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Introduction

Denoising microscopy image sequences proves to be a difficult task givena set of problems arising
from the imaging technique as well as from the typical content of the biological image sequences.
The algorithms designed to process natural images make use of a series of interest points and
features, like edges, corners, etc., which are not available in the case of intracellular images. The
typical content of the latter are usually isotropic bright blobs, without a clear boundary.

In the case of image sequences, the task becomes even harder due to the motion of the imaged
objects. In the case of natural images objects can be identified through images by using cues
such as shape, color, texture, and denoising can be performed allowingfor motion compensation.
However these cues usually are not available in the case of biological “objects”.

Another class of difficulties is generated by the imaging technique. Due to the quantum nature
of light the image formation can be modeled as a Poisson process:

P (f(x)|u(x)) =
e−u(x)u(x)f(x)

f(x)!
(1)

whereu(x) ∈ R represent the unknown intensity values of the original image at each pixelx,
while f(x) are the (integer, 12 bit) measured intensities atx. Moreover, in case ofin-vivo single
protein imaging the number of photon count is low (due to short laser illumination inorder to
avoid bleaching).
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Figure 1: The functionf(x) = x corrupted by Poisson noise.
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Figure 2: Error without and with Anscombe transform

One way to cope with these specific challenges consists of transforming the input image (or
image sequence) such that well-known algorithms can be successfully applied. For instance, in
order to cope with Poisson noise one can apply the Anscombe transform, asin [2]:

A{f(x)} = 2

√

f(x) +
3

8
(2)
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which modifies the data as if generated by a Gaussian noise model withσ = 1.

The denoising algorithms designed for Gaussian noise are applied on the transformed image
and the inverse transform is performed on the result. Figures 1 and 2 explain the effects of the
Poisson noise and of the Anscombe transform.

In the case of object motion, one can simply ignore the 3D nature of the problem and perform
the denoising in 2D. However, as can be seen in fig. 3, the results are notalways convincing.

Original image

Filtered image

Figure 3: 2D denoising of a frame in the image sequence

In this paper we give a survey of popular denoising algorithms, adapted for 3D signals:

Adaptive mean filter

Anisotropic difussion

Variational approach

Spatial Tonal Convolution

1 Adaptive mean filter in 3D

The adaptive mean filter, [3], is defined as :

u(x) = ¯u(x) +
V (x)

V (x) + VG

(u(x) − ¯u(x)) (3)

where ¯u(x) is the mean value in a neighborhood of x, andV (x) andVG represent the variance in
the same neighborhood and the global variance of the image, respectively. If the local variance
is high (suggesting the presence of structure) the intensity value after filtering will be close to the
original pixel value, when the local variance is low (background) the intensity is close to the local
mean value.
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2 Anisotropic difussion

As described in [1], the imageu(x, t) is considered as the solution of the diffusion equation

∂tu = div(D(|∇u|2) |∇u|) (4)

with initial condition:
u(x, 0) = g(x).

The diffusivityD is often chosen as:

D(|∇u|2) =
1

1 + |∇u|2 /λ2

which has small values for large gradients, indicating edges. Applied to intracellular image se-
quences the anisotropic diffusion produces a good visual effect, seefig 4.

Figure 4: Denoising of a frame in the image sequence by anisotropic diffusion

3 Variational approach

Denoising seen as an inverse problem is ill-posed. whereΩ is the image domain, andλ a pa-
rameter that determines the trade-off between the two terms. It is proved to accurately estimate
discontinuities (edges) of the images.

A maximum likelihood version of ROF adapted for Poisson noise is given in [5]. Considering
the pixelsx independent, from eq. 1 results that:

P (f |u) =
∏

i

e−u(xi)u(xi)
f(xi)

f(xi)!
. (5)
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Choosing as regularization term:

P (u) := exp

(

−β

∫

Ω
|∇u|

)

(6)

the problem becomes maximizing the functionalP (f |u)P (u). This is equivalent to minimize:

− log (P (f |u)P (u)) =
∑

i

(u − f log u) + β

∫

Ω
|∇u| (7)

regarded as a discrete approximation of the functional:

E(u) :=

∫

Ω
(u − f log u) + β

∫

Ω
|∇u| . (8)

.

The iterative solution of 8 is given by:

ut := div

(

∇u

|∇u|

)

+
1

βu
(f − u) (9)

with ∂u
∂~n

= 0 on∂Ω.

Note the similarity to the well-known algorithm due to Rudin, Osher and Fatemi

ut := div

(

∇u

|∇u|

)

+ λ (f − u) (10)

that minimizes the functional:

F (u) :=

∫

Ω
(f − u)2 + λ

∫

Ω
|∇u| . (11)

The difference consists in the regularization parameter being adapted to theimage intesnity.

4 Spatial Tonal Convolution

When the functional to be minimized is chosen as a “soft” least squares:

F (u(x)) :=

∫

Ω
(f(y) − u(x))2 Gs(x − y)dy (12)

whereGs is a spatial gaussian ( 2D or 3D), the optimum is achieved for:

u0(x) =

∫

Ω f(y)Gs(x − y)dy
∫

Ω Gs(x − y)dy
= (f ∗ G) (x) (13)

However, if the noise is not Gaussian, (for instance also the case of an image that contains
structure) the least square model is not optimal, being very much influencedby outliers (the struc-
ture elements). A better approach is offered by robust estimators.
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By replacing the least square functional one chooses a robust errormeasure which is less
sensitive to outliers, see [4], the problem becomes the minimization of:

E(u) :=

∫

ρt (f(y) − u(x)) Gs(x − y)dy (14)

The minimum is achieved when:
∫

φt (f(y) − u(x)) Gs(x − y)dy = 0 (15)

whereφ is the derivative ofρ.

By choosingρt(p) = 1 − exp(− p2

2t2
) results that

φt(p) =
dρt(p)

dρ
=

p

t2
exp(−

p2

2t2
) (16)

and substitutingφt in 15 we obtain:

u(x) =

∫

Rd f(y)exp
(

− (f(y)−u(x))2

2t2

)

Gs(x − y)dy

∫

Rd exp
(

− (f(y)−u(x))2

2t2

)

Gs(x − y)dy
(17)

which can be solved using fixed point iteration:ui+1 = F (ui) until convergence or a maximum
number of iterations is achieved.

Figure 5: Denoising of a frame in the image sequence with Spatial Tonal Convolution

Remark that the result above is actually the spatial-tonal normalized convolution:

[f, u] ∗ [v, w] =

∫

Rd f(y)v(x − y)w (f(y) − u(x)) dy
∫

Rd v(x − y)w (f(y) − u(x)) dy
(18)

wherev = Gs andw = Gtonal.
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5 Conclusions and future work

In this paper, we have presented the 3D version of some popular denoising algorithms for image
sequences. The results are promising, although further parameter adjustments might improve the
outcome. A comparison of the number of local maxima is being performed (both for background
and fore the whole image), in order to evaluate the smoothing effects of the algorithms.

In the future we shall study the incoropration of the optical flow in the denoising process. A
possible alternative approach which we shall also consider is represented by steerable filters.
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1 Terms and Definitions
Definition 1.1 State Variable. A parameter
x =

[
x1 . . . xn

]T is called a state variable of the
system in Fig. 1 with order n ∈ N, if the system
behaviour is uniquely specified with known

(i) initial state x0 = x(t0), where t = t0 is an
arbitrary point in time and

(ii) some system input u(t) =
[
u1 . . . um

]T ,
m ∈ N and t ≥ t0.

The system behaviour is characterised by

x(t) = Γ
(

x0

u(t)

)
. (1)

Figure 1: System Structure

Definition 1.2 Time Continuous and Dis-
crete Systems. If the time domain of the system
(1) is

t ∈ {x|t0 ≤ x ≤ t1;x, t0, t1 ∈ R} (2)

the system is termed time continuous. If the time
domain is

t ∈ {x|t0 ≤ x ≤ t1, x = ntd; t0, t1, td ∈ R, n ∈ N}
(3)

the system is termed time discrete.

Definition 1.3 Linearity. The system

x(t) = Γ
(
x0

u

)
(4)

is called linear, if the principle of superposition

Γ
(

α

[
x01

u1

]
+ β

[
x02

u2

])
= αΓ

(
x01

u1

)
+ βΓ

(
x02

u2

)
(5)

holds with the arbitrary constants α, β, x01, x02

and functions u1, u2. If (5) does not hold, the
system is nonlinear.

Definition 1.4 Time Variance. The system (1)
is called time invariant, if from

x(t) = Γ
(

x0

u(τ)

)
t0 ≤ τ ≤ t (6)

followes with the shifted initial time point (t0 + T )

x(t− T ) = Γ
(

x0

u(τ − T )

)
. (7)

This concludes that the state vector x is a function
of the time difference (t− t0), i.e. t0 can be set to
zero without loss of generality.

1.1 Stability

Stability is a fundamental property of the closed
loop control system. An unstable control system
is more or less unusable, i.e. stability is a major
constraint in controller design!
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1.1.1 Linear Systems

In this section the focus lies on linear systems ac-
cording definition 1.3. In the next paragraph, syn-
onymous descriptions of linear systems are illus-
trated followed by common stability terms of linear
systems.

Description of Linear Time Invariant Con-
tinuous Systems without Time delay in State
Space. Time continuous systems of order n,
which is linear in its state x =

[
x1 . . . xn

]T
and input variable u =

[
u1 . . . um

]T , can be
described with

ẋ = Ax + Bu, (8)

where ẋ =
dx
dt

is the derivation of time and

A =

a11 . . . a1n

...
. . .

