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Z: An Elementary Combinatorial

Approach

Bernhard A. Moser∗
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January 30, 2015

Abstract

This presentation reviews the article [7]. The problem of determining the
distribution of the range of a simple random walk has been treated exten-
sively in the literature. Feller [3] computes the distribution of the range of
a standard Brownian motion and derives estimates for the discrete case. In
this article he points out that the problem of finding exact formulae for the
distribution of the range is difficult to solve in the discrete case. The asymp-
totic behaviour of the range is investigated, e.g., by [2], [4], [9]. In 1996 the
problem was solved by P. Vallois by exploiting martingale techniques [10].
However, the solution by elementary combinatorics has remained an open
problem sind 1951.

In this research we demonstrate that Feller’s problem can be solved in
an elementary and concise manner. We present two approaches, both of
them rely on Hermann Weyl’s discrepancy measure [11]. The first approach
exploits the fact that the range of the partial sums of the elements of a
sequence defines a norm, the discrepancy norm. The n-dimensional unit
balls of this norm can be characterized as a zonotope. This allows us to
turn the original combinatorial problem on Z into a known path enumeration
problem on a bounded lattice Ld = (0, 1, . . . , d). The solution is expressed in
terms of the adjacency matrix Qd of the corresponding bounded walk. The

∗Supported by Austrian COMET Program.

1



second approach exploits the algebraic structure of the adjacency matrix Qd

by representing it as sum of a left and a right shift matrix, Q−
d and Q+

d ,
respectively. It is shown that a product of these non-commutative matrices
can be represented in terms of the discrepancy norm of the sequence of the
corresponding signs, −1 and +1, respectively. This leads to the intuitive
Lost Walker Lemma, which immediately provides the solution.
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Abstract: 
 
During the past several years, image segmentation techniques have been developed and 
extensively used in a variety of applications as an important tool to extract objects of interest. 
Usually image segmentation is an initial and vital step in a series of processes aimed at overall 
image understanding. In an image processing process, we need to divide the image into a 
number of significant areas and objects we are interested in using image segmentation 
technology. 
Segmentation is the process of partitioning an image into a set of distinct regions, which are 
different in some important qualitative or quantitative way. This is a critical intermediate step in 
all high level image processing and computer vision tasks.  
In the past decades, many image segmentation algorithms and tools have been developed and 
are used to process images in different domains, such as pictures taken indoors and outdoors, 
aerial images, medical images, and videos. Particularly, active contour methods for image 
segmentation have attracted tremendous interest in the computer vision community in recent 
years.  
Active contour models are popular in the regard. Chan and Vese [1] proposed an active contour 
without edges scheme based on the classical work of Mumford and Shah [2] variational energy 
minimization model. 
Compared to classical image segmentation methods, such as region splitting/merging, and pixel 
clustering, active contour methods are more robust by considering well-defined, comprehensive 
segmentation cost functions and seeking their globally optimal solutions. 
Nowadays, added to material use, image segmentation technique has been widely used in 
object detection and recognition, image editing, image compression, and image database 
search. For example, segmentation is used as a pre-processing section of object recognition, i.e. 
face, iris, finger-print recognition etc., to locate or detect the target objects. In addition, in 
traffic, meteorological, military and medical area, image segmentation is also becoming a vital 
technique.  
This model is used widely in the medical imaging field, especially for the segmentation of the 
MRI scans of the brain, heart & trachea [3]. 
 

Keywords: Segmentation, Chan-Vese, level sets [7], Gray, Color/ Texture Image Segmentation. 

 

 

 

 



 

CHAN-VESE MODEL FOR GRAY IMAGES: THE FITTING ENERGY FUNCTIONAL 
 

Image gray feature is based on the two properties of gray pixel value: Discontinuity and 

similarity. Pixels within the region generally have gray similarity.  

The Chan–Vese model (CV) is a specific case of the Mumford–Shah problem [2] which 

solves the minimization of (1) by minimizing the following energy functional:  

 

 

 

where c1 and c2 are two constants which are the average intensities  of u0 inside and 

outside the contour, respectively.  ,  , 1 and  2  are positive constants, 

 The first term of equation (1) controls regularity by penalizing the length of the contour 

C. 

 The second term penalizes the enclosed area of C to control its size.  

 The last two terms penalize discrepancy between the piecewise constant model u0 and 

the input image.  

 

 “  ” adjusts the length penalty which balances between fitting the input image more 

accurately (smaller  “µ”) vs. producing a smoother boundary (larger “µ”) 

 “ “sets the penalty for the area inside C. When   is large, the object is 

supposed to be small. And when it is small, the object gets larger.   

