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FS-LIRT—AnN Inductive Learning Method for Creating
Comprehensible Fuzzy Regression Trees

Mario Drobics

Abstract — In this paper we present a novel approach to data-driven fuzzy modeling which
aims to create highly accurate but also easily comprehensible models. This goal is obtained by
defining a flexible but expressive language automatically from the data. This language is then used
to inductively learn fuzzy regression trees from the data. Finally, a detailed comparison study on
the performance of the proposed method and an outlook to future developments.
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2 1 Introduction

1 Introduction

Fuzzy logic based systems can be used to gain insights on a complex system for which no ana-
Iytical model exists. For many complex technical applications the problem arises that no proper
mathematical formulation can be found to describe the behavior of the according system. The
only available information might be a set of measurements taken from the system. Then the goal
is to find a functionf that models the inherent connection between the input parameters (settings
and measurements) and the goal parameter (final parameter of interest) that is hidden in the data.

To find such a functionf, however, is not always the only objective. While statistical re-
gression [DS81] or neural networks [MR86, RM86, Zur92] allow to solve such kinds of machine
learning problems, they leave the resulting functfoas ablack box i.e. a plain function whose
internals are difficult or impossible to comprehend. In many practical applications, however, qual-
itative insights into the structures ¢fare desirable. For such tasksle-based systenae most
appropriate. They easily allow qualitative insight, since the funcfiaos represented by logical
rules in a close-to-natural-language manner. In the following, assume that we are not necessarily
interested in the full functiory, but at least in significant bits of knowledge abguand their
inherent structures. Rule based systems or decision trees [BFS084, Qui93] have been profen to be
easily comprehensible and are therefor ideal for this task of qualitatisigualitative analysis.

For the remaining, let us consider a data¥atf K samples

X ={xt, ... xK}, 1)
where each samplé &£ 1, ..., K) has the samé: + 1)-dimensional structure:
Xi = (:Ellv cee 7miwxiz+1)
e Xy x- - x Xy xXpn 2)

The firstn dimensions/variables are the inputs; the last dimension/variaklel is the output
under investigation. In the following, we refer to thah dimension{ = 1,...,n) asr-th input
attribute Then + 1-th dimension is calledjoal attribute Ideally, the overall objective of this
machine learning problem is then to find a function

fiXix o x Xy — Xpga 3)

such that the inherent connection between the input attributes and the goal attribute hidden in the
data set¥ is modeled as well as possible. Therefore, such machine learning problems can be
regarded as some kind of data fitting.

To be able to handle numeric attributes in rule-based models, it is indispensable to define a
discrete set of predicates for these kinds of attributes. If this quantization is done by means of
partitions into crisp sets (intervals) as in traditional machine learning, small variations (e.g. noise)
can cause large changes in the classification quality and instable results. This entails the demand
for admitting vagueness in the assignment of samples to predicates. Fuzzy sets [Zad65] perfectly
solve this problem of artificial preciseness arising from sharp interval boundaries.

A second benefit of fuzzy logic systems like decision trees [Ada80, ZS96] or rule-based
methods [TS85, BYTPO03] is, that they create not only a computational but also an interpretable
model for f. The resulting function helps the user to better understand the behavior of the sys-
tem [CCHMO3]. It turned out, however, that in many cases the simple application of methods for



creating interpretable, computational models from data is not sufficient. There is often the need
for higher accuracy, by preserving the interpretability of the systems. Consequently, recently sev-
eral approaches were developed to optimize given interpretable logic fuzzy systems [CCHMO3].
These approaches, however, always focus on either interpretaibiigcuracy.

To overcome these limitations, we will compute semantically meaningful fuzzy sets a priori
to the rule induction process, integrating user defined fuzzy predicates. We will then use these
predicates for inductive learning of fuzzy decision trees to obtain comprehensible fuzzy models
from data. To obtain models with higher accuracy a regularizes optimization technique can be
applied to the whole model, afterward.

2 The Underlying Language

To define the underlying language for our fuzzy models, we have to consider the different types of
input attributes that can occur. Basically, we can distinguish between three types of attributes:

Boolean categorical attributes: The domainX; is an unstructured finite set of labels, for in-
stance, types of car engines (gasoline, Diesel, hydrogen, electric) or classes of animals
(birds, fish, mammals, etc.). The attribute valméare single elements of the label sét

Fuzzy categorical attributes: There is again an unstructured finite set of labels, but with possible
overlaps. Therefore, values of such kinds of variables may be fuzzy sets on this set of labels.
For example, assume that we are given a finite set consisting of different grape varieties.
Then blended wines (cuvees) cannot be assigned to single categories crisply.

Numerical attributes: The underlying domaitX; is the set of real numbers or a subset of these
(e.g. an interval). The attribute value$ are real numbers, e.g. pressures, temperatures,
incomes, ratios, etc.

Note that Boolean categorical attributes are special cases of fuzzy categorical attributes, since any
crisp label can be considered as a fuzzy set of labels, too.

Fuzzy predicates for categorical attributes, boolean or fuzzy, can be defined easily in a straight
forward manner. Finding appropriate fuzzy predicates for numerical attributes, however, is often
a subtle problem for which different approaches exist.

In our approach, we create the fuzzy sets based on the data set given by considering the se-
mantics of the corresponding linguistic expressions automatically using a method@aitgu-S
[Dro04]. By comprising also ordering based predicates we are able to define comprehensible, but
still expressive predicates automatically [BBO3].

3 Rule Induction

To create a decision or regression tree for a specific decision problénctive learnindi.e. learn-
ing from examples) is a widely used approach.

Using not only crisp but also fuzzy predicates, decision trees can be used to model vague
decisions. Several approaches dealing with such fuzzy decision trees focus on the problem of
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vague class memberships [MC93, Mar00, PF01, ZS96]. Viewing decision trees as a compressed
representation of a (fuzzy) rule set, enables us to use decision trees not only for classification, but
also for approximation of continuous output functions. Recent approaches in this direction try to
create large trees, that solve the resulting optimization problem [BLM97, Jan98]. These solutions,
however, can no longer be interpreted easily—which is usually one of the main advantages of
regression trees over numerical optimization methods or artificial neural nets. Using pruning and
back-fitting strategies can help to overcome this shortcoming [OWO03]. All these approaches,
however, tackle the problem of finding accurate but comprehensible models from an optimization
point of view and do not pay attention to the underlying language used, nor are they capable of
using a domain specific set of fuzzy predicates.

