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Towards A Logical Calculus

for Fuzzy Mathematics I, II

Libor Běhounek Petr Cintula
Institute of Computer Science, Academy of Sciences of the Czech Republic

{behounek|cintula}@cs.cas.cz

The aim of the talk is to give an introduction to higher-order fuzzy logic
and show a sketch of a natural-deduction-style calculus for making proofs in
formal fuzzy mathematics within its framework. We first reproduce the basic
definitions of higher-order fuzzy logic. For details, see [1].

Definition 1 (Henkin-style second-order fuzzy logic)
Let F be a fuzzy logic which extends BL∆. The Henkin-style second-order fuzzy
logic over F is a theory over multi-sorted first-order F with (crisp) equality
and sorts for objects (lowercase variables) and classes (uppercase variables).
Both of the sorts subsume subsorts for n-tuples, for all n ≥ 1. Apart from
the obvious necessary function symbols and axioms for tuples (tuples equal iff
their respective constituents equal), the only primitive symbol is the membership
predicate ∈ between objects and classes. The axioms for ∈ are the following:

1. The comprehension axioms: y ∈ {x | ϕ(x)}↔ ϕ(y), where ϕ may contain
any parameters and comprehension terms.

2. The extensionality axiom: from (∀x)(x ∈ X ↔ x ∈ Y ) infer X = Y .

Though admitting non-standard models (to achieve axiomatizability), Henkin-
style second-order logic is a good axiomatic approximation of Zadeh’s [5] notion
of fuzzy set.

Notice that unless the formula ϕ expresses a crisp condition, the set term
{x | ϕ(x)} should not be read “the set of all those x for which ϕ holds”, but
rather “the (fuzzy) set to which any x belongs in the same degree in which ϕ is
true about x”.

Convention 2 The usual precedence of connectives is assumed. Furthermore,
we introduce the following abbreviations:

x ∈ A Ax
〈x1, . . . , xk〉 ∈ R Rx1 . . . xk

¬(x ∈ A) x /∈ A
(∀x)(x ∈ A→ ϕ) (∀x ∈ A)ϕ
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(∃x)(x ∈ A & ϕ) (∃x ∈ A)ϕ
{x | x ∈ A & ϕ} {x ∈ A | ϕ}
∆(ϕ↔ ψ) ϕ = ψ
∆(ϕ→ ψ) ϕ ≤ ψ, etc.

The defined connective = should not be mistaken for the identity predicate.
Membership degrees and truth values are referred to solely by means of formulae;
there are no variables for truth degrees in F2.

Definition 3 (Henkin-style higher-order fuzzy logic)
Henkin-style fuzzy logic of higher orders is obtained by repeating the previous
definition on each level of the type hierarchy. Obviously, defined symbols of any
type can then be shifted to all higher types as well. (Consequently, all theorems
are preserved by uniform upward type-shifts.) Types may be allowed to subsume
all lower types.

Henkin-style fuzzy logic F of order n will be denoted by Fn, the whole hier-
archy by Fω. The types of terms are either denoted by a superscripted paren-
thesized type (e.g., X(3)), or understood from the context.

It should be stressed that despite the name, Henkin-style higher-order fuzzy
logics are theories over first-order fuzzy logics (see [4]).

All usual notions of elementary fuzzy set theory and elementary theory of
fuzzy relations can be defined in F2. Notice that in F2, these defined notions
are generally graded rather than crisp.

Definition 4 (Fuzzy class operations and relations)

∅ =df {x | 0} empty class
V =df {x | 1} universal class

Ker(X) =df {x | Ax = 1} kernel
Supp(X) =df {x | Ax > 0} support

\X =df {x | x /∈ X} complement
X ∩ Y =df {x | x ∈ X & x ∈ Y } intersection
X ∪ Y =df {x | x ∈ X ∨ x ∈ Y } union
X \ Y =df {x | x ∈ X & x /∈ Y } difference

Definition 5 (Fuzzy class operations and relations)

Hgt(X) ≡df (∃x)(x ∈ X) height
Norm(X) ≡df (∃x)∆(x ∈ X) normality
Crisp(X) ≡df (∀x)∆(x ∈ X ∨ x /∈ X) crispness
Fuzzy(X) ≡df ¬ Crisp(X) fuzziness

X ⊆ Y ≡df (∀x)(x ∈ X → x ∈ Y ) inclusion
X ≈ Y ≡df (∀x)(x ∈ X ↔ x ∈ Y ) equality
X ‖ Y ≡df (∃x)(x ∈ X & x ∈ Y ) compatibility

If the underlying logic F is strong enough (e.g., ÃLΠ, see [3]), then Fω is
strong enough to harbour a large part of fuzzy mathematics. (The logic ÃLΠ
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contains all connectives of t-norm logics PC(∗), where ∗ is a finite sum of G,
ÃL, and Π). Due to a metatheorem of [1], all classical theories of order n ∈ ω
can be interpreted in Fω; thus all usual classical structures (metrics, measure,
numbers) are available in Fω.

The usual Hilbert-style calculus is rather cumbersome for actual proofs of
mathematical theorems in Fω (due to the lack of the classical deduction the-
orem). Therefore we develop a more convenient calculus which would enable
easier proofs and would be closer to the usual proofs of classical mathematics.
We give here only a sketch of the system; the set of derived rules which are useful
for the work in fuzzy mathematics listed here is far from complete (the work is
in progress). The presented calculus is the natural-deduction style, though not
normalized to the introduction and elimination rules for all connectives (this
would hardly be convenient for actual proofs, as well as hardly attainable due
to the proof-theoretical properties of logics with prelinearity).

Definition 6 (Sequents) The expression ϕ ⇒ ψ is the sequent of our calculus
which corresponds to the formula ϕ→ ψ. The comma sign is used in sequents
as an abbreviation of the strong conjunction &. The sequents ⇒ ψ and ϕ ⇒
mean 1 ⇒ ψ and ϕ ⇒ 0, respectively. Multisets of (sub)formulae in sequents
will be denoted by uppercase letters A,B, C . . . and the sequents by the letters
Φ, Ψ,Ξ, . . . (possibly with indices).

The proof in the calculus is defined as usual, i.e., as a sequence of sequents,
each of which is an axiom or the result of an application of a valid rule of
inference (listed below) to the previously proved sequents. The rules of inference
are written as Φ1 . . . Φn / Ψ.

Theorem 7 (The rules of inference) The following list gives examples of
the rules of inference which are provably valid in BL∆ω:

• Cut: A1, B ⇒ A2 A2, C ⇒ A3 / A1, B,C ⇒ A3

• Conjunction: A1 ⇒ B1 A2 ⇒ B2 / A1, A2 ⇒ B1, B2

• Generalization: A ⇒ B / (∀x)A ⇒ (∀x)B

• Existential generalization: A, B ⇒ C / (∀x)A, (∃x)B ⇒ (∃x)C

• Deduction: A ⇒ B / ⇒ A→ B

• Delta necessitation A ⇒ B / ∆A ⇒ ∆B, etc.

Often it is instructive to read the rules from the bottom up, i.e., a rule Φ/Ψ
as “in order to prove Ψ it is sufficient to prove Φ”.

The proofs using this proof system can be done in a similar manner one works
in classical mathematics. The resemblance can be even enhanced if the formulae
are rephrased in natural language, wherein the connectives are interpreted as the
connectives of fuzzy logic (e.g., ‘if ϕ then ψ’ is to be understood as ‘the more ϕ,
the more ψ). The theorems then look like classical statements about crisp sets;
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however, since the sets can be fuzzy, the rules of fuzzy logic (as reflected in our
calculus) are applied in their proofs. This approach conforms the methodology
of [2], according to which speaking of fuzzy (rather than crisp) sets requires the
rules of inference of fuzzy (rather than classical) logic, but in other respects is
not different from reasoning in classical logic.

References
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Positive Subhomogenity

and the Domination of t-norms

Peter Sarkoci
STU Bratislava, Radlinského 9, 81237 Bratislava, Slovakia

E-mail: peter.sarkoci@stuba.sk

Preliminaries

Motivations to study domination comes from different branches of mathematics.
The notion was introduced within the framework of probabilistic metric spaces
where it plaays an important role in construction of cartesian products of prob-
abilistic metric spaces [14]. Later the domination of t-norms was studied in
connection with construction of different types of fuzzy relations [1–3,16]. The
concept of domination was further extended to the much more general class of
aggregation operators [11]. The domination of aggregation operatros becomes
interesting when seeking aggregation procedures which preserves T -transitivity
of aggregated fuzzy relations [11] or aggregation procedures which preserves ex-
tensionality of fuzzy sets with respect to given T -equivalence relation [12]. The
most general definition of domination requires arbitrary operations defined on
poset [4].

Definition 1 Let (P,≥) be a poset and let A : Pm → P , B : Pn → P be
two operations defined on P with arity m and n, respectively. We say that A
dominates B (A � B in symbols) if each matrix (xi,j) of type m × n over P
satisfies the inequality

A(B(x1,1, x1,2, . . . , x1,n), . . . , B(xm,1, xm,2, . . . , xm,n)) ≥
B(A(x1,1, x2,1, . . . , xm,1), . . . , A(x1,n, x2,n, . . . , xm,n)).

Recall that a t-norm [9, 14] is a monotone, associative and commutative
binary operation T : [0, 1]2 → [0, 1] with neutral element 1. Important examples
of t-norms are: the minimum TM, the product TP, the  Lukasiewicz t-norm TL

and the drastic t-norm TD given by

TM(x, y) = min(x, y),
TP(x, y) = xy,

TL(x, y) = max(0, x + y − 1),

TD(x, y) =

{
xy max(x, y) = 1
0 otherwise

.

The additive generator is each continuous and strictly decreasing function
f : [0, 1] → [0,∞] with f(1) = 0. The binary operation T : [0, 1]2 → [0, 1] given
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by
T (x, y) = f−1 (min(f(0), f(x) + f(y))) (1)

is a continuous archimedean t-norm generated by f [9]. Continuous archimedean
t-norm is strict if its additive generator is unbounded, otherwise the t-norm is
nilpotent. In our talk we restrict to strict t-norms.

We say that a t-norm T1 is stronger than a t-norm T2 (T1 ≥ T2 for short)
if any x, y ∈ [0, 1] satisfy T1(x, y) ≥ T2(x, y). We use the notation T1 > T2

whenever simultaneously T1 ≥ T2 and T1 6= T2 hold. One can easily show that
each t-norm is weaker than TM and stronger than TD and that TM > TP >
TL > TD holds. For two strict t-norms T1 and T2 with additive generators
f1 and f2 respectively T1 ≥ T2 holds if and only if the function f1 ◦ f−1

2 is
superadditive [9].

By Definition 1 we have that two t-norms T1 and T2 satisfy T1 � T2 iff for
each x, y, u, v ∈ [0, 1]

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)). (2)

It is easy to show that each t-norm T satisfies TM � T , T � TD and T � T .
Moreover, by [9,13], the representative t-norms TP and TL satisfy TP � TL. If
T1 � T2 then by inequality (2), the neutrality of 1 and the commutativity of
t-norms we have that any y, u ∈ [0, 1] satisfy

T1(y, u) = T1(T2(1, y), T2(u, 1)) ≥
≥ T2(T1(1, u), T1(y, 1)) = T2(u, y) = T2(y, u)

so that T1 ≥ T2, see [9]. Thus T1 ≥ T2 is a necessary condition for T1 � T2; we
may also say that domination is a subrelation of ≥. The converse implication
does not hold. Since the domination is a subrelation of ≥ it is antisymmetric.
The old open problem [14, Problem 12.11.3] is whether domination is transitive
on the set of all t-norms. If it were true domination would be a partial order.

When inspecting domination, the tool of ϕ-transform can be helpful. Let ϕ
be an order isomorphism of the interval [0, 1] and let T be an arbitrary t-norm.
Define Tϕ : [0, 1]2 → [0, 1] by

Tϕ(x, y) = ϕ−1 (T (ϕ(x), ϕ(y)))

to be the ϕ-transform of T . It is easy to show that Tϕ is again a t-norm [9].
Moreover, for arbitrary t-norms T1 and T2 and for arbitrary order isomorphism ϕ
the satisfaction of T1 � T2 is equivalent to (T1)ϕ � (T2)ϕ so that ϕ-transforms
preserve domination [11]. It is well known that a t-norm is strict (nilpotent)
iff there exists ϕ such that T = (TP)ϕ (T = (TL)ϕ) [9]. Moreover, it is clear
that each ϕ-transform of a strict (nilpotent) t-norm is again strict (nilpotent).
Thus in order to characterize pairs of dominated by strict (nilpotent) t-norms
it suffices to characterize strict (nilpotent) t-norms dominated by TP (TL).

