
Abstracts of the  
FLLL/SCCH  

Master and PhD Seminar 
 

 

 

 

 

 

 

 

 

Softwarepark Hagenberg 
SCCH, Room 0/10 

April 28, 2006 
 
 
 
 
 
 

Software Competence Center Hagenberg  Fuzzy Logic Laboratorium Linz-Hagenberg 
Hauptstrasse 99 Hauptstrasse 99 
A-4232 Hagenberg A-4232 Hagenberg 
Tel. +43 7236 3343 800 Tel. +43 7236 3343 431 
Fax +43 7236 3343 888 Fax +43 7236 3343 434 
www.scch.at www.flll.jku.at 





Program

Session 1 (Chair: Ulrich Bodenhofer) 9:00–11:00

9:00 Rainer Geschray:
Fuzzy Sliding Mode Control

9:30 Werner Groißböck:
HDFormGen: A Fast Nonlinear Approximation Formula Generator for Very High
Dimensional Data Based on Variable Selection and Genetic Programming

10:00 Leila Muresan:
Introduction to Markov Random Fields with Applications to Microscopy Image
Processing

10:30 Martina Daňková:
Integral Based Aggregation Operators in the Theory of Fuzzy Approximation

11:00 Coffee Break

Session 2 (Chair: Werner Groißböck) 11:30–13:00

11:30 Martin Štěpnička, Edwin Lughofer, Viktor Pavliska:
Comparison of Data-Driven Fuzzy Modelling Methods tested on NOx Data

12:00 Thomas Vetterlein:
Po-group Representations of MTL-Algebras — How Far Can We Get?

12:30 Martina Daňková, Radek Valášek:
Image Fusion Using Fuzzy Transform

13:00 Lunch





Fuzzy Sliding Mode Control FSMC
FLLL/SCCH Master and PhD Seminar, 2006-04-28

Rainer Geschray,
Johannes Kepler University, Linz, Austria,

k0030408@students.jku.at

April 24, 2006

Abstract
In the first paragraph the well know principle of
sliding mode control is presented. There exist many
different approaches using the sliding mMode con-
troller as foundation for implementation with fuzzy
formulations. In [3] a critical review of Fuzzy Slid-
ing Mode Control FSMC approaches is presented.
This knowledge forms a kind of marker for the con-
tinuative work.

1 Introduction

In literature there are two different classes for the
term Fuzzy Sliding Mode Control FSMC. Firstly,
there are algorithms based on the traditional slid-
ing mode control, but the signum function is re-
placed by a fuzzy map. Secondly, there are algo-
rithms which try to approximate the input/output
map of the traditional sliding mode control. The
next section deals with a short review to the tradi-
tional sliding mode control. In section 3 different
approaches for FSMC are summarized.

2 Sliding Mode Control

With the state space vector

x =
[

x ẋ · · · x(n−1)
]T (1)

the plant model has the form

x(n) = f(x(t)) + u(t) + d(t), (2)

where u(t) is the control signal and d(t) is an
unknown disturbance. The control objective is to

set the control signal u(t), such that the control
error e = xd−x=

[
e ė · · · e(n−1)

]T becomes
zero e = 0 with xd as the desired time variing state.
This is indirectly implemented with the differential
equation

0 = q(e) =
(

∂

∂t
+ λ

)n−1

e

=
(

n− 1
0

)
e(n−1) +

(
n− 1

1

)
λe(n−2) + · · ·+ λn−1e

= e(n−1) + gλ(e), (3)

where λ > 0. If the control error fulfilles (3) he
is going to get zero for an arbitrary initial state
x0, i.e. if q(e) = 0 the original control objective
is reached! The function q2(e) is definitely always
positive except for the control objective q(e) = 0.
Geometrical, q(e) = 0 defines a hyperplane in the
n-dimensional space of e, the so called sliding sur-
face. Therefore, if

∂

∂t

(
q2(e)

)
< −2η |q(e)| η ≥ 0, (4)

holds, q2(e) becomes zero and so q(e), too. Why
was the original control objective replaced with this
overhead? (4) is equivalent to

qq̇ < −η |q| , (5)

i.e.
q̇sgn(q) < −η, (6)

which is of order one (instead of order n such the
original objective)! With (6) the plant (2) is forced
to reach the hyperplane and stay there for all time

1



(in the time invariant case)! Differentiation of (3)
results with (2) and (6) in

q̇ = e(n) + gλ(ė) = x
(n)
d − x(n) + gλ(ė)

q̇ = gλ(ė)− f(x)− u− d + x
(n)
d(

gλ(ė)− f(x)− u− d + x
(n)
d

)
sgn(q) < −η. (7)

If the plant model is split up in f = f0 + ∆f ,
where f0 is the (correct) nominal model and

|∆f | < F

is the model uncertainty, the control signal (con-
stant U not specified yet) can set to

u = −f0(x) + gλ(ė) + x
(n)
d + Usgn(q) (8)

and the inequality (7) becomes

(−∆f(x)− d) sgn(q)− U < −η.

With the upper boundary for the disturbance
|d| < D, the constant in (8) becomes U ≥ F +D+η,
thus the sliding mode controller becomes with the
equals sign

u = −f0(x) + gλ(ė) + x
(n)
d + (F + D + η) sgn(q).

(9)
Remarks:

� The calculation of the error derivatives ist
problematic in the presence of noise (needs a
nonlinear observer for state estimations with
an accurate plant model).

� Parameters λ and F influence the robustness of
the overall system (expansion to n− 1 param-
eters with q(e) =

∑n−2
i=0 cie

(i) + e(n−1), where
the polynom c(s) = sn−1 + cn−2s

n−2 + · · · +
c1s + c0 has zeros with negative real part).

� With the signum function in (9) is the control
variable not continual, i.e. chattering along
the sliding surface occures (substitution with
a saturation function)!

3 Fuzzy Sliding Mode Con-
trol

3.1 Why a Fuzzy Approach?
A main focus of this thesis lies on the control of
complex industrial processes, where only sparse an-
alytical knowlegde is available. Instead, there exists

Figure 1: membership functions of the example in
[5]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u
D

eg
re

e 
of

 m
em

be
rs

hi
p

small large

a data based model, e.g. Takagi-Sugeno model, to
describe the input/output behaviour of the plant.
In [5] is an illustrative example (10,11) of the in-
terpolation characteristic of a first-order TS-model
presented. Figure 1 shows the membership func-
tions and figure 2 illustrates the interpolation of
the two local linear models.

If u = small Then y = u (10)
If u = large Then y = 5u− 2.5 (11)

Conclusion:

� Without handling the interpolation (e.g. with
local linearization suggested in [5]) a tradi-
tional controller design is problematic (there
are negative derivatives during interpolation,
whereas in the local linear models derivatives
are all positive)!

� Fuzzy control structures are examinded to
handle the disadvantageous interpolation char-
acteristic in TS-models (actual topic of thesis)!

Therefore, fuzzy approaches for the sliding mode
control are analyzed in a first step.

3.2 Adaptive Sliding Mode Con-
trol

In [1, 4] there is an adaptive sliding mode controller
on basis of (9) presented. There, the constant U is

2



Figure 2: interpolation of the two local linear mod-
els

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

u

y

TS interpolation
y

1
=u

y
2
=5u−2.5

replaced through

U∗(x) = |∆f(x)|+ D + η, (12)

where asymptotic stability (Lyapunov) is guar-
anteed with an adaptation of the fuzzy characteris-
tic u =

∑
i ki(x)ui = uT k(x) as approximation of

(12) with
u̇ = γ |q|k(x) γ > 0, (13)

such that U(x) ≈ U∗(x). This could be an inter-
esting approach, especially in the case of time vari-
ing processes in combination with an online model
refinement!

3.3 Fuzzy Boundary Layer

This section is geared to [3] and summarizes the
results in a short manner. Fuzzy boundary layer
involves the replacement of the signum function in
(9) with a fuzzy map. The objective to use ”fuzzy”
is to get a smoother transition and therefore a re-
ducing of chattering is obtained.

Methods:

1. De Neyer and Gorez [6]: Fuzzy maps only a
saturation function. No significant improve-
ment over more traditional designs was shown.
The set of rules and membership functions
could possible be approximated by an explicit
equation.

2. Palm [7]: comparable results as in [8] but with
more overhead.

3. Ghalia and Alouani [8]: Use FSMC with two
fuzzy components, one to fuzzify the signum
function and one to fuzzify the gain F +D+η.
Analysis in [3] has shown that this proce-
dure duplicates a combination of the satura-
tion function and a simple gain scheduling ap-
proach, neither requires a fuzzy approach.

3.4 Fuzzy Lyapunov Function
In this approach a fuzzy controller is defined such
that the Lyapunov function

V (q) =
1
2
q2 (14)

V̇ (q) = qq̇ < −η |q|

holds like (5).
Methods:

1. Shih and Lu [9]: Useful for some types of prob-
lems, but with limitations (estimation of the
state and its derivatives as mentioned yet).

2. Wang [10]: Works with the objective to speed
up convergence to the sliding surface (3) and
works essentially with a saturation function.
Therefore, fuzzy approach could be replaced
by an excplicit expression as in the methods
before.

4 Conclusion

Sliding mode control was presented in his tradi-
tional form. It uses a nonlinear state model with
an arbitrary unknown disturbance signal. The con-
troller (9) uses a nominal model and the control
error with his derivatives. So, one focus in further
work lies on the analysis of how to use a TS-model
for f0(x) and opportunities to estimate the control
error e =

[
e ė · · · e(n−1)

]T . Especially the
influence of model uncertainties and the interpola-
tion characteristic of TS-model will be studied. In
[5] an approach for local linearization is presented,
which avoids unfavorable transitions between the
local linear equations in a TS-model. This could
be an important aspect in controller design and is
part of further work.

3



Different approaches for FSMC was summerized
as in the work of [3] presented. It seems that
there are less improvements for using fuzzy in slid-
ing mode controls, but there will be more analysis
to proof this assertion. Therefore, categorized ap-
proaches for FSMC are going be analysed due to
there capabilities for robustness, steady state be-
haviour (integral characteristic) and the handling of
time variant plants in combination with an online
TS-model adaption. Another future aspect could
be the extension of the sliding mode control to mul-
tiple input multiple output MIMO plants and a
conversion to discrete time systems, but this has
less priority at that time.

References

[1] K. Michels, F. Klawonn, R. Kruse, A. Nürn-
berger, Fuzzy Regelung - Grundlagen, En-
twurf, Analyse, Springer, 2002

[2] J. Abonyi, Fuzzy Model Identification for Con-
trol, Birkhäuser, 2003

[3] B. O’Dell, Fuzzy Sliding Mode Control - A
Critical Review, Oklahoma State University -
Advanced Controls Laboratory, 1997

[4] C. S. Ting, T. H. S. Li, F. C. Kung, An ap-
proach to systematic design of the fuzzy control
system. Fuzzy Sets and Systems, 77:151-166,
1996

[5] O. Nelles, M. Fischer, Lokale Linearisierung
von Fuzzy-Modellen, Automatisierungstech-
nik, 47:217-223, 1999

[6] M. De Neyer, R. Gorez, Use of fuzzy concepts
in adaptive sliding mode control, Proceedings
of the IEEE Conference on Systems, Man and
Cybernetics, Vol 1, 443-447, 1994

[7] R. Palm, Robust control by fuzzy sliding mode,
Automatica, 30(9):1429-1437, 1994

[8] M. B. Ghalia, A. T. Alouani, Sliding mode
control synthesis using fuzzy logic, Proceed-
ings of the American Control Conference, Vol
2, 1528-1532, 1995

[9] M. C. Shih, C. S. Lu, Pneumatic servomotor
drive a ball-screw with fuzzy-sliding mode po-
sition control, Proceedings of the IEEE Con-
ference on Systems, Man and Cybernetics, Vol
3, 50-54, 1993

[10] S. Y. Wang, C. M. Hong, C. C. Liu, W. T.
Yand, Design of a static reactive power com-
pensator using fuzzy sliding mode control, In-
ternational Journal of Control, 63(2):393-413,
1996

4



HDFormGen: A Fast Nonlinear Approximation
Formula Generator for Very High Dimensional
Data Based on Variable Selection and Genetic
Programming

Werner Groißböck

Department of Knowledge-Based Mathematical Systems
Fuzzy Logic Laboratorium Linz-Hagenberg
Johannes Kepler University Linz, A-4040 Linz, Austria
werner.groissboeck@jku.at

Summary. A new approach for finding nonlinear approximation formulas for very
high-dimensional data is presented. This method has been developed for static data
analysis, but it can be used for dynamic data analysis as well. The method is based
on linear regression, but instead of the original variables we use nonlinear terms
with these variables. Such a formula is still linear in the parameters, so ordinary
least squares methods can be applied to find the globally optimal parameters. We
use an accelerated version of genetic programming to find the optimal nonlinear
terms, and we use variable selection methods to select those terms leading to an
approximation formula which shows an optimal balance of accuracy and simplicity.
In general, evolutionary methods like genetic programming tend to produce many
individuals with low fitness. To save computation time, an early stopping strat-
egy in case of low fitness is used. The method was tested with three benchmark
data sets (the auto-mpg data set and the CPU data set in the UCI repository
http://www.ics.uci.edu/ mlearn/MLRepository.html and the friedman data set in
the KEEL repository http://sci2s.ugr.es/keel/). Although these data sets are only
low dimensional and thus not in the core application area of our method, for the
auto-mpg data set, an approximation formula has been determined, whose accuracy
is comparable to the benchmark papers, for the CPU data set, an approximation
formula has been achieved which is more exact than most of the benchmark papers,
and for the friedman data set, an approximation formula has been determined which
is more exact than all of the benchmark papers found so far.