In our approach to inductive learning of fuzzy regression trees we pay special attention to
comprehensibility, accepting a slightly lower performance compared to other approaches at this
stage. This is achieved by using the general language defined in section 2 and by creating model,
as compact as possible. The so obtained models is finally tuned with respect to predictive accuracy
using a post optimization technique described in the subsequent section.

3.1 Fuzzy Regression Trees

A general regression tree consists adat nodewith a number othild nodes Each of these child
nodes can either bel@af nodeor the root node of a new subtree. If each non-leaf node has exactly

two child nodes, the tree is callé&ihary. We denote the set of all nodes with = {nl, ... ,nN},
the set of all leaf nodes with = {n"1,... n't c N’} and the set of non-leaf nodes withl =
{nMi ... nMN c N} where we define the nod€ to be the root node.

To each non-leaf node’ € M, a predicate’ is associated which is used to decide which of
the child nodes to process next. For each non-leaf méde M the child nodes are denoted as
n{ andn’ and we define that the left branchi{ is selected when the corresponding predigéte
is fulfilled and the right oner(}) otherwise. The uniquely determined path from the root node
to a sub-node’ € N is calledcomplete branclof the node and will be denoted &5 Each leaf
noden’ € L is associated with a constant valtiec R or a local modet’ (x), X ~ R.

In the following, we will restrict ourselves to binary regression trees. We overcome the main
problem of binary trees—their increasing size for complex problems, by using a flexible under-
lying language, especially ordering-based predicates. This enables us to determine the ideal seg-
mentation point automatically and to reduce the overall number of predicates involved.

3.2 Inductive Learning of Fuzzy Regression Trees-+S-LIRT

The basic idea behinBS-LiRTis to create a tree where the leaves approximate the desired goal
function as good as possible. By associating numerical values (or functions) with the leave nodes,
we finally obtain a Sugeno- or TSK-type controller. The method is cd&®d.iRT (Fuzzy Set
based.inearRegressiorTrees) as in most cases linear models are associated with the leaf nodes.

We use the mean squared error measure which ensures that the model accuracy increases the
larger the tree grows. The mean squared error for a given preditated a sample set’ is
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Algorithm 1 (FS-LIiRT)

Input: goal attributem
samplesX ., = {x!,...,x%}
set of test predicateB
Output: tree nodeN .y,

if stopping criterion is fulfilled
{
computec™ = {cf™, -, g
Ncuris leaf node with class assignmeTit,,,

}

else
{
find best predicat®’ = argminpcp MSEpT(P, Xcur)
compute new memberships for the left branch
e (x7) = t(px,, (x') A P(x1))
compute left branch
N® =FS — LiRT(C, X% P)
compute new memberships for the right branch
o (X1) = £(fx, (x7) A ~P(x))
compute right branch
N© =FS — LiRT(C, X°,P)
Neur is parent node with childreV® and N©

computed according to:

D oxex M (X)(2p(X) — ¥ny1))?

MSEpr (P, X) = | ; (4)
Zp(x) = t(P(x))z(X|P) + t(=P(x))z(X|-P), (5)
wherex,, 1 is the desired goal valuép(x) is an estimate of the output according to predidate
and
_ E cx t(P(x))Tn i1
Z(X|P) = =X
S ST/ 25)

is the average goal value with respect to the predi€ate

Outline: Starting with a single root node a binary regression tree is grown in a top-down manner.
The mean squared error is computed and the predicates are sorted with respect to their actual
relevance. Then the most relevant predicate is chosen and associated with the tree node under
investigation. This procedure is repeated recursively until a stopping condition is fulfilled.

The leaf node output’ for a leaf nodd’ is defined as the weighted average of the 1-th
attribute (our goal attribute) according to:

> oxex WV (%))@nt1
ZXEX t(lj (X))

J = (6)



6 3 Rule Induction

To achieve a more accurate approximation it is also possible to define the cugsua linear
combination of the inputs. This can be achieved by solving the local least squares problem

Z (t(lj(x))(;vn+1 — o — Z ajixi)>2 = min, @)

xEX i=1 “
T - . .
wherea; = (ajo, aj1,- .., ;)" are the according linear weights.

Alternatively, we can define the output for a leaf ndtlalso as those values which minimize
the quantization error in the parent node. Suppose, that therriddeexpanded by creating two
child nodesj; = n andjs = ni. The optimal output values of these two nodes is then defined as
the solution of the following minimization problem:

Sea (10 (e — (0 (<) + 112 (x)e)” .
> oxex (%)) ¢iL,072
The solution to this minimization problem can be computed efficiently using least squares op-
timization methods. The main benefit of this approach is, that it takes to a certain degree the
structure of the tree into account, while the approaches in equation (6) and (7) only give a local
solution. This results in a better coverage of the original output range. As, however, only two
levels of the tree are considered, its influence decreases, the larger the tree grows.

2

The algorithm stops if any of the following stopping criteria is fulfilled (note, that if pruning
is applied only the first stopping criteria is applied):

= No more samples: if the number of samples decreases under a certain threshold (Default:
10% of the orignal data).

= Minimum variance: if the variance of all samples in a node is below a given threshold
(Default: 5% of the range of the goal attribute).

= Maximum depth reached: if the depth of the tree reaches a predefined maximum (Default:
10).
= No sufficient increase: if the relative increase with respect to the mean squared error
MSE(p?, X%)

(¢’ being a child node of') is below a given threshold (Defaull:10).

Optionally, pruning can be applied to the tree generate@®LiRTto optimize the size of
the tree. The goal is to achieve a good compromise between a models simplicity and its predictive
accuracy, by removing irrelevant parts of the model. By pruning a tree, the new complexity of the
model is automatically identified without the need to a priori establish thresholds for the stopping
conditions which could be sensitive to problem specifics. Pruning also enhances the interpretabil-
ity of a tree, a simpler tree being easier to interpret.