Let T1, T2 be t-norms with additive generators f1 and f2 respectively. Define
new mapping h = f1 ◦ f−1

2 . It can be shown [9] that T1 dominates T2 iff any
x, y, u, v ∈ R+

0 satisfy the following inequality

h−1(h(x + u) + h(y + v)) ≤ h−1(h(x) + h(y)) + h−1(h(u) + h(v)) (3)

The inequality 3 is known as Mulholland inequality. In 1950 H. P. Mulholland
[10] proved that if h and log ◦h ◦ exp are convex functions, then h satisfies 3.
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Later in 1984 R. M. Tardiff [15] proved that if h is differentiable, convex and
such that log ◦h′ ◦ exp is convex, then h satisfies 3. Recently it was shown
that the Tardiff condition implies the Mulholland [8]. The question whether
Mullholand condition is also necessary is still open. It can be shown [9] that the
domination is transitive on the set of all archimedean t-norms iff the set of all
solutions of Mulholland inequality is closed with respect to the composition of
mappings.

Domination by TP

We will restrict our considerations to domination of strict t-norms. First we
show one necessary condition for a t-norm dominated by TP.

Definition 2 Let f : R → R be a real function. We say that f is positively
subhomogenous if each x ∈ R and each α ∈ [0, 1] satisfy αf(x) ≥ f(αx).

Proposition 3 Let T be a strict t-norm such that TP � T . Then each vertical
section of T is positively subhomogenous.

Next we characterize all strict t-norms which fulfill this property by means
of additive generators.

Proposition 4 Let T be a t-norm with additive generator f . Each vertical
section of T is positively subhomogenous if and only if − log ◦f is a convex
function.

Finally we inspect what does this result mean for Mulholland’s inequality.

Corollary 5 If an order isomorphism of positive real numbers solves the Mul-
holland’s inequality, then it is convex.
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logical circuits
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Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
petrikm@cmp.felk.cvut.cz

February 6, 2005

Abstract

Memory elements play a crucial role in the hardware design as parts of
logical circuits which are able to remember a logical value and to hold it
independently on the input for a defined period of time. Thanks to them
we may work with an inner state in logical circuits, construct registers,
synchronize combinational circuits, etc.

When generalizing the design of hardware to the many-valued logic,
the question of many-valued memory elements becomes inevitable. In
this paper we present a many-valued memory element which is based on
a generalization of the R-S memory element known from the two-valued
logic. We show that the circuit works correctly for finitely many logical
values and this number may be arbitrary depending on the potentialities
of the implementation. We also show that the structure of the memory
element is independent on the number of the logical values.

The memory element we present here is “level controlled”.

Keywords: many-valued logic, fuzzy logic, hardware design, logical
circuit design, sequential logic, memory element, latch, flip-flop.

1 Introduction

A memory element1 is a logical circuit able to remember a logical value and to
hold it on its output for a defined period of time independently of its input.

In Figure 1 you can see a scheme of a general memory element. Input signal
T (called usually clock or time signal) determines whether the memory element
is open (the value of input D is ”remembered” and shall appear on output Q)
or it is closed (the old value of output Q is kept ignoring input D).

Two groups of memory elements are distinguished: latches and flip-flops.
Latches (level-controlled memory elements) are open or closed depending on
the value of the input T while flip-flops (edge-controlled memory elements) are

∗ Work supported by CEEPUS net SK-042.
1See e.g. [1, 3, 2].
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QD

T

Figure 1: Scheme of a general memory element.

open when input T changes its value from one defined value to another defined
value otherwise they are closed. Although flip-flops have better properties, in
this paper we are interested in many-valued latches since their construction is
simpler. The construction of flip-flops usually requires latches as building blocks
and shall be discussed in a further paper.

In the hardware design we distinguish two categories of logical circuits: com-
binational logical circuits and sequential logical circuits. Combinational logical
circuits are logical circuits where the value of the output depends only on the
value of the input. Sequential circuits are logical circuits with history and their
output value depends moreover on the inner state of the circuit; a usage of
memory elements is crucial in this case.

Another important role played by memory elements in the hardware design
are e.g. a construction of registers (fast on-chip memory) or a synchronization
of combinational logical circuits (adding memory elements to the output of each
combinational sequence to eliminate logical hazards).

2 Many-valued R-S circuit

S
x

y

Figure 2: Gate representation of the standard many-valued Sheffer operation.

Definition 2.1 The standard many-valued Sheffer operation is a binary oper-
ation ∧

S
: [0, 1]× [0, 1] → [0, 1] defined as follows:

∧
S
(a, b) = a ∧

S
b = 1 − min(a, b)

Definition 2.2 (many-valued R-S circuit) Many-valued R-S circuit, an R-
S circuit for short, is a logical circuit consisting of two gates implementing the
standard many-valued Sheffer operation (see Figure 2b), two input ports R, S,
and two output ports Q1, Q2, connected as shown in Figure 3.
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S

S

R

S

Q

Q

1

2

Figure 3: Scheme of a many-valued R-S circuit.

Theorem 2.3 (storing value to an R-S circuit) The R-S circuit with in-
put ports R, S and output ports Q1, Q2 satisfies: If R ≤ S then Q′

1 = R and
Q′

2 = S. In particular, if R = S then Q′
1 = S and Q′

2 = R. This result is
independent of the initial values Q0

1 and Q0
2.

Theorem 2.4 (keeping value in an R-S circuit) The R-S circuit with in-
put ports R, S and output ports Q1, Q2 satisfies: If Q0

1 = Q0
2, S > Q0

1 and
R > Q0

2 then Q′
1 = Q0

1 and Q′
2 = Q0

2.

3 Unstable and invalid states of the many-valued
R-S circuit

We have shown configurations of the values of input and output ports which
allow us to store or to keep a value in an R-S circuit. Also other configurations
may appear, e.g. if a logical circuit is starting and all signals have undefined,
zero or other value. In this section we discuss all possible configurations of the
values of the ports in an R-S circuit and its behavior as the reaction to it.

Theorem 3.1 The R-S circuit with input ports R, S and output ports Q1, Q2

satisfies: If R > S then R ≤ Q′
1 ≤ S and S ≤ Q′

2 ≤ R.

Corollary 3.2 Since R ≤ Q′
1 ≤ S and S ≤ Q′

2 ≤ R for every R and S
(see Theorem 2.3 and Theorem 3.1), we can say that if we store a value in
an R-S circuit and |R − S| = |R − S| = Δ, then Q1 ∈ [S − Δ, S + Δ] and
Q2 ∈ [R − Δ, R + Δ].

Corollary 3.3 If a value is kept in an R-S circuit, S > Q1, R > Q2 but
Q0

1 �= Q0
2 then output Q1 attains a value from an interval delimited by Q0

1 and
Q0

2. Output Q2 attains a value from an interval delimited by Q0
2 and Q0

1.

Corollary 3.4 If any of the values of R, S, Q0
1 or Q0

2 has an error, then an
error not greater than the sum of these errors may appear on outputs Q1 and
Q2.

Until now we worked with gates which gave the exact result. However there
is nothing ideal in the real world. Constructing a logical circuit the gates will
have an error, i.e. they will give a bigger or smaller result than is the correct

3



S

S

R

S

Q1

Q2

Figure 4: Scheme of a many-valued R-S circuit with added filters; the filters
filtrate the output to a finite set of logical values.

S S

b)

x

y

x

y

a)

Figure 5: a - standard Sheffer operation filtered to a finite set of logical values,
b - schematic symbol of a filtered standard Sheffer operation

result of the standard Sheffer operation they implement. Our R-S circuit shows
robust to the cases when the gates have both the same type of defect, i.e. they
both give a bigger or a smaller value then it is expected. Nevertheless the case
when one gate gives a bigger value and the second a smaller value shows as
fatal. In this case one output decreases and the second increases until a bound
(0 or 1) is reached. The information kept in the R-S circuit is lost.

This problem is very serious concerning that the gate defect is in general
unpredictable and moreover may change during the life of the circuit. A possible
solution is to add a filter at the end of both gates which would restrict the values
from the interval [0, 1] to a finite set of discrete values spread uniformly on the
interval [0, 1]. If the distance between two neighbouring values is at least twice
the error of the gates then the impact of the gate errors will be eliminated and
the functionality of the R-S circuit will not be harmed. Scheme of an R-S circuit
with added filters may be seen in Figure 4.

Note that the number of logical values which may be passed out of the filter
is in general arbitrary but depends on the errors of the gates.
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4 Memory elements based on the many-valued

R-S circuit

S

S
S

S

S

R

T

U

V

Q1

Q2

Figure 6: Scheme of a many-valued R-S latch.

Definition 4.1 (many-valued R-S latch circuit) Many-valued R-S latch cir-
cuit, an R-S latch for short, is a logical circuit consisting of four gates imple-
menting the standard many-valued Sheffer operation, two of them filtered, three
input ports R, S, T and two output ports Q1, Q2, connected as shown in Fig-
ure 6.

Theorem 4.2 (storing value to an R-S latch) The R-S latch with input ports
R, S, T and output ports Q1, Q2 satisfies: If R ≥ S and T = 1 then Q′

1 = S
and Q′

2 = R. This result is independent of the previous values of Q1 and Q2.

Theorem 4.3 The R-S latch with input ports R, S, T and output ports Q1, Q2

satisfies: If R and S are constant, R = S and T is changing its value from 1 to
0, then Q1 = S and Q2 = R for the whole period of the process until T = 0.

Theorem 4.4 (keeping value in an R-S latch circuit) The R-S latch with
input ports R, S, T and output ports Q1, Q2 satisfies: If T = 0 and Q1 = Q2

then Q1 and Q2 keep their values, i.e. Q′
1 = Q0

1 and Q′
2 = Q0

2, independently of
the values of inputs R and S until the value of input T is greater than 0.

Negating input R in an R-S latch by a gate implementing the standard
negation (see Figure 7) we get a D latch as shown in Figure 8. It passes the
value of input D to the output Q (i.e. Q′

1 = D and Q′
2 = D) when the value

of input T is 1; when the value of input T is 0, the circuit keeps its old output
value (i.e. Q′

1 = Q0
1 and Q′

2 = Q0
2).
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Simple Rules for the Creation of
Robust, Efficient Network Topologies

Kristen A. McIntyre, Sun Microsystems Laboratories
Leila Muresan, Johannes Kepler University

Abstract - The goal of this project was to see if
stable, robust, and efficient network topologies can
emerge from simple local interconnection rules.
To accomplish this, experiments were performed
where nodes were placed semi-randomly in some
space and their interactions analyzed.  These nodes
formed connections to neighbor nodes within the
limits of a spatial 'horizon' given a limited number
of connections and limited knowledge.  An agent-
based simulation was used to produce the sample
networks to be evaluated. Resultant networks were
analyzed for average and worst case diameter,
clustering, and connectivity. Applications of the
results include distributed computing systems,
distributed sensor networks and other ad-hoc
physical systems.

1. Motivation

With the advent of small devices and wireless
network connectivity, the question of how to
configure networks of devices without prior
knowledge of the network topology has
become increasingly important.  The authors
thought it would be interesting to explore,
first, whether it was possible to create useful
network graphs with only limited knowledge
of the local topology and, second, to see how
different algorithms operating on this local
information performed relative to a set of
measurements.  We reasoned that if it were
possible to ‘evolve’ networks in this fashion
then there might be applications in a number
of areas for networks evolved from these
algorithms.

2. Self Evolving Network
Simulation

The objective of this project was to see if
usable network graphs could evolve from a

simple set of locally applied rules.  To this
end the authors designed a scenario which
could be expressed as a simulation.  The
simulation would use several different sets
of local rules or algorithms to produce
networks to be analyzed.  The results could
be explored to see what kinds of networks
emerged and their quality relative to our
goals of robustness, efficiency, and stability.
The quality of the network would be
measured along several axes relevant to
those goals: minimum and average
diameter, clustering coefficient, hamming
distance, connectedness, and robustness.

3. Simulation Scenario

The simulation places nodes randomly on a
grid.  The grid, for purposes of the data
presented here, is 1000 by 1000 and 125
nodes are placed for a given simulation run.
Node coordinates are generated by a
pseudo-random number generator with a
uniform distribution (Figure 1).  Each node
has a degree limit which limits the number
of edges it can have connecting it to other
nodes.  Edges are considered to be
undirected.  Nodes also have a horizon limit
expressed as the radius of a circle.  A given
node can only see other nodes within the
radius of this circle and can only ask nodes
within that circle for information (Figure 2).
A node can, however, get unique identifiers
for nodes that are connected to the nodes
that are within the horizon.  These
identifiers may be used only for purposes of
equality comparison.



Fig.1: Randomly placed nodes

With these constraints in place nodes are
given an opportunity to make a decision
about what other nodes within their horizon
they will connect to.  A connection is defined
as placing an edge in the graph connecting
one node to another.  The number of
connections from a given node to other nodes,
including connections other nodes have made
to the node in question, must not exceed the
degree limit for the node.  This constraint is
enforced during the connection decision
process and thus there is no need to make a
decision about disconnecting over-connected
nodes.