1 Introduction

In the car industry, an engine test bench system is used which can measure up
to 1500 variables. From time to time, some parts of the measurement system
are in an invalid state, maybe because one of the sensors is overheated. To



2 Groißböck

safe time and money, such an invalid state has to be detected as soon as
possible, and the experiment has to be aborted as soon as possible. So a
system is needed, which can detect faults.
For most of the variables measured useful expert knowledge is not available.
For this reason, only data driven methods can be used. Different methods are
available. The major challenge is that the methods have to deal with a very
high dimensionality.

The method HDFormGen (A fast nonlinear Formula Generator for
High Dimensional Data) can be used to find a nonlinear approximation
formula for very high dimensional data. To demonstrate the strength of
our approach, the following artificial data set with 201 variables and 800
entries has been constructed: The variables x1, x2, ...., x200 are filled with
independent standard normally distributed numbers. The remaining variable
(which we call y) is determined with the following formula:

y =x1 · (0.3 · x5 − 0.6 · (x3 · x5 + x2 · x6) (1)
+ 0.2 · (x2 · x4 · x6 + x2 · x3 · x7 + x3 · x4 · x5 − x5 · x6 · x7))

We want to find an approximation formula for the variable y. 1 So we want
to see if our only data driven method can find any reasonable results. After
running our algorithm for half an hour (all our results have been processed
on a 1600MHz pentium laptop) the following formula has been achieved:

y =9.4589e − 008
− 0.6 · (x6 · (x2 · x1))
− 0.6 · ((x3 · x5) · x1)
+ 0.3 · (x1 · x5) (2)
+ 0.2 · ((x7 · x3) · (x2 · x1))
+ 0.2 · (((x1 · x4) · x5) · x3)
+ 0.2 · ((x6 · x1) · (x4 · x2))
− 0.2 · ((x1 · (x5 · x6)) · x7)

This formula is nearly identical to a simplified form of the formula in 1. The
only difference is the constant 9.4589e−008, which is caused by the limitations
of machine accuracy. The most important question is: Does the algorithm still
work, when data sets containing noise have to be analyzed? To answer this
question, the data set described above is used again, but now to each vari-
able a certain amount of noise is added, before our algorithm is applied. As
noise we use independent standard normally distributed numbers, which are
divided by ten.
1 The estimated standard deviation of y is 0.81222, so it is not zero, which would

make the task trivial.



A Nonlinear Approximation Formula Generator 3

After an average time consumption of about 4.5 hours, the following approx-
imation formula (for the noisy data set) can be achieved:

y =0.0097468
− 0.56631 · (x1 · (x2 · x6))
− 0.57815 · ((x1 · x3) · x5)
+ 0.28516 · (x1 · x5) (3)
+ 0.18876 · (x2 · ((x1 · x7) · x3))
+ 0.18276 · (x1 · (x5 · (x3 · x4)))
− 0.17787 · (x1 · (x5 · (x6 · x7)))
+ 0.18482 · (((x4 · x6) · x1) · x2)

This formula is not identical to the formulas above. But if the subterms are
compared, then we can see that all the subterms in formula 3 can also be
found in formula 2 and vice versa. So the only real differences are the exact
values of the parameters before each nonlinear subterm in the formulas. For
example for the subterm with x1, x3 and x5, we get the parameter −0.57815
instead of the parameter −0.6. This slight modification of the parameters is a
consequence of the noise that has been added to the data variables. If a data
based method is used, and if you have to deal with noisy data, then a certain
amount of error in the models achieved can never be avoided.
Conclusion: We have been able to find a formula that is ’nearly’ equivalent to
the formulas in 1 and 2. The only relevant differences are the real parameters
in the formulas. For finding the correct parameters, we use the least squares
algorithm, which finds the globally optimal parameter setting. Finally, the
correct structure of the formula is found, and the globally optimal parameter
setting!

2 The approximation formula generator HDFormGen

In this paper, the new algorithm HDFormGen (A Formula Generator for
High Dimensional Data) is introduced which is able to find an approximation
formula with nonlinear terms for a high dimensional regression data set. With
this algorithm, formulas similar to the following can been achieved:

y = β0 + β1 · x1 · x100 + β2 · sin(x77) + β3 · exp(x5/x6)

The basic idea of the algorithm is the following:

• The structure of each of the nonlinear terms in the whole formula is found
and optimized with the use of genetic programming (see [5]).

• The parameters of the formula can be optimized easily with a least squares
algorithm. This can only be done, if the formula is linear in the parameters,
so the genetic programming tool must not generate terms which contain
additional parameters.



4 Groißböck

There is another aspect that has to be considered:
The terms that are used in the approximation formula finally shall be as
uncorrelated to each other as possible. We want an approximation formula
which is on the one hand as simple as possible, and on the other hand as exact
as possible. So we have to find the most important nonlinear terms, such that
the regression formula based on these terms is as good as possible. Variable
selection methods like forward selection have been designed to fulfill this task.
In HDFormGen a variant of forward selection is used. For this reason, the
basic concept of forward selection will be explained in the following rows:

• At first, the most important variable (or nonlinear term) is selected. This
is that variable (or term) which is correlated strongest to the actual de-
pendent y.

• Then the effects of the variables/terms selected so far are subtracted from
the original dependent y. This is necessary to avoid that variables that are
highly correlated to the first choice will be chosen again and again.

• Then, again the most important variable/term is selected.
• And again, the dependent is modified, such that the effects of the vari-

ables/terms chosen already are eliminated.
• Continue in this manner, until enough variables/terms are selected.

3 The new algorithm HDFormGen

3.1 The core of the new algorithm

In the following, the original dependent is called y. At the beginning, the
actual dependent is the original dependent yactual = y . Later yactual will be
modified. The constant term c = (1, . . . , 1)T is always the first variable that
is chosen. But this variable is not counted as real variable. The algorithm
performs the following steps:

1. An accelerated version of genetic programming (including a population of
individuals and a crossover operator) is used to generate millions of very
simple formulas. We select that formula xA which is best correlated with
the actual dependent yactual. We look only at the absolute value of the
correlation coefficient.

2. Then we modify yactual such that all the parts of y that can be approxi-
mated with the regressors already chosen are subtracted, setting yactual to
y − ŷ(c, xA). Here ŷ(c, xA) is the linear best approximation of y with the
use of the regressors c and xA. We can say, yactual is y made orthogonal
to the regressors already chosen.

3. Once again the accelerated version of genetic programming is used to
generate millions of very simple formulas. And now we select that formula
xB which is correlated strongest with the actual dependent yactual. We
look only at absolute values again.



A Nonlinear Approximation Formula Generator 5

4. Then once again, yactual is made orthogonal to the regressors already
chosen, so we set yactual to y − ŷ(c, xA, xB).

5. Continue in this manner, until a given number of regressor terms is se-
lected or some other termination criterion is fulfilled.

3.2 The accelerated version of genetic programming - an overview

Stopping the calculation of the correlation coefficient as early as possible, when
it can be seen that the checked individual is not worth spending additional
time, accelerates the algorithm enormously. But how can this be carried out,
if we have a population of individuals and not a single individual? In the fol-
lowing lines the major steps of the accelerated genetic programming algorithm
are described.

1. Generate an initial population with popsize individuals.
2. Evaluate each individual for n1 points of the training data set and estimate

the correlation coefficient with the actual dependent by using only these
n1 points.

3. Determine the popsizesmall best correlated individuals out of popsize,
based on the estimated correlation coefficient. We look only at the absolute
value of the correlation coefficient.

4. For these popsizesmall chosen individuals the exact value of the fitness
function (i.e. the absolute value of the correlation coefficient) using all
the points of the training data set has to be calculated.

5. Produce a new generation of popsize out of the popsizesmall chosen indi-
viduals:
• Repeat the following, until we have enough new individuals. Choose

randomly two of the popsizesmall individuals and compare their fitness.
The better one is called the winner, and the other one is called the
loser. Let the winner produce two offsprings, one is an exact copy of
the winner, and the other offspring is made via crossover (as crossover
partner, one of the popsizesmall individuals is chosen, which is neither
the winner nor the loser).

• The individual which is the best so far is always copied into the next
generation (’elitism’).

• A small part of the new generation is produced in the same way as the
initial population. This is one way of avoiding the problem with local
optima. A mutation is not needed any more.

6. Go to step 2, until a termination criterion is fulfilled.

• As termination criterion, we usually take that a specific number of gener-
ations is reached.

• The parameter popsize determines, how many individuals are evolved in
the genetic programming algorithm. The parameter popsize can take any
positive integer number. The larger popsize is, the more computation time



6 Groißböck

is needed, and the better the results are. In our experiments, a popsize of
5000 has been used successfully.

• The parameter n1 tells the algorithm, how many points are used to get
a quick estimation of the correlation coefficient. n1 can be an arbitrary
positive integer, but n1 shall not exceed the number of training data points.
In our experiments, settings of n1 = 30, n1 = 50 and n1 = 100 have been
used successfully.

• The parameter popsizesmall determines, how many individuals of the total
population are selected to be examined in detail. The value of popsizesmall

shall be much smaller than popsize, for example popsize/10.

4 Variants of the Formula Generator Algorithm Applied
To Standard Benchmark Data Sets

4.1 The data set cpu

The data set ’cpu’ can be found in the directory ’cpu-performance’ of the
UCI-repository, which can be found in the following address:

http://www.ics.uci.edu/~mlearn/MLRepository.html

Number of instances: 209
Number of attributes: 10
The data set contains the following attributes:

vendor name: string
model name: string
MYCT: machine cycle time in nanoseconds (integer)
MMIN: minimum main memory in kilobytes (integer)
MMAX: maximum main memory in kilobytes (integer)
CACH: cache memory in kilobytes (integer)
CHMIN: minimum channels in units (integer)
CHMAX: maximum channels in units (integer)
PRP: published relative performance (integer); the dependent variable;
ERP: estimated relative performance via linear regression (integer)

At first we deleted the attributes vendorname and modelname because our
algorithm can not handle strings. Furthermore the data set contains the at-
tribute ERP , which is an old estimation for PRP . So we have to delete the
attribute ERP , because we do not want to generate an approximation for-
mula by using the results of an old approximation. This would be too easy. So
finally we have only 7 attributes remaining. Before the core of our algorithm
has been run, we split the data into two parts: 70% of the 209 instances have
been randomly chosen to play the role of the training data. And the other 30%
play the role of the test-data.



A Nonlinear Approximation Formula Generator 7

Our algorithm has been started 10 times. Roughly 3.7 seconds are neces-
sary per term for performing the evolutionary part of the algorithm. Totally
we received ten approximation formulas, with an average MAE of 23.33 de-
termined for the test data set. The worst MAE is only 25.15, and the best
MAE is 23.06. The best formula is the following:

PRP =16.344
+ 0.0032443 · (sqrtabs((MMIN · (MMAX · CHMAX)))) (4)
+ 0.7936 · ((CACH − CHMAX) − sin(CHMAX))

The MSE of this formula is 1394.9, and the RMSE is 37.348. In our standard
benchmark paper (see [7]), various different methods have been tried out. The
best method leads to an MAE of 38.0. So compared to this paper, our method
leads to a more exact approximation.

Additionally, newer papers (see [10], [12], [2] and [1]) have been found,
where the data set cpu is used.

Conclusion: In these papers, totally 30 variants of standard
methods have been tried out. Only in 5 out of 30 cases, our
approximation formula is outperformed.

4.2 The data set friedman

The data set ’friedman’ can be found in the KEEL repository, in the following
location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

In the keel repository, benchmark papers can be found. For the friedman
data set, a quite actual (2004) benchmark paper is mentioned via the abbre-
viation ’Lee04’ (see [6]).

We try to design our experiments as similar as possible to the benchmark
paper, to get comparable results. In the benchmark paper, the following is
done:

’This is a synthetic benchmark data set. Each sample consists of
five inputs and one output. The formula for the data generation is
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4

4 + 5x5
5 + ε, where ε is a Gaussian

random noise N(0, 1), and x1, ..., x5 are uniformly distributed over the do-
main [0, 1]. 1400 samples were created, of which 200 samples were randomly
chosen for network training and 200 samples for validation. The remaining
1000 samples were used for network testing.’

In the KEEL repository, the data sets are already available as described
in [6]. So we have a 200 sample training data set, and a 200 sample validation
data set, and a 1000 sample test data set. Unlike the benchmark paper, we do



8 Groißböck

not need any validation data. So we only take the 200 sample training data
set to find an approximation formula, and we take the 1000 sample test data
set to determine the quality. As a quality measure, here the MSE is used,
according to the benchmark data.

Our formula detection algorithm has been run 20 times. Here we
need 13 seconds for each term, and 30 second for finding the total formula,
because the formula consists of two nonlinear terms, and four seconds are
needed in the non-evolutionary part of the algorithm. The best formula that
we get is the following:

out =4.8843
+ 10.1761 · (in4 + sin((in2 · (in1 + (in1 + in1)))))
− 5.3183 · (sin((in3 + (in3 + in3))) − in5) (5)

The MAE of this formula is 0.889281, the MSE of this formula is 1.23629,
and the RMSE is 1.11189. In the benchmark-paper (see [6]), the best method
leads to an MSE of 4.502. So our formula is much more exact.