We use the same pruning technique as presented by [OWO03]. They used a four step procedure,
where first the inner nodes of the tree are sorted with respect to their sum-squared-error. Then a
sequence of subtrees is generated by subsequently deleting the child nodes of the nodes in this
sequence. Thirdly, the mean-absolute-error on a pruning data set is computed for each of these
subtrees. Finally, the smallest tree within one standard error is selected.
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3.3 Deduction with Fuzzy Regression Trees

To obtain real-valued output from fuzzy regression trees, the regression tree can be inferred di-
rectly by computing the output of a tree nodéx) according to:

¢(x) = t(p'(x))ei (x) + t(=p'(x))ch(x) (9)

This formula is evaluated recursively to obtain the output of the root nbde

Alternatively, we can transform the regression tree to a corresponding TSK fuzzy system. The
transformation is performed according to:

IFn/(x) THENE (x),  V¥nl € L. (10)

The degree’ (x) to which a sample belongs to the leaf node is computed as the conjunction
of the predicates on the corresponding complete brafich

nl(x)= /\ b(p'(x))

ptebI
The functionbg (p') returnsp’ when the left (true) branch anep® when the right (false) branch of

noden’ is part oft’.

4 Examples

4.1 Two-Dimensional Example A

To illustrate the potential of the proposed method for fuzzy modeling, we tried to reconstruct the
following function from data® = 2, X; = Xy = [0,100], X5 = [—100, 100]):

™)

We selected< = 1000 random sampleézt, %) from the rangeX; x X, = [0,100]2. The final
data set was constructed as

X ={(a},ah, fap—a(al,@y)) [i=1,...,K}.

Six fuzzy sets with bell-shaped membership functions were created for the first input attsibute
and two for the second input attribute (see Figure 1).

fep—a(x1,22) = 2 - sin <

FS-LIRTwas executed to create a compact regression tree. In a second run, a larger tree was
created and pruning was applied to remove unnecessary nodes. The pruned tree is shown in Fig. 2.

Parameter| Setting 1| Setting 2
Logic Product | Product
SUPPmin 0.05 0.01
stddevpin | 0.1 0.001
INCrmin 0.01 0.001
pruning no yes
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“25 25 50 75 100 125 150 -200 -100 100 200 300

Figure 1: Fuzzy sets for the function approximation problem 2D-A

Finally, we compared the output of the resulting fuzzy controller with the original values. The
results for the original and the pruned tree are shown below. While the original tree was much
larger than the pruned tree, the pruned tree shows a almost equal performance. Figure 3 shows
plots of the original functiorfap_ 4 and the function defined by the resulting Sugeno system of
the pruned tree.

Parameter | Setting 1| Setting 2
Tree size 22 7
Correlation 0.97 0.98
Average Error 8.18 8.15

Average Squared Errgr97.87 100.44

4.2 Two-Dimensional Example B

Second, we tried to find a fuzzy controller to approximate a more complex two-dimensional func-
tion (n =2, X1 =Xy = [—1, 1], X3 = [O, 1])

1
d(z1,22) = (] + 23)2
cos(bmd(z1, x2)
1+ 10d(ﬂ?1, .Tg)

fop—B(x1,22) =

We selecteds’ = 1000 random sampleér?, %) from the rangeX; x X» = [—1,1]%. The final
data set was constructed as

X = {(xil,l’;,ng,B(l"i,xé)) ’ 1= 1,,K}

Fifteen fuzzy sets with bell-shaped membership functions were created for the two input attributes
x1 andzs. The domainXs of the goal attribute has been covered by six fuzzy sets with bell-shaped
membership functions.

Finally, FS-LiRTwas executed to create a regression tree. We&hiRTusing the following
parameter settings:

Parameter| Setting
Logic Product
SUPPmin 0.01
stddevp;, | 0.01

INCrmin 0.01
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N x_IsAtLeast H (100)

T ———_Is_H (40)
T— el ———x_Is_H (24
T Pruned. (16)
Fl—m | Pruned. (9)
Fl—om © Pruned. (16)
Fl — x_Is_L (60)
Tl ————y Is L(29)
i — | Pruned. (18)
Fl—m ! Pruned. (11)
F ——x_Is L (31)
T—m | Pruned. (9)
Pl Pruned. (22)

Figure 2: Regression tree constructed by FS-LIRT for the function approximation problem 2D-A
after pruning

Original function Recalled function

LA
ZLA TR
LR
R
LI
R

L
2L
&%

100.

Figure 3: Test functionfop_ 4 (left) and the function defined by a Sugeno fuzzy system con-
structed by FS-LIiRT (right)

In our experiments it showed, that pruning did not result in any performance improvements.
This is most likely caused by the fact, that the function has a very local behavior, which can not
be generalized easily.

Finally, we compared the output of the resulting fuzzy controller with the original values. The
results for the original and the pruned tree are shown below. Figure 4.2 shows plots of the original
function fop g and the function defined by the resulting Sugeno system of the original tree.
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Parameter | Result |
Tree size 68
Correlation 0.9052
Average Error 0.092

Average Squared Errar0.013

Original function Recalled function

Figure 4: Original and recalled function fg§z obtained using-S-LiRT

4.3 High-dimensional Data Set

To briefly illustrate the potential of the proposed method for fuzzy modeling, we tried to recon-
struct the following widely used target function:

0.5 U ws—
fop (1,2, T3, 24, T5, T6) = T1 + T9° + w324 + 2e2(E7T0)

with n = 2, X; = [1,5], X2 = [1,5], X3 = [0,4], X4 = [0,0.6], X5 = [0,1], andXs = [0, 1.2].
We selecteds = 1000 samplegz?, %) from X; x Xs x X3 x X4 x X5 x X¢ for training and
K = 2000 random samples for validation.