 “ 1  “And “ 2  “are two regulation parameters for the force pointing inside and 

the force pointed outside.  They control the fitting within each segment. Usually fixing   

1  = 2  =1. 

In the paper: Active contours without edges [1], the last two terms can be in general 

interpreted as two forces.  

 

 The first term can be seen as a force to shrink the contour.    

 The second term as a force to expand the contour.  
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These two forces get balanced when the contour reaches the boundary of the 

interested object. In another word, the contour C is equal to the boundary of the 

objects. Basically, if we swap c1 and c2, the shrinking and expansion is also swapped. 

These shrinking / expansion operations can be defined at each point of the contour 

according to the constraints of the image.  

In order to understand what is going on with this idea, we can see some figures from 

the original paper [1]. 

For example, let's see the following four cases. Simply define everything in black  region 

to -1 and everything in gray region to 1. And here c1 and c2 could be interpreted to be 

the mean value of everything inside of the contour C and the mean value of eve rything 

outside of the contour C, respectively. Here u0 stands for the entire image. 

 

Figure 1: different positions of the curve. The “fitting energy” is minimized only for the case when the 

curve is on the boundary of the object (source [1]).  

 

For example if we take the first case (top left):  



The initial contour covers the whole object (-1) and some gray region (+1). 

 Thus 0< c1< 1 and c2 = 1. Notice the integral above is only respect to inside region of 

u0 or outside region. Clearly, if we use everything outside of the contour to minus c2, 

we will get zero. Hence the second term F2 =0. Because 0< c1< 1,  when we use 

everything inside of the contour to minus c1 and find the sum of  the squares as the 

formula showed, we will reach some big positive number. So we will get F1>0. Now 

F1>0 but F2=0. Therefore, the contour will shrink itself in the next step. 

Finally, when our contour C reaches the boundary of the object, F1 = 0 and F2 = 0. As a 

result, the contour C reaches its equilibrium. Hence we find the contour of the object 

and thus we could get its segmentation.  

The figure below can show more clearly the different directions take n by the curve 

while evolving. 

 

Figure 2:  Evolution of the curve in the image. Shrinking and/or expansion operations according to the 

constraints of the image following the curve’s normal direction are taken by the curve when evolving.  

 is the level set function. “-“ and “+”  define the sign of the level set function.  

Note that this method can be extended to segmentation using other image features as color and 

texture [5], [6]. Besides, another extension of this method is the multiph ase-segmentation, which 

permits to distinguish between more than two regions in one image [4]. 

 

Conclusion 
The Chan-Vese algorithm for image segmentation shows that it is effective on a wide 

variety of images. It is especially useful in cases where an edge-based segmentation 

algorithm will not suffice, since it relies on global properties (gray level intensities, 

contour lengths, region areas) rather than local properties such as gradients. This 

means that it can deal gracefully with noisy images, blurry images, and images where 



the foreground region has a complicated topology (multiple holes, disconnected 

regions, etc). 
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Dynamic Inclusion of New Event Types in Visual

Inspection using Evolving Classifiers

Edwin Lughofer
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Abstract

In this talk, we are dealing with the automatic inclusion of new event
types in visual inspection systems. Within the context of image classi-
fication for recognizing ”OK” and ”not OK” parts, a certain event can
be directly associated with a class, as events are usually independent and
disjoint from each other. In this sense, we are dealing with the prob-
lem of integrating a new class into the image classifier on-the-fly, once
specified on-line by an operator. We are using evolving fuzzy classifiers
(EFC), which are relying on fuzzy rule bases and are able to adapt their
structure and update their parameters in incremental manner. The novel
methodological aspects lie 1.) in appropriate structural changes in the
EFC whenever a new class appears and 2.) in the estimation of the ex-
pected change in classifier accuracy on the older classes seen before, which
is based on an analysis of the expected change in the classifier’s decision
boundaries. The second point is an important aspect for operators, as
they are already familiar to work with established classifiers that have
some accuracy in classification. The new concepts will be evaluated on
a real-world visual inspection scenario, where the main tasks is to clas-
sify several event types which may occur on micro-fluidic chips and may
lead to the deterioration of their quality. The evaluation will be based on
two image streams recorded at the inspection system on-line, containing
several event types and representing the real production order.

Keywords: visual inspection, new event types, integration of new
classes on-the-fly, evolving (fuzzy) classifiers, expected change in classi-
fier’s accuracy
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