Cross-validation and the data set friedman

For the dataset friedman, a tenfold cross validation experiment has been
performed. For this experiment, a 1200-sample version of the friedman data
set has been used, which can be downloaded from the KEEL repository, in
the following location:

http://sci2s.ugr.es/keel/datasets1.php?SID&codeds=36

After the cross-validation, we have to calculate the average error measures
on the test data files. We get an average MAE of 0.8394133, an average MSE
of 1.1127881, and an average RMSE of 1.0537323 .

So with cross validation, we finally get ten formulas. The formula, which
reaches the best quality on the corresponding test data set, is the following
formula:

out =4.9946
− 10.1215 · (sin(((in2 · in1) · (1.051813 · −2.92026))) − in4)
+ 20.4701 · ((in3 · in3) − ((−0.2465477 · in5) + in3))
+ 2.9015 · ((0.3611782 − (in1 · in2)) · (in1 · sin(in3))) (6)

This formula reached (on the test data set number 10) an MAE of 0.786382,
an MSE of 0.963263, and an RMSE of 0.981459627 . The name of the cor-
responding test data file in the KEEL repository is ’Friedman-10-10tst.dat’,
so everybody is invited to check the quality of the formula! It has to be
mentioned that here the best formula out of ten has been selected (via the



A Nonlinear Approximation Formula Generator 9

test data), so we can not expected to get such a result in average. The
average qualities have been stated above, and are more important.

Conclusion: For the friedman data set, all the benchmark pa-
pers that we found so far (see [3], [6] and [11]), have been
outperformed by our method.

References

1. M. Birattari, G. Bontempi and H. Bersini, ”Lazy Learning Meets the Recur-
sive Least Squares Algorithm”, MIT Press, Advances in Neural Information
Processing Systems 11, Cambridge, 1999.

2. M. Ceci, A. Appice and D. Malerba, ”Comparing Simplification Methods for
Model Trees with Regression and Splitting Nodes”, Springer Lecture Notes in
Computer Science, Volume 2871/2003, ISBN: 3-540-20256-0, 2003.

3. Q. Fu, S. X. Hu, S. Y. Zhao, ”Clustering-based selective neural network ensem-
ble”, Journal of Zhejiang University SCIENCE 2005 6A(5), ISSN 1009-3095,
doi:10.1631/jzus.2005.A0387, 2005.

4. Hastie, T., Tibshirani, R., and Friedman J. , ”The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction.”, Springer Berlin, 2001.

5. J. R. Koza, ”Genetic Programming”, The MIT Press, Cambridge, Mas-
sachusetts, 1992.

6. W. M. Lee, C. P. Lim, K. K. Yuen, S. M. Lo, ”A Hybrid Neural Network
Model for Noisy Data Regression”, IEEE Transactions on Systems, Man and
Cybernetics, Part B 34:2, Pages 951-960, 2004.

7. Merz, C. J., Pazzani, M. J., ”Combining Neural Network Regression Estimates
with Regularized Linear Weights”, Advances in Neural Information Processing
Systems 9, edited by M.C. Mozer, M.I. Jordan, and T. Petsche, 1997.

8. A. Miller, ”Subset Selection in Regression - Second Edition”, ISBN 1-58488-
171-2 Chapman & Hall/CRC Boca Raton London New York Washington, D.C.
2002.

9. O. Nelles, ”Nonlinear System Identification - From Classical Approaches to Neu-
ral Networks and Fuzzy Models”, ISBN 3-540-67369-5 Springer-Verlag Berlin
Heidelberg New York, 2001.

10. N. Rooney, D. W. Patterson, S. S. Anand and A. Tsymbal, ”Random subspacing
for regression ensembles”, The Florida AI Research Society Conference, 2004.

11. D. P. Solomatine, M. B. L. A. Siek, ”Flexible and Optimal M5 Model Trees with
Applications to Flow Predictions”, 6th International Conference on Hydroinfor-
matics, Liong, Phoon & Babovic (eds), ISBN 981-238-787-0 , World Scientific
Publishing Company, 2004.

12. R. Setiono, W. K. Leow and J. Y. L. Thong, ”Opening the neural network black
box: an algorithm for extracting rules from function approximating artificial
neural networks”, Proceedings of the twenty first international conference on
Information systems, Australia, 2000.





INTRODUCTION TO MARKOV RANDOM FIELDS WITH

APPLICATIONS TO MICROSCOPY IMAGE PROCESSING

LEILA MURESAN

Introduction

Inspired by statistical physics, Markov random field models in image processing
are built by specifying local interactions, which are leading to global models. This
work is an introduction to the theory of Markov random fields (MRF), based on
the seminal paper [2]. Many successful applications are known in the literature,
some of them are summarized in [3], [1].

1. Images and degradation model

The problem considered in [2] is the computation of a maximum a posteriori
estimate (MAP) of the original image f given the degraded image g.

The original image is seen as a pair X = (F,L), where F is the matrix of
observable pixel intensities and L is the matrix of (unobservable) edge elements.
F is called intensity process, while L is the line process.

Let Zm = {(i, j) : 1 ≤ i, j ≤ m} denote the m × m integer lattice.
F = {Fij , (i, j) ∈ Zm} represent the gray levels of the original image.

The suggested relaxation algorithm maximizes the conditional probability dis-
tribution of (F,L) given the data G = g , i.e., finds the mode of the posterior
distribution P (X = x|G = g) . The Bayes estimation formulation (also known as
maximum a posteriori estimation, or penalized maximum likelihood) is: maximize
log P (G = g|X = x) + log P (X = x) as a function of x, where the second term is a
penalty term.

The model of image degradation consists of noise (N), blurring (H) and nonlin-
earities (Φ), well suited to describe the typical degradations in microscopy images:

G = Φ(H(F )) ¯ N

where ¯ denotes any invertible operation, such as addition or multiplication. At
pixel level, for each (i, j) ∈ Zm

(1.0.1) G = Φ





∑

k,l

H(i − k, j − l)Fkl



 ¯ ηij .

Furthermore F and N are supposed independent stochastic processes (as well as L
and N ).

For computational reasons, the degradation model 1.0.1 should preserve locality.
This is achieved when H is a simple convolution over a small window.

1



2 LEILA MURESAN

2. Graphs and Neighborhoods

Definition 2.0.1. Let S = {s1, s2, . . . , sN} be a set of sites. A neighborhood
system for S is a collection of subsets of S, G = Gs, s ∈ S for which

• s /∈ Gs

• s ∈ Gr ⇐⇒ r ∈ Gs

Figure 1. Neighborhoods of order 1, 2 and 4

Figure 2. Pixel and line neighbors of a line element

Definition 2.0.2. A subset C ⊆ S is a clique if every pair of distinct sites in C
are neighbors. The set of cliques is denoted by C.

Figure 3. Cliques for neighborhoods of order 1 and 2



INTRODUCTION TO MARKOV RANDOM FIELDS WITH APPLICATIONS TO MICROSCOPY IMAGE PROCESSING3

3. The Hammersley-Clifford theorem

Let (S,G) be an arbitrary graph, X = {Xs, s ∈ S} a family of random variables
indexed by S. For simplicity, Xs ∈ Λ = {0, 1, 2, . . . L − 1}

Let Ω be the set of all possible configurations:

Ω = {ω = (xs1
, . . . xsN

) : xsi
∈ Λ, 1 ≤ i ≤ N}

Definition 3.0.3. X is a Markov random field (MRF) over (S,G) if

P (X = ω) > 0,∀ω ∈ Ω

P (Xs = xs|Xr = xr, r 6= s) = P (Xs = xs|Xr = xr, r ∈ G)

The P (Xs = xs|Xr = xr, r 6= s) are called the local characteristics of the MRF.

Definition 3.0.4. A Gibbs distribution relative to (S,G) is a probability measure
π on Ω having the following representation:

π(ω) =
1

Z
e

−U(ω)
T ,

where

• U(ω) =
∑

C∈C
VC(ω), is called the energy function

• The family of functions {VC , C ∈ C} where VC(ω) depends only on the
variables {xs : s ∈ C} is called a potential

• Z =
∑

ω e
−U(ω)

T is a normalizing constant and the corresponding function
is called partition function

• T is a constant which stands for temperature

T controls the degree of ”peaking” of π. When T is big, coupling between pixels
is loose, the distribution when T → ∞ is uniform. When T is small, the coupling
between pixels becomes stronger, the modes are more accentuated, easier to find by
sampling. This is the pronciple of annealing applied to the posterior distribution

π (f, l) = P (F = f, L = l|G = g)

in order to find the MAP estimate.

Theorem 3.0.5. (Hammersley-Clifford) Let G be a neighborhood system. Then X
is an MRF with respect to G if and only if π(ω) = P (X = ω) is a Gibbs distribution
with respect to G.

The theorem above provides a practical way of specifying MRF’s by specifying
appropriate potentials (instead of specifying local characteristics, which would be
extremely difficult). A proof of the theorem can be found in [4].

For the problem 1.0.1, in order to find ω which maximizes the posterior distri-
bution for a given g the following expression has to be minimized:

U(f, l) +
‖µ − Φ(g, φ(H(F )))‖

2

2σ2

The identification even of a near-optimal solution is very difficult. The approach
suggested in [2] to solve this problem is stochastic relaxation.



4 LEILA MURESAN

4. Stochastic relaxation and the Gibbs sampler

The general computational problems are:

• Sample from the distribution π
• Minimize U over Ω
• Compute expected values

At time t, the the total configuration is X(t) = (Xs1
(t),Xs2

(t), . . . ,XsN
(t)).

The starting configuration X(0) is arbitrary.
X(t) can differ from X(t−1) at most in one coordinate : given an ordering sequence
of S : n1, n2, . . ., then Xsi

(t) = Xsi
(t − 1), i 6= nt.

At time t, for s = nt a sample for π is generated , meaning that Xnt
is updated

from the conditional distribution, based on Xr(t − 1), r ∈ Gnt
.

The computations are local, and if π is homogeneous, also identical in nature.
The following three theorems proove the correctness of the approach.

Theorem 4.0.6. (Relaxation) If for each s ∈ S the sequence nt, t ≥ 1 contains s
infinetly often, then for every starting configuration η ∈ Ω and every ω ∈ Ω

(4.0.2) lim
t→∞

P (X(t) = ω|X(0) = η) = π(ω)

The Markov chain X(t), t = 0, 1, 2, . . . has the equilibrium distribution π.

Theorem 4.0.7. (Annealing) Assume that there exists an integer τ ≥ N such
that for every t = 0, 1, 2 . . . S ⊆ {nt+1, nt+2, . . . nt+τ}. Let T (t) be any decreasing
sequence of temperature for which:

• T (t) → 0 as t → ∞
• T (t) ≥ N∆/ log t for all t ≥ t0 for some integer t0 ≥ 2

Then for any starting configuration η ∈ Ω and for every ω ∈ Ω

(4.0.3) lim
t→∞

P (X(t) = ω|X(0) = η) = π0(ω)

Theorem 4.0.8. (Ergodicity) Assume that there exists an integer τ such that S ⊆
{nt+1, nt+2, . . . nt+τ} for all t. Then for every function Y on Ω and for every
starting configuration η ∈ Ω

(4.0.4) lim
t→∞

1

n

n
∑

t=1

Y (X(t) =

∫

Ω

Y (ω)dπ(ω)

References

1. P.B. Chapple, D.C. Bertilone, R.S. Caprari, and G.N. Newsam, Stochastic model-based pro-

cessing for detection of small targets in non-gaussian natural imagery, IEEE Transcations on
Image Processing 10 (2001), no. 4.

2. S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restora-

tion of images, IEEE Trans. Pattern Anal. Machine Intell. 6 (1984), no. 6, 721–741.

3. Perez P., Markov random field and images, CWI Quarterly 11 (1998), no. 4, 413–437.

4. Won C. S. and Gray R.M., Stochastic image processing, Kluwer, 2004.



Integral based aggregation operators

in the theory of fuzzy approximation

Martina Daňková

Inst. for research and applications of fuzzy modeling
University of Ostrava

30. dubna 22, 701 03 Ostrava
Czech Republic

Martina.Dankova@osu.cz

1 Introduction

The paper contributes to the field of fuzzy approximation. Fuzzy approximation
may be treated as a theory studying approximating functions created using
techniques based on the theory of fuzzy sets. It is understood generally in two
different ways differing by tool that we have at disposal intended to approximate
a given function or a data-set: (1) dependency is expressed by fuzzy function or
(2) it is approximated by an ordinary function using techniques based on fuzzy
set theory. Both approaches have common feature which lies in transparent
interpretability.

Later, we will focus only on the second type of fuzzy approximation tech-
niques. The basic idea behind the approach introduced in this paper is to apply
two times aggregation operator (similarly as proposed in [2] or later in [6]):

1’th aggregate data on subsets of input-space, and then

2’nd aggregate this local information into the global one.