Finally FS-LiRTwas executed to create a regression tree. WE&hiRTusing the following
parameter settings:

Parameter| Setting 1| Setting 2
Logic Product | Product
SUPPmin 0.025 0.025
stddevy, | 0.1 0.001
incrmin 0.01 0.001
pruning no yes

Then we compared the output of the resulting fuzzy controller with the original values. Figure
5 shows a comparison of the original functigyp and the function defined by the resulting Sugeno
system using the second parameter setting.
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Parameter | Setting 1| Setting 2
Tree size 62 52
Correlation 0.955 0.953
Average Error 0.6 0.617

Average Squared Errar0.65 0.676

Recall

Recall

Original

25 5 7.5 10 125 15 17.5 20
Original

Figure 5: Input-Recall plot fof, 5 obtained usindgS-LIRT
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4.4 Comparison of Results

To illustrate, how the rule induction methods can be used for numerical prediction, we have applied
them on three regression problems from the UCI repository and on three artificial two-dimensional
regression problem. Again, we used 10-fold cross validation and computed the average correlation
coefficientoc. We compared the obtained results with two of our own methB8s|D3 [DB02]
andFS-FOIL[DBKO02], as well as three methods from the WEKA toolkit [WF0O0], namislyear-
RegressionM5-Prime[Qui92], andM5-Rules The first method creates a simple linear regression
model to solve the regression learning problem. The latter two metM&®rimeandM5-Rules
generate decision trees or decision rules to do so. We ran these methods using only constant output
values, but with smoothing enabled using the Weka Toolbox 3-4.

First, we compared the average correlation coefficient between the original output and the
predicted values for the test data. The results are shown in Figure 6. We can see, that for the
data sets from the UCI repository our methods performed equally well as the other methods. We
can, however, also observe, that the results obtained using simple linear regression have the same
performance, too. This indicates, that these problems are almost linear and complex methods
do not provide any additional benefit at all. For the complex two dimensional problems where
oscillations are involved, the more complex methods outperform linear regression easily. In these
cases our methods perform also much better M&fPrimeandM5-Rules This is mainly caused
by the fact, that using exponential type fuzzy sets enables us to create smooth transitions between
the different rules.

AUTO-MPG HOUSING SERVO 2D-A 2D-B
.893332 .863603 .873331 .91616 0.923069
.905819 .874305 .940749 .953215 0.850051
.564103 .836021 .756518 .892246 -0.144268
.923931 .848237 .848528 .6455 0

.881499 .816674 .861871 .8722 0.8427
.909242 .883161 .899288 .8563 0.8641

CreateID3
CreateLIRT
CreateFOIL
LinearRegression
M5Rules

M5P

.949423
.959669
. 777745
L9122
.8797
.8995

o o oo oo
o o oo oo
o o o o oo
o oo o oo
o 0o oo oo

Figure 6: Comparison of average correlation for different regression problems

Finally, we compared the corresponding size of the models learned. The results are shown in
Figure 7. Again, we can see that for the UCI data sets the size of the resulting models is almost
equal. For the artificial data sets, however, the size of the models obtainedSsltiRTare more
compact than those obtained using the other methods. Again, the reason for this behavior is the
usage of exponential type fuzzy sets. Interestingly, the size of the rule bases is in general smaller
than of the regression trees. Detailed evaluation results are shown in Table 1.

AUTO-MPG HOUSING SERVO 2D-A 2D-B 6D
CreatelID3 10 17 18 6 79 39
CreateLIRT 15 24 11 13 53 69
CreateFOIL 4 8 8 3 1 8
LinearRegression 0 0 0 0 0 0
M5Rules 12.3 13.1 5.1 85.6 29 51.1
M5P 10.6 17.7 7.95 127.25 106.25 84.15

Figure 7: Comparison of average model size for different regression problems



Table 1: Detailed results for different regression problems

4.4 Comparison of Results 13
Data Set Algorithm Correlation MSE MAE Std.Dev. Model Size
AUTO-MPG | CreatelD3 0.893332 12.7866  2.58567  3.57808 10
AUTO-MPG | CreateLIRT 0.905819 10.9482 2.43566 3.31243 15
AUTO-MPG | CreateFOIL| 0.564103 60.7159 5.25665 6.47952 4
HOUSING CreatelD3 0.863603 24.1744 3.63304 4.75783 17
HOUSING CreateLIRT 0.874305 19.9721 3.13571 4.46946 24
HOUSING CreateFOIL| 0.836021 26.1163 3.49575 5.08848 8
SERVO CreatelD3 0.873331 0.579161 0.398723 0.760041 18
SERVO CreateLIRT| 0.940749 0.281946 0.335655 0.532581 11
SERVO CreateFOIL| 0.756518 1.05635 0.502508 1.03063 8
2D-A CreatelD3 0.91616 309.612 13.8261 17.5936 6
2D-A CreateLIRT 0.953215 175.52 10.5095 13.138 13
2D-A CreateFOIL| 0.892246 845.961 22.0571 29.0934 3
2D-B CreatelD3 0.923069 0.0186727 0.112004 0.135186 79
2D-B CreateLIRT 0.850051 0.0227944 0.125351 0.151023 53
2D-B CreateFOIL| -0.144268 0.107258 0.266526 0.289967 1
6D CreatelD3 0.949423 0.834273 0.71752 0.896518 39
6D CreateLIRT| 0.959669 0.612081 0.61876 0.782518 69
6D CreateFOIL| 0.777745 4.96319 1.61919 2.08278 8
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5 Outlook

While in this work we have only considered locally approximating functions, it is necessary to
consider the complete fuzzy model to obtain a globally optimal solution. We may then optimize
the shape of the underlying fuzzy sets, the local output functions, or both. While modifying the
underlying fuzzy sets together with the output functions will result in more accurate models it
turns out, that defining the output functions in a globally optimal way leads to very good results
and is computationally much less expansive.
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1 Introduction 1

1 Introduction

The topics presented in the following were developed during my PhD research at the Berlin Uni-
versity of Technology, in the Neural Information Processing group with Prof. Obermayer, between
1999 and 2004.

The following sections will concentrate on conveying the general picture of the presented al-
gorithms and approaches, without mathematical detail. If you would like to develop a deeper
understanding, my thesis, with a detailed account of this research and further references, is avail-
able (also online) as [Schoner, 2004].