Fig. 2: Node A’s horizon, shown in grey, includes
only the white nodes

Each node in the simulation is equipped with
a 'connector'.  This term connector is not
meant to evoke the image of a device that
passively connects two parts of a circuit

together but rather something which
actively makes decisions about how
connections should be made.  The connector
has information available to it about the
nodes within the horizon limit.  It can only
choose connections starting from the node
to which the connector is attached and
ending at a node within the horizon limit.
The connector can only make those choices
when instructed to do so by the simulation.
If a connector is invoked more than once on
a node and sees connections which
originated from a previous decision by the
connector on that node (an 'out' edge) then
it can potentially reroute those connections.
If, however, another node's connector has
connected to the node in question (an 'in'
edge) then that connection cannot be
disturbed by the node that has received the
connection.  A node receiving a request for
connection from another node's connector
can refuse the connection, in which case the
connector must find somewhere else to
connect.  In this sense edges are directional
but the directionality is only part of the
simulation behavior and is not part of the
analysis of the resultant networks.  In
addition to these rules, no node is allowed
to form more than one connection to any
given node.  Once two nodes are connected
either through an in edge or an out edge,
they are considered connected and cannot
form a second connection.

The reasoning behind this approach to
connectors was more one of convenience
rather than any belief that it would produce
superior results.  Using these rules,
connection behavior is easily understood,
each node is mostly in control of its destiny,
and implementation is relatively
straightforward.

Connectors are allowed to act on a node
multiple times and can make new decisions
as the simulation progresses.  This may
result in stable network structures or
unstable network structures depending
upon the connector's behavior.  To allow for
stabilizing behavior, edges that connect
nodes are equipped with a locking
mechanism to instruct the connector in the
simulation not to reroute the edge.



4. Simulation Implementation

The simulation scenario as described above
was implemented in the Java language using
the RePast simulation framework for creating
agent based simulations.  RePast provided a
reasonable starting point for this
development given the time constraint of
producing a simulation within approximately
two weeks.  The RePast framework envisions
a simulation as a state machine whose state is
constituted by the collective states of all its
components.

Java's object orientation and RePast's network
support led naturally to a design where
objects were used to encapsulate the state and
behavior of each active component of the
simulation.  Each node became an object that
managed edge objects connected between the
nodes.  Node objects also had connector
objects attached to them which defined their
connection behavior.  The simulation
framework managed the collection of node
objects and provided a mechanism for
progressing through the simulation run and
for displaying the resultant graph.

A number for tunable parameters were
designed into the simulation.  Parameters
included the size of the simulation space,
number of nodes, horizon radius limit, edge
degree limit, and connector object to use to
name just a few.  Other controls were
available to disable the node, unlock it's
edges, or cause it to move around in a
random walk.  Few of these were actually
changed for simulation runs presented here in
order to limit the scope of the investigation.

The simulator was developed to be able to
output an ASCII representation of a
connection matrix at any point in the
simulation.  The capability to take snapshots
of the network graph as graphically
represented by the RePast system and the
capability to make movies of network
evolution were also included.

Simulations that were run to compare

different connection algorithms were
initialized such that nodes were placed on
the same grid points for each run.  In each
case the dimensions of the grid to place
nodes was set to 1000 by 1000, 125 nodes
were randomly placed in this grid, the node
degree limit was set to 4 edges, and the
horizon radius limit was set to 300 grid
units.  Later in the investigation Muresan
varied the horizon limit and gathered data
for connectivity vs. horizon.  The size of the
grid and the number of nodes were chosen
to get a reasonable number of nodes in play
to allow for the law of large numbers.  The
degree limit and horizon limit were chosen
to be somewhere between the point where
disconnected networks resulted and where
fully connected networks resulted.  In this
way each connection algorithm led to
detectable differences in the resultant
networks.

5. Connection Algorithms

Several different connection algorithms
were devised to try to understand what
kinds of networks could evolve from local
rules.  These algorithms were expressed
within the context of a connector object and
the connector objects were used for
simulation runs with other parameters
unchanged.  The algorithms were chosen on
the basis of intuition gleaned from other
work in the area of self assembling
networks and from theoretical work on
network topologies that result in what we
deemed desirable properties.

The connection algorithms are summarized
in Table 1:

Random
Greedy
Distant
Free Edge
Maximum Hamming Distance
Minimum Hamming Distance

Table 1: Connection algorithm summary

Most of these (excepting Minimum



Hamming Distance) has a counterpart which
was designed to stabilize the network using a
pseudo-simulated annealing algorithm to be
described later. The above algorithms
combined with the pseudo-simulated
annealing are called the ‘stabilizing’ version
of the algorithm (e.g. Greedy-Stabilizing).

The Random connector, as the name implies,
attempts to connect randomly to another
node.  It finds nodes within the horizon
radius limit and chooses a random number of
those in random order up to the degree limit.
It then attempts to build those connections
until it runs out of neighbors or exceeds the
randomly chosen degree limit.

The Greedy connector greedily tries to
connect to the closest nodes it can find within
the horizon radius limit.  Closeness is defined
as the straight line distance measured in grid
squares between a node and its neighbor.  It
sorts the nodes in its neighborhood by
distance and then attempts to connect to the
closest nodes that will accept connections up
to the edge degree limit.

The Distant connector is the opposite of the
Greedy connector.  It tries to connect to the
most distant nodes it can find within the
horizon radius limit.  It sorts the nodes in its
neighborhood by distance and then attempts
to connect to the most distant nodes that will
accept connections up to the edge degree
limit.

The Free Edge connector is a variant of the
Greedy connector.  It tries to connect to the
nodes with the most free edges, or greatest
number of open connections, within the
degree limit.  If two nodes have the same
number of free edges then it defaults to the
Greedy connector algorithm of connecting to
the closest node.  It sorts the nodes in its
neighborhood by free edges followed by
distance and then attempts to connect to the
freest and then closest nodes that will accept
connections up to the edge degree limit.

The Maximum Hamming Distance connector
tries to connect to the nodes with the most
disjoint set of connections within the horizon
radius limit.  The Hamming distance is

calculated by comparing a node's connected
neighbors with another node's connected
neighbors.  The hamming distance starts at
zero and is incremented for each member of
one neighbor set that is not contained
within the other neighbor set.  The
connector sorts the nodes in its
neighborhood by Hamming distance and
then attempts to connect to the most disjoint
(maximally Hamming distant) nodes that
will accept connections up to the edge
degree limit.

The Minimum Hamming Distance
connector was implemented as a control
and test of the Hamming distance
algorithm.  It is the opposite of the
Maximum Hamming Distance connector
and tries to connect to the nodes with the
most similar set of connections within the
horizon radius limit.  The connector sorts
the nodes in its neighborhood by Hamming
distance and then attempts to connect to the
most similar (minimally Hamming Distant)
nodes that will accept connections up to the
edge degree limit.

6. Edge Stabilization

Repeatedly applying the above algorithms
to all nodes in the simulation yields
networks which are constantly in flux.  In
an effort to stabilize this behavior a
stabilization algorithm was devised by
McIntyre which, in retrospect, resembles
simulated annealing but is not strictly
simulated annealing.  The stabilization
results from probabilistically locking down
edges while repeatedly applying the
connector to the network.

In this algorithm if an edge is locked down,
it is no longer eligible to be disconnected
when the connector makes its decisions
about new connections.  If an edge remains
in place for multiple applications of the
connector, the probability of it being locked
down is increased in proportion to its
apparent stability.  If an edge is appearing
where there wasn't an edge on the last
application of the connector then the



probability of being locked down is not
increased but the probability is still non-zero.
On each application of the connector to all the
nodes in the network the number of locked
down edges monotonically increases.
Eventually all edges are locked down and at
that point the network is said to be stabilized.

7. Simulation Output

Once a network simulation run is complete
the final configuration of the network is
output in an ASCII file format.  This file
contains header information indicating the
settings of various simulation parameters, the
node names, and the connection matrix for
the network graph.  The connection matrix is
populated by numbers representing edges in
the graph.  A zero entry signifies no edge and
a non-zero number represents the distance
between the connected nodes in units of
fractional grid squares.  The distance numbers
can potentially be used for latency analyses of
the resultant networks.  These output files
were read into a MATLAB program that
performed the network analysis.

8. Results

Ten networks were randomly generated for
each algorithm and all edges longer than h =
300 were removed. The allowed maximum
degree of a node in the resulting network was
set to 4.

The resulting networks were characterized
according to the following properties:

• Clustering coefficient
The clustering coefficient of a node
Vv∈ is the percentage of neighbors of

v  connected to each other. The
clustering coefficient of a graph is:

V

v
Vv
∑
∈=

)(γ

γ .

• Diameter - the length of the shortest
path between the furthest two nodes
of the graph.

• SP average - The average of the
shortest paths between any two
nodes of the graph

• Robustness/Connectivity

For  each network, the values for these
properties are presented in Table 2:

Input
Network

Clustering
Coefficient

Diameter SP
Average

1 0.62627 1318.0596 500.2426
2 0.61608 1176.4242 486.3047
3 0.63956 1280.698 550.4126
4 0.63011 1325.6647 524.6535
5 0.64268 1255.7348 510.1326
6 0.65926 1287.4018 506.2337
7 0.62036 1278.5394 520.249
8 0.6271 1326.7616 556.0601
9 0.60669 1380.861 513.8656

10 0.62516 1238.5539 513.2025

Table 2: Characteristics of the input networks

The robustness of the resulting structures
was assessed by testing the connectivity of
sub-graphs of  the input networks.
Connectivity was assesed by removing n
percent  of  the original  nodes,

{ }40,35,30,25,20,15,10,5,0∈n  at random (and
all edges incident to these nodes). For each
graph and for each value of n the procedure
was repeated 100 times and the resulting
connectedness percentages are summarized
in Table 5.  Other data are presented in the
tables that follow.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gre
ed

y

Gre
ed

yD
ist

an
t

Gre
ed

yD
ist

an
tS

ta
b.

Gre
ed

yF
re

eE
dg

e

Gre
ed

yF
re

eE
dg

eS
ta

b.

Gre
ed

yS
ta

b.

M
ax

Ham
m

ing

M
ax

Ham
m

ing
Sta

b.

M
inH

am
m

ing

Ran
do

m

Ran
do

m
Sta

b.

 Fig. 3: Clustering coefficient averages of the
resulting graphs (for the 10 input networks)

We use the diameter and SPAverage as a
worst and an average-case indicator,
respectively. The smallest diameters were
produced by the MaxHammingStabilizing,
G r e e d y S t a b i l i z i n g ,  a n d
GreedyFreeEdgeStabilizing methods, while
the smallest SP averages were produced by
the Greedy, GreedyStabilizing, and the
GreedyFreeEdge algorithm.
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Fig. 4: Average diameters of the resulting graphs
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Fig. 5: Average SP of the resulting graphs

Without claiming statistical significance, we
note that  almost all the methods presented
performed better than the simple random
algorithm (with the exception of the Greedy
and MaxHamming methods from the
connectedness point of view, and
GreedyDistant from the diameter point-of-
view).  All the methods that use the
stabi l iz ing procedure  ( inc luding
RandomStabilizing) performed similarly
well as far as connectedness was concerned.

Connectedness
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Fig. 6: Connectedness results for the tested
strategies
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Fig. 7: Diameter averages produced by the tested
strategies

The poor performance of the MaxHamming
algorithm is due to the fact that for five test
networks the resulting graphs were
disconnected.  For the remaining five test
inputs the results were considerably better.
The GreedyDistant and the GreedyFreeEdge
strategies proved to be the best one-step
methods.

8.1. Connectedness for Variable
Horizons

Figure 8, shows the dependence of
connectedness on the horizon (h). Each color
represents a different horizon value, between
100 and 400.

Connectedness Analysis - Random Stabilizing method
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Fig. 8: Connectedness results for the Random
Stabilizing method

Connectedness Analysis - Distant Stabilizing method
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Fig. 9: Connectedness results for the Distant
Stabilizing method

Apparently, the bigger the horizon, the
better the DistantStabilizing method
performs, compared to the Random
Stabilizing one. One line of the following
tables shows the connectedness of the
graphs for each horizon value (after n % of
the nodes were removed).