The first part of this work may be treated as a generalization of approxi-
mation method for continuous functions (discrete data relating to continuous
function) introduced by Perfilieva in [7] as the technique called fuzzy trans-
formation. There, the weighted arithmetic mean is used only, while in this
approach, approximations using Choquet-like aggregation operators (leading to
weighted quasi-arithmetic means) are presented. This aggregation can be seen
also as a transformation of the input data with the aim to obtain symmetrical
spread around the final central characteristic. Using the Choquet-like aggrega-
tion operators, we can capture and eliminate different kinds of noise or an error
included in the system etc.

1



The second part is devoted to approximations based on Sugeno-like integrals
[10] and may be treated as an alternative to fuzzy transformation using oper-
ations on residual lattice. Unlike in [7], we follow the main idea of applying
aggregating operator to local subsets by defining maxitive fuzzy measure on on
these subsets and afterwards on the whole domain.

The main goal of this contribution is to investigate whether integral-based
aggregation operators (weighted quasi-arithmetic means or weighted maximum
etc.) can be used to approximate a given function with an arbitrary precision.
Moreover, we hope to find approximating functions which minimize different
criterions.

2 Preliminaries

Before turning to the main investigations let us recall some basic notions and
concepts.

2.1 Pseudo-operations

Let [a, b] be a closed subinterval of [0,∞]. The operation ⊕ : [a, b]× [a, b] → [a, b]
is called a pseudo-addition if it is commutative, nondecreasing, associative and
has a zero element denoted by 0.

The operation ¯ : [a, b]× [a, b] → [a, b] is a pseudo-multiplication if it is com-
mutative, nondecreasing, associative and for which there exists a unit element
1 ∈ [a, b]. Let us further suppose that ¯ is distributive with respect to ⊕ i.e.,

x¯ (y ⊕ z) = (x¯ y)⊕ (x¯ z).

The algebraic structure induced by the above described pseudo-operations, i.e.

L = 〈X = [a, b],⊕,¯,0,1〉, (1)

is a semiring. Remark that mathematical analysis over this structure is known
as pseudo-analysis.

The following are examples of pseudo-operations:

Case 1. LP = 〈[0,∞],∨, ·, 0, 1〉 is the max-product algebra over the extended
positive reals.

Case 2. L∗ = 〈[0, 1],∨, ∗, 0, 1〉, where ∗ is a t-norm.

Case 3. Lg = 〈[0,∞],⊕,¯, 0,1〉 with pseudo-operations defined by a monotone
and continuous generator g : [0,∞] → [0,∞] (see e.g. [5]). Moreover,
from this class we consider only strict pseudo-additions, that is operations
with ⊕ strictly increasing on (0,∞) × (0,∞). In this case by Aczél’s
representation theorem there exists a monotone function g : [0,∞] →
[0,∞] such that g(0) = 0 and

x⊕ y = g−1(g(x) + g(y)).

2



In this case the unique pseudo-multiplication associated to ⊕ is given by

x¯ y = g−1(g(x) · g(y)).

Relating g, we can define also power, pseudo-division and pseudo-subtraction

xn = x¯ . . .¯ x︸ ︷︷ ︸
n−times

,
x

y
¯ = g−1

(
g(x)
g(y)

)
, xª y = g−1(g(x)− g(y)),

respectively.

Case 4. L∨g = 〈[0,∞],∨,¯, 0,1〉, where ¯ and 1 are from the previous case.

2.2 Fuzzy measure and special pseudo-integrals

Having on mind the above structure L, we will consider a function f : X → X
and denote X × . . . ×X by Xn. Moreover, we consider A to be the σ-algebra
of subsets of Xn, (Xn,A) which is a measurable space. We say that a m : A →
[0,1] is a fuzzy measure on Xn, if

(1) m(∅) = 0 and m(Xn) = 1,

(2) m(I) ≤ m(J), whenever I ⊂ J ⊆ Xn.

It is moreover additive, if

(3) m(J) =
∑

x∈J m({x}), J ⊆ Xn.

For the sake of brevity, we will write gf(x) instead of (g ◦ f)(x) or g(f(x))
for arbitrary g, f . Moreover, let us denote a non-decreasing permutation of the
input n-tuple x ∈ Xn by x′ and x′0 = 0, x′n+1 = ∞ by convention. Further, we
specify a system of sets for x′ associated to x ∈ Xn as follows I ′i = {x′i, . . . , x′n},
i=1,. . . ,n, and I ′n+1 = ∅.

Assuming Lg as in Case 3, Choquet-like integral (introduced in [4]) for f
w.r.t. Lg is related to an additive measure m and is of the following form:

fC
g (x) =

∫ ⊕

Xn

f dm =
n⊕

i=1

[f(x′i)¯ (m(I ′i)ªm(I ′i+1))], (2)

As stated in [1], fC
g is an idempotent continuous n-ary aggregation opera-

tor which is pseudo-linear and comonotone pseudo-additive with respect to the
pseudo-addition ⊕ and pseudo-multiplication ¯.

Note that if we fix the order of the input n-tuple x then (2) becomes a
weighted quasi-arithmetic mean that is idempotent and bisymmetric aggrega-
tion operator (see also [1]).

Sugeno-like integral for f w.r.t. L∨g and a fuzzy measure m:

fS
g (x) =

∫ ∨

Xn

f dm =
n∨

i=1

f(x′i)¯m(I ′i), (3)

3



The integral is named after Sugeno ([10], 1974), where he introduced (3) with
¯ = ∧ and even before by Shilkret ([9], 1971) with ¯ = ·. Note that instead of
the pseudo-multiplication, we may use an arbitrary t-norm with no zero divisors
as published by Weber ([11], 1986) such that (3) is refereed to as Sugeno-Weber
integral. In general, we may assume arbitrary t-norm but in this case, (3) may
appear to be zero for positive-constant function on set with positive measure.
Remind that an arbitrary t-norm ∗ is distributive w.r.t. ∨ (Proposition 1.4.6. in
[3]), i.e. (x1 ∨ x2) ∗ y = (x1 ∗ y)∨ (x2 ∗ y), therefore, we still keep the important
property of max-homogeneity for all a ∈ [0, 1], i.e.

a ∨ fS
∗ (x) = fS

∗ (a ∨ x),

and also comonotone maxitivity, i.e.

fS
∗ (x) ∨ fS

∗ (y) = fS
∗ (x ∨ y).

Note that all aggregation operators based on Sugeno-like integrals are con-
tinuous, idempotent aggregation operators which are comonotone maxitive.

3 Mean square method based fuzzy approxima-
tion

In the following text, we will assume that L is of the form (1) and f is a function
on a support of L. If d is a metric on X and D = {xi ∈ X| i ∈ I = {1, . . . , n}}
is a data set then (CFD) the classical problem of curve fitting to empirical data
(that represent functional dependence f) is formulated as

• Assume that f(xi) = P (xi) + ei, for all xi ∈ D, i ∈ I, P : X → X and ei

is an error of measurement.

• The structure of function P is known and it is dependent on r (r < n)
parameters p1, . . . , pr. We can write P (x) = P (x, p1, . . . , pr)

• Find {p̄j}j∈R, R = {1, . . . , r} such that

S =
⊕

i∈I

d2(f(xi), P (xi, p̄1, . . . , p̄r)) is minimal.

We may generalize this problem by assuming classical problem of curve fit-
ting to empirical data w.r.t. a given fuzzy set A on the universe X.

Convention 3.1 A fuzzy set A on the universe X is specified by the character-
istic function of A that is a mapping µA : X → [0, 1]. We denote the fact that
A is a fuzzy set on X by A ⊂∼ X and for the simplicity, we will use the same
symbol for a fuzzy set as well as for its membership function.

Then we can reformulate the classical problem into the generalized one
(CFD-A) as follows:

4



• Assume L of the form (1), a metric d on X and A ⊂∼ X.

• Moreover, let d(f(xi), P (xi)) = ei, for xi ∈ D, i ∈ I, where P : X → X
and ei is an error of measurement.

• The structure of function P is known and it is dependent on r (r < n)
parameters p1, . . . , pr.

• Find {p̄j}j∈R, such that

SA =
⊕

i∈I

A(xi)¯ d2(f(xi), P (xi, p̄1, . . . , p̄r)) is minimal.

This might be understand as: find minimum of S for xi ∈ A.

3.1 Fuzzy approximation by means of fuzzy partition

Under this notion, we understand an approximation technique that applies to
each fuzzy set of a fuzzy partition of the input domain. We specify a parametric
set of functions from which we choose a concrete function due to some criterion.
In our case, the criterion and a measure of precision is taken as described above.

Definition 3.2 Let J = {1, . . . , k} be an index set and A = {Ai}i∈J be a
system of fuzzy sets on X, i.e. each Ai ⊂∼ X. We say that A is fuzzy partition
if

⊕
j∈J Aj(x) = 1 for all x ∈ X.

We specify the following space of functions w.r.t. L, {Pi}i∈J system of func-
tions depending on r parameters and the fixed fuzzy partition A:

HA = ({
⊕

i∈J

[Ai(x)¯ Pi(x,pi)]| pi ∈ Xr},⊕,¯,0f ,1f ),

where 0f (x) = 0 and analogously 1f (x) = 1 for each x ∈ X. Notice that HA is
the subspace of the pseudo-linear space

H = ({f | f : X → X},⊕,¯,0f ,1f ).

The mean square error problem for fuzzy approximation by means of fuzzy
partition (CFD-A) is given as follows:

• Let d be a metric on X and f : X → X be a continuous w.r.t. d. Let us
denote space of all such a functions by Hd. Note that if all {Ai}i∈J and
{Pi}i∈J are continuous w.r.t. d then HA ⊂ Hd ⊂ H.

• Find {pi}i∈J such that each SAi of the problem (CFD-Ai) is minimized.

When having a solution {pi}i∈J relating to {Pi}i∈J of (CFD-A), we know
that each function from the system {Pi}i∈J minimize the mean square error of

5



the particular fuzzy set of fuzzy partition A. We would need to employ pseudo-
derivatives to solve this problem. Therefore, we restrict ourselves to special cases
of the structure L that will alow us to use the classical notion of derivatives.

This special structures will be those that depend on a continuous generator
g of pseudo-operations, i.e. Lg and L∨g . Moreover, the criterion to be minimized
is now different. Let us summarize the problem of minimizing mean square error
(CFD-A, g) for this special case:

• Let L = Lg(= L∨g ) and the metric d on X is defined by

d(x, y) = g−1(|g(x)− g(y)|),
moreover, let f ∈ Hd.

• Find {pi}i∈J such that each criterion g(SAi), where SAi is the criterion
of the problem (CFD-Ai), is minimized.

The following lemma shows that an arbitrary function from HA minimizes
the variance from {Pi}i∈J w.r.t. A.

Lemma 3.3 Consider L of the form (1), a fuzzy partition A and F (x) =⊕
i∈J (Ai(x)¯ Pi(x)).

1. If L = Lg then

y = F (x) minimizes g[
⊕

i∈J Ai(x)¯ (Pi(x)ª y)2] for each x ∈ X.

2. If L = L∨g then

y = F (x) minimizes g[
∨

i∈J Ai(x)¯ (Pi(x)ª y)2] for each x ∈ X.

3.2 Choquet-like integral based approximation

In the sequel, we will fix fuzzy measures in order to specify aggregation operators
which are used for the approximation, i.e., for the computation of the local
estimation of a function f by basic functions and finally the approximation of
f based on the local estimates. Let us remind that weighted quasi-arithmetic
mean is a special case of the Choquet-like integral, and the later specification
leads to that specific class of aggregation operators.

Assume Lg and a fuzzy partition A. The mapping mx defined as

mx(X ) =
⊕

A∈X
A(x),

is fuzzy measure of X ⊆ A on A for each x ∈ X.
Moreover, the mapping

mi(X ) =
⊕

x∈X

Ai(x)⊕
y∈D Ai(y)

¯,

6



is fuzzy measure of X ⊆ D on D for each i = 1, . . . , k.
These fuzzy measures determine Choquet-like integrals that are used to spec-

ify function F (x) (= fC
g w.r.t. mx) and the system of constant functions {Pi}i∈J

(= {fC
g w.r.t. mi}i∈J).

Below, we summarize the received formulas:

Pi(x) = fi,g =
⊕

x∈D Ai(x)¯ f(x)⊕
y∈D Ai(y)

¯, (4)

is Choquet-like integral w.r.t. mi for each i ∈ J . And

Fg(x) =
⊕

i∈J

Ai(x)¯ fi,g, (5)

is Choquet-like integral w.r.t. mx for each x ∈ X.

Definition 3.4 We say that (5) is fuzzy transform of f w.r.t. the sample set D
and fuzzy partition A on Lg.

Remark 3.5 The notion fuzzy transform due to [7]. Motivation comes from
Takagi-Sugeno models.

Clearly, (f1,g, . . . , fk,g) is a solution of the problem (CFD-A, g).

Lemma 3.6 Let fi,g and Fg(x) be as above. Then,

y = fi,g minimizes g[
⊕

x∈D Ai(x)¯ d2(f(x), y)],

Now we are going to show that using fuzzy transform by means of Lg we are
able to approximate a given sample data set of a continuous function with an
arbitrary precision.

Theorem 3.7 Let f ∈ Hd. Then for arbitrary n ∈ N and ε > 0 there exists A
such that Fg w.r.t. Dn and A on Lg ε-approximates f(Dn), i.e.

d(f(x), Fg(x)) ≤ ε, for each x ∈ Dn.

