Exercises Fuzzy Logic

November 11, 2010
9. Assume that $\lambda \in]-\infty, 0[$ and that $f:[0,1] \rightarrow[0,1]$ is defined by

$$
f(x)=e^{\frac{x^{\lambda}-1}{\lambda}} .
$$

Show that f is a bijection. Is the function $T:[0,1] \times[0,1] \rightarrow[0,1]$ given by

$$
T(x, y)=f^{-1}(f(x) \cdot f(y))
$$

a t-norm?
10. Identify the t-norm T which is determined by the additive generator $t:[0,1] \rightarrow$ $[0, \infty], x \mapsto(1-x)^{2}$.
11. Identify the t-norm T which is determined by the additive generator $t:[0,1] \rightarrow$ $[0, \infty], x \mapsto \frac{1-x}{x}$.
12. Identify for each $\lambda \in]-\infty, \infty$ the t-norm T_{λ} which is determined by the additive generator $t_{\lambda}:[0,1] \rightarrow[0, \infty]$, where t_{λ} is given by

$$
t_{\lambda}(x)= \begin{cases}-\log x & \text { if } \lambda=0 \\ \frac{1-x^{\lambda}}{\lambda} & \text { otherwise }\end{cases}
$$

13. Show that the following implication holds: If $t:[0,1] \rightarrow[0, \infty]$ is an additive generator of a continuous Archimedean t-norm T and $c>0$, then also $c \cdot t$ is an additive generator of T.