9. Conclusions

The results shown here indicate to the
authors that, for the parameters we chose to
measure, networks with desirable
characteristics can be generated using only
information local to nodes placed randomly
in a graph.  One implication of this is that,
with attention to the algorithms employed,
useful self-evolving data networks can be
created for collections of devices.  We
believe that further investigation of
unexplored areas of the current simulation
framework is warranted and that it is likely
to yield a better understanding of what
types of connection algorithms work in
what circumstances and, perhaps, why
some algorithms significantly outperform
others.
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Horizon h/
nodes
removed n

100 200 250 300 350 400

5 0 1 1 1 1 1
10 0 0.97 0.95 0.97 0.99 0.98
15 0 0.89 0.92 0.95 0.95 0.92
20 0 0.76 0.78 0.84 0.86 0.85
25 0 0.48 0.55 0.76 0.59 0.66
30 0 0.35 0.37 0.36 0.38 0.35
35 0 0.1 0.1 0.15 0.17 0.15
40 0 0.01 0.01 0.07 0.03 0.02

Table 3: Connectedness vs. horizon limit for the RandomStabilizing method

Horizon h/
nodes
removed n

100 200 250 300 350 400

5 0 1 1 1 1 1
10 0 0.98 0.99 0.96 1 1
15 0 0.93 0.89 0.92 0.95 0.94
20 0 0.83 0.82 0.77 0.88 0.85
25 0 0.53 0.63 0.57 0.7 0.66
30 0 0.31 0.42 0.39 0.46 0.51
35 0 0.09 0.1 0.2 0.26 0.31
40 0 0 0.06 0.04 0.06 0.09

Table 4: Connectedness vs. horizon limit for the DistantStabilizing method



Median Clustering
Coefficient

Mean Clustering
Coefficient

Median Diameter Mean Diameter Median SP Average Mean SP Average

Greedy 0.277625 0.2657755 1662.0908 1746.2089 743.843 739.609

GreedyDistant 0.023363 0.02278178 2152.8874 2153.61682 1099.1772 1110.7228

GreedyDistantStab. 0.0320565 0.0346491 1771.10235 1780.35647 935.3276 924.91162

GreedyFreeEdge 0.1713 0.180925 1655.60955 1672.60408 732.05375 725.83881

GreedyFreeEdgeStab. 0.0679755 0.0697503 1612.96955 1632.67909 745.7608 745.88697

GreedyStab. 0.072765 0.0735597 1603.93335 1628.67186 733.81565 744.56787

MaxHamming 0.034555 0.0374186 1876.116 1904.03314 847.7668 863.61536

MaxHammingStab. 0.027383 0.0322405 1610.11585 1598.34471 765.1664 765.695

MinHamming 0.57639 0.57405

Random 0.0540875 0.0526713 1817.5528 1876.76224 873.2156 878.73432

RandomStab. 0.054381 0.0537025 1652.87665 1693.65841 818.08415 822.02785

Table 5: Properties of the resulting networks (averages over the 10 test inputs)

Nodes
Removed
(%)

n

Greedy Greedy
Distant

Greedy
Distant
Stabilizing

Greedy
FreeEdge

GreedyFree
Edge
Stabilizing

Greedy
Stabilizing

Max
Hamming

Max
Hamming
Stabilizing

Random Random
Stabilizing

5 0.77 0.85 0.999 0.974 0.996 0.984 0.447 0.998 0.927 0.999

10 0.578 0.788 0.988 0.915 0.981 0.984 0.359 0.989 0.759 0.98

15 0.378 0.658 0.951 0.771 0.923 0.926 0.298 0.953 0.598 0.939

20 0.167 0.546 0.837 0.527 0.814 0.825 0.186 0.847 0.434 0.818

25 0.085 0.391 0.663 0.285 0.611 0.599 0.116 0.657 0.202 0.661

30 0.02 0.211 0.394 0.077 0.317 0.31 0.045 0.37 0.072 0.349

35 0.004 0.082 0.168 0.017 0.126 0.132 0.01 0.167 0.028 0.15

40 0 0.017 0.05 0 0.035 0.029 0.004 0.054 0.001 0.043

Table 6:  Connectedness percentage of resulting graphs after removing n percent of the nodes



Nodes
Removed
(%)

n

Greedy Greedy
Distant

Greedy
Distant
Stabilizing

Greedy
FreeEdge

GreedyFree
Edge
Stabilizing

Greedy
Stabilizing

Max
Hamming

Max
Hamming
Stabilizing

Random RandomSta
bilizing

5 1891.66556 2235.02058 1860.68998 1768.34165 1689.04064 1687.41167 2025.31169 1663.57466 1980.03354 1758.2301

10 2130.42531 2386.27381 2000.74805 1939.51657 1788.49428 1794.912 2274.7718 1768.22496 2145.59319 1871.69814

15 2335.6531 2583.60157 2159.84225 2131.54996 1912.38606 1924.59346 2413.12606 1887.64826 2314.55284 2009.8167

20 2521.15305 2815.12315 2352.00449 2353.40377 2057.60677 2090.55232 2694.09127 2065.43099 2517.26643 2178.42105

25 2739.27548 3081.83877 2604.67902 2623.74751 2303.53584 2327.02501 2964.27624 2276.54288 2777.69611 2394.2306

30 3033.81024 3506.81741 2933.31997 2971.46552 2637.3293 2581.35328 3017.00128 2612.58211 3260.62689 2777.23644

35 2613.03205 3814.57758 3370.5656 3222.54531 2990.16202 2964.02767 3659.5235 2917.0162 3652.89154 3130.32053

40 _ 4440.89136 3813.2361 _ 2952.19629 3143.21974 4127.11719 3301.19898 4429.02793 3634.93028

Table 7: Average of diameters of resulting graphs after removing n percent of the nodes
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DIC Image Reconstruction on Large Cell Scans  
Bettina Heise, Alois Sonnleitner &  Erich Peter Klement 

 
 

1. Introduction 
 
Fluorescence microscopy has become the main method in imaging of cells, but differential interference 
contrast (DIC) microscopy is indispensable for special purposes avoiding markers. The physical 
background for DIC microscopy is described e.g. in (Murphy, 2001; Pluta, 1994; Holmes and Levy, 1987) 
and the references cited therein. 
Typically DIC images appear with a bas-relief profile caused by the gradient of the optical path length θ 
and phase shift between the two beams. For the human eye these DIC images are easy to interpret, 
(Fig.1a), but for automatic image analysis of the DIC scans with hundreds of cells of different shapes and 
partially weakly identifiable contours they are complicate to analyze automatically. 
In the direction of the DIC shear vector ∆τ the intensity distribution of the cell is characterized by a 
transition of bright to dark, resulting in a well- defined contrast. But in the perpendicular direction to the 
DIC shear we have no contrast against the background and hence a lack of information about the complete 
cell boundary, (Fig.1b). 
 
2. Mathematical algorithms for DIC image reconstruction  
 

2.1. Non-iterative approaches 
 
The two characteristic parameters for the DIC images are the DIC shear ∆τ = (∆x, ∆y) and the phase 
difference ∆ϕ0 which describes the bias retardation between the two laterally sheared DIC beams. 
The intensity I0 of the DIC image can be described generally (Cogswell and Sheppard, 1992) by 
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The intensity change ∆I = I - I0 caused by an additional phase change ∆ψ between the two beams crossing 
an object regarding only the linear part is given by 
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For nearly transparent objects we can assume that the object phase change ∆ψ is proportional to the 

directional derivative 
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of the optical path length θ  in DIC shear direction r = ∆τ , 
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2.1.1. Line Integration 

 
Working in the highest dynamic range around ∆ϕ0 = π / 2 we can integrate (3) in DIC shear direction 
r = ∆ �  to get a dependence on the optical path length θ. For our setup with a DIC shear angle �  = 45° we 
have to integrate, i.e. to sum up the intensity changes along each diagonal pixel line i up to the considered 
pixel rn = (xn, yn). This integration generates a new image with an intensity SL(x, y) proportional to the 
optical path length θ of the object at the position (x, y) related to the background,  
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with the constant ã = 4a² sin ∆ϕ0. Ii,0 denotes the mean diagonal line intensity in the original DIC image, ci 
are a measure for the intensities at the image boundary for each line i. 
However, this ‘ integrated’  image is disturbed by a randomly distributed striped structure caused by 
accumulation of noise along the integration path and by other effects, (Fig. 2a). 
 

2.1.2. Corrected Line Integration 
 
The correction of these artifacts can be achieved by including an additional bi-directional, exponential 
decay term �  into the line integration method as proposed in (Kam, 1998). We implement this decay term 
in the following way and get a new image with an intensity SLC(x, y), 
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Compared to the straightforward line integration the artifacts can be reduced by corrected line integration 
method, but the intensity inside the cells is very low, (Fig. 2b).  
 

2.1.3. Hilbert Transform 
 
The Hilbert transform represents a second method to convert the bas- relief profile of the objects into 
symmetric appearance, (Arnison et al., 2000). Performing this transform in Fourier space gives a simple 
multiplication by the signum-function. 
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In the two-dimensional frequency space the corresponding 2D-signum function has to be perpendicular to 
the DIC shear direction. Since our DIC shear direction is along the diagonal of the square image, we 
define the edge of the signum function in the perpendicular diagonal direction. This approach differs from 
(Arnison et al., 2000; Kyan et al., 2001), where the Hilbert transform is performed in a DIC shear 
direction parallel to the image edges. 
The real part of the inverse Fourier transform of (6) gives the resulting converted image, (Fig. 2c). 
 

2.1.4. Deconvolution by Wiener Filtering 
 
A further way to convert the DIC image into an image similar to one as resulting from fluorescence 
microscopy is the deconvolution with an appropriate ‘DIC-shear function’ . 
Assuming as described in (van Munster et al., 1997) that the phase difference ∆ϕ(x, y) between the two 
laterally sheared DIC beams, causing the typical DIC bas–relief profile can be expressed as convolution of 
the DIC-shear function g(x, y) with the phase-function ϕ(x, y) which represents a measure for the optical 
path length of the objects, we can write 
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approximating g(x, y) by two (∆x, ∆y) - shifted � - functions. 
By a Wiener Filter (Gonzales et al., 1992) we can reconstruct � (u, v) getting the best estimation � '(u, v. 
The signal noise ratio approximated by a Gaussian function as proposed in (van Munster et al., 1997) 
seems a good assumption also for our images. The parameters of the Gaussian (amplitude �  and spread � ) 
have to be adapted for the specific images by testing for the highest achievable image quality. 
∆x, ∆y must be determined for the microscope setup, then � ’ (x, y) can be calculated by the inverse Fourier 
transform of our estimated function � '(u, v). Its real part gives a measure for the optical path length, 
(Fig. 2d). 
 

2.2. Iterative approaches 
 

2.2.1. Iterative Line Integration 
 
After the application of transformation methods described in (2.1.1.- 2.1.4.) the objects can be 
reconstructed with an brightfield-like appearance, but the cells often are incomplete and not ‘ filled’ , the 
intensity of the transformed objects and consequently the contrast to the background seems to be 
insufficient for our standard fluorescence image analysis. To improve the results we test iterative 
approaches for DIC image reconstruction. 
We implement similar to the approach of Z. Kam the iterative line integration method by performing a 
damped integration as described in (2.1.2.) in the forward direction and a differentiation without any 
correction factor in the backward direction which gives an approximation of the original DIC image as 
one iteration step. The iteration is repeated with the residual given by the difference between the original 
and the approximated DIC image adding the result to the previous approximated DIC image. The 
integrated images of each iteration step are accumulated to the final reconstructed image. 
The appearance of the transformed objects is improved after several iteration steps, but on the other hand 
the cells get shadows and fringes as a ‘decay effect’  with increasing number of iteration. Hence a 
compromise for the number of iteration has to be found by testing with different parameters. Additionally, 
by the repeated integration we have a low-pass filtering effect. 
 