3.3 Sugeno-like integral based approximation

We will follow the approach from the previous section. For this subsection, let
us assume L∨g . The mapping

mx(X ) =
∨

A∈X
A(x),

defines fuzzy measure of X ⊆ A on A for each x ∈ X.
Moreover, the mapping

mi(X ) =
∨

x∈X Ai(x)∨
y∈D Ai(y)

¯, (6)

7



defines fuzzy measure of X ⊆ D on D for each i = 1, . . . , k.
Analogously as in the previous case, these fuzzy measures determine Sugeno-

like integrals that are used to specify function F (x) of the problem (CFD) (= fS
g

w.r.t. mx) and the system of constant functions {Pi}i∈J (= {fS
g w.r.t. mi}i∈J).

Below, we summarize the received formulas:

Pi(x) = fi,g =
∨

x∈D Ai(x)¯ f(x)∨
y∈D Ai(y)

¯, (7)

is Sugeno-like integral w.r.t. mi for each i ∈ J . And

Fg(x) =
∨

i∈J

Ai(x)¯ fi,g, (8)

is Sugeno-like integral w.r.t. mx for each x ∈ X.

Definition 3.8 We say that (8) is fuzzy transform of f w.r.t. the sample set D
and fuzzy partition A on L∨g .

Analogously, (f1,g, . . . , fk,g) is the solution of (CFD-A, g).

Lemma 3.9 Let fi,g and Fg(x) be given by (7) and (8), respectively. Then,

y = fi,g minimizes g[
∨

x∈D Ai(x)¯ d2(f(x), y)],

Now we are going to show that using Max-transformation we are able to
approximate a given data with an arbitrary precision.

Theorem 3.10 Let f ∈ Hd. Then for arbitrary n ∈ N and ε > 0 there exists A
such that fuzzy transform of f w.r.t. Dn and A on L∨g ε-approximates f(Dn),
i.e.

d(f(x), Fg(x)) ≤ ε, for each x ∈ Dn.

4 Conclusions

The class of aggregation operators is very broad and hence the number of pos-
sibilities how to create an approximating function is unlimited. Important is
to create such approximation that fulfills required criterion. In this work, we
have minimized the residual sum of squares. The cases of Choquet-like integrals
and Sugeno-like integrals has been discussed. There the choice of fuzzy measure
that determines particular integral and it is closely related to fuzzy partition of
the input domain is crucial and deserves a deeper study.

Acknowledgement I would like to express my gratefulness to Radko Mesiar
and Susanne Saminger for the fruitful discussions over the topic in concern.

Moreover, I acknowledge partial support of the grant 1M0572 of the MŠMT
ČR.

8



References

[1] Calvo T., Mayor G., Mesiar R. (2002) Aggregation Operators: New Trend
and Applications. Studies in Fuzziness and Soft Computing. 97, Physica
Verlag, Heidelberg.

[2] F. Klawonn, V. Novák (1996) The relation between inference and interpo-
lation in the framework of fuzzy systems. Fuzzy Sets and Systems, Vol. 81,
331–354.

[3] E. P. Klement, R. Mesiar, and E. Pap. (2000) Triangular Norms, In Trends
in Logic, Vol. 8, Kluwer, Dordrecht.

[4] R. Mesiar (1995) Choquet-like integrals. J. Math. Anal. Appl., Vol. 194,
477–488.

[5] E. Pap, Pseudo-additive measures and their applications, in Handbook of
Measure Theory (E. Pap, ed.), Elsevier Science B.V., 2002.

[6] Perfilieva, I.(2001). Normal forms for fuzzy logic functions and their ap-
proximation ability. Fuzzy Sets and Systems, Vol. 124, 371–384.

[7] Irina Perfilieva. Fuzzy transforms. In (J. F. Peters and A. Skowron Ed.)
Transactions on Rough Sets II. Rough Sets and Fuzzy Sets, LNCS 3135,
63–81.

[8] H. Ruspini, E. (1969) A new approach to clustering. Inform. and Control,
Vol. 15, 22–32.

[9] V. Shilkret (1971) Maxitive measures and integration. Indag. Math., Vol.
33, 109–116.

[10] M. Sugeno (1974) Theory of fuzzy integrals and its applications. PhD thesis,
Tokyo Institute of Technology, Tokyo.

[11] S. Weber (1986) Two integrals and some modified versions: critical re-
marks. Fuzzy Sets and Systems, Vol. 20, 97—105.

9





Comparison of Data-Driven Fuzzy Modelling Methods tested
on NOx Data

Martin Štěpnička1, Edwin Lughofer2 and Viktor Pavliska1

Institute for Research and Applications of Fuzzy Modeling1

University of Ostrava

30. dubna 22, 701 03 Ostrava 1, Czech Republic

martin.stepnicka@osu.cz, viktor.pavliska@osu.cz

Fuzzy Logic Laboratorium Linz-Hagenberg2

Johannes Kepler University Linz

Altenbergerstrasse 69, A-4040 Linz, Austria

edwin.lughofer@jku.at

ABSTRACT:
This report is an application-experiment paper based on experimenting

with real (NOx) data provided by Fuzzy Logic Laboratorium

Linz-Hagenberg (FLLL) - Johannes Kepler University in Linz. The

NOx data which are described below have been studied and functional

dependencies between them successfully modelled by several fuzzy

models identified by data-driven methods by the FLLL institute; some

particular result can be found e.g. in [2]. Bilateral project Aktion

41p19 between IRAFM-OU and FLLL-JKU made possible to

realize a deeper cooperation between both institutes. One of key issues

of the proposed cooperation was (for IRAFM) to benefit from

experiences based on many applications and industrial projects solved

by FLLL. Second part of the issue was (for FLLL) to benefit from

theoretical research and techniques developed in IRAFM and

implemented in the software package LFLC2000. Based on the cited

project, it was possible to obtain a real data and to make lots of

experiments which enriched IRAFM by experiences and prompted

several improvements in the techniques developed in the institute as

well as changes and implementations and the software package. FLLL

institute which cooperated on the project will be provided with all

methods used in the experiments and experiment results.

1 Data Description

Let us shortly describe a problem yielding the NOx
data with a brief description of an on-line approach
used in a solution realized by FLLL.

At an engine test bench the task was to iden-
tify a k step ahead prediction model for the emis-
sion channel NOx directly from online measure-

ment data. The task emerged from two purposes:
first to be able to have an early detection of acci-
dents and faults in the whole emission cycle, e.g. a
broken pipe which can get even dangerous for the
test bench operators, and second to save expenses
on a measurement sensor for NOx later on. The
later aspect is due to the fact that the obtained pre-
diction model can be used for calculating the value
of NOx out of some other measured channels. Com-
pared to a fault detection based on static models,
with a k step ahead prediction models upcoming
events can be earlier recognized and hence faults
or even accidents prevented.

Originally, the input data matrix consisting of
6700 samples which were recorded with a certain
frequency. This frequency was too high in order
to obtain feasible time delays of the original chan-
nels, as shifts up to 100 steps had to be carried
out producing 1600 additional channels out of the
16 original channels (for each channel 100 different
shifts: k−1, k−2, ..., k−100) in order to get a good
approximation for NOx. Thus, it turned out that
a simple down-sampling by taking just each 10th
point and throwing away all the others yielded a
sufficient resolution. Hence, the input matrix was
reduced to 670 sample, where then a time shift up
to 10 was sufficient causing a manageable amount
of 160 channels and finally 660 samples (due to this
shift the first ten samples needed to be cut out). It
is obvious that a delay in the new data matrix of
k − l belongs to a delay of k − 10l in the original



one and vice versa. With the knowledge about the
chosen frequency for sampling, namely 10 Hz per
second, we can conclude to the real absolute delay
for the impact of the input channels on NOx: 4
to 6 seconds. After applying variable selection it
turned out, that at least four inputs (some original
channels and their time delays) were needed in or-
der to obtain an approximation quality higher than
0.9. The input channels for approximating NOx
at time instant k consisted of the following list of
channels (in the order they were selected): N = En-
gine Rotation Speed, P2offset = Pressure in Cylin-
der number 2, Te = Engine Output Torque, Nd =
Speed of the Dynanometer together with their ap-
propriate delays yielding a dynamic model in form
of a four-step-ahead prediction of NOx

NOx(k) =f(N(k − 4),P2offset(k − 5),Te(k − 5),
Nd(k − 6),N(k − 6))

where one step back denotes exactly one second. In
this sense Te(k − 5) denotes linguistically ’the en-
gine output torque five seconds ago’, P2offset(k−5)
denotes ’Pressure in Cylinder number 2 five seconds
ago’, N(k − 4) denotes ’Engine speed five seconds
ago’ and so on. In this sense a four seconds ahead
prediction model is yielded.

2 Original Results

Let us briefly recall some original results reached
by FLLL which should serve us as an exemplar
we would like to approach. Obviously, one could
hardly expect that by general methods we can reach
results of the same quality and therefore we say,
that the original results serve us as an exemplar.
However, from further sections it will be obvious
that we do not obtain results of the same quality in
all aspects but we obtain results of the same quality
in some aspects, for instance we get the same ac-
curacy of the model while we use more fuzzy rules
or viceversa.

In Table 1 the model qualities as well as the
model complexities are demonstrated when taking
the five input variables stated above. The qualities
were measured by a normalized average percent er-
ror:

APE norm =
1
N

N∑

i=1

|ŷi − yi|
max y −min y

(1)

From this table it is obvious, that all methods
performed similar, except ANFIS, which produced
a quite high overfitting by generating all fuzzy set
combination into rules (32 in this example). It has
to be noticed that FLEXFIS-MOD is an incremen-
tal variant of fuzzy system modelling and hence
applicable for online processes (e.g. online fault
detection), where the models should be kept up-
to-date as fast as possible (it processes point per
point through its algorithm). When reducing the
input dimensionality to 4 respectively 3, a drop of
the normalized APE from 4.90% to 5.04% respec-
tively 5.64% could be observed when applying gen-
fis2 ext2 (VQ-INC-MOD) and the same number of
rules.

Concluding, based on these fuzzy models (with
an expected deviation smaller than 5% on fresh
data), it is possible to detect faults with an inten-
sity of approximately 2 times 5% = 10% or more
in newly recorded measurements.

3 Newly Used Data-Driven
Methods

This section is devoted to a short description of
newly used methods implemented in the software
package LFLC2000, see [1].

First of all, we succinctly introduce inference
methods and learning algorithm implemented in
the program and used for modelling the NOx pre-
diction since not all the techniques in the package
are appropriate for this purpose.

3.1 Inference Techniques and de-
fuzzifications

Fuzzy approximation with conjunctions
(FAC) is in fact the well known Mamdani-Assilian
[3] approach since the mathematical interpretation
of the fuzzy rule base of n rules is given by the
following fuzzy relation R

R(x, y) =
n∨

i=1

(Ai(x) ∧Bi(y)), x ∈ X y ∈ Y (2)

where Ai and Bi is the i-th antecedent and conse-
quent fuzzy set, respectively.

Fuzzy approximation with implications
(FAI) is also well known but for ceratin reasons



much less used in applications. It is based on the
mathematical interpretation of the fuzzy rule base
of n rules is given by the following fuzzy relation R

R(x, y) =
n∧

i=1

(Ai(x) → Bi(y)), x ∈ X y ∈ Y (3)

where Ai and Bi is the i-th antecedent and conse-
quent fuzzy set, respectively. In the LFLC2000, the
ÃLukasiewicz residuation operation is used for an in-
terpretation of the implication between antecedents
and consequents represented by → in (3).

Concerning the inference technique, it is realized
by the well known computational rule of inference
(CRI) proposed by Lotfi A. Zadeh, see [11]. It is
obvious that for a crisp input x′ and a singleton
fuzzifier the CRI gives an equivalent result to the
simple evaluation of the fuzzy rule base interpre-
tation at the node x′ i.e. the inference is equal to
R(x′, y) ⊂∼ Y where R is given either by (2) or by
(3).

For every single one approach a different defuzzi-
fication method has to be used. For the first ap-
proach based on conjunctive interpretation of rules,
the center of gravity (COG) is used and for the sec-
ond one based on implicative interpretation rules
mean of maxima (MOM) is used.

3.2 Learning

For this paper, we consider the word learning in
a wider sense i.e. every single method leading to
an automatic generation of a fuzzy rule base will
be considered to be a learning so the word is not
understood necessarily on a neural point of view.

Expertly based linguistic approaches like Percep-
tion based logical deduction [4] have the advantage
they the fuzzy rule base can be built expertly. Since
the problem of prediction NOx values is nothing
else but an approximation of the data and there is
no expert knowledge of the system some learning
method has to be used.

LFLC2000 has been equipped with the so called
linguistic learning [1] for an automatic generation
of a linguistic fuzzy rule base appropriate for the
perception based logical deduction. The learning
can be described as follows: If new measured in-
put/output pair (xj , yj) comes find the most appro-
priate linguistic fuzzy sets (Aj , Bj) where Aj ⊂∼ X

and Bj ⊂∼ Y and create a rule

IF x is Aj THEN y is Bj (4)

where Aj and Bj are just evaluating linguistic ex-
pressions represented by fuzzy sets Aj and Bj , re-
spectively. In this way, huge rule base is created
and then duplicate rules erased as well as com-
plexity, inconsistency (conflicts in rules) and redun-
dancy by sophisticated algorithms solved.

For the both fuzzy approximation methods, no
learning has been implemented yet and the real
NOx project demanded its development and im-
plementation as a part of the Aktion project.