...
an1 . . . ann

 B =

b11 . . . b1m

...
. . .

...
bn1 . . . bnm


(9)

are constant matrices. The system output y =[
y1 . . . yr

]T is a linear combination of the state
variables and the system input

y = Cx + Du, (10)

where

C =

c11 . . . c1n

...
. . .

...
cr1 . . . crn

 D =

d11 . . . d1m

...
. . .

...
dr1 . . . drm


(11)

are constant matrices. In practical applications,
where the plant has a lowpass characteristic, D = 0
becomes the Nullmatrix. The solution of (8) is

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ, (12)

where x0 = x(t = 0) and eAt =
∑∞

ν=0

Aνtν

ν!
.

Example 1.1 RLC circuit of order n = 2, Figure
2. The choice of the state variable x =

[
x1 x2

]T
is not unique! In this example, x1 is the voltage

Figure 2: Example - RLC circuit

of the capacitor C1 and x2 is the current through
the inductance L1, but there is an infinity number
of other opportunities to choose x1 and x2. If the
voltage of the inductance L1 is the output y of the
circuit, the system is

[
ẋ1

ẋ2

]
=

−
1

R1C1

1
C1

− 1
L1

−R2

L1

[x1

x2

]
+

 0
1
L1

u (13)

y =
[
−1 −R2

] [x1

x2

]
+
[
1
]
u. (14)

With

C1 = 2, L1 = 4, R1 = 1, R2 = 3

(13,14) becomes[
ẋ1

ẋ2

]
=
[
−0.5 0.5
−0.25 −0.75

] [
x1

x2

]
+
[

0
0.25

]
u (15)

y =
[
−1 −3

] [x1

x2

]
+ u. (16)

Description of Linear Time Invariant Con-
tinuous Systems in Frequency Space. With
the Laplace transform

f(s) = L{f(t)} =
∫ ∞

0

f(t)e−stdt, (17)

which is convergent in Re(s) > K, K ∈ R. The
transfer function Gij(s) is the ratio of the Laplace
transformed output yi(s) = L{yi(t)} i = 1 . . . r
and input uj(s) = L{uj(t)} j = 1 . . .m of the

2



system (8,10) with zero initial state x0 = 0.

Gij(s) :=
yi(s)
uj(s)

∣∣∣∣
x0=0

(18)

G(s) =

G11(s) . . . G1m(s)
...

. . .
...

Gr1(s) . . . Grm(s)


= C (sI−A)−1 B + D (19)

where I is the identity matrix.

Definition 1.5 Steady State xR. In a steady
state of the system (8) the derivation ẋ = 0 van-
ishes. With u = 0, (8) becomes AxR = 0, i.e. a
linear time invariant system has always xR = 0 and
no other steady state if A is regular. If A is singu-
lar there are infinity steady states. This means the
eigendirection xR with corresponding eigenvalue 0
in AxR = 0 · xR).

Figure 3: Two System Experiments

Definition 1.6 Bounded Input Bounded Out-
put BIBO Stability. If the input of the right sys-
tem in Fig. 3 is bounded with

|u(t)| ≤ umax < ∞ ∀t,

the linear time invariant continuous system (r = 1,
m = 1)

y(t) =
∫ ∞

0

g(t− τ)u(τ)dτ + Du(t) (20)

with

g(t) = CeAtB (21)

is Bounded Input Bounded Output BIBO stable, i.e.

|y(t)| ≤ ymax < ∞ ∀t,

iff ∫ ∞
0

|g(τ)|dτ < ∞. (22)

For systems (21) it’s a necessary and sufficient cri-
terion for BIBO stability, that the transfer function
G(s) = C (sI−A)−1 B + D has no poles in C+e

(i.e. the secluded right complex halfplane extended
with the point s = ∞). This is equivalent to the
criterion:

∗ <{poles(G(s))} < 0 and

∗ lims→∞ |Gij(s)| < ∞ i = 1 . . . r, j = 1 . . .m

Example 1.2 Transfer function G(s) of RLC
circuit in Example 1.1. The poles of the transfer
function

G(s) = C (sI−A)−1 B + D

=
[
−1 −3

] [s + 0.5 −0.5
0.25 s + 0.75

]−1 [ 0
0.25

]
+ 1

=
s2 + 0.5s

s2 + 1.25s + 0.5

are

s1,2 = −0.625± j0.33072

and

lim
s→∞

|G(s)| = 1,

i.e. the system is BIBO stable.

Definition 1.7 Asymptotic Stability. The left
system in Fig. 3

ẋ = Ax (23)

is called asymptotic stable, if the state x ends all-
ways in limt→∞ x(t) = 0 ∀x0. A necessary and
sufficient criterion for asymptotic stability is

<{si(A)} < 0 i = 1 . . . n, (24)

A is then called a Hurwitz matrix. The system (23)
is unstable, if there is at least one initial state x0,
such that limt→∞ xi(t) = ∞ i = 1 ∨ 2 ∨ . . . n. A
sufficient criterion for instability is that there is at
leas one eigenvalue of A with a real part greater

3



than zero. If all eigenvalues differ from each other,
i.e.

si 6= sj ∀i, j = 1 . . . n, i 6= j

the criterion is also necessary. If there are some
equal eigenvalues, instable behaviour ist possible
although there are no eigenvalues with real part
greater than zero (e.g. double integrator).

1.1.2 Nonlinear Systems

The system (1) is called nonlinear, if (1.3) doesn’t
hold. There is an essential distinction in the stabil-
ity concept of linear time invariant and nonlinear
systems!

LTI system Stability is a system feature.

NL system There is any number of steady states possible
and each of them has its own stability charac-
teristic.

Definition 1.8 Lyapunov Stability. The steady

Figure 4: Lyapunov Stability for a System with
Order n = 2. Coordinate origin is xR.

state xR of the system

ẋ = Γ(x) (25)

is called (Lyapunov) stable, if the trajectory x(t)
stays for t ≥ t0 in the area of ε, when the initial

state x (t0) is in the area of δ, i.e.

x =
[
x1 . . . xn

]T
||x||p =

(
n∑

ν=1

|xν |p
)1

p
p ∈ N

||x|| ⇒ p = 1 . . .∞
∀ε > 0 ∃δ > 0 ||x (t0) || < δ ⇒ ||x(t)|| < ε t ≥ t0.

Definition 1.9 Asymptotic Stability. The
steady state xR of the system (25) is called asymp-
totic stable, if xR is (Lyapunov) stable and the tra-
jectory x(t), who starts in a sufficient small area
around xR, move towards xR for t →∞.

Other Stability Terms: Absolute Stability, Su-
perstability

2 Closed Loop Position-
Control of an Iron Ball

The general controller design is divided into

(i) Listing of requirements, specifications and con-
straints

(ii) Plant modelling, e.g. differential/algebraic
equations, data based models

(iii) Set up an adequate control structure

(iv) Controller design

∗ Standard controller, e.g. PID controller

∗ Methods in frequency space, e.g. alge-
braic synthesis, frequency characteristic
curve

∗ Methods in state space, e.g. state ob-
server and controller

∗ Controller design for plants with signifi-
cant delay time, e.g. Smith-Predictor

This section illustrates the controller design for the
nonlinear plant in Fig. 5.

4



Figure 5: The Iron Ball Plant

2.1 Specifications

∗ The system consists of an coil and an iron ball.

∗ The position y of the iron ball is the target
variable for control.

∗ Input variable is the voltage u of the coil. R
and L describe the characteristic of the coil.

∗ Stationary control error limt→∞ e(t) = e∞ =
yguide − y∞ = 0, i.e. the control error e∞ van-
ishes in the case of a constant command vari-
able ∆rk.

2.2 Plant Equations

With the state vector

x :=
[
y

dy

dt
i

]T

the nonlinear model

ẋ = f(x, u)
y = g(x,u)

becomes

ẋ1

ẋ2

ẋ3

 =


x2

g − cx2
3

mx2
1

−R

L
x3 +

2cx2x3

Lx2
1

+
1
L

u


y = x1.

There is one steady state (ẋ = 0)

xR =
[
yR 0 yR

√
mg

c

]T

uR = RyR

√
mg

c
.

2.3 Control Strategy

(i) Linearization around the steady state of the
nonlinear model.

(ii) Time discretization of the linear model.

(iii) Design of an Luenberger observer.

(iv) Design of an state controller (Fig. 6).

Figure 6: The State Controller with the Luenberger
Observer

2.3.1 Linearization around xR

With the transformation

∆x := x− xR

∆u := u− uR

the linearized model around the steady state is

ẋ = ∆ẋ =
∂f(x, u)

∂x

∣∣∣∣
xR,uR

∆x +
∂f(x, u)

∂u

∣∣∣∣
xR,uR

∆u

∆y = y − yR =
∂g(x, u)

∂x

∣∣∣∣
xR,uR

∆x +
∂g(x, u)

∂u

∣∣∣∣
xR,uR

∆u

5



A :=
∂f(x, u)

∂x

∣∣∣∣
xR,uR

B :=
∂f(x, u)

∂u

∣∣∣∣
xR,uR

C :=
∂g(x, u)

∂x

∣∣∣∣
xR,uR

D :=
∂g(x, u)

∂u

∣∣∣∣
xR,uR

∆ẋ = A∆x + B∆u (26)
∆y = C∆x + D∆u (27)

g = 9.81
m

s2

c = 136.32 · 10−6 kgm3

s2A2

m = 66.87g

L = 1.08H

R = 18Ω

A =


0 1 0
2g

yR
0 − 2

yR

√
cg

m

0
2

LyR

√
cmg −R

L


B =

[
0 0

1
L

]T

C =
[
1 0 0

]
D = 0.

