Second, due to the bicon-
nectedness of Gu(B) there exists two vertex-disjoint (undi-
rected) paths P1, P2 from vf to t. This result is known as
Menger’s Theorem. We set P such that it corresponds to P1.
The difference betweenGu(B) andG(Bf,t, Xt) are the ver-
tices of P1. Because of the alternating path P , the bipartite
graph Bf,t and thus G(Bf,t, Xt) changes. There is a cor-
respondence between the vertices in G(Bf,t, Xt) which are
affected by P and the vertices in Gu(B) which lie on P1.
Moreover, the application of the augmenting path P will
change the orientation. In the resulting graph G(Bf,t, Xt)
there are vertices u and v and a directed path from u to v.
The vertices u and v correspond to the end and the vertex
after the start vertex of P . We can make this path a cycle by
using P2. This implies that the connectedness is preserved
in G(Bf,t, Xt). Moreover, all the sensor and fault locations
are preserved in G(Bf,t, Xt). We conclude for any fault
f ′ 6= f , f ′ ∈ F is detectable since vf ′ is reachable from s
in G(Bf,t, Xt). (See Fig. 4 for an example.)

In Fig. 4 we describe on an example what happens if we
remove one equation e2 = ef from a model MSN of a sen-
sor network. The sensor network GSN is depicted on the left
in the figure. The natural perfect matching X in our sen-
sor network is {ei, xi} for i ∈ {1, . . . , 4}. After removing
the edge from X which contains e2 we need to find a new
maximum matching. In our example in Fig. 4 we start at the
sensor measurement equation m2 and compute an alternat-
ing path to x2. Note that both m2 and x2 are unmatched by
the natural perfect matching X without e2. We thus have an
augmenting path. We compute the new maximum matching
from the augmenting path. It is depicted by bold lines in
the figure (middle). On the right we see the resulting graph.
The variables-in-equations graph is no longer symmetric in
general. In our example, there is only an edge from e1x1
to e4x3 but not in the other direction. We observe that the
digraph consists of a single strongly connected component
with the exception of vertex m2x4. Also note that all the
sensor locations are preserved. Thus, since we have a sec-
ond sensor measurement equation in our example, we can
detect every remaining fault, in particular from e4x3.
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Figure 4: A biconnected sensor network GSN (left) with
P = {x3, x4}, its variables-in-equations graph Bf,t after
removing e2 and with a new maximum matching Xt (mid-
dle), and G(Bf,t, Xt) with a directed cycle (right).

The following theorem is a direct consequence of the
lemma: If S ⊆ P shares at least two sensors places with
every biconnected component in Gu(B,X), then S is a
correct sensor placement. We also use the algorithm of
Hopcroft and Tarjan [10] for the computation of biconnected
components. Its running time yields the claimed running
time.

Theorem 2. There is an algorithm for MSP that, given
an instance (M,F, P ) of MSP such that B(M) is con-
nected, symmetric and such that every biconnected compo-
nent B1, . . . , Bk of Gu(B,X) has at least two sensor loca-
tions, outputs a k-approximate solution. The running time
is O(n + m) where n is the number of variables and m is
the number of variable occurrences in M .

4.4 Maximum Detectability of Constant Flow
Networks

So far we dealt with placing sensors to achieve maximum
fault isolation. In this section we demonstrate how to apply
Lemma 2 to study the special case of maximum fault detec-
tion for constant flow networks. The algorithm is Reduce.
In the proof of the theorem we show that Reduce outputs
a set system which is a graph. We use here that sensors can
be placed at any energy variable and that faults can happen
at any flow variable. This leads to a particular structure of a
constant flow network as depicted in Fig. 2 on the left.

Theorem 3. There is an algorithm that, given a constant
flow network (M,F, P ), outputs a sensor set S ⊆ P which
achieves maximum fault detection and is at most 2 times
larger than the smallest such sensor set. Its running time
is O(n2m) where n is number of variables and m is the
number of variable occurrences in M .

Proof. Let MCFN be some constant flow network with the
perfect matching X which is naturally given by MCFN. The
claim of the proposition follows from Lemma 2. We just
have to observe that |D| ≤ 2 for every D ∈ D. This is due
to the partition of the vertices of G = G(B(MCFN), X) into
V1 and V2: V1 are the vertices where sensors can be placed
and V2 are the vertices where a fault can happen. Moreover,
every vertex v in V2 has in-degree exactly two. These two
neighbors, v1 and v2, are from V1 andG contains only edges
from v1, v2 to v. The vertices v1 and v2 have in-degree 0 and
are thus not reachable from any other vertices in V1. (See
also Fig. 2, left.)

Thus, we have an instance of Minimum Vertex Cover.
A 2-approximation algorithm can be found e.g. in [8], pg.
1024.

5 Conclusion
We provided efficient algorithms for sensor placement in
flow and sensor networks in the framework of Frisk and
Krysander [1]. We showed how to reduce the study of fault
detection and isolation to graph reachability. Our reduc-
tion runs in time O(n2m). We also used the concepts of
graph reachability to design and analyze an efficient approx-
imation algorithm for the case of symmetric variables-in-
equations graphs. Our algorithm runs in timeO(n+m) and
is thus able to handle moderately large instances.

Although our results are tailored towards studying par-
ticular models of flow networks and sensor networks, we
think that our approach makes it easy to study sensor place-
ment for other special cases of sensor placement too. For ex-
ample, we presented another application of our approach to
study maximum fault detection of constant flow networks.
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1 Abstract

In many real-world applications one would like to make use of the knowledge acquired from related
domains on previously unseen domains. This problem is known as domain generalization, and re-
cently has started to gain attention in the machine learning community [3, 1]. Domain adaptation [5]
and domain generalization are subareas of transfer learning, aiming to find a shared subspace for re-
lated domains. While domain adaptation methods require at least some input data from the target
domains, domain generalization methods are designed to generalize to previously unseen domains.

Transfer Component Analysis (TCA) [5] is a domain adaptation technique that aims to learn a shared
subspace between a source domain and a target domain. The shared subspace consists of some
transfer components learned in a reproducing kernel Hilbert space (RKHS) [4] using maximum mean
discrepancy (MMD) [2]. In the subspace spanned by these transfer components, data distributions
of different domains are close to each other and data properties are preserved.

In this paper, we extend the formulation of TCA to multiple domains. Besides the possibility of
using this extension in domain adaptation problems we propose to use it for domain generalization
as well. Our solution is based on the idea of learning a shared subspace between source domains
and using this subspace for related target domains – without re-training. We present and evalu-
ate two variants of our extension, an unsupervised version to which we refer as Multiple-Domain
Transfer Component Analysis (Multi-TCA) and a semi-supervised version called Multiple-Domain
Semi-Supervised Transfer Component Analysis (Multi-SSTCA).
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