2.2.2. Iterative Hilbert Transform 
 
The Hilbert transform has a transfer function of unit magnitude and hence the transformed images don’ t 
show the blurring effects as compared to the line integration. Furthermore its realization in the Fourier 
space is a computationally elegant solution.  
In our approach for the iterative Hilbert transform (IHT) we use the Hilbert transform in forward direction 
and the differentiation in the backward direction as one iteration step. The difference between original and 
approximated image gives the residual on which the next iteration step is performed. The sum of all the 
resulting Hilbert transformed images gives the final image. 
By the repeated differentiation in the iteration loop we have the effect of a high-pass filter and so we 
particularly stress the noisy parts of the image with increasing number of iterations. To reduce these 

effects we introduce a modified version of the iterative Hilbert transform (MITH) with the operator n
αH , 
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which suppresses the higher frequencies according to the chosen parameter �  with increasing number of 
iteration. 
Our MIHT-method is implemented as follows 
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 �  denotes the differentiation operator: 
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3. Results 
 
Application of the different non-iterative reconstruction methods (corrected line integration, Hilbert 
transform and deconvolution) yielded only suboptimal results for our purposes. Iterative methods for DIC 
image reconstruction (iterative line integration and MIHT- method) could achieve an improvement, 
(Fig. 3a) and (Fig. 3b). 
We applied to these reconstructed images our standard algorithms used for the fluorescence cell scan 
analysis, i.e. a global threshold method (Otsu algorithm (Shapiro et al., 2001) for bimodal histogram 
distributions and Triangle algorithm for unimodal histogram distributions (Zack, 1977)) and a local 
threshold method (a modification of the Niblack’s Method (Trier et al., 1995)) for determining the 
positions and the boundaries of the cells and cell clusters. 
The binary images in Fig.4 are displayed without any correction of noise and processing artifacts to be 
able to compare the results. In addition we applied afterwards a special directive erosion method to reduce 
the fringes after binarization for both iterative methods. 
Concerning the finally ascertained cell boundaries the method similarly proposed by (Kam, 1998) and our 
iterative method were comparable, (Fig. 5a, 5b), although the reconstructed objects in the first case were 
more blurred and hence fine details were better to recognize by the MIHT-method. 
A survey of the advantages and disadvantages of the investigated methods is displayed in Tab. 1. 
Method Advantages Disadvantages 
Hilbert Transform (HT) fast method, algorithm 

computationally easy to realize in 
the Fourier space  

discontinuities and gaps in 
objects after thresholding, 
 low contrast for thin objects 

Deconvolution smooth background DIC shear and microscope 
parameters must be determined, 
noise distribution often not 
exactly known 

Iterative Line Integration  smooth background blurring effect, fringes and 
shadows  

Modified Iterative Hilbert 
Transform (MIHT) 

contrast improved, sharper 
contours than in Iterative Line 
Integration 

slightly streaked noise pattern in 
the background 

Tab.1: Comparison of investigated methods 
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5. Figure legends 
 
Fig.1a: DIC image of Jurkat cells (500x500 pixels subimage, totally scan size 2784x3796 pixels, scale bar 3 � m, 
             s. Materials,  
Fig.1b: Binary image after bi-level thresholding the DIC image 
Fig.2a: DIC image after applying uncorrected line integration 
Fig.2b: DIC image after applying corrected line integration, exp (- � ) = 0.8 
Fig.2c: DIC image after applying 2D Hilbert- transform 
Fig.2d: DIC image after applying deconvolution using a Wiener Filter approach with �  = 100, �  = 3 
Fig.3a: DIC image after applying iterative line integration with 4 iteration steps and decay factor exp (- � ) = 0.8 
Fig.3b: DIC image after applying modified iterative Hilbert transform with 4 iteration steps and �  = 40 
Fig.4a: Binary image after local thresholding of the corrected line integration- image (s. Fig. 2b) 
Fig.4b: Binary image after global thresholding of the corrected line integration- image (s. Fig. 2b) 
Fig.4c: Binary image after local thresholding of the Hilbert transform- image (s. Fig. 2c) 
Fig.4d: Binary image after global thresholding of the Hilbert transform- image (s. Fig. 2c) 
Fig.4e: Binary image after local thresholding of the iterative line integration- image (s. Fig. 3a) 
Fig.4f: Binary image after global thresholding of the iterative line integration- image (s. Fig. 3a) 
Fig.4g: Binary image after local thresholding of the modified iterative Hilbert transform- image (s. Fig. 3b) 
Fig.4h: Binary image after global thresholding of the modified iterative Hilbert transform- image (s. Fig. 3b) 
Fig.5a: Cell boundaries after correction (iterative line integration as reconstruction method, local threshold) 
Fig.5b: Cell boundaries after correction (iterative Hilbert transform as reconstruction method, local threshold) 
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1 Introduction 1

1 Introduction

Nowadays data-driven models become more and more an essential part in industrial systems for application
tasks such as system identification and analysis, prediction, control, fault detection or simply simulation.
Data driven models are mathematical models which are completely identified from data, which can be
available in form of offline data sets, most commonly stored in data matrices, or in form of online measure-
ments. Data-driven models possess the nice property that they can be built up generically in the sense that
no underlying physical, chemical etc. laws about the system variables have to be known.

Whenever measurements are recorded online with a certain frequency, usually the models should be
kept up-to-date from time to time, especially when tracking highly time-variant system behaviors for online
identification tasks, which requires an adaptation of some model parameters in form of incremental learning
steps, as a complete rebuilding from time to time with all recorded measurements would yield a too high
computational effort for a complete online training. Other application cases for an incremental learning
approach stem from the following requirements:

Refinement of vague knowledge-based models in order to get a more exact representation of the
underlying system behaviors

Improving process security by preventing extrapolation to new operating conditions and by avoiding
interpolation for large data holes: this is essential in the case when the firstk data points are not
sufficiently distributed over the whole input space and therefore the models generated from the first
k data points do not contain all possible operating conditions.

The number of data points from which data-driven models should be trained is too high in order to
be able to load them into the memory at once. In this case, the only way to build data-driven models,
is to perform a bufferwise loading of the data, which causes the demand of incremental learning
algorithms for training the models.

Auto-adaptation to a similar test object: models were trained for a specific test object within a system
and should be adjusted a bit to a similar one in the same system, i.e. to an object possessing similar
relationships between some system variables. This guarantees an early applicability of data-driven
models to the new test object within an online process.

A new incremental learning variant for Takagi-Sugeno Fuzzy Systems (FLEXFIS) were developed in
order to satisfy the above mentioned requirements, for detailed algorithms, concepts and methods see
[LK03, LK04b, Lug04, LK04a]. In the subsequent sections an extensive evaluation of this new method
for is demonstrated. This evaluation is based on some application examples, where data-driven modelling
and adaptation yield a substantial contribution including:

Online (System) Identification

Fault Detection

Prediction

Generation of Grey Box Models (Refinement of Expert Knowledge-Based Fuzzy Systems)

Open-Loop Control

For the first three application tasks, which are described in a more detailed way in the specific sections
below, empirical tests on high-dimensional stationary and dynamic measurement data were carried out,
so static fuzzy models as well as dynamic ones will be generated and adapted with the new method. A
comparison ofFLEXFISand its batch learning variant (i.e.extended genfis2) will be investigated on various
data sets possessing a different origin and quality with the following conventional batch learning methods
for building up Takagi-Sugeno fuzzy systems (as they are all available in MATLAB’s fuzzy logic toolbox):
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ANFIS: Adaptive Neuro-Fuzzy Inference Systems [Jan93, Jan92]

FMCLUST: cluster-based learning method, see [Bab98] for a theoretical description and [Bab99] for
a practical description of the usage of the method in MATLAB

genfis2: cluster-based learning method, see [Chi94, YF94]

For the remaining two application tasks in above itemization only some aspects are discussed how and in
which form the new method can be applied, but no evaluation results could be produced due to a missing
implementation and missing input data.

2 Online (System) Identification

With online (system) identification it is meant to identify system behaviors and dependencies in online
mode. Opposed to offline identification, where all the collected historic measurement data is sent as so-
called training data into the model building algorithms, for an online identification framework measure-
ments are recorded either bufferwise (i.e. in batch mode) or pointwise (i.e. in sample mode) with a certain
frequency demanding several training steps in order to be up-to-date as soon as possible and therefore to be
applicable at all (e.g. for online controlling or monitoring tasks). In principle, the online training steps can
also be carried out by batch learning algorithms, but depending on the dynamics of the system the compu-
tation time can suffer in a way that the application of these methods gets unacceptable or even impossible.
This fact will be outlined in this section, when comparing batch learning methods with the incremental
learning methodFLEXFIS. In all test examples a simulation of the online case could be achieved by setting
the buffersize of the data processor to1 for testing the sample mode case and to other values smaller than
the number of records in the data matrices for testing various batch mode cases. In this way a pointwise or
bufferwise loading of the data matrices stored on a hard-disk could be achieved.

2.1 The Framework

The generation as well as adaptation of the fuzzy models for high-dimensional measurement data is done
automatically in a so-called model training job consisting of MATLAB-scripts: once having sent enough
measurement data (sample rows) containing all measurement channels (columns) into the job, it tries to
discover useable relationships between the channels. This is done by systematically taking each present
channel as target channel and finding a good approximation for this channel by a subset of some other
channels. Therefore, before the real training of the initial (for the online case) or complete (for the offline
case) fuzzy models, subset selection or also called variable selection refer to [Mil02, GLK04], is applied
in plain form, meaning no artificial regressors are generated from the original channels and no time shifts
of the data matrix are performed. The later one is only needed for finding dynamic relationships and the
data is not shifted in advance, the demand of artificial regressors is more foreseen for regression models
and diminishes for fuzzy models, as they can approximate any real-occurring nonlinear relationship by
using just the original channels [KKM97, Wan92]. In order to guarantee stable and correct approximations
of the fuzzy models, some pre-filtering techniques for estimation and adaptation as proposed are applied.
Whenever initial models are trained from the firstk data points, the remainingN − k data points are taken
as input for adaptation in the case when applying incremental learning algorithms and are taken as input
together with the firstk points for re-estimation in the case when applying batch learning methods.N is
the amount of data points which is available in sum within a certain test set applied for the evaluation.

Under these considerations for online identification the flowchart in Figure 1 is obtained which gives
a comparison between online identification with adaptation (left path) and online identification with re-
estimation (right path) as it needs to be done for the batch learning methods. Besides, it incorporates also the
calculation of quality measures for the trained models. These quality measures are an important additional
information about the reliability and trustability of the generated models, see also in order to be able to
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Figure 1: Online identification strategy with applying FLEXFIS as incremental learning method (left path)
and applying any of the batch learning methods (right path)

distinguish between essential dependencies (in the case of a high quality) and non-usable relationships (in
the case of a low quality). Indeed, after having generated the initial models, it can be considered to neglect
the models with low quality for adaptation, but that would mean to exclude possible actual relationships,
which come up after having recorded more measurements. Moreover, for some applications like for instance
fault detection (see Section 3), they are even indispensable as they have to be incorporated into the solution
for obtaining correct statements.

One weak point for the adaptation part (left path of the flowchart) may arise within the online identifi-
cation approach as shown in Figure 1 and that concerns the variable selection, as it is only carried out once
for the firstk data points, whereas it is performed for every re-estimation step when applying the batch
learning methods (right path). This pretended drawback is not a real one, because it does not spoil the qual-
ity of models significantly, as we will see in the tables below, where online identification results by using
different modelling approaches will be listed and compared. Moreover, for low-dimensional systems with
only a couple of measurement variables variable selection is not needed as all variables for approximating
a specific target variable can be taken as input. Sometimes expert knowledge about the structures of the
models exists, which also prevents the usage of variable selection.

2.2 Tests

In Table 1 a comparison between the different above itemized batch modelling methods and variants of
incremental modelling is made. The comparison includes average model qualities of 62 trained up-to-5-
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Table 1: Comparison of Fuzzy Model Building Methods with respect to quality and computation speed

Method Quality Quality Comp. Time Comp. Time Comp. Time
Training Test offline online 1 online 2

up-to-date up-to-date
every 100 p. each point

FMCLUST 0.9272 0.902 6m 29s 62m 41s Not possible
ANFIS 0.9110 0.872 5m 29s >genfis2 Not possible
genfis2 conv. 0.9080 0.893 4m 28s 38m 31s Not possible
genfis2 ext. 0.9110 0.904 3m 47s 34m 13s Not Possible
genfis2 ext.conv. adapt 0.8319 0.818 3m 10s 3m 10s 3m 10s
FLEXFIS 0.8712 0.881 4m 36s 4m 36s Not possible
batch mode 100
FLEXFIS 0.8411 0.856 10m 57s 10m 57s 10m 57s
sample mode

dimensional MISO (i.e. Multiple Input, Single Output) fuzzy models (i.e. maximal four inputs, always one
output) on the training data set as well as a complete fresh fault-free test data set, obtained by testing a
large diesel engine at an engine test bench. Indeed, originally the data set contained 1810 data points and
80 measurement channels, where 14 channels were completely neglected as input and target channels due
to missing data or containing too many outliers. For each of the remaining channels, a fuzzy model was
tried to be built up by a subset of the others. As different models possess different inputs and outputs with
different ranges, absolute quality measures like average squared errors are not feasible for calculating an
overall quality measure which comprehends the qualities of all trained models. Hence,r-squared-adjusted
formula [LG02] normalized between 0 and 1, where near 1 means that a model with high quality could
be achieved, was applied for each fuzzy model onto both, training data set and test data set. An average
r-squared-adjusteddefined by

R2
overall =

1
m

m∑
i=1

R2
adjusted_i (1)

whereR2
adjusted_i is the r-squared-adjustedfor the ith model, gives the overall quality of the method;

overallr-squared-adjustedis calculated at the end of the complete identification process, hence in the case
of the training data set for all 1810 data points, in the case of the test data set for 136 fresh fault-free points.
This 136 fresh test points can be assumed as fault-free as they were extracted from a by an expert rated
check data set. Usually, batch modelling methods achieve higher averager-squared-adjustedvalues than
incremental learning methods, which is underlined in Table 1. This is because batch modelling methods
always get in the complete information about the underlying dependencies to be approximated as all data
points are fed into the algorithm. However, the obtained qualities on the training set of the withFLEXFIS
adapted fuzzy models is surprisingly good, as it triggers only a 4.4% decrease when applying incremental
learning in batch mode, respectively a 7.7% decrease when applying incremental learning in sample instead
of batch modelling — for the four batch modelling approaches including also theextended genfis2approach
explained in this thesis and also applied for initial fuzzy training before the incremental learning process
starts the quality of trained models is nearly the same for this data set.