For this stage of investigation, a learning based
on the same principle as the linguistic one was im-
plemented. Compared to the linguistic one, it does
not need a consistency and redundancy analysis
there are no fully overlapping fuzzy sets in the fuzzy
rule base (usually uniform triangles). On the other,
as well as other usual axis based approaches it suf-
fers from the curse of dimensionality.

3.3 Fuzzy Transform

Another fuzzy modelling method which was em-
ployed in this experiment is the fuzzy transform
(F-transform) [6]. It is a fuzzy approximation
method (approximating a functional dependency
i.e. a continuous function f : X → Y ) based
on two transforms - a direct one and an inverse
one. It deals with a fuzzy partition of the do-
main X given by fuzzy sets called basis functions
Ai ⊂∼ X i = 1, . . . , n fulfilling several conditions
including the Ruspini condition [7]

n∑

i=1

Ai(x) = 1 ∀x ∈ X. (5)

Usually, the technique deals with triangular shaped
fuzzy sets or sinusoidal shaped fuzzy sets. For de-
tails see [5] or [6].

The direct F-transform is a discrete simplified
representation of the function f given by a real vec-
tor [F1, . . . , Fn] where

Fi =

∫
X

f(x)Ai(x)dx∫
X

Ai(x)dx
(6)

and if the function is given only at (measured) sam-
ples (xj , f(xj)) j = 1, . . . , m where m >> n, in



principle, then

Fi =

∑m
j=1 f(xj)Ai(xj)∑m

j=1 Ai(xj)dx
. (7)

The inverse F-transform is again a continuous
function on X and it is given by a linear combina-
tion of the basis functions and the components Fi

of the direct F-transform i.e.

fF
n (x) =

n∑

i=1

FiAi(x). (8)

In the terminology used in the previous subsec-
tion, we can say that the inverse F-transform is an
inference method (belonging to singleton models,
close to T-S rules of the 0th order) while the direct
F-transform is its learning algorithm.

The recalled approximation method can be easily
generalized for functions with more variables, see
[9, 10]. In the LFLC2000 there is such a method
implemented for an arbitrary number of variables,
in principle.

4 FAI and FAC Results

Based on the NOx data consisting of a file of train-
ing samples and a file of N = 159 testing sam-
ples provided by the FLLL we have tested the
LFLC2000 techniques described above. To have
a relevant comparison we have measured the accu-
racy by the correlation coefficient and by the nor-
malized average percent error (1) as well as in the
original case. Moreover, since we model a process
of prediction NOx during an engine activity a speed
of a chosen inference method including its defuzzi-
fication method is of a high interest.

In Table 2 there is an overview of some chosen
results reached by the methods implemented in the
LFLC2000 software. By methods FAI and FAC we
do not mean only fuzzy approximation with im-
plications and conjunctions, respectively as infer-
ence methods but the whole data-driven method
in the software i.e. fuzzy approximation learning,
deleting duplicate rules, respective defuzzifiaction
method (COG for FAC and MOM for FAI). Num-
ber of fuzzy sets expresses how many uniform tri-
angular fuzzy sets on each axis have been used for
generating the rule base. The speed of inference ex-
presses time needed for getting all output values for

159 inputs from testing samples. This information
is very rough and imprecise since always depends
on used hardware, installed operational system and
running software (in our case Intelr Pentiumr IV
1.7GHz, 512MB SDRAM, Win XP Professional).

Obviously, it can be stated that the result do
not reach such accurate values as in the original
case but tend to them. Unfortunately, only if the
number of rules increases rapidly.

5 Improvements

Clearly, the biggest problem is hidden in the curse
of dimensionality since no fuzzy cluster analysis is
used. To decrease the number of rules while keep-
ing the given methods since their interpretability
is very high, if we understand it as a possibility to
interpret, say linguistically, the model or its unique
rules, a new algorithm has to be implemented. Of
course, in case of a high number of rules, a possibil-
ity of understanding them decreases and moreover,
speed of an inference method including its respec-
tive defuzzification method decreases as well. The
following algorithm has been implemented.

Let on ith axis K triangular fuzzy sets Ai
k k =

1, . . .K are created for i = 1, . . . , I. Let a fuzzy
approximation rule base is generated by the intro-
duced algorithm. If there are two rules of the form

IF · · ·xi is Ai
ki
· · · THEN y is B, (9)

IF · · ·xi is Ai
ki+1 . . . THEN y is B (10)

i.e. consequent fuzzy sets and antecedent fuzzy
sets excepting one ith antecedent fuzzy set are
equal and the ithe antecedent fuzzy sets are neigh-
boring half-overlapping fuzzy sets then the rules are
merged to one

IF · · ·xi is T i
ki ki+1 · · · THEN y is B (11)

where the linguistic expression T i
ki ki+1 is repre-

sented by a trapezoidal fuzzy set

T i
ki ki+1(x) = Ai

ki+1(x)⊕Ai
ki+1(x) (12)

and where ⊕ is the ÃLukasiewicz t-conorm.
Similarly, if there is (after several merging) a

rule, which on some antecedent axis is totally over-
lapped by some trapezoidal fuzzy set from another



rule and fuzzy sets on the other axes are equal in
both rules, then this rule is erased. In fact, instead
of clustering data before an automatic generation
of rules, this algorithm clusters already generated
rules.

In Table 3, there is a short overview of some cho-
sen results.

6 F-transform Results

Finally, the F-transform method was tested on
NOx data as well. This method suffers from the
curse of dimensionality a bit less then the pre-
vious fuzzy approximation techniques although it
simply creates all possible combination of fuzzy
subdomains and searches for their discrete repre-
sentatives. The advantage is that the inverse F-
transform is computationally extremely simple and
fast. It is just a linear combination of fuzzy sets
and there are no time requirements for a defuzzi-
fication. The difference can be seen in the speed
columns of Tables 2, 3 and 4.

So, the curse of dimensionality does not cause
a computational complexity growth and inference
speed problems. Interpretability is very natural
since the F-transform method in fact claims that

IF x1 is A1
k1

and ... and xi is Ai
ki

and ...

... andxI is AI
kI

THEN y is Fi.

Although one can hardly expect that from a huge
number of, say ”rules”, a human can understand re-
lationships between variables, the F-transform with
its interpretability can easily provide a user with a
local type of information i.e. what happens on some
chosen subdomains.

7 Comparison, Conclusions
and Further Work

All in all, it can be stated that the LFLC2000 meth-
ods did not bring as good results as the original ap-
proach [2] in all monitored features (No. of rules,
accuracy, speed etc.) at ones. On the other hand,
in some concrete features the results can be at least
as good if we allow e.g. higher number of rules.
Especially the F-transform method can be signif-
icantly useful in getting high accuracy and speed
properties.

The fuzzy approximation methods FAI and FAC
has been demonstrated to be useful universal meth-
ods which are especially effective in lower number of
input variables. Otherwise, they suffer from curse
of dimensionality some cluster analysis has to be
used to improve their results. Within the Aktion
project, some promising improvements based on
the rule merging algorithm have been reached.

The F-transform algorithm featured by ex-
tremely high inference speed and accuracy below
5% available. Its high number of fuzzy set combi-
nations (curse of dimensionality) did not influence
the speed. The interpretability is natural as well
but the transparency of such model composed of
hundreds or even more combinations is question-
able.

Another key issue of the data-driven model is
hidden in incremental vs. batch type of learning (
also on-line vs. off-line). Every single method in
the LFLC2000 is implemented for an off-line learn-
ing applications and therefore all results in the ta-
bles in the previous sections are results of batch
models. On the other hand, any of them can be in
principle modified to an incremental one without a
significant influence.

Fuzzy approximation models FAI and FAC do
learn from individual incoming data and step by
step generate individual rules. The suggested rule
merging algorithm can be used in on-line merging
as well without any change.

In case of the F-transform, it is a bit more com-
plicated since formula (7) is a typical batch for-
mula. On the other hand, if the partial summa-
tions are kept in a memory of the learning machine,
the coefficients Fi can be on-line modified. More-
over, an on-line neural approach to the F-transform
based on the gradient descent method was already
suggested, see [8]. This approach unfortunately
has not been tested on NOx data since it is pro-
grammed only for single-input-single-output prob-
lems yet. On the other, we consider it to be a
promising method which should be tested within
the on-going work since it also allows us to adapt
the basis functions which increases accuracy and
decreases number of fuzzy sets.



Acknowledgement

This investigation has been supported by projects
Aktion 41p19 and DAR 1M0572 of the MŠMT ČR.

References

[1] Dvořák A., Habiballa H., Novák V. and
Pavliska V. (2003), The Software Package
LFLF2000 - Its Specificity, Recent and Per-
spective Applications. Computers in Industry,
51, 2003, 269–280.

[2] Lughofer E. (2005), Data-Driven Incremen-
tal Learning of Takagi-Sugeno Fuzzy Models,
PhD-Thesis, Department of Knowledge-Based
Mathematical Systems, University Linz, Aus-
tria.

[3] Mamdani E. and Assilian S. (1975), An
Experiment in Linguistic Synthesis with a
Fuzzy Logic Controller. International Journal
of Man-Machine Studies, 7, 1975, 1–13.

[4] Novák V. (2005), Perception-Based Logical
Deduction as Alternative Approximate Rea-
soning Method. Proc. of FUZZ-IEEE ’05,
Reno, Nevada, USA, 1032–1037.

[5] Perfilieva I. (2003) Fuzzy Approach to Solu-
tion of Differential Equations with Imprecise
Data: Application to Reef Growth Problem.
In: Fuzzy Logic in Geology (R.V. Demicco and
G.J. Klir, Eds.), Academic Press, Amsterdam,
Chap. 9, 275–300.

[6] Perfilieva I. (2006), Fuzzy Transforms. Fuzzy
Sets and Systems, in press.

[7] Ruspini E. H. (1969), A New Approach to
Clustering. Inform. and Control, 15, 22–32.

[8] Štěpnička M. and Polakovič O. (2006), The
Fuzzy Transform from the Neural Network
Point of View. Proc. IPMU 2006, submitted.

[9] Štěpnička M. and Valášek R. (2004), Fuzzy
Transforms and Their Applications to
Heat Flow Equation. Abstracts of the 2nd
FLLL/SCCH Master and PhD Seminar 2004,
51–56.

[10] Štěpnicka M. and Valášek R. (2005), Numer-
ical Solution of Partial Differential Equations
with Help of Fuzzy Transform. Proc. of FUZZ-
IEEE ’05, Reno, Nevada, USA, 1104–1109.

[11] Zadeh L. A. (1973), Outline of a New Ap-
proach to the Analysis of Complex Systems
and Decision Processes. IEEE Trans. Systems,
Man and Cybernet. SMC-3, 28–44.

Method APE norm
5 features

/ Av. No. Fuzzy Sets
/ No. of Rules

ANFIS 5.25% / 2 / 32
genfis2 4.83% / 5 / 5
genfis2 loc. 4.86% / 5 / 5
genfis2 ext. (VQ-INC) 4.92% / 4 / 4
genfis2 ext2 (VQ-INC-MOD) 4.90% / 4 / 4
FLEXFIS-MOD sam. (inc.) 4.98% / 5 / 5

Table 1: Comparison of data-driven modelling methods for

fuzzy systems based on NOx data



Var. Method No. of F. Sets No. of Rules APE norm Correlation Speed
3 FAI 5 83 9.25% 0.595 5.56 s
3 FAC 5 83 9.33% 0.734 2.88 s
3 FAI 7 182 8.59% 0.666 10.60 s
3 FAC 7 182 6.57% 0.849 4.16 s
3 FAI 10 362 7.49% 0.751 18.50 s
3 FAC 10 362 5.96% 0.859 5.61 s
4 FAI 7 323 6.01% 0.862 20.00 s
4 FAC 7 323 5.72% 0.875 7.77 s
5 FAI 5 181 8.18% 0.731 14.60 s
5 FAC 5 181 7.74% 0.842 7.56 s
5 FAI 7 350 6.10% 0.863 22.50 s
5 FAC 7 350 5.81% 0.879 8.66 s

Table 2: Some chosen results by LFLC2000.

Var. Method No. of Fuzzy Sets No. of Rules APE norm Correlation Speed
3 FAI 5 6 10.85% 0.585 0.33 s
3 FAC 5 6 10.85% 0.745 0.30 s
3 FAI 7 18 11.27% 0.503 0.41 s
3 FAC 7 18 7.87% 0.830 0.48 s
5 FAI 5 18 9.76% 0.631 0.97 s
5 FAC 5 18 7.47% 0.842 0.89 s
5 FAI 7 64 8.17% 0.719 2.34 s
5 FAC 7 64 7.55% 0.802 1.75 s

Table 3: Some chosen results by LFLC2000 after merging rules.

Variables F. Set Shape No. of Fuzzy Sets APE norm Correlation Speed
3 triang. 2 10.59% 0.824 0.05 s
3 sinus. 2 9.65% 0.869 0.05 s
3 triang. 5 5.70% 0.891 0.06 s
3 sinus. 5 5.55% 0.879 0.03 s
4 triang. 3 7.23% 0.875 0.03 s
4 sinus. 3 6.88% 0.876 0.05 s
4 triang. 5 4.77% 0.925 0.05 s
4 sinus. 5 4.91% 0.904 0.05 s
5 triang. 2 9.59% 0.824 0.05 s
5 sinus. 2 8.45% 0.829 0.06 s
5 triang. 4 6.10% 0.863 0.06 s
5 sinus. 4 5.23% 0.897 0.06 s
5 triang. 6 4.69% 0.908 0.06 s
5 sinus. 6 4.62% 0.912 0.06 s

Table 4: Some chosen results by the F-transform method in LFLC2000.