2.3.2 Discrete Time Linearized Model

If the input variable u(t) consists of piecewise poly-
nomes of zero-order (stairs), the system (26,27) be-
comes

∆xk+1 = AD∆xk + BD∆uk (28)
∆yk = CD∆xk + DD∆uk, (29)

where T = 5ms is the Time Constant and

AD = eAT

BD =
∫ T

0

eAτBdτ

CD = C

DD = D.

(28,29) is characterised with [AD,BD,CD,DD].

2.3.3 Luenberger State Observer

The state observer ∆xobs,k has the form

∆xobs,k+1 = AD∆xobs,k + BD∆uk + f (∆yobs,k −∆yk)
= (AD + fCD)∆xobs,k +

+BD∆uk − f∆yk,

where f is chosen to meet eigenvalues of
(AD + fCD) within the unit circle of the z-plane.

2.3.4 State Controller with Discrete Inte-
grator

The z-Transform of the causal sequence (f) =
(f0, f1, f2, . . . ) is

f(z) :=
∞∑

i=0

fiz
−i, (30)

which is convergent in the area |z| > K ∈ R. If
the limiting value of the control error exists (when
command variable ∆rk has a constant value), it can
be acquired with the theorem

e∞ := lim
k→∞

ek = lim
z→1

(z − 1)e(z).

Then, the steady state error becomes

e∞ = lim
z→1

(z − 1)e(z)

= lim
z→1

(z − 1)E(z)
z

z − 1
= lim

z→1
zE(z)

= lim
z→1

z
1

1 + P (z)R(z)

= lim
z→1

z
z − 1

z + P (z)R̃(z)
= 1

1− 1
1 + P (1)R̃(1)

= 0

P (1)R̃(1) 6= −1.

f(z) =
z

z − 1
(31)

is the z-transformed unit step (f) = (1, 1, . . . ).
E(z) = e(z)/r(z) is the ratio of the z-transformed
command variable rk and error variable ek in the
standard closed loop control in Fig. 7. I.e., if there
is an integral behaviour of the controller R(z), the

6



Figure 7: Standard closed loop control

steady state error e∞ becomes zero! The state con-
troller is

∆uk = K∆xk + V ζk,

where K and V are constants. With (28) the overall
system (plant and state controller) is

∆xk+1 = (AD + BDK) ∆xk + BDV ζk.

The discrete time integrator is

ζk+1 = ζk + ek = ζk + ∆rk −∆yk

= ζk −CD∆xk.

The system of plant, state controller and integrator
is (∆rk = (0))[

∆xk+1

ζk+1

]
=
[
AD + BDK BDV

−CD 1

] [
∆xk

ζk

]
,

i.e. the state controller is designed by meeting the
eigenvalues of (2.3.4) within the unit circle |z| < 1.

2.4 Experiments
Fig. 8 mapps the output sequence yk, if the com-
mand variable rk is (r) = (15, 15, . . . ).
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Figure 8: Step Response with dy = 2mm
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It is demonstrated how this method can be used for image segmentation preserving discontinuities
and for tracking purposes.

Key words — Segmentation, Tracking, Adaptive Gradient Method, Density Approximation



1 Concept of Mean Shift, Feature Space Analysis 1

1 Concept of Mean Shift, Feature Space Analysis

The mean shift algorithm is a method for estimating the mode of a density function, see [1, 2,
4]. In this tutorial we follow mainly the ideas as presented in the papers [2] and [3]. Given
identically distributed data pointsx1, . . . , xn ∈ X = Rd, find an approximation of the underlying
distribution, at least the mode of it!

To approximate the unerlying distribution thh following approach is chosen

f̂(x) =
1
n

∑
i

KH(x− xi)

where

H symmetric and positive definite,K : X → [0,∞):∫
X

K(x)dx = 1, lim‖x‖→∞ ‖x‖dK(x) = 0∫
X

xK(x)dx = 0,
∫
X xxT K(x)dx = cKI

KH(x) = |H|−
1
2 K(H− 1

2 x)

For simplicity often only a single parameter bandwidth matrixH is used:

H = h2I =⇒ |H|−
1
2 =

1
hd

,

hence

f̂h,K(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
(1)

For simplicity let us generate the kernel windowing functionK(.) by a profile due to

K(x) = k(‖x‖2).

By this we obtain an estimation for the density gradient:

∇f̂h,K(x) =
c

hd+2
·
∑

i

(xi − x)g(ξi)

=
c

hd+2
·
(∑

i xig(ξi)∑
i g(ξi)

− x

)
︸ ︷︷ ︸

mean shiftmh,G

·
∑

i

g(ξi) (2)

whereg(.) = −k′(.) andξi = ‖x−xi
h ‖2.

Formula (2) shows that the mean shift algorithm is actually an adaptive gradient ascent method

mh,G(x) = c · h2∇f̂h,K(x)

f̂h,G(x)

Note that for high density estimates we get small steps and for low density ones we get bigger
steps.

The most often used profiles are



2 Algorithm and Convergence 2

Gaussian

kG(x) =

{
e−

1
2
x if x > 0,

0 else

Epanechnikov

kE(x) =

{
1− x if 0 ≤ x ≤ 1,

0 x > 1

2 Algorithm and Convergence

The following theorem can be found in [2].

Theorem 1. Let the kernelK have a convex and monotonically decreasing profile, then

∃ lim
i→∞

x̃i

∃ lim
i→∞

f̂h,K(x̃i)

wherex̃i+1 = mh,G(x̃i).
(
f̂h,K(x̃i)

)
i

is monotonically increasing.

Figure 2 shows a set of points generated according to a Gaussian distribution and Epanech-
nikov estimates by formula 1 for different bandwidth values0.2, 0.4, 0.6 and 0.8. It can be
oberserved that lower the bandwidth the estimate is the more sensitive to local densities. The blue
points depict a sequence of iterations generated by the mean shift for bandwidth0.2 showing that
the corresponding estimate values are monotonically increasing.

Figure 1: Illustration of Epanechnikov estimates (grey curves) of a Gaussian randomly distribution
(red curve). The dots depict a convergent sequence generated by the mean shift algorithm.
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3 Application to Images

Theorem 1 can be slightly extended for positive weights in the following way: For

f̂(x) =
∑

i αiKH(x−xi)∑
i αi

mh,G =
∑

i xiαig(ξi)∑
i αig(ξi)

− x

whereαi ≥ 0 andξi = ‖x−xi
h ‖2 the convergence theorem 1 still holds true.

By choosing the weightsαi to be the intensity levels of the pixels of an image we obtain a
formular which in this way can be applied to images.

3.1 Application I: Segmentation

For instance the basins of attraction provide a segmentation which is discontinuity preserving.
This is effect is illustrated by figure 3.1.

Figure 2: Demonstration of discontinuity preserving segmentation by mean shift (left: orignal,
right: result)

3.2 Application I: Tracking

For tracking pruposes we can proceed as follows:

start with a characterizing histogram of the target.

calculate backprojectionαi = I(xi, yi), whereI(x, y) denotes the intensity level of the
pixel (x, y)

define starting windowW



3 Application to Images 4

apply mean-shift to backprojection, e.g., the simplest form (Epanechnikov)

new center=
1∑

(x,y)∈W I(x, y)

(∑
(x,y)∈W xI(x, y)∑
(x,y)∈W yI(x, y)

)

This is illustrated by the figures 3. The left shows the tracking windowW , the right its hue-
histogram and, finally, figure 4 the resulting backprojection.

Figure 3: tracking window and histogram

Figure 4: example of backproject

If the features and histogram is properly chosen there is only a small number (1 till 3) of
iterations needed let the mean shift algorithm converge. Therefore, the mean shift is a proper tool
for tracking purposes in real time.
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Abstract

Some recent results in the �eld of copulas are presented� Several open problems are included�

� Introduction

Copulas were introduced by Sklar ���� to describe the dependence structure of random vectors	
For a two dimensional case� a copula C 
 ��� ��� � ��� �� is an aggregation operator with neutral
element �� which is ��increasing� i	e	�

C
x� y� � C
x�� y��� C
x� y��� C
x�� y� � � 
��

for all x � x�� y � y�	
Similarly� copulas with higher dimension n can be introduced� replacing ��increasingness 
�� by
the n�increasingness
 X

�i�f����gn


���

nQ

i��

�i
C
x

����
� � � � � � x��n�n � � �� 
��

for all � � x
����
� � x

���
� � �� � � � � x

����
n � x

���
n � �	 As an example recall the copula � 
 ��� ��n �

��� ��� �
x�� � � � � xn� � x�� � � � xn which is an n�copula for each n � �	 When speaking about
copulas without speci�cation of their dimension� we will always have in mind ��copulas� i	e	�
��dimensional case	

According to Sklar�s theorem� for any random vector H � 
X�Y � there is a copula C such
that

FH
u� v� � C 
FX
u�� FY 
v�� for all u� v � R �

where FH � FX � FY are the distribution functions of H� X� Y � respectively	 Moreover� C is
determined uniquely on RanFX � RanFY 
more precisely� on RanFX � RanFY �� and the
restriction Cj�RanFX �RanFY � is called a subcopula	 Vice�versa� for any closed subsets A� B of
��� �� containing � and �� a mapping D 
 A � B � ��� �� which is ��increasing� � is its neutral
element and which is also non�decreasing� is always a subcopula of some copula C	 Evidently�
if H � 
X�Y � is a discrete random vector� the corresponding subcopula� which is then unique�
is de�ned on a discrete set	 For more details about copulas we recommend Nelsen�s book ����
and the monograph ����	

