Exercises Fuzzy Logic November 11, 2010

9. Assume that $\lambda \in (-\infty, 0)$ and that $f: [0, 1] \to [0, 1]$ is defined by

$$f(x) = e^{\frac{x^{\lambda} - 1}{\lambda}}.$$

Show that f is a bijection. Is the function $T: [0,1] \times [0,1] \rightarrow [0,1]$ given by

$$T(x,y) = f^{-1}(f(x) \cdot f(y))$$

a *t*-norm?

- 10. Identify the t-norm T which is determined by the additive generator $t : [0,1] \rightarrow [0,\infty], x \mapsto (1-x)^2$.
- 11. Identify the t-norm T which is determined by the additive generator $t : [0,1] \rightarrow [0,\infty], x \mapsto \frac{1-x}{x}$.
- 12. Identify for each $\lambda \in]-\infty, \infty[$ the t-norm T_{λ} which is determined by the additive generator $t_{\lambda} : [0, 1] \to [0, \infty]$, where t_{λ} is given by

$$t_{\lambda}(x) = \begin{cases} -\log x & \text{if } \lambda = 0, \\ \frac{1-x^{\lambda}}{\lambda} & \text{otherwise.} \end{cases}$$

13. Show that the following implication holds: If $t : [0,1] \to [0,\infty]$ is an additive generator of a continuous Archimedean t-norm T and c > 0, then also $c \cdot t$ is an additive generator of T.