Moreover, for the qualities on a fresh test set (third column), adaptation and incremental learning ap-
proaches (especially in batch mode) can compete with generation approaches, which is quite a strong result
for FLEXFISand gets even stronger, if taking into account that it is an incremental training method and
hence can deliver up-to-date models whenever they are needed. Indeed, this is also possible with the usage
of batch modelling method by following the right path in the online identification scheme shown in Figure
1. But, column 5 demonstrates clearly, that when models are demanded to be up-to-date after each newly
recorded 100 points, all the batch modelling methods take an almost 10 times! higher computation speed
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Table 2: Comparison ofFLEXFISwith conventional adaptation with respect to average model qualities
obtained when training fuzzy models from online measurement data recorded at an engine test bench

Method Quality Quality Comp. Time
Training Test

genfis2 ext. 0.806 0.679 37 seconds
conv. adapt
FLEXFIS 0.969 0.963 51 seconds
batch mode 100
FLEXFIS 0.958 0.951 131 seconds
sample mode

than the incremental learning methodFLEXFISin batch mode, which is triggered automatically when send-
ing a buffer of points into the algorithm instead of single samples. This makes them hardly applicable in
fast identification processes and even totally inapplicable for online identification tasks, where fuzzy models
have to be up-to-date for each small buffer containing just a couple of points or even for each single point
(see column 6). This is because, for batch modelling methods, single point update would mean training
the model withk points (initial model), k+1, k+2, k+3, ..., k+N points. So, in the case of this large diesel
engine data consisting of 1810 samples to perform 1710 re-estimations with 101, 102, 103, ..., 1810 data
points, summing up to a computational effort of hours or days.

ComparingFLEXFIS in sample mode with the sample adaptation of the rules consequent parameters
alone, denoted as ’genfis2 extended, conv. adapt’ in Table 1 and described in [LK03, Lug04], it has to
be realized that especially for this data set the adaptation of consequent parameters is sufficient enough,
as the quality of the models do not suffer significantly; moreover, it is three times faster thanFLEXFIS
in sample mode. The reason for this lies in the good distribution and density of the firstk data points
sent into initial model training, hence the input space for all models was covered well with data from the
beginning→ no data in a new region within the input space occurred for the whole adaptation process→
there was no demand of shifting fuzzy sets or adjoining new sets in order to improve the quality of the
models significantly. This circumstance can immediately change, when applying a different measurement
plan, where the measurements are recorded in a different order. For instance, data from a BMW-diesel
engine were recorded in an ascending order with respect to the two main influencing channels at an engine
test bench, namely rotation speed and torque. Ascending order here means that a lattice over these two
channels were laid and a stationary measurement (after reaching steady-state) were recorded for each knot
point starting from point(1200, 0) to (1200,maxtorque), from (1250, 0) to (1250,maxtorque) up to
(5200,maxtorque), wheremaxtorque is the maximal possible torque and depends on the actual rotation
speed (rot-speed/torque-curve). This ascending measurement plan triggers more or less sorted data affecting
the model qualities for the two incremental learning approaches significantly as shown in Table 2: the
results obtained withFLEXFISare pretty strong for both, training data set and test data set, whereas the
models achieved by adaptation of the rules consequents alone are almost useless, which will be underlined
even more for the application within an fault detection framework — see Section 3, where detection and
overdetection rates with respect to some faulty and fault-free test data set are evaluated and compared
amongst the different modelling methods. As in the case of an arbitrary online measurement process the
distribution of the firstk data points over the input space is usually not known a-priori, the best choice
with respect to process security would beFLEXFIS. Indeed, in some cases the measurement plan can be
elicited in a way that a good initial distribution of the operating channels is ensured, but that does not
automatically ensure that all other measurement channels are affected by this strategy. So, extrapolation on
newly recorded data can never be completely avoided for all fuzzy models.

The inner structure of the fuzzy models can be also quite important as an operator or expert may want
to gain an insight into some system’s relationships or also at least one relationship for a specific channel
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Figure 2: Fuzzy sets for two input channels for modelling air temperature after cooler when using (from
top to bottom) the methodsFLEXFIS, FMCLUSTandANFIS

he is interested in. For instance for the air temperature after the cooling unit at an engine a relationship
depending on two other channels could be found with the help of the identification framework as shown
in Figure 2 (Note: this is one model out of the 62). The input channels were the temperature of the water
before the inflow (denoted as TWE) and the exhaust gas mass flow rate (denoted as GAH). In Figure
2 the obtained fuzzy sets for the input channels with the usage of the three methods (from top to bottom)
FLEXFIS, FMCLUSTandANFISare visualized. Indeed, the fuzzy sets obtained byFLEXFISdo not trigger
a really good linguistic interpretable partition, but can be surely improved by applying an interpretability
assurance method e.g. [SBV98], but was not pursued within this framework. Nevertheless compared to
the fuzzy sets produced byFMCLUST, see middle image in Figure 2, they are wonderful. For these fuzzy
sets which are not unimodal at all, a linguistic assurance method in post-processing manner can be hardly
applied.ANFIS, however, provides the best linguistic insight into the system as shown in the lower image
in Figure 2 as it produces exact fuzzy partitions i.e in each point the sum of membership degree is up to one
and all the adjacent fuzzy sets overlap at the degree of0.5. When taking into account, thatANFISgenerates
only four rules compared to nine respectively 10 rules when applyingFLEXFISrespectivelyFMCLUST,
it is no surprise that the he approximation accuracy is worst when applyingANFIS. However, it is a great
surprise thatFLEXFIS as incremental variant could achieve a higher approximation accuracy than (i.e.
genfis2 extended) as batch variant by only incorporating one rule more, as it gets not all information in form
of a complete data matrix in advance; a summary of achieved models structure and approximation accuracy
especially for this model is given in Table 3.ANFIShas the nice property that it always generates real fuzzy
partitions. This circumstance can trigger an explosion in the number of rules when the dimensionality of
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Table 3: Characteristics of the air temperature after cooler models achieved with different fuzzy modelling
methods

Method Fuzzy Sets Number Quality
of Rules

FMCLUST unreadable 10 0.887
ANFIS readable 4 0.851
genfis2 ext. a bit readable 8 0.870
FLEXFISsample mode a bit readable 9 0.876

Table 4: Characteristics of the air/full ratio models achieved with different fuzzy modelling methods

Method Fuzzy Sets Number Quality
of Rules

FMCLUST unreadable 10 0.996
ANFIS readable 16 0.992
genfis2 ext. a bit readable 5 0.979
FLEXFISsample mode a bit readable 6 0.936

the models gets higher. For instance in the case of a 4-dimensional fuzzy model, which was generated for
modelling the air/full ratio, 16 rules appeared when usingANFIS, whereasFMCLUSTandgenfis2 extended
needed only 10 respectively five rules for obtaining a similar model quality, see Table 4.FLEXFIS in
sample mode generated six rules, but could compete with the other methods with respect to the model
quality; however, the approximation accuracy is not so bad such that it could not be reasonably applied
for online identification tasks. What also could be observed, was the fact, thatANFISalways generated
exactly the same partition as shown in Figure 2 for all the 62 models, which is a precarious thing as it
does not really imply a helpful linguistic information extraction from data (different data clouds should
trigger different rules!). Maybe the reason for this lies in compensating the rule explosion when applying
all fuzzy set combinations over the dimension. However, for a 10 dimensional modelling taskANFIScould
not produce any result, as an ’out of memory’ error occurred, see Section 4.

2 other tests were carried out based on data sets from the UCI repository1, namely the so-calledhousing
data and theauto-mpgdata. Thehousingdata, concerning housing values in suburbs of Boston, consists
originally of 14 variables including one continuous class attribute, i.e. the target channel in our notations and
13 input attributes and contains 506 instances. The class attribute to be modelled from the other attributes
stands for the median value of owner-occupied homes in 1000’s. From the 506 instances 10% were selected
randomly and used the the test data set, the remaining 90% of data were used as the training data set. For
the evaluation the correlation coefficient between the predicted and the measured output was calculated
as quality measure value on the test data in order to be comparable with the results in [HD04] obtained
from other methods, such asRENO, LAPOCor LAPOC-VS. Obviously, a correlation coefficient near 1
denotes an almost identical function between the two outputs and therefore a good model accuracy, a value
near 0 a useless model. It turned out, that only five input dimensions are sufficient for building up highly
qualitative models, as adding more attributes did not increase the accuracy of the models significantly. In
Table 5 the results obtained by the batch modelling methods as well asFLEXFISare listed. From this table
it can be realized that bothgenfis2variants produce the best results, which can also compete with the best
methods in [HD04], whereas the results ofFLEXFISare not bad, when taking into account that it builds
up the model sample per sample. The conventional adaptation of fuzzy systems, i.e. the adaptation of the
rule consequent parameters alone, generates a completely useless model, as the firstk data points do not

1http://www.ics.uci.edu/ mlearn/MLRepository.html
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Table 5: Model accuracy and computation time of different methods when applying tohousingdata from
UCI repository

Method Corr. Coeff. Comp. Time in sec.
FMCLUST 0.890 2.0
ANFIS 0.805 6.0
genfis2 conv. 0.922 0.8
genfis2 ext. 0.934 0.7
genfis2 ext. conv. adapt 0.450 2.2
FLEXFISsample mode 0.903 4.0
LAPOC-VS 0.92-0.95

cover the input range sufficiently. The slowest method of all,ANFIS, is also the worst of the batch learning
methods with respect to the error on the test data, although on the training data the performance is quite
good. This circumstance arises due to the strong overfitting effect, which is mostly caused when applying
this method (probably because of the high number of rules), which is also underlined when looking at the
results produced on the basis ofauto-mpgdata (see Table 6) and in Section 4. For theauto-mpg, which
concerns city-cycle fuel consumption in miles per gallon and consists of eight attributes including one class
attribute (target channel), namely the so-called ’miles per gallon’, and seven input attributes, the same
procedure as for thehousingdata was pursued. Again five input dimensions were enough to described
the relationship significantly, the results are shown in Table 6:FMCLUST, genfis2 extendedandFLEXFIS
show almost similar results with respect to approximation accuracy and are even slightly better than the
best method demonstrated in [HD04] (LAPOC-VS), which achieves a correlation coefficient of between
0.89 and 0.90 (this is known from due to a statement of the co-author).ANFISandgenfis2 extendedwith
conventional adaptation are more or less forgettable.

3 Fault Detection

In the process and manufacturing industries, there has been a large push to produce higher quality products,
to reduce product rejection rates, and to satisfy increasingly forceful safety and environmental regulations.
Hence, the increasing complexity of measurement systems inside modern industrial processes with a rising
amount of actuators and sensors demands automatic fault detection algorithms which can cope with a huge
amount of variables and high-frequented dynamic data. Indeed, humans are being able to classify sensor
signals by inspecting by-passing data, but this classifications are very time-consuming then and also have

Table 6: Model accuracy and computation time of different methods when applying toauto-mpgdata from
UCI repository

Method Corr. Coeff. Comp. Time in sec.
FMCLUST 0.917 1.3
ANFIS 0.730 5.0
genfis2 conv. 0.855 0.6
genfis2 ext. 0.916 0.5
genfis2 ext. conv. adapt 0.210 1.9
FLEXFISsample mode 0.912 3.1
LAPOC-VS 0.89-0.90
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deficiencies because of underlying vague expert knowledge consisting of low-dimensional mostly linguistic
relationships.

The IFAC Technical Committee SAFEPROCESS has defined a fault formally in the following way (also
referenced in [IB96] and [CRB01]):

’Unpermitted deviation of at least one characteristic property or variable of the system from acceptable/usual/standard
behaviour.’

Moreover, fault detection is formulated as:

’Determination of faults present in a system and time of detection.’