Suppose that random variables X and Y are coupled by a copula C	 Then for any increasing
R � R transformations f�� f� and any decreasing R � R transformations g�� g�� random

�



variables f�
X� and f�
Y � are also coupled by C� but random variables f�
X� and g�
Y � are
coupled by a copula C� 
 ��� ��� � ��� �� given by

C�
x� y� � x� C
x� �� y�� 
��

and similarly� random variables g�
X� and f�
Y � are coupled be a copula C� 
 ��� ��� � ��� ��
given by

C�
x� y� � y � C
�� x� y�� 
��

Copulas g�
X� and g�
Y � are coupled by the survival copula �C 
 ��� ��� � ��� �� given by

�C
x� y� � x� y � � �C
�� x� �� y�� 
��

Observe that


C��� � 
C��� �
d

 �C� � C and 
C��� � 
C��

� � �C�

Several interesting results concerning these related copulas can be found in ���	 Note that
constructions 
��� 
��� 
�� allow to extend or to modify several results for copulas	 As a typical
example recall W�ordinal sums introduced in ����	 This new type of ordinal sums for copulas
can be derived from standard ordinal sums of copulas 
we will call them M�ordinal sums� by
means of either 
�� or 
��	 Indeed� C � W 
ha�� b�� C�i j� � A� is given by

C
x� y� �

�

b� � a��C

�
x�a�
b��a�

�
y����a��
b��a�

�
if 
x� y� � �a�� b��� ��� b�� �� a��

W 
x� y� else�

where W 
x� y� � max
x� y � �� ��� if and only if

C� � M
ha�� b�� C
�
� i j� � A��

i	e	�

C�
x� y� �

�
a� � 
b� � a��C

�
�

�
x�a�
b��a�

� y�a�
b��a�

�
if 
x� y� � �a�� b��

�

M
x� y� else�

where M
x� y� � min
x� y�	

� Discrete copulas

An interesting class of copulas are discrete copulas introduced in ����� compare also empirical
copulas discussed in ����� D 
 I�n � ��� �� 
or in m�dimensional case� D 
 Imn � ��� ���� where
In � f�� �

n
� �
n
� � � � � �g� and irreducible discrete copulas K 
 I�n � In 
K 
 Imn � In� introduced in

���� 
in an equivalent form on the scales Ln � f�� �� � � � � ng�� see also ����	
Discrete copulas D 
 I�n � ��� �� are in a one�to�one correspondence with bistochastic n� n

matrices ����	 Several properties and constructions for discrete copulas can be thus introduced
by means of properties� notions and constructions of bistochastic matrices	 For example� the
product od copulas C� � C� introduced in ��� has its discrete counterpart D� � D� described by
the product of the corresponding bistochastic matrices	 The class Dn of all discrete I�n � ��� ��
copulas is a polyhedron with vertices corresponding to the permutation matrices of order n	
However� then the corresponding irreducible discrete copulas are just discrete copulas with range

�



In� as introduced in ����	 Each such copula related to a permutation � describes the ordered
statistics of x and y samples which are coupled together� i	e	� if xi is the j�th order statistics
in the x sample� then yi is the �
j��th order statistics in the y sample	 For more details we
recommend ����	 Similarly� m�dimensional case for m � � can be treated	 Indeed� D 
 Imn � In
is a discrete copula if and only if there are permutations ��� ��� � � � � �m of 
�� �� � � � � n� such that
the sample


x��� � � � � x�m�� � � � � 
xn�� � � � � xnm��

with distinct values on each �xed coordinate� can be written in the form


x�������� � � � � x
�
��m����� � � � � 
x

�
n���n�

� � � � � x�n�n�n���

where x�ij is the jth order statistics in the sample from ith coordinate	

� Extensions to copulas

Partial knowledge about the relationship of random variables X and Y restricts the choice of a
copula C coupling X and Y 	 In several cases� such knowledge determines the values of C on a
subset of domain ��� ��� only� and we want to extend this information to an entire determining
of C	 Rarely such extension is unique� and thus we mostly look for some extremal 
or simple�
extensions	 A typical case is when knowing the diagonal section � 
 ��� �� � ��� �� of a copula
C� i	e	� for ��� �� uniformly distributed random variables X and Y � knowing the distribution
function of Z � max
X�Y �	 There always exists a copula whose diagonal section coincides with
given �� so�called diagonal copula ��� ���� given by

C�
x� y� � min

�
x� y�

�
x� � �
y�

�

�
�

Moreover� ��� �� ���� there is always a weakest copula B� 
 ��� ��� � ��� �� with B�
x� x� � �
x��
x � ��� ��	 The copula B� is given by

B�
x� y� � min
x� y�� min
t��x�y�x�y�


t� �
t���

and called the Bertino copula	
In general� the strongest copula copula with given diagonal section � need not exist	 Observe

that C� is always a maximal element of the class of copulas with diagonal section �� and it is
the strongest symmetric copula of that class	

The problem when a function MT� 
 ��� ��
� � ��� ���

MT�
x� y� � max
�� �
x � y�� jx� yj�

is a copula was solved in ���	 The function MT� is a copula 
so�called Mayor�Torrens copula� if
and only if the function � � id is non�decreasing on ���
��� ���	 Note that then MT� � B� and

MT�
x� y� � min
x� y��min
x� �
x�� y � �
y���

Similar results were studied in the case of given opposite diagonal section � 
 ��� �� � ��� ���
�
x� � C
x� �� x�� see ��� ���	 The function

C�
x� y� � max

�
�� x� y � ��

�
x� � �
y�

�

�
�



is always a copula with opposite diagonal section �	 There is always a strongest copula with
given �� ��� ���	 Observe that the above results were straightforwardly shown in ��� ���� however�
they can be derived from results for diagonal sections exploiting the constructions 
�� or 
���
see ����	

Recent results concerning the extensions from a�ne sections of copulas can be found in ����	
Moreover� in ���� we prepare extensions of horizontal sections of copulas� h 
 ��� �� � ��� ���
h
x� � C
x� b� for a �xed b ���� ��	 For example� the function Ch 
 ��� ��� � ��� �� given by

Ch
x� y� �

�
h�x�y
b

if y � b
h�x����y��x�y�b�

��b else�

is always a copula with prescribed horizontal section h	
Note that related results for irreducible discrete copulas were discussed in ���� ���	

� Compatibility of copulas

Any ��copula C 
 ��� ��� � ��� �� induces three marginal ��copulas C��� C��� C�� 
 ��� ��� � ��� ���
i	e	� from the dependence structure of a ��variate random vector V � 
X�Y�Z� we can derive
dependence structure of bivariate marginal random vectors 
X�Z�� 
Y�Z� and 
X�Z�	 Observe
that not all triples of ��copulas 
E�F�G� can be joined by a common ��copula C such that
E � C��� F � C�� and G � C��	 In the positive case the triple of copulas 
E�F�G� is
called compatible	 As a negative example recall the triple 
W�W�W � while a triple 
���� G� is
compatible for any ��copula G	 Indeed� it is enough to put C
x� y� z� � y G
x� z�	 Among few
results in this domain recall the next results from ���� ���



i� 
M�F�G� is compatible if and only if F � G and there is a unique ��copula C�

C
x� y� z� � max
��M
x� y� � F 
x� z� � x�M
x� y� � C
y� z�� y�C
x� z� � C
y� z�� z�

with margins 
M�F� F �	


ii� 
W�F�G� is compatible if and only if G � F�� see 
��� and the unique ��copula C with
margins 
W�F� F�� is given by

C
x� y� z� � max
�� F 
y� z� � x� �� y � z � �� F 
�� x� z���


iii� For any ��copulas E�F � the triple of copulas 
E�F�E �F � is compatible 
for the de�nition
of E � F see darsow� and as an example of an appropriate ��copula C we can put

C
x� y� z� �

yZ
�

�E
x� t�

�t

�F 
t� z�

�t
dt�


iv� If E or F is a shu�e of M then G � E � F is the only ��copula such that the triple

E�F�G� is compatible	 Note that E 
 ��� ��� � ��� �� is a shu�e of M if and only if there
is a 
Lebesgue� measure preserving transformation f 
 ��� �� � ��� �� which is continuous on
��� �� up to �nitely many points� such that random variablesX and Y uniformly distributed
over ��� �� and coupled by the copula E� are related by f � Y � f
X�	

�



� Some open problems

In each of the above mentioned copula areas there are several open problems	 We list some of
them



�	�� Characterize discrete copulas D 
 In � Im � ��� �� for n ��m	


�	�� Is it possible to generalize the product � of ��copulas for n�copulas 
product � of discrete
��copulas to discrete n�copulas� �


�	�� For given b�horizontal and c�vertical sections of a ��copula C� characterize all copulas
with the same b�horizontal and c�vertical sections	 Characterize functions h and v for
which there is a copula C such that h is its horizontal section and v vertical section	


�	�� Solve problem 
�	�� for diagonal and opposite diagonal sections	


�	�� For given ��copulas E and F characterize all ��copulas G such that the triple 
E�F�G� is
compatible	


�	�� Characterize couples of Archimedean copulas 
E�F � such that the triple 
E�F� F � is com�
patible	 For partial solutions see ���	
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Abstract— Vector quantization is a popular and widely applied
method for clustering data containing several data clouds, which
should be well separated. However, it possesses some drawbacks
especially in the case of online learning, which we want to omit
in this paper. In this sense, we extend the conventional vector
quantization by combining it with the idea of adaptive resonance
theory network (ART) to form an incremental variant, which can
be applied for online classification and approximation tasks with
an unknown number of clusters. The second extension concerns
the incorporation of the range of influence of clusters in the vector
quantization learning process by selecting the ’winner neuron’
based on the distances of a data point to the surface of all clusters.
This neglects the generation of additional cluster centers within
wide data clouds. The third extension introduce a deletion of so-
called cluster satellites, i.e. very small clusters consisting of only
a couple of data points and lying near a much bigger (= more
significant) cluster. This can occur in the incremental version
of vector quantization quite often, when centers move strongly
over time due to newly loaded data. The problems of vector
quantization and their improvements due to the modified version
proposed in this paper are visualized based on two-dimensional
data set examples as well as well-known higher dimensional
clustering data sets. The impact of the modified variant onto the
training of high-dimensional data-driven fuzzy systems, where
clusters are back-projected to the axes in order to form fuzzy
sets and rules, concludes the paper.