�������� �����	�
���
�
	

�� �����������	 �

��� ��� ��
 �� ����

������ ��		�
���


���������� 	
 �	������ 
������� �� ���������� 	
 �	������
����� �	������� �������

��������	

	��	
����
����
������	

����� ����

��������

�� ����� ���	 
� ���	� ��� �
������
��� ��� �� 	��������� �����

���������� ������ ����
��� ��� 
� ��	�������� 
� ����� �� 	��������

������� ����	�� �� ���� ��� ���� ��� ��� ����� ��	������ �		������ ��

�		���������� ��� ������� ������ �������� � ������� ����	�� �����

���� �� ������ ����� ����� �
������
�� �� ��� ������
�� �������

� �������	�
��

�����  	!���� �� �������		� "� ��� ��� ����#�� ���  	!��� $�	�� 
	��� ��
��� �	��  �� "� �� ��� 
�	� ��� ��� ���� ������� %�� �&� $�	�� �	�'�����	�
�� ����������� "� �	�� �#�	�� � ( %�� �&� � %�� �& ��� $�	�� ��� �����	� ��
����������� "� ��� 	������	� �( %�� �&� � %�� �& !���� "� � � � ) ��* �� (
�� � � ��+ ,	� 
	� �  �#�	���� � �� ��-��" � �� ���������. � ��������� ���
��Æ����� �	�����	� �� ���  �
�#�	�������� 	
 �+ 
	 ��� $��/��� 
����  	!�� ��
"���� 	�  �
�#�	�����	�� �#�	��� ��� ��� �	�����	����! �������� �� �� �� ���
���� 
	� 0����� ��� �	�	1� �23 %0��	&+

4� ��� ���� �	������� $��� �#�	�� � !�"��� 5%�� �&.���� �� �6� $���� � ��
�  �
�#�	�����	�� �#�	�� ��� � �� ��� ��������+ 07	��� �	 ������������ ���
��������� 	
 ����� � !�"��� ���� �	� "��� �������
� 
	� ������ �����+

�



8���  ���� �� �23#� !�"�� �� � ��������� 5�.�������� �� �6 ���� ���� 5��6
5�.���� �� �6 �� � "	�����  ������� 5��6 5�.�� �6 �� � �	��������� �	�	���
5�96 � �� ��	�	�� �� "	�� �����" ��� 5��6 
	� ��� �� �� � � � �� ��*��� 
��	�! �  � ������ � ���� ���� � � � � �� ��� 5�:6 
	� ��� �� �� 5� �
�6 � 5� � �6 ) �+ ;� ��� "��� ��	$� �� %<��	& ���� ��� ������� !��������
"�  �
�#�	�����	�� �#�	�� � !�"��� �	������ �*��� � 	
 ��� �23#� !�"���+ 
	
 �
�#�	�����	�� �#�	�� � !�"��� ��� �23#� !�"���� ��� ��� �23#� !�"��
�� � �	�	�	����� ���!� 	
 � ��"������ ��	���� 	
  �
�#�	�����	�� �#�	��
� !�"���+ ;� 
	  	$� ���� �	 ��� ��� �23#� !�"��� �� � ��	" �� �� ��Æ�� �
�� �	 ��� ���  �
�#�	�����	�� �#�	���+ 4� $�  ��� ���� $��� 5� ������� 	
6
�23#� !�"���� "�� 	�� �*��� �� $�  "� �#�	�� � !�"���+

� �
�
	 
�����

	 ���
��� ���
��� �� ���

4� ���  �	� ��� ������ � $��� �23#� !�"���. 
	� 	�� �	���������� $� $�  
� �!�� � ����!� ���� �	��	�+

����� 	
 �  � $� ��� ���������� 	� � �� �	��  � 	������ �23#� !�"���+ �	��#
	���� ����� � � � �	 �� �� �23#� !�"��� �*��� � �
 �� � ) �� ��� ��������	�
���� ��� 	���� �� �	�� ��/�� ��� ��� �������� �	�����	� 5�:6 �����=�	��+


��	��� $���	�� ��� �������� 	
 5�:6� ��� ��� �����	� � ������� 	� � ��
5��6 
	� ��� ��-����	�. 5��6 '��� ���� ���� � �� $�  #��-���+ 
	 $� �	
�	�  		�� ��
	�����	� "� ��	����! � ��� ��� ����! 5��6 "� ��� 
	  	$��!
�*�	�( 5��16 �	� ��� �� �� ��	�! �  � ������ � ���� ���� � � � � �� �����
�� � ��*��� 	��+

2����� �	 ������ ��� �*������� 	
 � ���  ��� � ����� ����� 	�� �	 "� �	�
�� �
� � "�� ������ �	�� ������ �������+ > ����� �����		
 %0�?�& �� �
��������� 5�.������ �6 ���� ���� 5��16 5�.���� �6 �� �� �����#"	�����
 ������� ��� �	�����	�� 5��6@5�:6 �	 �+ �23#� !�"��� ��� "���� �����		��
$���� �	����� � ���  ��� � �����+ 2�/��! ���	 ���	��� ��� ���������! �$	
����!������ $� �	������ ���� ���������� 5�.���� �6 ���� ���� 5��A6 5�.�� �6
�� �� �����#"	����� �	��  � 	������ ���� ��� 5��6� 5�96� 5��16 �	 �+

2�� 
	��� ���  ��� ���� �� 	
 ���� � �������� ������� �	�� �� 	���� �	 ���#
�	�� 	�� �������	� 	
 $��� 
	  	$�+ ,��� �� $� ���  ������� ��� 	����+ 2��
�� ��� �����	�# �/� 	������	� � "��	��� �� ������	�# �/��� ��� ��� �	������
� $�  "� ������� �	 �+ 4� ������ �� 	�� ���� ��-����	�+

�



���
�	��
 ��� > ��������� 5�.���� �6 �� ��  �� � ��������
 �
 ��� 
	  	$��!
�	 ��+

52�6 5�.�� �6 �� � �	��  � 	������ ��� $��� ��� ���  ��� � ����� �+

52�6 5�.�� �6 �� � �	��������� ����!�	�� $��� ������ � ����� �+

5296 � �� ��	�	�� �� "	�� �����" ��� ���� ��� 
	� ��� �� �� � 	 �� � � � ��� ���
�� � � �� �+

52�6 �	� ��� � ��� �� ����� �� � ���  ��� � ����� � ���� ���� �� � 
 �+

2	 �  ������� ���� �	��	�� �	������ ��� ��	���� �#�	�� � !�"��+ ,��� ��  ��
� "� ��� ���� �� ��� �����	� 	
 ��� ��  �� � � � ) �

�
�
 � � � ��� � �� ) �+

2��� 5%�� �&.���� �� �6 �� �� �23#� !�"��� �	 �� ������� �� 5%�� �&.���� �6 ��
� "���� �����		�+ ,	$� � �� � 	"��	�� � � �	�� 	����� ������� "� ��	����
����� �� �� ��-��" � 
�	� � ��� �. $� ������ �� 5%�� �&.�� �6+ 8�������! ���
	���� -��  �  ���� �	 ��� �"�#����� 5%�� �&.�� �6� $���� �� � ) � B �� ��+

C� ��	����! ��� � ����� �� $� � �	 !�� �� �*��� � 	
 � �"�#����� $���� �	��
�	� 	��!����� 
�	� �� �23#� !�"��. 5%�� �6.�� �6 
� - � �  �*�	�� 52�6@52�6+
2��� �� � �	���D����� 	
 ��� ������ �������	� ���� %�� �6 �� � 	��� ����� ���
	������	� �+

� �
��

��� ������� ������

2�� ������������	� 	
 �23#� !�"��� $�  "� "���� 	� ������  � 	������ !�	���+

���
�	��
 ��� > ��������� 5�.��B� �6 �� ��  �� � �	����� 	������ ������


��	�
� 	� �	���	�
 
	� ��	��� �
 ��� 
	  	$��! �	 ��+

5��6 5�.�6 �� � �	��  � 	������ ���+

5��6 5�. B� �6 �� �� �"� ��� !�	��+

5�96 B �� ��	�	�� �� "	�� �����" ��� ���� ��� 
	� ��� �� �� � 	 �� � � � ��� ���
� B � � � B �+

9



2�� ��� � ��	���� �� ���� �*��� � 	
 � �	#!�	��+ ,��� �� 5�.��B� �6 �� �
�	#!�	��� $���� � �� ��� ������ 	���� ��� B ��� ���� ������	�+

4� ���  ������"� ��� ��������� 	
 �	#!�	���� $���� �� /�	$� �� ����� + 3��
5�.�6 "� � �	�� 	����� ��� 
	� ����� � 	 ��  �� 	� "� � �	�� 	
 ��� ��� �+ 3��

E���	� ) �5��6��� 	 F���	� ( �� 	 � ( �� �) �� �� � $�  #	������ ��"��� 	
 ��


8���  ���� � �	��  � 	������ ��� � �� ��  �� $�  #	����� �
 ����� ��"��� 	
 �
�	������� � ���  ��� � �����+

4� ��-�� ��� ������	� B 	� E���	� �	��	����$���+ �	��	���� $� ���	$
E���	� $��� � �	�� 	���� �� 
	  	$�+ �	� � �	�#���	 5��6� 	 E���	��  �� �� "�
��� ���  ��� � 	 � ���� ���� �� �) �+ 2��� $�  �� 5��6� � � �
 ��� � �+

E���	� �� ��  �� ��� �����	���
����� 
�	���� 	
 ��� 	�+ ,	$� ��� ?��� ��#
"�����! ���	��� %���& ���� ���� ��� �	#!�	�� �� � ��"!�	�� 	
 �	��  �*��	#
!������� ��	���� 	
 !�	��� 5�.��B� �6+

� �
��

� 
�����
� ���
��� ���� ���
� ����

4� ��*� ������"� �	$ $� �� ��� �23#� !�"��� �	 ������  � 	������ !�	����
	�� �	 "� �	�� �������� �	$ $� �� ��� �"�#������ �	 �	#!�	���+ 2��� ���� ���
"��� ���� 	��� �� %G���� G���&+

,	�� ���� �"�#������ ��� �	������ �	��� 	
 �	#!�	��� �	 �	� ��7�� 
����#
�����  � ���	����! �	 ����� ��-����	�+ 2�� "���� ��7������ �� �����  �������(
4������ �� ��� ���� 	
 �	#!�	���� � B � ) � B � ��� ��� � ) �� ���� �� ��
!����� �	� ���� 
	� �"�#������+ 2�� D�����	� �� �
 $� ����	� ������ 
�	� ���
�	�#�����  ����� ������	� � 	� $���� �"�#������ ��� "����� � �����  �����
	��+ 4� ��� @ "�� �� $�  �	  	�!�� "� � �	�� 	������	�+

���
�	��
 ��� 3�� 5�.���� �6 "� � �"�#�����+ 3�� B "� ��� ������ "�����
	������	� �����-�� �� 
	  	$�+ �	� �� � 	 ��  �� � B � ) � � � �
 � �� ���
���  ��� � ����� � ���� ���� � � � ) � � � ��� � �� ��� ���  ��� � ����� 


���� ���� � � 
 ) � � �+ 0 ��  �� � B � "� ����-���+ 2��� 5�.��B� �6 ��
��  �� ��� 
������ ������� ���	������ �	 �+

2��� ��-����	� ��/�� ����� "������ ��� ��������	� 
�	� ��� �	�� � �	 ���
������ B �	�� �	� ���� ���  	�� 	
 ��
	�����	�+ ,��� �� 
�	� 5�.��B� �6

�



$� ���	��� ��� 	������	� � ����� ���! � �"�#����� "�

�� � ) ��* ��� B �� ( �� � � ��� �� � � ���� ���� �� B �� �� ��-����


H�� D�����	� ��( ��� $� ��	�	������  � ��"�� ��� ������ � !�"�� 5�.��B� �6
���	������ �	 � �"�#����� ���	 � �	#!�	�� 5�.��B� �6I

���
�	��
 ��� 3�� 5�.���� �6 "� � �"�#�����+ 5�.��B� �6 "� ��� ������ 
� !�"�� ���	������ �	 �+ 2��� $� ��  � ��
����
����� �
 ��� �	���	�
 5�.��
B� �6 �
 ����� �*���� � ������! � ( � � � ���� ���� 
	� �  �� �� � 	 �� 5�6
� � � �7 �5�6 � �5�6� 5��6 �5� B �6 ) �5�6 B �5�6 �
 � B � �� ��-���� ��� 5���6
�5�6 ) �+

4� /�	$ ���� �� !����� � �"�#������ ��� �	� ����������" � �� � �	#!�	��+ C��
$� � �	 /�	$ ���� �� ��������  � �  ����� 	
  �
�#�	�����	�� �#�	��� $����
���� "��� 
	���� ���� � ������������	� �	�� �*���+

� �������� ���������
�
��� ��  ��!�

�����	���
����� ������ 
�����
�

4� ���  ��	$ ���� ��� �#�	�� � !�"��� "���� 	� �$	 $�  #/�	$� �*��� ��
	
  �
�#�	�����	�� �#�	���� ��� ����������" � �� � �	#!�	��+

������  �� �� "� ��� J3�/����$��� �#�	��� ���� ���

��� � ) 5� B �� �6 � �


	� �� � 	 %�� �&+ 2��� ��� �	�����	����! �"�#����� �� 5%�� �&.����� �6� $����

��� � ) 5� B �6 � �


��������	��� �� �� �� ���� � ����-��� ��� ������ � !�"�� ���	������ �	 � ��
5%�� �&.��B�� �6� $����

� B� � )

�
� B � �
 � B � � ��
����-��� � ��+

2�� �	#!�	�� ������������	� �� �����!��
	�$���+ 2�/� ��� �	#!�	�� 5�.��
B� �6� ���  �� � ( %�� �& � � "� ��� ��������+

:



2�� ��*� �*��� � �� � �	�#�	�����	��  �
�#�	�����	�� �#�	��+ 3�� ��� ���
�	����� ��	���� �#�	�� %<��&. 
	� �� � 	 %�� �&�  ��

���� � )

��
�

���� �� � B � �
 �� � � �

�
�

�����

����
�
 � � �

�
� � � �

�
� ��� � B � � ��

� �
 � B � � �


2�� �	�����	����! �"�#����� �� �� ���� ���� 5%�� �&.����� � �6� $����

���� � )

��
�

� B �� ��� �
 �� � � �

�
�

���

����
�
 � � �

�
� � 
 �

�
� ��� � B � � ��

� �
 � B � 
 �.