3.1 The Idea and Framework

In literature there can be found a lot of different basic approaches how to cope with the fault detec-
tion problem, which reaches from signal analysis in intelligent sensors [AA96] over a multi-classification
based approach as demonstrated in [CRB01], which apply discriminant analysis functions for produc-
ing correct fault detection statements, to statistical-based fault detection applyingstructural hypothesis
tests[Nyb99], which is theoretically grounded in classical hypothesis testing and propositional logic. In
[HLS95, CP99, KKKC04] model-based fault detection is based on residual observer functions which en-
tail a funded analytical theory. A model-based ’residual view’ approach, where data-driven models are
generated from some historic measurements or from firstk online measurements and used as fault-free re-
ferrence situation for generating residuals, can be found in [SRG+01] and [LPK+95]. This was extended
in [LKLG04] in order to take into account arbitrary many and any kind of models describing physical de-
pendencies inside the system together with their qualities, to incorporate sensor inaccuracies for automatic
thresholding and to calculate not only pure deviations from the model-based nominal case represented as
a normalized residuals but also fault probabilities based on rated historic data. The framework of this ap-
proach is shown in Figure 3 and serves as the basis for the evaluation and comparison of the different
fuzzy modelling methods with respect to fault detection. The fuzzy modelling methods are applied within
block "Data-Driven Model Approximation", which is generally forseen for any kind of data-driven mod-
elling algorithms. The framework provides the usage in an online application, where measurements are
directly checked immediately after they are recorded. Based on the outcome of the fault detection pro-
cess, data-driven and hybrid models are updated (in the case of a fault-free measurement) or not (when the
measurement is faulty). For the evaluation and comparison of the fuzzy modelling methods as it will be
demonstrated in Section 3.2, only the offline case of fault detection is examined, meaning fuzzy models are
first generated from training data with the different batch learning and incremental learning approaches and
afterwards a check data set containing fault-free points and different kinds of faults with different intensi-
ties is sent into the fault detection algorithm. From experience it is known, that this procedure is a good
benchmark of the real online fault detection. The goal of fault detection can be formulated in the following
way:

Goal 1. Let f1,k−1, ..., fm,k−1 be m various multiple input single output models as describing some re-
lationships inside an industrial process at an arbitrary point of timek − 1 (instead ofN as in the two
equations), then newly recorded points~xk,...,k+m should be classified in a way by using these models as
referrence situation, such that the number of correct classifications should be as high as possible.

If only two classes of fault appearances occur, i.e one class representing the fault-free case and the
other representing all possible faulty cases, the correct classifications can be split into correct detections
of faults and into correct detection of no faults, both influencing thedetection rateandoverdetection rate.
This splitting is done, because mostly detection and overdetection rates play different roles with different
priorities (see Section 3.2). If more fault classes should be distinguished, fault patterns have to be trained
from historic data and sent into the algorithm (see framework in Figure 3). Usually this fault patterns are not
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Figure 3: Fault Detection Scheme in an Online Measurement and Plausibility Check System

available and hence are neglected for the evaluation tests in this thesis. For details about the fault detection
logic and also the application to analytical models refer to [LKLG04] and [GLG+04].

3.2 Tests and Results

Two different data sets were used for the evaluation of the different fuzzy modelling methods as well as
of some other widley applied methods such as correlation or regression modelling strategies (see [LG02])
to demonstrate which kind of impact they have on the correctness of fault detection statements, i.e. on
detection and overdetection rates:

Real recorded measurement data at an engine test bench for a BMW diesel engine containing sensor
inaccuracies and some white noise. The data were recorded from 32 measurement channels for 940
different operating points, each describing different settings of the two main influencing channels
at an engine test bench, namely rotation speed and torque. As already mentioned in Section 2 the
data were recorded in an ascending order with respect to rotation speed and torque. For each setting,
reaching steady state was awaited, which took about 30 seconds, and then one stationary point was
measured and stored. In view of the operating conditions, these data points were assumed to be free
of faults. This data set was divided into a training data set containing 760 stationary points and a
test data set containing 180 stationary points. Such a division was necessary in order to obtain an
equal situation for all modelling methods. Some stationary points in the test data set were artificially
corrupted with faults of different intensities, which were based on descriptions of real faults. A strict
requirement was that all the faults with intensities greater than 50% have to be detected.

Simulated data for a special diesel engine, containing no noise, together with two rated check data sets
one containing faults with small deviations of 10%, the other containing faults with small deviations
of 5% in some channels. Hence, this data set is a good benchmark for the sensitivity of the methods
with respect to tiny deviations. The training data set contained around 1000 points, while the check
data sets contained in sum 2052 points each, where approximatively half of them was faulty.

When applying the different fuzzy and other data-driven modelling methods to the BMW diesel data set,
it turned out that more or less all the methods only produced between zero and two overdetections, when
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Table 7: Comparison of detection rates among several data-driven model building methods based on mea-
surements recorded for an automotive diesel engine

Method Det. Rate Comment
FMCLUST 73.86% all big faults
ANFIS 73.86% all big faults
genfis2 conv. 45.15% not all big faults
genfis2 ext. 56.82% all big faults
genfis2 ext.conv. adapt 37.50% not all big faults
FLEXFISbatch mode 54.55% all big faults
FLEXFISsample mode 47.73% all big faults

optimizing the threshold for keeping the amount of overdetections as small as possible. This is because
operators would loose confidence in the system due to a high amount of overdetections. The only exception
was theFMCLUSTmethod which produced an overdetection rate of 8.70%. This could not be improved by
tuning in a reasonable way without loosing too much correct detections, henceFMCLUSTwas more or less
useless, as an overdetection rate of maximal 2% was demanded. In Table 7 only the detection rates caused
by the different methods are demonstrated, the comment relies on the intensity of the faults and should
reflect another point of view of usability. From these results two essential things can be concluded:

ANFIS is superior to all other fuzzy modelling methods with respect to the detection rate, which is
a quite surprising fact as for online identification and also for prediction as we will see in the next
sectionANFISdoes not lead to better results. Actually, for applying the trained models onto fresh
test data, as it is also the case for fault detection, it was one of the worst methods.

The weakness of adaptation of rules consequents alone when the firstk data points are ordered (which
is the case for this data set and which was inspected also for the online identification application task)
is again confirmed here. This weakness can be compensated withFLEXFIS in sample mode as an
increase in the detection rate of 10% can be achieved, and even more withFLEXFISin batch mode,
where each buffer was filled with 100 points. In this case the detection rate of the corresponding batch
learning method (genfis2 extended) could be almost obtained, which is quite strong as this method
can be also applied within an online fault detection framework.

The sensitivity with respect to spoiled training data was observed for the BMW diesel data. The outcome
of this inspection was that all methods performed in the same way when adding a fault level of 5% to a
selection of points within the training data: the detection rate of all methods dropped to the half, while the
overdetection rate stayed the same, except forFMCLUSTmethod, which showed a higher sensitivity to
the faults than the other methods, as the detection rate decreased from73.86% to 13.64%, so by a factor
of 6. Luckily, often pre-filtering techniques can be applied in order to deliver more correct models and to
circumvent this drop of the detection rate [LERK03].

The results obtained for the simulated data look quite similar, see Table 8:ANFISis again the strongest
method,FMCLUSTproduces a large amount of overdetections and the conventional adaptation of rules
consequent alone fails completely (no correct detections). For this data setFLEXFIS in sample mode is
only feasible for detecting faults which possess a 10% deviations from their correct values. More or less the
results obtained with the BMW diesel data could be confirmed. For this data set also analytical models were
available covering all channels in the data set, hence the data-driven fuzzy modelling approaches could be
benchmarked against them. Surprisingly, neither for faults with 10% deviation nor for faults with 5% de-
viation, analytical models produced stronger results than all the fuzzy modelling approaches. Furthermore,
in the case of faults with 10% deviation analytical models were even weaker than the incremental learning
methodFLEXFISin batch as well as sample mode.
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Table 8: Comparison of detection rates among several data-driven model building methods based on simu-
lated engine data

Method Dev Det. Rate
FMCLUST 10% 85.34%

5% 70.76%
ANFIS 10% 87.27%

5% 74.85%
genfis2 conv. 10% 21.69%

5% 18.20%
genfis2 ext. 10% 49.59%

5% 24.13%
genfis2 ext.conv. adapt 10% 0.00%

5% 0.00%
FLEXFISbatch mode 10% 46.95%

5% 22.60%
FLEXFIS, sample mode 10% 37.58%

5% 4.09%
Analytical models 10% 35.13%

5% 23.92%

4 Prediction

4.1 General Information

With prediction in general or multiple step ahead prediction in particular it is meant that previous input
values of a process are given at time instantsk − i, from which the process output at time instantk should
be predicted. If within the list of previous input values the minimali is equal to1, we speak about one
step ahead prediction, if it is2 about two step ahead prediction and so on. Prediction can be necessary, if
a reaction on system input variables has not an influence on the system output(s) immediately at the next
time step, but in some future time steps. Typical example of prediction tasks are short-term stock market or
weather forecast. In general predictive models can be applied as time series models [aRD96] or dynamic
models (e.g. ARX, NARX, ARMAX etc. models - see [Lju99]) in any industrial application. A time delay
recognition for eliciting the prediction horizon as well as sufficient time delays of the underlying process in
order to produce a high-qualitative predictive model can be performed with variable selection methods, see
[GLK04]. For this, various shifts in the inputs has to be carried and stored as additional regressors in the
regression matrix.

A prediction framework is shown in Figure 4, which should be more or less self-explainable. Once
having performed down-sampling of high frequented dynamic measurement data and having generated time
delayed regressors from the original set of channels appearing in the data matrix, time delay recognition is
carried out with the usage of variable selection methods, which yields the input structure for the upstreamed
fuzzy modelling algorithm. For the fuzzy modelling task batch learning as well as incremental learning
variants can be applied. The generated fuzzy model is sent into the prediction process, where new input
states are processed through the inference mechanism of the fuzzy prediction model obtaining predictive
values for the output. Building up a predictive model in incremental manner can be in principal done, too,
but this is not required often, because the predictive model should replace the output channel. In the next
section results for two dynamic modelling tasks are presented also including tests with incremental learning
methods, as they can be applied also in batch manner, of course.
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Figure 4: Prediction framework

4.2 Tests and Evaluation

The first tests were performed on the basis of the famous Wang data, which firstly appeared in his book
about adaptive fuzzy system and control [Wan94] and which was quite often used by several researchers
within the fuzzy community in order to benchmark their methods for fuzzy system training against some
others. A summary of the outcomes of the most important methods is demonstrated in [PPPS04], where
the methods are compared with respect to three criteria, namely mean squared error on the training data,
mean squared error on the test data and the number of rules included in the identified Takagi-Sugeno fuzzy
model. These criteria were also checked when applying the batch learning as well incremental learning
methods treated in this thesis. The identification task is to build a model for the nonlinear plant, described
by the following formula:

y(k) = f(y(k − 1), y(k − 2)) + u(k) (2)

with

f(y(k − 1), y(k − 2)) =
y(k − 1)y(k − 2)(y(k − 1)− 0.5)

1 + y2(k − 1) + y2(k − 2)

andu(k) a random input signal uniformly distributed in[−1.5, 1.5]. 200 data points were generated for
training the Takagi-Sugeno fuzzy model, 200 additional data points with an input signalu(k) = sin( 2πk

25 )
for the testing in order to validate the overfitting effect of the methods. For being able to compare the
methods treated in this thesis with the methods in [PPPS04] with respect to the mean squared error, a
normalization of the data to the interval[0, 1] have been applied. The performance of the methods are
shown in Table 9. Obviously the best performing method on the training data isANFISas it triggers the
smallest mean squared error (MSE). However, with eight rules and an average approximation error on the
test data, which is the essential point as a strong overfitting should always be prevented, it should be not the
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Table 9: Comparison of fuzzy modelling methods applied to nonlinear dynamic plant data

Method MSE MSE Number
Training Test of Rules

FMCLUST 2.59 ∗ 10−5 3.4 ∗ 10−3 10
9.68 ∗ 10−5 3.7 ∗ 10−3 5

ANFIS 7.7 ∗ 10−6 4.0 ∗ 10−3 8
genfis2 conv. 1.0 ∗ 10−4 3.2 ∗ 10−3 9

3.86 ∗ 10−4 5.3 ∗ 10−3 6
genfis2 ext. 3.06 ∗ 10−4 3.4 ∗ 10−3 11

5.53 ∗ 10−4 1.8 ∗ 10−3 8
2.0 ∗ 10−3 1.5 ∗ 10−3 4

FLEXFISsample mode 1.5 ∗ 10−3 7.8 ∗ 10−3 8
1.7 ∗ 10−3 1.2 ∗ 10−3 3

first choice. Surprisingly, the smallest error on the test data is achieved by the incremental learning method
FLEXFISin sample mode and this with only three rules, the smallest amount for all tests!