Index Terms— vector quantization, clustering, adaptive reso-
nance theory network, incremental, removing cluster satellites

I. I NTRODUCTION

Nowadays clustering plays an important role, whenever data
bases or data sets should be divided into local areas and
new observations be classified based on these local areas
(denoting different states or patterns within the system). Other
application tasks for clustering include the rule extraction for
fuzzy models or forming neurons for neural networks. Data
compression for huge data bases can be carried out as well.
This is possible due to the fact that a cluster always can
be seen as a group of data that are more similar to each
other than data belonging to other clusters, see [1]. In this
sense, a cluster center represents also a compact information
about a local area or distinct data cloud within the data. A
popular and widely applied clustering algorithm is the so-
called vector quantization [2], which moves cluster centers
denoted as neuron weights towards accumulation points in the
data set, a more detailed description follows in Section II. In
literature there are several extensions of vector quantization

proposed, the most famous ones are the self organizing maps
(SOM) going back to Kohonen [3] and neural gas network [4].
With the usage of both, different topologies can be exploited
(such as circular or grid ones), where neurons which are
neighbors in the network topology should possess similar
weight vectors, i.e. cluster centers.

In this paper the original version of vector quantization
is extended in three points. First, an incremental variant is
demonstrated, which builds up clusters step by step and hence
omits the pre-definition of the number of clusters, which has
to be sent as parameter into conventional vector quantization.
Second, a different distance strategy is incorporated by taking
the distance of new incoming points to the range of influence
of clusters and not to the cluster centers. In this sense,
the range of influence in each direction is also calculated
incrementally. Third, a satellite deletion strategy is proposed
in order to remove not significant clusters (so-called satellites)
after the complete learning process. This can be applied in
connection with arbitrary crisp clustering techniques which
generate cluster centers. All these three issues will be demon-
strated in Section III. In Section IV the new modified variant of
vector quantization will be compared with conventional vector
quantization and some other well-known clustering methods
based on well-known high-dimensional clustering data sets
with respect to the quality of the obtained clusters measured
by a well-known cluster validation index.

II. V ECTORQUANTIZATION

The purpose of vector quantization [2] originally stems from
encoding discrete data vectors in order to compress data which
has to be transferred quickly e.g. for online communication
channels. The prototypes, here called neuron vectors, are the
representatives for similar/nearby lying data vectors. From the
mathematical point of view, vector quantization is basically
a simplified version of k-means clustering in sample-mode
adaptation, i.e. it is capable to update the parameters with
each incoming data point. This should be not confused with
a form of incremental clustering, where no iterations over the
complete data set are possible. Let the dimensionality of the
data to be clustered bep. The amount of neurons (clusters)
C has to be parameterized a-priori, where each neuron hasp
parameters corresponding to thep components of each cluster
center. With these notations and assuming that the input data
is a-priori normalized due to its range, the algorithm for vector
quantization can be formulated in the following way:
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Algorithm 1: Vector Quantization
1) Choose initial values for theC neuron vectors~ci, i =

1, ..., C, e.g. simply by taking the firstC data points as
cluster centers.

2) Fetch out the next data sample of the data set.
3) Calculate the distance of the selected data point to all

cluster centers by using a predefined distance measure.
Commonly, Euclidean distance is used.

4) Elicit the cluster center which is closest to the data point
by taking the minimum over all calculated distances→
winner neuron

5) Update thep components of the winner neuron by
moving it towards the selected point~x:

~c
(new)
win = ~c

(old)
win + η(~x− ~c

(old)
win ) (1)

where the step sizeη has to be chosen a-priori and
should be chosen appropriately. For example a value for
η equal to 1 would move the winner neuron exactly to
the selected data point in each iteration, a value near 0
would not give a significant change for the cluster center
over all iterations.

6) If the data set contains data points which were not
processed through steps 2 to 5, goto step 2, otherwise
goto step 8

7) If any cluster center was moved significantly in the last
iteration, say more thanε, reset the pointer to the data
buffer at the beginning and goto step 2, otherwise stop

It has to be remarked that indeed mostly the Euclidean norm is
used resulting in ellipsoidal clusters parallel to the main axes,
but others are also possible: for instance with Mahalanobis
distance ellipsoidal clusters in general position can be achieved
[5] [6]. Furthermore, for a good convergence an adaptive
learning gainη is recommended [7], which decreases with
the number of iterations.

III. M ODIFICATIONS OFVECTORQUANTIZATION

In this sections necessary and recommended extensions are
demonstrated in order to be able to apply vector quantization
for online clustering tasks and to data sets with an unknown
number of clusters. Moreover, an alternative distance strategy
for omitting more cluster centers in wide data clouds and a
cluster satellite deletion technique is demonstrated. The latter
one assures that cluster artefacts which can come up during
the incremental clustering process due to strong movements
of cluster centers are deleted.

A. Vector Quantization in Incremental Mode

When inspecting Algorithm 1 it can be easily recognized
that it is only applicable for offline clustering tasks as it
processes through the entire data set more than one time. In
this sense, it is not capable being applied for online processes,
where incremental clustering is demanded, meaning clustering
techniques which update their parameter for each newly loaded
data block or even for each single data sample without taking
account prior data. This is because Algorithm 1 iterates over
the loaded data buffer several times. If this would be carried
out for each incremental learning step i.e. for each actual

loaded data block separately, the cluster centers would only
represent a reliable partition of this data block and forget the
older data completely. Indeed, it is theoretically possible to
collect all the data points recorded or loaded so far, keep
it in the virtual memory and perform a re-estimation of the
cluster centers from time to time. This procedure, however,
would result in an inacceptable computation performance,
which could be verified in [8], when training fuzzy models
from data with the help of vector quantization for input/output
space partitioning.

Moreover, the number of clusters has to be known in
advance, which can be a significant drawback, if the number
of clusters is a-priori not known. Furthermore, in the case of
online clustering the number of clusters are never known in
advance as usually the data has to be sent into the algorithm as
it is loaded (e.g. for online streams in data bases) or recorded
(e.g. for online measurement systems). It should be noticed,
that this problem can be indeed solved for the offline case by
exploiting cluster validation indices [9] and applying them for
different partitions obtained with different numbers of clusters.
But, for the online case the drawback still remains. It could
be also inspected that the convergence of vector quantization
may be weak, when taking for instance the firstC data points
as theC cluster centers to start, see Section IV-A.

Hence, for omitting these drawbacks the idea of adaptive
resonance theory network [10] is exploited. These networks
consist of neurons which are able to adapt to new information
without forgetting or overwriting already learned relationships,
so to overcome the famousstability/plasticity dilemma. In
ART networks, especially in the ART-2 algorithm, this conflict
is solved by the introduction of a so-calledvigilanceparame-
ter, which controls the tradeoff between adaptation of already
learned clusters and generation of new clusters. In this sense,
for each new data point the following condition is checked:

‖~x− ~cwin‖A ≥ ρ and~x is not faulty (2)

with ~x the actual data point,~cwin the winning neuron and
A the norm-inducing distance. If this condition is fulfilled,
the prototypecC+1 of the new (theC + 1th) cluster is set to
the actual data point. In fact, it is true that the problem of
a-priori defining the number of clustersC is shifted to finding
a good value for thevigilanceparameterρ. But, a good guess
for this parameter can be achieved much more easier, when
clustering is applied onto data normalized into the hypercube
[0, 1]p: being far away from a new data point always can be
explained with a certain distance value. In a trial and error
tuning phase with quite a lot different data sets it turned out,
that the following choice of this parameter should be preferred:

ρ = 0.3
√

p
√

2
(3)

The dependency ofρ on thep-dimensional space diagonal, i.e.√
p, can be explained with the so-calledcurse of dimension-

ality effect: the higher the dimension, the greater the distance
between two adjacent data points, see [11]; therefore, the
larger the parameterrho should get in order to prevent the
algorithm to generate too much clusters and causing strong
overfitting effects. The second part of condition (2) assures that
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the new data point does not represent a faulty situation during
data recordings. Indeed, it is very hard to decide whether a new
incoming data point lying far outside previously loaded data
clouds denotes a new operating condition, which should be in
fact included into the clustering process, or a faulty situation,
which should be not included. It is worthy to mention that in
a fault detection framework [12] (where the modified version
of vector quantization was applied for training fuzzy models)
faulty points could be detected and marked before and hence
omitted in the clustering process.

With these notations and by assuming normalized data
vector quantization in incremental mode becomes:

Algorithm 2: Vector Quantization in Incremental Mode

1) Initialize the number of clusters to 0
2) Take the next incoming data point (online case) or fetch

out a data sample from a data matrix randomly or
ordered (offline case), let’s call it~x

3) If the number of clusters is 0

a) Seti = 1
b) Set the first centerc1 to the actual data point, hence

~c1 = ~x
c) goto step 8

4) Calculate the distance of the selected data point to all
cluster centers by using a predefined distance measure.
Commonly, Euclidean or Mahalanobis distance is used.