2 Blind Source Separation for Optical Imaging

2.1 Optical Imaging

The term Optical Imaging (OI) summarizes a collection of methods for acquisition and processing
of brain image data. The goal is to support investigations and diagnostics of the functional archi-
tecture of human and animal brains; this summary concentrates on optical imaging of the visual
cortex. For a detailed introduction see [Bonhoeffer and Grinvald, 1996].

The technique of Optical Imaging of Intrinsic Signals uses very slight variations of light re-
flectance and absorption properties of the neural tissue! during neural activity to build functional
maps of the brain. In these, brain regions are color coded for preferred stimuli. As an example, in
ocular dominance maps, regions of the visual cortex preferring input from the left eye are coded
in a different color than regions preferring input from the right eye.

Image Sequences are taken by CCD or video cameras during presentation of different stimuli
from the exposed visual cortex under monochromatic illumination (500 — 800 nm wavelength).
The signal of interest is called mapping signal, and it is closely related to local activity of neuron
populations. This signal is overlaid by other, very strong signals. Among these are pulsing blood
vessels, global activity (also stimulus related, but on a coarser spatial resolution), further, not
stimulus related signals, and different sources of noise. As the mapping signal usually constitutes
only about 0.1% of total image intensity, its extraction is quite an interesting problem.

Conventional techniques, mainly image summation in conjunction with high- and low-pass
filtering and differencing the imagas acquired for different stimuli, use some questionable as-
sumptions, which led us to evaluate another approach, Blind Source Separation, presented in the
following.

2.2 Blind Source Separation

Blind Source Separation (BSS) algorithms allow to extract source signals from several mixtures of
several sources, if certain assumptions are met. One of these assumptions is that of a stationary lin-
ear mixing process, i.e. the mixing can be represented by a multiplication of a mixing matrix with
source vectors. Usually, the number of observed mixtures has to equal the number of extracted

'Tn contrast to Optical Imaging using Voltage Sensitive Dyes. The latter leads to better detectable signals, but is not
usable for certain experiments because of the toxicity of the dyes.
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sources. And as a third prerequisite, the original sources are assumed to be statistically indepen-
dent, or at least uncorrelated. These algorithms work by estimating a demixing matrix, which
optimizes some kind of measure of statistical independence of the resulting estimated sources.

Well known for this kind of problems are ICA (Independent Component Analysis) algorithms,
but we found an adaptation of a multiple decorrelation procedure to be better suited for optical
imaging data, because it explicitly uses the fact, that the recorded images are spatially smooth.
This adaptation is based on [Molgedey and Schuster, 1994], which diagonalizes correlation matri-
ces of the time series, for two different lags of the correlation. Our adaptations are two-fold: First,
we apply the decorrelation not to time series, but to pixels of the recorded images (decorrelating
them for different spatial shifts); secondly, we modified the algorithm to allow simultaneous di-
agonalization of several correlation matrices, which makes the algorithm less moise sensitive and
eases the selection of shifts.

For analysis of optical imaging data, the sources are assumed to be prototype images for
different signal components, while the mixtures are the different recorded image frames. Each
source can be present to a different degree in the observed mixtures, depending on its time course.
The BSS algorithm should then decorrelate the observations, and the mapping signal is chosen
among the resulting estimated sources by visual inspection or plausibility of time course.”

Figure 1: Application of Blind Source Separation to Optical Imaging data (Ocular Dominance
experiment). First row shows raw preprocessed data; second row contains the sources estimated
by BSS; third row are the time courses of the estimated sources; fourth row is the mapping signal
extracted using the conventional summation algorithm.

The mapping signal cannot be present before stimulus onset, and some knowledge about plausible rise and decay
times is available.
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2.3 Application

Figure 1 shows the application of the previously described algorithm to a real optical imaging
data set. The mapping signal estimate (first image in second row) is well separated from the other
sources, while it is not discernible in the original data (first row), even though that is already pre-
processed by temporal binning and low-pass filtering. Using the time courses of the estimated
sources, it is easy to select the right source as mapping signal among those found by BSS. The
conventional summation technique cannot separate the mapping signal from the blood vessel arti-
facts.

In conclusion, the presented approach can be very usefully applied to optical imaging. The
assumptions on a linear mixing process seem to be approximately fulfilled, as is also the case
for the decorrelated sources assumption (if decorrelation is performed in the spatial instead of the
temporal domain). A problem with the presented algorithm is, that it breaks down, if there are
movement artifacts in the data, e.g. moving vessels. In that case, the linear mixing assumption
does not hold any more, the algorithm estimates a lot of very strong "virtual" sources contain the
blood vessels, which strongly dominate the mapping signal.

3 Approximate Maximum Entropy

The Approximate Maximum Entropy model (AME), [Yan and Miller, 2000], seemed to provide
an elegant way to deal with incomplete data (missing values in a data matrix) and heterogeneous
features (categorical features and values on differing scales) in the context of classification. This
was the motivation for my research leading to an extension and evaluation of this model.

3.1 Basic Idea

The basic idea behind this model is to learn classification tasks by only taking explicitly stated
knowledge into account, while not making any unwarranted assumption beyond that. The real-
ization makes use of maximum entropy techniques introduced by [Jaynes, 1957]. The learning
takes place as maximization of the entropy of the joint pdf (probability density function) of input
features and classification goal, while the knowledge about the problem is stated explicitly as con-
straints to this optimization. This optimization has traditionally been intractable for realistic data
set sizes, but some approximations presented in [ Yan and Miller, 2000] now allow to perform this
for data sizes of several thousands of examples with a few hundred features. Instead of describing
the mathematics of this in detail, the following concentrates on an intuitive understanding of the
way this model works.