Another test was performed on building an as good as possible model for a dynamic relationship in
form of a prediction model, whose target channel was defined by the emission channel NOX for an engine.
This task emerged from the demand of saving expenses on a measurement sensor for NOX at an engine test
bench by describing this channel through a formula of some others, which have to be measured anyway. It
turned out, that at least 10 inputs (some original channels and their time delays) were needed in order to
obtain an approximation quality higher than0.9, see Table 10. The input channels for approximating NOX
at time instantk consisted of the following list of channels (in the order they were selected):
Te = Engine Output Torque
P2offset = Pressure in Cylinder number 2
N = Engine Speed
Alpha = Accelerator Pedal
Tgas = Exhaust Temperature
Nd = Speed of the Dynanometer
P1offset = Pressure in Cylinder number 1
COL = CO value
together with their appropriate delays yielding a dynamic model in form of a one-step-ahead prediction of
NOX described by

NOX(k) =f(Te(k − 5), P2offset(k − 5), N(k − 4), Alpha(k − 6), Tgas(k − 9), Nd(k − 6),
Te(k − 4), P1offset(k − 7), COL(k − 1), COL(k − 5)) (3)

One step ahead prediction because from the measured points at time instantk−1 and further back the NOX
value at time instantk can be predicted. If for example the 9th channel COL(k − 1) would be neglected
it would lead to a four-step-ahead prediction as the lowest time shift would bek − 4. Originally, the input
data matrix consisting of 6700 samples which were recorded with a certain frequency. This frequency was
too high in order to obtain feasible time delays of the original channels, as shifts up to 100 steps had to
be carried out producing 1600 additional channels out of the 16 original channels (for each channel 100
different shifts:k − 1, k − 2, ..., k − 100) in order to get a good approximation for NOX. Thus, it turned
out that a simple down-sampling by taking just each 10th point and throwing away all the others yielded a
sufficient resolution. Hence, the input matrix was reduced to 670 sample, where then a time shift up to 10
was sufficient causing a manageable amount of 160 channels and finally 660 samples (due to this shift the
first 10 samples needed to be cut out. It is obvious that a delay in the new data matrix ofk − l belongs to
a delay ofk − 10l in the original one and vice versa. With the knowledge about the chosen frequency for



5 Generation of Grey Box Models (Refinement of Expert Knowledge-Based Fuzzy Systems) 15

Table 10: Comparison of Fuzzy Modelling Methods with Regression Strategies when approximating a
dynamic high-dimensional relationship

Method Quality Quality
Training Test

FMCLUST 0.909 0.868
ANFIS 0.911 0.842
genfis2 conv. 0.908 0.810
genfis2 ext. 0.900 0.890
genfis2 ext., conv. adapt. sample mode 0.832 0.818
FLEXFISbatch mode 100 0.871 0.836
FLEXFISsample mode 0.841 0.829

sampling, namely 10 Hz per second, we can conclude to the real absolute delay for the impact of the input
channels on NOX.

When reducing the input dimensionality to 3 forgenfis2 extended, an readable fuzzy system for NOX
was the outcome with the following four rules:

Rule 1: If Te(k − 5) is LOW and P2offset(k − 5) is HIGH and N(k − 4) is LOW

Then NOX(k) = f1(Te(k − 5), P2offset(k − 5), N(k − 4))
Rule 2: If Te(k − 5) is MEDIUM and P2offset(k − 5) is MEDIUM and N(k − 4) is MEDIUM

Then NOX(k) = f2(Te(k − 5), P2offset(k − 5), N(k − 4))
Rule 3: If Te(k − 5) is MEDIUM and P2offset(k − 5) is VERYHIGH and N(k − 4) is HIGH

Then NOX(k) = f3(Te(k − 5), P2offset(k − 5), N(k − 4))
Rule 4: If Te(k − 5) is HIGH and P2offset(k − 5) is LOW and N(k − 4) is MEDIUM

Then NOX(k) = f4(Te(k − 5), P2offset(k − 5), N(k − 4))

where the fuzzy sets for each input channel together with their linguistic meanings are visualized in Figure
5 andf1, f2, f3 andf4 are linear consequent functions, hence hyper-planes. Taking into account a sampling
frequency of 10 Hz and a down-sampling rate of 10 to 1, Te(k−5) denotes linguistically ’the engine output
torque five seconds ago’. In the same way P2offset(k − 5) denotes ’Pressure in Cylinder number 2 five
seconds ago’ and N(k−4) denotes ’Engine speed five seconds ago’. However, the model quality decreased
from 0.9 to 0.81 when reducing input dimensionality from 10 to 3. When increasing the dimension to 5, an
increase to0.84 can be achieved, but the rules get less transparent, as the premise parts get more compli-
cated. Hence, this results again demonstrates that it is always a tradeoff between linguistic interpretability
and approximation accuracy.

5 Generation of Grey Box Models (Refinement of Expert Knowledge-
Based Fuzzy Systems)

In this section another application task for incremental learning is treated, the so-called generation of grey
box models, also called hybrid models. A white box fuzzy model is initialized from linguistic expert knowl-
edge about some underlying relationships of a process. As usually such a white box fuzzy model is obtained
from rather vague experience when working with a system, it should be refined with measurement data ei-
ther in offline or in online mode, in order to ensure a higher process security. Hence an adaptation of some
of the parameters from the expert knowledge-based fuzzy models should be carried out with measurements.
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Figure 5: Fuzzy sets for the three input channels Te, P2offset and N of a fuzzy prediction model for emission
channel NOX

Sometimes it is sufficient to adapt the rules consequent parameters alone, which has the favorable effect that
the linguistic interpretable input partitions (as defined originally from experts) remain. However, mostly the
expert has not all possible system conditions together with its correct reaction in his mind, so an adjoining
of new rules for incorporating new conditions is beneficial. Here a flowchart for the generation of grey box
models is demonstrated in Figure 6, which should give the basic idea of grey box generation of fuzzy mod-
els. As no concrete application case in form of both, vague linguistic expert knowledge and measurement
data, was available, no tests were carried with the usage of this flowchart so far.

The first two blocks, i.e. collecting expert knowledge and coding these expert knowledge into a fuzzy
system, denote the offline part of this flowchart, where the highest development effort lies in collecting this
expert knowledge, as this is usually carried out within a lot of discussion and meetings.

In the block "Build a Fuzzy Model by Coding Expert Knowledge" generally every kind of fuzzy model
can be built up, hence Mamdani-type or Takagi-Sugeno-type models also with the usage of different t-norms
and fuzzy sets. This eventually causes some necessary modifications to theFLEXFISapproach, which will
be also discussed at the end of this thesis in Section 7. However, if choosing Takagi-Sugeno type fuzzy
models for the coding of linguistic expert knowledge,FLEXFIScan be directly applied within the grey box
generation framework.

The block "Read in Fuzzy Model, Extract Parameters to Form Clusters, ..." requires a software techni-
cal implementation step which was not needed in the case of online identification, as all was completely
generated out of data from scratch. This performs first the back transferring of the parameters in the fuzzy
sets and the rule structure to form the partition in the cluster space, which from the mathematical point of
view more or less straightforward as

Amount of clusters = amount of rules

Each rule’s premise form one cluster where

Each premise part corresponds to a fuzzy set whose center can be assigned to the corresponding entry
in cluster center vector

The width of the fuzzy sets can also be extracted and stored together with cluster centers
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Figure 6: Grey box fuzzy modelling strategy with applyingFLEXFIS(or some of its variants) as incremental
learning algorithm

and second the initial setting of the inverse Hesse matrix for theRWLS, as obviously no inverse Hesse matrix
will be set initially by an expert or operator. The best initial setting isαI with α a big positive integer, see
[Lug04].

The block "Update Fuzzy Models withFLEXFISor a Variant" incorporates the correct adaptation strat-
egy with respect to the type of the knowledge-based fuzzy system and also the wished kind of adaptation
(rules consequent only, rule structure learning only or combined, etc.).

6 Open-Loop Control

Most advanced control design schemes rely on a model of the process, and many even require informa-
tion such as uncertainties of the model, i.e. an estimation of the model quality. This is because due to
the understanding and identification of the underlying process, a sufficient insight into the process can be
obtained. This also means that the process models should be interpretable either in physical sense or at least
in linguistic sense. For analytical modelling approaches this is mostly guaranteed anyway, in the case of
the usage of data or expert knowledge fuzzy models are a good option for accomplishing that. Whenever
no analytical description and no expert knowledge are available at all or whenever expert knowledge is
available only for some special operating cases, the usage of measurement data for identifying the process
model is favorable. As usually for highly time-variant systems the behavior of some dependencies between
variables can be not described completely and uniquely from collected historic measurements, an adapta-
tion of the process model with newly recorded measurements is mandatory. Additionally, it guarantees an
improvement of the process security. If an automatic fuzzy model inversion is downstreamed leading to a
feed-forward controlleras shown in Figure 7, the controller design does not need to be carried out manually.
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Figure 7: Open-loop control framework by usingFLEXFISfor updating the process model and by applying
fuzzy model inversion

In this approach of a control system fuzzy models or rule bases are not used as batch building compo-
nents for conventional P, PI or PID controllers as proposed in [KWHW00] or incorporated into an objective
function which characterizes the impact of future control signal values onto values of state variables and
whose minimization is intended — see [FFNI00, LP97]. Besides the online adaptation concept of fuzzy
models, however, it includes the possibility of generating the fuzzy models from high dimensional dynamic
data — as a structure and time delay identification procedure is upstreamed — and to perform control op-
erations directly by inverted fuzzy models. The last point omits the need of a complex objective function to
be minimized and triggers a linguistically interpretable and understandable fuzzy controller. Moreover, it is
well known that the use of an inverse model possesses the advantages of open-loop control, i.e. inherent sta-
bility and ’perfect’ control with zero error both in dynamic transients and in steady states [EMP86]. In the
case, when linguistic expert knowledge is available, the offline block in Figure 7 can be omitted by coding
directly this expert knowledge into a fuzzy model, which can be refined through the adaptation process with
new incoming measurements, see Section 5. Of course,FLEXFIScan be also applied to other controlling
techniques (when no model inversion is possible at all), whenever a process model is incorporated into the
whole control loop and should be updated and extended (e.g. for predictive control).

7 Conclusion

For all application tasks, an evaluation of the method was carried out based on real-life measured data
or simulated data from already well-known models. The evaluation results were compared with those
of well-known batch learning approaches for training Takagi-Sugeno fuzzy systems due to some criteria
such as approximation accuracy or computational effort and should underline the strengths and weaknesses
of FLEXFIS (also opposed to other methods). In table 11 a summary is given, which states a kind of
rating for each method, where three entries are possible for each row: + (=good),◦ (=average) and -
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Table 11: Comparison of fuzzy model building methods with respect to some important applicability criteria

Criteria FMCLUST ANFIS genfis2 conv genfis2 ext FLEXFIS

Approximation Quality + - ◦ + ◦
Computational Effort (online) - - - - +
Process Security - - ◦ + +
Interpretability and - + ◦ ◦ ◦
Transparency
Applicability in ◦ - ◦ ◦ +
Online Identification
Applicability in + + ◦ ◦ ◦
Fault Detection
Applicability in Prediction + + ◦ + +

Overall 0 -1 -1 2 4

(=bad). Additionally, an overall score for each method is stated in the last row of the table, which has to be
relativized a bit, because the ratings of all properties are simply summed up with equal weighting by taking
into account that a + is counted as +1, a◦ counted as 0 and - counted as -1. In this sense, no priority is given,
which should be done when some demands are more important than others: for instance in the case of pure
fault detection the insight and also the quality is less important, the most important thing for this task is
that the fault detection statements themselves are correct. In the case of the computation effort the online
mode is meant where models should be updated from time to time, for the offline case the computational
effort is mostly not an essential criterium for a selection of the method.ANFISgets a minus regarding to
approximation quality because of the strong overfitting effect it usually possesses, which can be seen from
all the approximation accuracies results based on fresh test data. Regarding process security, some runtime
problems occur forANFISand alsoFMCLUSTduring evaluation, whereas forgenfis2 conventionalindeed
no problems occurred, but no ridge regression for numerical stabilization and a pre-filtering scheme for
deleting faults as it is done forgenfis2 extendedandFLEXFISare integrated into the algorithm, hence the
rating is maximal 0. When looking at the applicability for the different application tasks, it can be concluded
that for online identification in most casesFLEXFISshould be chosen, whereas in the some special case,
namely whenever the distribution of the firstk data points is well spread over the input space alternatively
genfis2 extendedtogether with the adaptation of rule consequent parameters alone should be chosen, as it is
much more faster thanFLEXFIS. However, an entire covering of the input space with the firstk data points
can be guaranteed only very rarely, namely in the case if a very good expert knowledge about the involved
measurement variables is available (→ the measurement plan can then be constructed on the basis of this
knowledge in an appropriate way). For offline identificationgenfis2 extendedseems to be the strongest
variant. Moreover, for offline fault detection the best choice isANFIS, whereas for online fault detection
the best choice isFLEXFISin batch mode, asANFISis not capable incremental learning steps. In the case
of prediction, so the application of the modelling variants to dynamic models, obviouslygenfis2 extended
or FLEXFISin sample mode are favorable.
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