5) Elicit the cluster center which is closest to the data point
by taking the minimum over all calculated distances→
winner neuroncwin

6) If ‖~x− cwin‖A ≥ ρ and~x is not faulty

a) Seti = i + 1
b) Set~ci = ~x
c) goto step 8

7) Update thep + 1 components of the winner neuron by
moving it towards the selected point~x, as in (1)

8) If the data matrix still contains uncovered data (offline
case) or new incoming data points are still available
(online case) goto step 2, otherwise stop

From this definition it can be realized that each (newly loaded)
data point is processed only once through the update process.
Therefore, the learning gainη is not decreased by the amount
of iterations as kept constant. This would result in a bad
convergence of the algorithm, as no matter how many data
points belong to one cluster (i.e. for which this cluster was
the winning neuron) the shift of the center would be always
to the same extent. A possibility for preventing this situation
can be accomplished by steeringη with the amount of data
points belonging to each cluster in a monotonic decreasing
way:

ηi =
0.5
ki

∀i (4)

with ki the number of data points belonging to clusteri. This
is implemented in this way in Algorithm 2 and a reasonable
choice as in k-means clustering algorithm [13] the step size
is also normalized by this number, whereas original vector
quantization is a simplified version of k-means clustering.

B. An Alternative Distance Strategy

The problem with vector quantization in incremental mode
is that in the case of wider data clouds or points belonging
together widely spread over the input space Algorithm 2 tends
to generate more clusters than necessary and hence perform
an ’overclustering’ and incorrect partition of the input space.
This fact is underlined in the left image of Figure 1, where
obviously three clusters are the optimal case, but five cluster
are generated. This is because for the big data pattern three
clusters are produced instead of one.

The reason for this unpleasant occurrence lies at hand:
Algorithm 2 (as well as conventional vector quantization, of
course) compares each new incoming point with all the cluster
centers, which can happen to be far away even if the data
point is close to its spanned range of influence represented by
those data points already belonging to the cluster. Therefore,
an obvious overcoming of this drawback can be achieved
by calculating the range of influence during the incremental
learning process and taking the distance of new points to
these ranges instead of to the cluster centers. Whenever the
Euclidean distance is used as distance measure (which is more
or less the most common choice), axis-parallel ellipsoids are
triggered as clusters, whose range of influence (as2σ-area)
can be calculated in incremental mode by exploiting recursive
variance formula [14]:

kwinσ2
win,j(new) =

(kwin − 1)σ2
win,j(old) + ki∆c2

win,j + (cwin,j − xj)2 ∀j
(5)

where∆cwin,j is the distance of the old prototype to the new
prototype of the cluster nearest to the actual point~x in the
jth dimension andkwin is the amount of data points lying
nearest to clustercwin and can therefore be simply updated
through counting. For the distance of the new data point to the
surface of the multi-dimensional ellipsoid spanned by a cluster
we take the distance along the direction from the actual point
towards the cluster center.

Lemma 1:Let therefore be
∑p

j=1
(xj−cij)

2

σ2
ij

= 1 be a mul-
tidimensional ellipsoid of theith cluster in main position, i.e.
the axis of the ellipsoid parallel to the axis of the coordinates,
σij the variance of the data belonging to theith cluster (i.e. for
which theith cluster was the winning neuron) in dimensionj,
then the Euclidian distance of the new data point(q1, ..., qp)
to the surface along the direction towards the cluster center of
the cluster centercij is given by

dist = (1− t)

√√√√ p∑
j=1

(qj − cij)2 (6)

with

t =
1√∑p

j=1
(qj−cij)2

σ2
ij

(7)

Proof: Let ~x = ~ci + t(~q − ~ci) the straight line in
the multi-dimensional space between new point(q1, ..., qp)
and the ith cluster center, then the crossing point of this
straight line with the multi-dimensional ellipsoid is obtained
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by setting the parameter vector into the ellipsoid equation,
hence

∑p
j=1

t2(qj−cij)
2

σ2
ij

= 1, and by solving this equation after
t, achieving (7). The Euclidian distance between the crossing
point and(q1, ..., qp) is computed by summing up the squared
differencesqj − cij − t(qj − cij) = qj(1− t)− cij(1− t) for
all j, resulting in (6).
In fact, the distance (6) is only computed for the actual data
point, if it is lying outside the ranges of influence of all
clusters, i.e. the condition

∃i
p∑

j=1

(qj − cij)2

σ2
ij

≤ 1 (8)

is not fulfilled. Otherwise, the usual distance strategy is applied
for all clusters, whose range of influence the actual data point
lies inside.

This leads us to the modified version of vector quantization
in incremental mode:

Algorithm 3: Modified Version of Vector Quantization in
Incremental Mode

1) Initialize the number of clusters to 0
2) Take the next incoming data point (online case) or fetch

out a data sample from a data matrix randomly or
ordered (offline case), let’s call it~x

3) If the number of clusters is 0
a) Seti = 1
b) Set the first centerc1 to the actual data point, hence

~c1 = ~x, set~σ1 = ~0
c) goto step 8

4) If the actual data point lies inside any cluster’s range of
influence, i.e. the condition (8) is fulfilled for at least
one i (where σij are artificially taken asmax(σij , ε)
with ε > 0 in order to stay numerically stable)

a) Calculate the distance of the selected data point
to all those cluster centers fulfilling (8) by using
Euclidian distance measure.

b) Elicit the cluster center which is closest to the data
point by taking the minimum over all calculated
distances→ winner neuroncwin

c) Setmindist = 0
5) Else If the actual data point lies outside of all cluster’s

range of influence, i.e. condition (8) is not fulfilled for
any cluster

a) Calculate (6) for all clusters
b) Elicit the cluster center which is closest to the data

point by taking the minimum over all calculated
distances→ winner neuroncwin

c) Setmindist as the minimum over all distances
6) If mindist ≥ ρ and~x is not faulty

a) Seti = i + 1
b) ~ci = ~x, ~σi = ~0
c) goto step 8

7) Update thep + 1 components of the winner neuron by
moving it towards the selected point~x as in (1), update
the variance in each direction by using (5).

8) If the data matrix still contains uncovered data (offline
case) or new incoming data points are still available
(online case) goto step 2, otherwise stop

Fig. 1. Left Image: Clustering obtained by Algorithm 2→ too many clusters
Right image: Clustering obtained by its modified version with new distance
strategy (Algorithm 3)→ clusters are ok

Figure 1 demonstrates the impact of this modified version of
vector quantization. While Algorithm 2 generates new clusters
for data points lying near the range of influence of another
cluster (left image), the modified version performs better and
extends the range of influence (drawn as the2σ-range in each
dimension) of the nearby lying cluster (right image). The
cluster centers are visualized as big dark data dots. In fact,
in this simple example the generation of too much clusters
could be also prevented for Algorithm 2 by choosing a higher
value for ρ, but this cannot not be reasonably accomplished
for online data streams in advance or also for arbitrary high-
dimensional data sets with an unknown number of clusters:
the wideness of such big data clouds can be even bigger and
too high values ofρ would usually trigger too less clusters.

It should be noticed that Algorithm 3 can be extended
straightforward to the case when Mahalanobis distance mea-
sure is used, which triggers ellipsoidal clusters in general
position. For this, the recursive covariance formula, which is
similar to the recursive variance formula, can be exploited
for updating the covariance matrix of the data. Furthermore,
Lemma 1 needs to be extended with an appropriate distance
calculation from a new data point to the surface for an
ellipsoidal in general position.

C. Satellite Deletion

In the case of online learning the incremental training
scheme in Algorithm 3 may lead to undesirable tiny clusters,
so-called cluster satellites, which lie very close to significantly
bigger ones. An example is demonstrated in the left image in
Figure 2 (the data taken from MATLAB’s cluster demo data),
where the tiny cluster is obviously superfluous. The reason for
this unpleasant effect is the following (could be also observed
in other examples): at the beginning of the incremental training
process the first points forming the bottom cluster appear at
the upper region of this cluster, the cluster had a very narrow
range of influence at this stage (see small ellipsis inside and
surrounding a bigger dark dot). Afterwards a data point at
the lower region came in and formed a new cluster, as being
too far away from the small ellipsis in the upper region.
This cluster forming at this stage of the incremental (online)
learning process was correct, as in online mode the data comes
as it comes and a foreseeing into the future is not possible.
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Fig. 2. Left Image: An unpleasant satellite cluster by applying Algorithm 3;
right image: The unpleasant satellite cluster removed by applying Algorithm4

However, ’overclustering’ should be prevented as this leads to
false information when for instance performing classifications
based on the clustering. In this sense, the following strategy
was developed for deleting so-called cluster satellites, which
can be applied after Algorithm 3, so at the end of the whole
learning process, as no prior loaded data is needed.