Figure 2 gives an illustration of an AME model. It learns a representation of the joint pdf of
features and target(s), and is very similar in structure and properties to Boltzman machines. In
contrast to e.g. multilayer perceptrons, it has a stochastic nature. That means, every node assumes
values according to a conditional probability distribution for that node, where the conditioing takes
place over the values of all nodes, which are connected by weights to that node. To make a predic-
tion using this model, the input nodes are clamped to the input values observed, followed by the
computation of the probabilities for the output/target value. In this regard, the AME model is also
similar to Bayesian Networks (BN). Among the differences to these are the kind of dependencies
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target

discrete features cont. features

Figure 2: Graphical representation of an AME model.

between the nodes (statistics of all orders for BN, only selected orders for AME), which is also
evident by the use of weights between nodes in the AME model. The concentration on some de-
pendencies, on the other hand, allows to take into acocunt dependencies between many features,
even if these are only weak. Another advantage is, that dependencies of lower order can usually
be estimated more reliably empirically than those of higher order.

The weights are learned as described using constrained maximization of the joint entropy.
Every weight in the model corresponds to one constraint, and its strength is adapted to exactly en-
force that constraint. Possible constraints include the fixation of occurence frequencies of values
of two or more features to those frequencies observed in a data set, for discrete features. Obvi-
ous constraints for continuous features are the consistency of empirical and model moments. The
flexibility of constraints which can used allows very flexible integration of features with heteroge-
neous structure, as well as incorporation of prior knowledge. Furthermore, by learning all relevant
weights, it is possible to perform general inference, where not one feature is explicitely marked as
a target, but where potentially every feature may be predicted, given (a subset of) the others.

3.2 Missing Values

The AME model allows several ways of missing values treatment. First, it provides a representa-
tion of the joint pdf of all features, which can be used to marginalize over the possible values of
missing features. Alternatively, the general inference mechanism can be used to predict some or
all of the missing values. Both of these methods should only be used, if not too many values are
missing (for performance reasons), and if the fact, that a value is missing, is not informative about
the feature to predict.

A third possibility, which is appropriate for informatively missing values, is the introduction
of an extra value for each feature, which is substituted for each missing value. This conserves
knowledge about the fact, that these values are missing, and the ability to work with discrete data
does not introduce a questionable interpretation of such values, which might arise, if this is done
for other models as well, e.g. support vector machines or multilayer perceptrons.

Another useful method is applicable, if there are more uninformatively missing values, than
can be treated by the first two methods, when these occur only during application of a learned
model. Given a complete trained model and the training data, it is possible to derive the model
appropriate for all subspaces of known features (subspace classificators).
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3.3 Conclusions

Evaluation of the presented model on artificial and customer data sets showed, that it can provide
advantages especially in those cases, for which I originally looked for an alternative to support
vector machines and multilayer perceptrons: if the features are very heterogeneous, and if the
flexibility in missing values treatment is necessary. It is less applicable to small data sets (few
examples), because the approximations used are not valid in this case.

Another positive property is the interpretability of AME models: the relation of the weights to
certain features allows the identification of the kind of dependencies in the data.

4 Support Vector Machines Extension

Support Vector Machines (SVMs) are a currently very successful and actively researched machine
learning technique, [Scholkopf and Smola, 2002]. They were developed with the explicit goal of
providing good generalization abilities when machines trained on one data set are applied to new
data. Unfortunately, there does not exist a technique to allow them the direct treatment of missing
values. Data sets with missing values have to be preprocessed such that only complete data is used
for training.

& class 1

X class 2

©/0 support-
vector

Figure 3: A simple classification problem with two classes (triangles red / crosses blue). The
classification boundary learned by the SVM is shown in black, the margin in shades of gray. On
the right side, the decision function of the subspace SVM for the vertical axis is shown, and its
classification boundary in the original space is indicated by dashes.

Here again, the subspace classificator idea proves sensible. It would be desirable to have the
ability to derive a SVM for a subspace of known features from a complete-space SVM. Unfortu-
nately this is not possible to do exactly, because the support vectors used by the machines may
be different. Training a SVM for all possible subspaces on the other hand leads to a combina-
torial explosion. Anyway, using the support vectors of the complete-space machine also for the
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subspace-machines provides an approximation for SVMs using Gauss-kernels, which is shown to
be useful for certain kinds of data sets in the following.

In figure 3, this is illustrated for a simple toy example. If the complete space SVM is projected
onto the vertical axis, the dashed classification boundary results (in the original space). Although
this is not optimal (it should probably be placed a little bit higher to misclassify the least number
of examples on new data), it provides a reasonable approximation.

Figure 4 on the other hand shows the classification accuracy of SVMs with Gauss kernels using
different missing values handling techniques. Training (horizontal axis) took place on a complete
training set, using the presented subspace classifier idea, using different imputation (filling in)
strategies (Nearest Neighbor Imputation NN, NN where the nearest neighbor is chosen only from
the same class, mean imputation), and finally using extra binary features for each feature, which
indicate, whether the corresponding original feature is missing (this was filled in using mean
imputation). Fewer methods were used for testing (see legend), because the "NN Same Class"
and "no MV" do not make sense or cannot be applied on test data.

100 e
fivedim 40% myv testing:
o 90
="= O Subspace
; 80 T T i + B NearestN.
L&)
el 20 O M™ean Imp.
g O Extra val
® 60 T T —
50
training: no MV Subspace Nearest Neighbor NN Same Class Mean Imp. Extra Val

Figure 4: Test set accuracy for different combinations of missing values handling methods during
training and testing. Error bars are at one standard deviation for 5 runs, but do not truly reflect
variation in the algorithm but that due to different training/test set compositions.

Although the "Subspace" idea is clearly not suitable during training, it provides the best results
during testing (especially when combined with "NN Same Class" or "Nearest Neighbor" for train-
ing). These advantages are prominent especially, when the data consists of several blobs, which
are arranged non-trivially, i.e. which cannot be linearly separated. "Subspace" does not work well
during training, because in that case usually several examples with missing values become support
vectors, and their influence dominates the position of the classification boundary.
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In order to allow for the analysis of data sets including numerical attributes, several gen-
eralizations of association rule mining based on fuzzy sets have been proposed in the liter-
ature. While the formal specification of fuzzy associations is more or less straightforward,
the assessment of such rules by means of appropriate quality measures is less obvious.
Particularly, it assumes an understanding of the semantic meaning of a fuzzy rule. This
aspect has been ignored by most existing proposals, which must therefore be considered as
ad-hoc to some extent. In this paper, we develop a systematic approach to the assessment
of fuzzy association rules. To this end, we proceed from the idea of partitioning the data
stored in a database into examples of a given rule, counterexamples, and irrelevant data.
Evaluation measures are then derived from the cardinalities of the corresponding subsets.
The problem of finding a proper partition has a rather obvious solution for standard as-
sociation rules but becomes less trivial in the fuzzy case. Our results not only provide a
sound justification for commonly used measures but also suggest a means for constructing
meaningful alternatives.