;� ���� ����� �� �� �	�� ����	��� "�� ���  �	����� �	 �� �� ��� ��� ���	������
������ � !�"�� 5%�� �&.��B�� � �6. $� ����

� B�� � )

����
���

� B �� ��� �
 �� � � �

�
�

���

����
�
 � � �

�
� � � �

�
� ��� � B � � ��

� �
 � ) � ) �

�
�

����-��� � ��+

��������	���  �� �	$ 	� ) � ��� 	� ) �.  �� 	 ) 	� 
��� 	� "� ���
 �*��	!������� ��	���� 	
 	� ��� 	�. ���  ��

� ) �5�� �6 	 	� ( � ) �� � 
 � 	� � ) �� � ) � 	� � ) �� � � ��


2��� 5%�� �&.��B�� � �6 �� ����������" � �� 	� ��� ��"�����! � ( %�� �& � �

"���! !���� "�

�5�6 )

��
�

5���  �5�� ��66 �
 � � �

�
�

5�� �6 �
 � ) �

�
�

5��  �5��� �66 �
 � � �

�



4� �	�� ���� �*���� 
	� 	�� ��� 	
 -����! � �	#!�	�� ������������	�� $�
� �	 �������� �� ��� ������� ���� � ���� � ��� ������� 	
 ��� �#�	�� �����
�	���������	�+ �	� 
������ �*��� ��� ��� %G���&+

" # ����	$

� ��� ���������
��� 
� 
 ��������

4� �	�� ��� $��� 	�� �	�� �*��� � 	
 � �"�#������ ��/�� 
�	� %0K��4&+
3�� � ) ��� L� ��� ��� �M� ��� ��� �:� �N� �M� 9�� 9��. ���	$ � $��� ��� �	�� 	�#
��� ���	����! �	 ��� $�� �� $���� $� ���������� ��� � ������ 	
 �� $����

�



�� ������� �� ����� ���� � �� ��� ���	 ��� 9� ���  ��!��� � �����. 
	� �� � 	 ��
��-�� �� � �� ��� ���� ��� 	
 ������ ���"��� ��	����� ��� ���� � �� �� ��
� ��  �� � � � ) 9�+ 2��� � �� � �"�#�����+ �	��	���� ��� ������ ������	�
���	������ �	 � �� ��� ���������	� �	 ��� ����� �� � 	 � ���� ���� �B �� �+�+ ���
��� 	
 � ��� � ��/�� �� ������ ���"���� �� �� �+

5�.���� �6 �� �	� ����������" � "� ��� �	#!�	��+ >����� �	 ��� �	������
���� � ( � � � �� �� ��"�����! 	
 � �� �	�� �	#!�	�� 5�.��B� �6+ 2���

�	� � � �� � L B �� ��� 9 � L � �� B �� �� 
	  	$� 9 � �5L6 B � � �5��6 �

�5L6 B �5��6 B � � �5��6� ���� ��� � � �5L6 B �5��6 � ��5��6 ) �59�6� ��
	��	��� �	 � � L B �� � 9�+

% &��	���
��

4� �� 	��� � $�� �	 ��������� �	��  � 	������ �23#� !�"��� "� ����� 	

�	��  � 	������ �"� ��� !�	���+ 4������� ���� � ������������	� �*����� ���
���/ �	 ��� ��� ��� �23#� !�"�� �� !���� � ���� �-�� ����� $� /�	$ ���
��������� 	
 �	#!�	���+


��� � ������������	� �	�� �	� �*��� �� !����� � "�� 
	� �� �������� �  ��!�
� ��� 	
 �23#� !�"��� ��� ����! ��	�� ��������! �� ��� �����	��+

2�� D�����	� �	 "� �	 ��� ��*� �� �	 -�� ��� �*���� 	� ��  ���� ����	��" �
$��/� �	�����	�� 
	� �� �23#� !�"�� �	 "� ����������" � �� � �	#!�	��+

'������	��

%0��	& �+ 0������ 3+ �	�	� �	�	��� �#�	�� "����  	!��( 2	$���� �  	!��

	�  �
�#�	�����	�� �#�	���� ����� ���� ����	 ��� 5����6� �N� # �MM+

%0�?�& �+ 0������ 3+ �	�	� O+ ?P�'�/� �+ �	���!��� ?		�� ��� 
����  	!���

	 ��
	 ������	 �� 5���96� :9� # :::+

%0K��4& K+ 0����� �+ K	��/	7� <+ <+ ������� 8+ ������� �+ 4���� ��
2	��  � 	������ �	��������� �	�	���� ����
���� ����� �� 5����6�
��L # �NM+

N



%���& 3+ ������ QO�����  � 	������ � !�"���� �������A� O��!��	� O�����
H*
	�� �L�9+

%<��& 
+ <����� 
�������� 	
  �
�#�	�����	�� �����!� �� �	��� $��� ���	�!
������� ��!���	��+ ;( 8	����	� �	��������	�� 
	 ����	 ���������	 ��
	
�� 5����6� M9 # L�+

%<��	& 
+ <����� �+ �	���!��� > ��		
 	
 �������� �	�� ������� 
	� 0�����
��� �	�	1�  	!�� �23� ����	 ��
	 �� 5����6� �M9 # �L�+

%G���& 2+ G����� ���� 4��/ �7��� � !�"���� ��"������+

%G���& 2+ G����� ���� �23#� !�"��� ������! 
�	� ������  � 	������ !�	����
��( 
+ �	��$� �� �+ ?R	� �� O+ K ������ Q�����  	!��� ��� �� ����
����������A. �	 ������+

M



Image fusion using fuzzy transform

Martina Daňková and Radek Valášek

April 25, 2006

University of Ostrava
Institute for Research and Application of Fuzzy Modeling

30.dubna 22, 701 03 Ostrava, Czech Republic

1 Introduction

Fuzzy transformation [1] is the powerful tool for approximation of continuous
functions. Since it locally minimize weighted arithmetic mean it allows to ex-
tract different frequency. Due to this property, we decided to use it in the prob-
lematic of image fusion. But similarly as wavelet transformation [2] it might
become useful in another applications.

It is necessary to extract different frequences in one turn, therefore, we have
to apply fuzzy transform more than once. We found a formula using which we
are able to express an original function using partial sums with an arbitrary
precision. Whenever we work with a discrete data set, we can transform it
completely and so, we will speak about a full fuzzy transformation. For the
details see [4]. The aim of this contribution is to present an alternative approach
to the solution of image fusion problem and its comparison to the one based on
wavelet transform.

The main task is to find a formula using which we may express original
function f : X 7→ Y using partial sums with an arbitrary precision, i.e.

fT (x) = fT,1(x) + fT,2(x) + fT,3(x) + . . . =
∞∑

i=0

fT,i(x) = f(x). (1)

Then we may transform functions f1, . . . , fp into f1T
, . . . , fpT

and operate on
each level i ∈ N with f1T,i

, . . . , fpT,i
. Moreover a composition needs to be

specified which says us how to fuse functions.
Let us denote a partial sum

Sn(x) =
n∑

i=0

fT,i(x). (2)

1



Fixed fuzzy transform: Now we give the original definition of the F-
transform taken from [1] for the 1-dimensional case. In the sequel, we assume
that X, Y ⊆ R.

Let ci = a + h(i − 1) be nodes on X where h = (b − a)/(k − 1), k ≥ 2 and
i ∈ I = {1, . . . , k}. We say that fuzzy sets A1, . . . , Ak ⊂s∼ X create base if each
of them fulfils the following conditions:

• Ai(ci) = 1,

• Ai(x) = 0 if x 6∈ (ci−1, ci+1) where c−1 = a, ck+1 = b,

• Ai(x) is continuous,

• Ai(x) strictly increases on [ci−1, ci] and strictly decreases on [ci, ci+1],

•
∑

i∈I Ai(x) = 1, for all x ∈ X

This base forms Ruspini’s fuzzy partition introduced in [3], i.e. a fuzzy
partition of a set X is defined as a finite family {Ai ⊂s∼ X}i∈I such that∑

i∈I Ai(x) = 1 for any x ∈ X.

Definition 1.1 Let F1, . . . , Fk be given by Fi =
∫ b

a
f(x)Ai(x) dx∫ b
a

Ai(x) dx
. The function

Tf,k(x) =
∑
i∈I

FiAi(x) (3)

will be called the fixed F-transform of f over the k nodes.

Coefficients Fi of the F-transform serve us as a discrete representation of values
of f above supports of Ai’s. In fact, we are averaging all the values above such
intervals [ci−1, ci+1] and these fuzzy sets Ai are used as weights in this averaging.

Full fuzzy transform and fusion settings:

• fT,0(x) stands for arithmetic mean of f(x) and error function e0 = f(x)−
fT,0(x).

• For i ≥ 1,
fT,i(x) = Tei−1,2i ,

represents fuzzy transform of ei−1 in 2i nodes and

ei(x) = ei−1(x)− fT,i(x).

• Fusion function operates over the coefficients of fuzzy transforms of f1T,i
, . . . , fpT,i

in each level and it is defined by e.g.

κ(x, y) =
{

y, |x| ≤ |y|
x, otherwise.

2



(a) Function f1 and S′
128(x) (b) f1 − S′

128(x) and its further approxi-
mation

(c) Function f2 and S′′
128(x) (d) f2 − S′′

128(x) and its further approxi-
mation

Figure 1: Functions to be fused and their approximations.

• Fused function is given by FT (x) = f̄T,1(x) + f̄T,2(x) + f̄T,3(x) + . . . =∑∞
i=0 f̄T,i(x), where f̄T,i(x) =

∑
i∈I FiAi(x) for each i and F1, . . . , F2i

are determined on the basis of coefficients of fixed fuzzy transformations
f1T,i

, . . . , fpT,i
using κ.

Note that we may increase the number of nodes in which we create fixed
fuzzy transform arbitrarily. Also the starting approximation can be taken as
fixed fuzzy transformation of a higher level (number of nodes > 1). Moreover,
there exist lots of different possibilities how to specify κ, see [5].

Example 1.2 Let us assume two discrete functions f1, f2 : I 7→ [0, 1] repre-
senting 191’th rows taken from different blurred images of Lenna.BMP.

Figure 1 illustrates the fixed fuzzy transformations (black lines) of f1 and f2

(red lines) over the 128 nodes and Figure 1 shows the fusion on the basis of κ
(blue line) compared with the ideal image row (black line).

3



Figure 2: Fused function after 5 iterations.

Example 1.3 Analogously as in the case of one input variable functions, we
may apply the technique of full fuzzy transform to the images, i.e. functions of
two variables, see Figure 3.

2 Conclusions

The application shows that the full fuzzy transform is effective tool in the prob-
lematic of function fusion and it is worth to make a deeper study of its properties.
In the near future, it is considered to be implemented into the bigger suit of
filters and tools for image processing.

Acknowledgements This investigation has been partially supported by
project 1M0572 of the MŠMT ČR.

References

[1] Perfilieva, I.(2004). Fuzzy transforms. In: Transactions on Rough Sets II.
Rough Sets and Fuzzy Sets. (J. F. Peters and A. Skowron Ed.). LNCS 3135,
pp. 63-81.

[2] Resnikoff, H.L., Wells, R.O.(1998) Wavelet analysis : the scalable structure
of information. Springer - New York.

[3] Ruspini, E., H.(1969). A new approach to clustering. Inform. and Control,
15, pp. 22-32.

[4] Martina Daňková, Radek Valášek (2005) Fusion of functions using full fuzzy
transform, Technical report No. 6, University of Ostrava, IRAFM.

[5] Chibani, Y., Houacine, A. (2003). Redundant versus orthogonal wavelet
decomposition for multisensor image fusion. Vol. 36, Nr. 4, pp. 879-887.

4



(a) Image 1 (b) Image 2

(c) Fusion of image 1 and 2.

Figure 3: Example of image fusion.

5