Algorithm 4: Satellite Deletion

1) For all i = 1, ..., C clusters generated by Algorithm 3
perform the following steps:

2) If ki

N < 1% whereki the amount of data belonging to
the ith cluster andN the number of data points loaded
in sum

a) Mark the ith cluster for cutting out, as it only
captures outliers

b) Continue with next cluster

3) If ki

N < low mass

a) If the ith cluster center lies inside the range of
influence of any other cluster, let’s say clusterk

i) If
∑p

j=1 σij∑p
j=1 σkj

< ε, whereσij the jth axes of the
ellipsoid spanned by theith cluster, then mark
the ith cluster for cutting out

b) Else

i) Calculate the distance of theith cluster center
to the surface of all other clusters after (6) in
Lemma 1

ii) Elicit the cluster which is closest to the cluster
center of theith cluster, let’s say clusterk

iii) If
∑p

j=1 σij∑p
j=1 σkj

< ε, whereσij the jth axes of the
ellipsoid spanned by theith cluster, then mark
the ith cluster for cutting out

4) End For
5) Cut out all marked clusters

This strategy is based on the investigations, what characterizes
in fact a satellite cluster, namely 1.) a low mass i.e. a small
fraction of data points belonging to it, 2.) the cluster center
has to be close or inside the range of influence of the (most)
adjacent cluster, 3.) the cluster has to be significantly smaller
in its range of influence than the (most) adjacent cluster.
Moreover, cluster with a very low mass will be cut out
immediately (see Step 2), as they denote usually outliers. The

TABLE I

QUALITY OF CLUSTERS DENOTED BY THEPS-INDEX OBTAINED BY FIVE

DIFFERENT CLUSTERING METHODS INCLUDINGVQ-INC-MOD

Method 2-dim 2-dim Iris Data Wine Data
Data Set 1 Data Set 2

k-means 1.9379 / 3 2.098 / 3 1.38 / 3 1.57 / 3
subclust 1.934 / 2 2.024 / 3 1.10 / 3 1.75 / 3
VQ 1.9370 / 3 2.214 / 3 -0.16 / 3 1.31 / 3
VQ-INC 0.004 / 5 -0.5841 / 6 -0.03 / 5 -8.59 / 5
VQ-INC-MOD 1.935 / 3 2.167 / 3 1.14 / 3 1.77 / 3

marking and not directly cutting out the clusters ensures that
satellite clusters of satellite clusters are cut out, too.

Note that in Algorithm 4 satellite clusters are completely
cut out. This is opposed to the situation where two or more
significant clusters move together and an intrinsic penetration
of spheres or ellipsoids can be observed. In this case, which
can quite often occur during incremental learning steps, well-
known cluster merging algorithms can be applied, for instance
[15], [16].

IV. EVALUATION

In this section an evaluation of the new modified variant of
vector quantization (Algorithm 3 denoted as VQ-INC-MOD)
in connection with satellite deletion (Algorithm 4) is given.
The conventional incremental version of vector quantization
will be also tested and denoted as VQ-INC. This evaluation
demonstrates the performance on some clustering benchmark
data sets as well as the applicability for generating high-
dimensional fuzzy models by cluster projection onto the
axes. For the first case the new approach is compared with
conventional vector quantization as well as some well-known
clustering methods based on the cluster validation index by
Yang and Wu, the so-called PS-index [17]. For the high-
dimensional modelling tasks the obtained model complexities
and accuracies are compared between the different clustering
methods.

A. Results on Clustering Data Sets

In Table I a comparison between different clustering meth-
ods (columns) performing on various data sets (rows) is
demonstrated, the entries ahead the slashes in the matrix
correspond to the value obtained from the PS-Index: the higher
this value, the better the quality of the clusters, i.e. the better
the centers are set. If for example the correct number of
clusters present (and known) in the data set is missed, this
index will deliver a significant lower value than in the case
of the optimal amount. The entries after the slashes are the
number of clusters produced by the methods, whereas in all
cases three clusters are the optimal choice.

For comparison reasons all the clustering methods in Table
I are crisp clustering methods, which produce centers and
hence are mainly applicable for finding clearly separable data
clouds in a data set. It should be noticed that for k-means
[13] and conventional vector quantization [2] the number of
clusters have to be set in advance, which is not the case for
subtractive clustering [18] and the modified versions of vector
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quantization proposed in this paper. Both, Algorithm 2 (VQ-
INC) as well as Algorithm 3 (VQ-INC-MOD) are connected
with the satellite deletion strategy as defined in Algorithm 4.
Note that the later can be applied at the end of any batch
or incremental clustering process, which delivers clusters with
centers and ranges of influence in each direction. The chosen
data sets include two two-dimensional ones, the first one is the
same as visualized in Figure 1, the second one is the obtained
set when extracting first and third column in MATLAB’s
clusterdemo.datfile. The later possesses three clusters, where
two are partially merged, but still clearly visible by human
eyes. Obviously, for both data sets the new Algorithm 3 can
compete with all the other clustering procedures. Subtractive
clustering could only produce two clusters or more for the
upper two circles.

For an evaluation based on high-dimensional
data the two famous data setsIris and Wine
data (available in the UCI repository, see
http://www.ics.uci.edu/ mlearn/MLRepository.html) are
applied. WhileIris is a four dimensional data set, theWine
data includes 13 dimensions; both data sets contain three
classes and hence the optimal number of clusters is set to
3 for k-means and conventional vector quantization. For the
Iris data set the performance of Algorithm 3 is second among
all methods and slightly worse than the best one, namely
k-means, whereas for the incremental version of vector
quantization using the usual distance strategy (Algorithm 2)
totally fails as producing an unacceptable number of clusters
(5). No cluster had to be merged after the entire clustering
process. For theWine data the new modified version of
vector quantization can even outperform all of the other
methods with respect to the cluster quality. This is quite a
strong result for the satellite deletion strategy as for this data
set VQ-INC-MOD originally produced 13 different cluster,
where 10 represented just outliers and no significant clusters.
These could be removed by applying the satellite deletion
strategy as proposed in Algorithm 4. Again Algorithm 2
could not find the correct number of clusters and produced
an unacceptable result. It should be noticed, that for all data
sets the standard parameter settings forηi andρ as presented
in (4) and (3) are applied, so no parameter tuning steps took
place.

In Figure 3 data from a practical application example
is visualized: this data represents the dependency between
immersion depth (x-axis) and the actual angle of a metal sheet
at a steel plate bending machine (y-axis). This dependency is
based on data from 10 different manufacturers for the same
material which should be bent, the corresponding lines (as data
point connections) visualized in different color styles. From
this figure it is clearly visible that three data clouds can be
separated, the first one data cloud represented by only the data
from one manufacturer (dark dotted lines in the middle), the
second one as lines above represented by data from two other
manufacturers and the third one as lines below represented
by data from the remaining seven manufacturers. We could
realize, that, when adding three inputs for building a more
accurate prediction model for the bending angle (as a two-
dimensional linear model did not yield sufficient accuracy),

Fig. 3. Data from different manufacturers represented as different colored
lines

this three areas represent a projection of three distinct data
clouds onto the two-dimensional space. VQ-INC-MOD could
generate exactly three clusters and therefore it was possible to
obtain a well-interpretable accurate fuzzy model with three
rules only, as the clusters were back-projected to the one-
dimensional axes to form the fuzzy sets and the rules’ premise
parts. This was again possible with the standard parameter
setting for the sensible distance parameterρ (which steers the
cluster adjoinment during incremental training). It could be
also verified that when reducing the value of this parameter to
the half of its default value, so in our case of a five-dimensional
system after (3) to0.3

√
5√
2
/2 = 0.237 still three clusters and

hence rules could be obtained. This shows us a quite good
stability of the new clustering method with respect to the
choice of the parameterρ.

B. Applying VQ-INC-MOD for the Generation of High-
Dimensional Fuzzy Models

In order to demonstrate practical feasibility in an indus-
trial process VQ-INC-MOD is applied for generating high-
dimensional fuzzy models from measurement data. This is
accomplished on the basis of cluster back-projection onto
the one-dimensional space as it is also carried out in ap-
proaches such as FMCLUST [6] or genfis2 [18] implemented
in MATLAB’s fuzzy logic toolbox. We exchange subtractive
clustering in genfis2 one time with VQ-INC, the other time
with VQ-INC-MOD and compare the performance of these
three methods onto high-dimensional measurement data from
an engine test bench with respect to quality and complexity of
the models. Real faults were simulated at the test bench while
recording the data, which should be detected on the basis of
the trained fuzzy models by calculating the deviation of actual
measurements to the models. Hence, the detection rate, i.e. the
number of correctly detected faults is stated as additional mea-
sure in Table II as well (note that the overdetection rate was
always 0% for all approaches and is therefore not listed here).
In sum, 56 up to five-dimensional reasonable models could be
extracted automatically from the data with the help of variable
selection methods [19], where 70 channel were measured in
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TABLE II

COMPARISON OF CLUSTERING ALGORITHMS IN CONNECTION WITH

FUZZY SYSTEM TRAINING, FIRST TABLE: OFFLINE CASE, SECOND

TABLE : ONLINE CASE

Method Complexity Quality Det. Rate
subclust 5.07 0.9201 70% / 75%
VQ-INC 4.5 0.941 72.5% / 75%
VQ-INC-MOD 3.25 0.942 77.5% / 87.5%

Method Complexity Quality Det. Rate
subclust + consequ. adapt 9.43 0.793 53.75% / 50%
VQ-INC + FLEXFIS 8.24 0.934 66.25% / 75%
VQ-INC-MOD + FLEXFIS 7.12 0.936 70% / 75%

sum. This gives a good coverage of channels, when taking into
account, that some of the remaining 14 appear in the input side
of the models. The table is split into two parts: the first one
represents the offline case, i.e. models are generated in advance
in an offline step and new online measurements are checked;
the second one demonstrates the online case, where fuzzy
models have to be adaptively trained and extended. A high-
frequented re-building of all the 56 models is not possible, as
this would slow down the whole process significantly, such
that real time performance cannot be achieved, see [8]. In
the case of genfis2 an adaptation of linear rule consequent
parameter alone has to be carried, as subtractive clustering is
a batch clustering variant with no cluster (= rule) adjoining
strategy. This is different for VQ-INC and VQ-INC-MOD,
which build up the clusters (and therefore rules and fuzzy
sets) in an incremental manner. A stable connection of premise
part and antecedent part learning in incremental manner is
carried out as described in [8], denoted asFLEXFIS. From this
point of view, it is quite obvious, that genfis2 with subtractive
clustering fails completely opposed to genfis2 with VQ-INC
and VQ-INC-MOD, see quality and detection rates in the
second part of Table II. Of course, all the online results are
behind the offline results, as point per point is loaded into the
training algorithm. For the offline case conventional genfis2
performs better, but is still behind the other two approaches
with respect to both, quality and complexity. The complexity
is measured by the average number of rules over the 56 fuzzy
models. All the detection rates are measured on two bases:
the first number corresponds to the measurement basis i.e. all
by a fault affected measurements are counted (in sum 80), the
second one corresponds to the fault bases, i.e. all different kind
of faults are counted (in sum eight). It should be noticed that
for VQ-INC and VQ-INC-MOD again the standard values for
the parametersηi andρ were applied.