Some aspects about PSF and deconvolution
Bettina Heise, Leila Muresan

Background:
In microscopy imaging two important quaity measures are the values of resolution R and
contrast C. The resolution limit is determined by the Abbe relation,

Ry = A/(2*NA), R=n 1 /NA?

or the Rayleigh criterion. On the other hand high numerical apertures NA cause adecrease in
contrast of the images. So especially wide field microscopy images are characterized to be
always slightly blurred and seem to be covered with haze. Methods to improve this can be
done in optica way (e.g. by confocal microscopy) or mathematically by deconvolution
methods.

Describing the imaging process of a microscope by the convolution process

g(x y) = f(x, y) = h(x, y) + n(x, y),

where g(X, y) denotes the measured image, f(x, y) is the ‘true’ image, h(x, y) is the impulse
response function of the system, which is called Point Spread Function (PSF) in optics. The
Fourier transform of the PSF is often important and determined as Optical Transfer Function
(OTF). The noise n(x, y) can mostly be assumed as Gaussian or Poisson distributed. The aim
of the deconvolution is to reconstruct the original ‘tru€’ image. There are severa different
methods of deconvolution, which can be distinguished, depending on known or unknown
PSF, but also in iterative or direct linear methods, methods for one ore more image slices (3D
or 2D-models).

Main types of deconvolution:

-Linear methods: Inverse Filter, Pseudolnverse Filter, Wiener Filter, Nearest neighbour
deconvolution, [Agard]

-Iterative constrained deconvolution: The initially estimated image fo is reblurred by PSF h,
the differences to the measured image g are take into account for improvement of the
estimation of f; , whereupon the iteration starts again. ..

-Maximum Likelihood deconvolution: For given PSF the solution is the function fy, which has
the highest probability to be correct. ML-approaches have proved to give the best image
quality. Mostly they are based on diffraction theory and Poisson statistics [Holmes].

For the above mentioned methods knowledge about the PSF is necessary. This can be done
for instance by previous measurements with microbeads of known size or theoretical
calculations.

-Blind deconvolution or combinations of them (Blind maximum likelihood deconvolution,
[Bhattacharyyal)).

In the case of blind deconvolution we have no exact knowledge about the PSF. This approach
is used to estimate simultaneoudy the ‘true’ image and the PSF. Because the problem is
underdetermined there must be included additional assumptions for uniqueness, for instance
constraint to positive values of f(x, y) or excluding delta function as solution. In practice it is
done by assuming a physically based model of PSF with a set of unknown parameters. These
parameters can be estimated by maximizing the log-likelihood- functional according to the
imaging process.

M atlab-Realisation:



Several deconvolution methods are also pre-implemented in the Matlab Image Processing
toolbox as Wiener filter, Lucy-Richardson or blind deconvolution. We tested them for our
single protein images.

After applying a spot selection algorithm, the best (brightest) p% spots are selected. In our
case p = 30%. If overlapping spots might occur, we can select the spots between the [p1, p2]
percentiles of the result set.

The selected spots are pixel-wise averaged and the resulting smoothed, denoised PSF is used
in the Lucy-Richardson deconvolution. Some results are shown in Fig.1 and 2. Note the
artifacts of the background in the case of blind deconvolution, compared to the Lucy-
Richardson method. The problems are a good choice of the parameters and the time
complexity and speed of the deconvolution in Matlab.

Qriginal Averaged psf

Fig. 1: Deconvolution of Microarray image spots




Qriginal

Fig.2: Detail of deconvolution by Lucy-Richardson algorithm (30 iterations, 5x subsampling)

Aims:

A lot of deconvolution software exists (Huygens, Vaytek, AutoQuant), so it must be carefully
checked how much efforts should be done in developing own solutions. It seems perhaps
more successful to use commercia software. The challenges lie in the improvement of the
accuracy in single protein detection into sub-pixel and sub-resolution range, in a paralel
implementation of these methods because of their computational expensiveness, or in an
adaptation for path length reconstruction for DIC images.
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ANALYSIS OF SPOT COUNTING ALGORITHMS IN
FLUORESCENCE MICROSCOPY IMAGES

LEILA MURESAN AND BETTINA HEISE

INTRODUCTION

A frequent task in medical image processing is to identify spots in fluorescence
microscopy images. In the case of micro-arrays, the spots are due to DNA sequences
labelled with fluorophores (Cy3 or Cy5), one or more per sequence. For classical
microscopes, the high density of fluorophores cannot be well resolved, so only mean
intensities of circular regions are computed. With NanoScout, single peaks (spots)
are counted for each region of interest, and the relative abundance of the sequence
(of each specific gene) can be determined even from very small samples.

From the image processing point of view spots can be defined as bright, small,
circular features, with little detail at the given resolution. We shall approximate
them with a 2D Gaussian profile. The aim of this paper is to compare different
approaches of spot detection from the point of view of correctness and complexity.
Two straightforward quality measures are spot model variance and image residuum.

1. SPOT DETECTION ALGORITHMS

Spot detection is only apparently a simple task. If performed manually is tedious
and hard to replicate. If performed automatically, it is not straightforward how to
choose the parameters in order to obtain a ”good” solution. Furthermore, is difficult
to define what a ”good” solution is. The most popular algorithms in the literature,
which will be shortly described and tested below are:

(1) Mathematical morphology
(2) Local thresholding

(3) A trous wavelets

(4) Feature based statistics

1.1. Mathematical morphology. The tools of mathematical morphology are
more appropriate to preprocess images, than to detect spots. By the standard
granulometry methods one can determine the spot size and the spot density [1, 2].
If the spot density is too high, the task of counting single spots becomes impossible
(classical mean intensity methods have to be applied). We shall refer from now on
only to cases when single spot detection makes sense.

1.2. Local thresholding. A very simple thresholding algorithm was implemented,
which detects a spot at each location (x,y) where the original image intensity
reaches a local maximum and the mean intensity in a small window is k times
higher than the noise standard deviation.

Date: April 7, 2005.
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1.3. A trous wavelets. The & trous wavelet method, described in [4] consists of
successive B-spline kernel convolutions. Initially the original image is convolved
with the kernel Ky, a B-spline of order 3, A; = Original * Ky, where :

1 i 38 1 1
2?6 614 1%8 614 2?6
oo| & E % ¥ W
614 116 g 116 614

256 64 128 64 256
The smoothed image is than convolved with a kernel obtained from the kernel of

the previous step, by inserting between each line and each column of the old kernel
a line and a column of zeros, respectively.

ppppppppppppppp

FIGURE 1. Kernels for successive convolutions in the & trous method

The wavelet coefficients at step i are: W;(z,y) = A;(x,y) — A;—1(z,y). After J
steps:

J
(1) Original(z,y) = Aj(x,y) + Z Wiz, y)

FIGURE 2. Wayvelet coefficients for successive scales

The advantage of this image decomposition is the fact that real features tend to
be persistent over the scales. So, if we set:

) Wila.g) =0, EDZE
and compute
(3) Spot s (w,y) = [ [ Wi(x,y)
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the bigger the value of Spot;(z,y) the bigger the likelihood of a spot at location
(z,y). Results of the detection can be observed below.

Detected particles — A trous wavelet
= P

FIGURE 3. Result for a trous wavelets method

1.4. Feature statistics. The feature based statistics method was thoroughly de-
scribed in [3]. We only mention that it is based on the modified z-score method
for outlier detection. The outliers in several features are forming the set of spot
candidates. In order to detect reliably the outliers, robust estimation of mean and
variance is used.

3000
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-50 0 50 100 150 200 250 300 350 0 500 1000 1500 2000
mean in 3 x 3 neighborhood Laplace values

FIGURE 4. Detecting outliers for each feature. With red is repre-
sented the standard deviation of the data, with green the robust
estimation of the standard deviation around the mean.

This set is clustered in three subsets according to their acceptability level: the
class of best, sharpest spots, acceptable spots and the uncertain / out-of-focus spots.
The best results were obtained for the Gustafson-Kessel clustering algorithm. The
features considered in this paper are: the mean intensity value over a window of
size three and the intensity value of the Laplace -filtered image.
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GK clustering, features: Mean, Laplace

FIGURE 5. Result for the feature statistics method

2. PERFORMANCE CRITERIA

The performance of spot detector algorithms can be approached from two points
of view: correctness and complexity. In this paper we shall concentrate only on the
former.

Usually, detection problems in image processing are verified based on test images
for which the ground truth is known. The algorithm which minimizes the number
of false positive and/or false negatives (or a combination of the two) is preferred.
In [6] the criterium to optimize is:

(4) AVchl')\1+CQ')\2+63')\3+ZC4(T)-A(T‘)

where A\ represents the number of missed spots, Ay the number of spuriously de-
tected spots, A3 multiple responses, and finally A(r) the localization errors over a
distance r.

Unfortunately in most of the medical images ground truth is not known, which
leaves the designer of the algorithm with two options: either perform the test on
synthetic images or define a reasonable criterium to measure the performance of
the algorithm.

A straightforward a approach in the case of real data is to construct a model of
the ideal Gaussian profile of spots from the set of detected spots S. The simplest
way to do this is by pixel-wise averaging the spot intensity values over all elements
of S, which also holds a denoising effect.

Accuracy can be improved by aligning the spots via a simple fitting algorithm,
e.g. intensity weighted fitting as in [5]. The complexity of the fitting algorithm has
to be kept low, due to the big number of spots to be analyzed.

In the next step, the image is reconstructed, by placing an ideal spot centered
at the coordinates (zg,yo) where a spot was detected. If two spots overlap, the
respective values are added. The residuum of the image (the pixel-wise squared
difference) is a measure of the performance of the algorithm:

(5) Z (Orig(i,j) — Reconstructed(i, §))?

.3
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FIGURE 7. Residuum computation

The mean was subtracted from the original image, as a simple background correc-
tion. Alternatively, the distribution of volume error per spot can also be informa-
tive. We suggest that the mean and the skewness of the error value distribution is
related to the validity of the spot model, while the variance characterizes both the
quality of the data and the performance of the algorithm.

Histogram of deviation from model Histogram of deviation from modiel Histogram of devation from model

FIGURE 8. Volume error distribution(local thresholding, wavelet
and feature statistics method)

A summary of the results is given in table 1. Note the trade-off between the
residuum and the spot model (variance) criteria.

Method Spots Residuum Mean Variance | Skewness
Local threshold 78 | 2.7429e+007 | 4.2618e-012 | 1.4742e+006 0.1920
A trous 93 | 2.6899e+4-007 | 4.7186e-012 | 1.3694e+006 0.3949
Feature statistics 103 | 2.0883e+007 | 1.6115e-013 | 1.7176e+006 0.4954

TABLE 1. Comparison of the results



6 LEILA MURESAN AND BETTINA HEISE

3. CONCLUSIONS AND FURTHER WORK

In this paper we have presented shortly the challenges of spot detection in flu-
orescence microscopy images, and some algorithms that handle this problem. We
have established a way to compare the performance of the algorithm with respect
to the correctness of the generated solutions. However further work is needed in
order to find a meaningful combination of the spot model and residuum criteria.

It is possible to design iterative algorithms that optimize this correctness cri-
terium, but the amount of data that has to be analyzed (one microarray scan has
approximately 2GB) makes the iterative approach unfeasible. However, if the spot
model is constructed using only a subimage of the microarray, and this model is
valid for the whole image, than an iterative approach might prove useful.

Further refinement of the algorithms are still to be performed (e.g. the imple-
mentation of spot alignment in the computation of the Gaussian spot model).
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