V. CONCLUSION

A new modified version of vector quantization (VQ-INC-
MOD) was proposed. It extends conventional vector quantiza-
tion to an incremental variant and incorporates a new distance
strategy, which takes into account the range of influence of
clusters. In this sense, the generation of more clusters within
wide data clouds is prevented. A satellite deletion strategy
can be appended to any clustering technique producing cluster

centers and the range of influence of clusters. This is for
removing not really significant clusters or clusters representing
just outliers in the data set, which can come up during
incremental learning as the future data points are unknown
at each learning step. When inspecting the results in Sections
IV-A and IV-B, it can be realized that VQ-INC-MOD can
compete with conventional clustering methods with respect to
the accuracy and quality of the clusters, (represented by a well-
known cluster validation index) and fuzzy models obtained
via cluster projection for forming the premise part and least
squares antecedent learning afterwards. This is quite a strong
result, as the new method acts on the data set on a point-
per-point basis and therefore can be applied for fast online
application tasks or huge data bases.
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1 Introduction

Building models in practice often we are facing with nonlinearity and uncertainty and we are
trying to find the optimal model. For that purpose usually we have to use different mathe-
matical tools. We will present here some results on a generalization of the real mathematical
analysis, the so called pseudo-analysis. For the range of functions and measures instead of
the field of real numbers it is taken a semiring on the real interval [a, b] ⊂ [−∞,+∞], de-
noting the corresponding operations as ⊕ (pseudo-addition) and ¯ (pseudo-multiplication).
There are many applications of this theory modeling nonlinearity, uncertainty in many op-
timization problems, nonlinear partial differential equations, nonlinear difference equations,
optimal control, fuzzy systems, see [3, 6, 9, 16, 17].

2 Basics of pseudo-analysis

Let [a, b] be a closed (in some cases semiclosed) subinterval of [−∞,+∞]. We consider here
a total order ≤ on [a, b] (although it can be taken in the general case a partial order). The
operation ⊕ (pseudo-addition) is a function ⊕ : [a, b]× [a, b] → [a, b] which is commutative,
nondecreasing, associative and has a zero element, denoted by 0. Let [a, b]+ = {x : x ∈
[a, b], x ≥ 0}. The operation ¯ (pseudo-multiplication) is a function ¯ : [a, b]× [a, b] → [a, b]
which is commutative, positively nondecreasing, i.e. x ≤ y implies x¯z ≤ y¯z, z ∈ [a, b]+,
associative and for which there exist a unit element 1I ∈ [a, b], i.e., for each x ∈ [a, b], 1I¯x =
x. We suppose, further, 0 ¯ x = 0 and that ¯ is a distributive pseudo-multiplication with
respect to ⊕, i.e., x¯ (y⊕z) = (x¯y)⊕ (x¯z). The structure ([a, b],⊕,¯) is a semiring (we
can consider semirings in general settings on an arbitrary set endowed with two operations
satisfying the previously mentioned properties). Here we will take as basic the following
special real semirings (using the equality 0 ¯ x = 0 we can consider also closed intervals in
the following examples): Case I) Pseudo-addition is idempotent and pseudo-multiplication
is not idempotent, e.g., x⊕ y = min(x, y), x¯ y = x + y, on the interval ]−∞, +∞]. We
have 0 = +∞ and 1I = 0.
Case II) Semirings with pseudo-operations defined by monotone and continuous generator
g. In this case we will consider only strict pseudo-addition, i.e., such that the function ⊕
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is continuous and strictly increasing in ]a, b[×]a, b[ and therefore there exists a monotone
function g (generator for ⊕), g : [a, b] → [−∞,∞] (or with values in [0,∞]) such g(0) = 0
and u⊕ v = g−1(g(u) + g(v)), u¯ v = g−1(g(u)g(v)).
Case III) Both pseudo-addition and pseudo-multiplications are idempotent, e.g., let ⊕ =
max and ¯ = min on the interval [−∞, +∞].

An idempotent semigroup (semiring, e.g., cases I and III) P is called an idempotent metric
semigroup (semiring) if it is endowed with a metric d : P × P → R such that the operation
⊕ is (respectively, the operations ⊕ and ¯ are) uniformly continuous on any order-bounded
set in the topology induced by d and any order-bounded set is bounded in the metric. Let
X be a set, and let P = (P,⊕, d) be an idempotent metric semigroup. The set B(X, P )
of bounded mappings X → P , i.e., mappings with order-bounded range, is an idempotent
metric semigroup with respect to the pointwise addition (ϕ ⊕ ψ)(x) = ϕ(x) ⊕ ψ(x), the
corresponding partial order, and the uniform metric d(ϕ,ψ) = supx d(ϕ(x), ψ(x)). If P =
(P,⊕,¯, ρ) is a semiring, then B(X, P ) has the structure of an P -semimodule, i.e., the
multiplication by elements of P is defined on B(X, P ) by (a ¯ ϕ)(x) = a ¯ ϕ(x). This P -
semimodule will also be referred to as the space of (bounded) P -valued functions on X. If X
is a topological space, then by C(X, P ) we denote the subsemimodule of continuous functions
in B(X, P ). If X is finite, X = {x1, . . . , xn}, n ∈ N, then the semimodules C(X, P ) and
B(X, P ) coincide and can be identified with the semimodule Pn = {(a1, . . . , an) : aj ∈ P}.
Any vector a ∈ Pn can be uniquely represented as a linear combination a =

⊕n
j=1 aj ¯ ej ,

where {ej , j = 1, . . . , n} is the standard basis of Pn (the jth coordinate of ej is equal to 1I,
and the other coordinates are equal to 0). As in the classical linear algebra, we can readily
prove that the semimodule of continuous homomorphisms h : Pn → P (in what follows
such homomorphisms are called pseudo linear functionals on Pn) is isomorphic to Pn itself.
Similarly, any endomorphism H : Pn → Pn (a linear operator on Pn) is determined by an
P -valued n× n matrix, see [3, 9].

There are further generalizations related the pseudo-operations in the theory of pseudo-
analysis. Related to further generalization of the real semiring structure to the case when the
operations ⊕ and ¯ are noncommutative and non-associative, and the (left) right distribu-
tivity of ¯ over ⊕ plays a crucial rule. There is obtained a representation theorem for such
operations and there is given a complete characterization for generalized pseudo-addition
and pseudo-multiplication, see [22]. The second generalization is related to relaxation of
the distributivity law, see [7], which enables a generalization of the classical von Neumann-
Morgenstern utility theory to hybrid probability-possibilistic utility theory, see [4]. The
third generalization consists in some symmetrization of maximum and minimum, used in an
integral representation of the utility functional in [19].

Let X be a non-empty set. Let A be a σ-algebra of subsets of X. We shall suppose that
m : A → [a, b]+ be a σ-⊕-additive measure. The construction of pseudo-integral, denoted
by

∫ ⊕
X

f ¯ dm, is similar to the construction of the Lebesgue integral, see [16, 17]. Then
it can be introduced pseudo-convolution and pseudo-Laplace transform with may different
applications, see [17, 20, 21].
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3 A representation theorem in Idempotent Analysis

We present here the simplest versions of some general facts of idempotent analysis, in par-
ticular, restricting our consideration to the case of standard (min, +) semiring P . Proofs,
generalizations and references could be found in [9, 10, 11, 12].

All idempotent measures are absolutely continuous; i.e., any such measure can be repre-
sented as the idempotent integral of a density function with respect to some standard mea-
sure. Let us formulate this fact more precisely. Let C0(X, P ) denote the space of continuous
functions f : X → P on a locally compact normal space X vanishing at infinity (i.e. such that
for any ε > 0 there exists a compact set K ⊂ X such that d(0, f(x)) < ε for all x ∈ X \K).
The topology on C0(X, P ) is defined by the uniform metric d(f, g) = supX d(f(x), g(x)).
The space C0(X, P ) is an idempotent semimodule. If X is a compact set, then the semi-
module C0(X, P ) coincides with the semimodule C(X, P ) of all continuous functions from
X to P . The homomorphisms C0(X, P ) → P will be called pseudo linear functionals on
C0(X,P ). The set of linear functionals will be denoted by C∗0 (X, P ) and called the dual
semimodule of C0(X, P ).

Theorem 1 For any m ∈ C∗0 (X,P ) there exists a unique lower semicontinuous and bounded
below function f :X → P such that

m(h) = inf
x

f(x)¯ h(x) ∀h ∈ C0(X, P ).(1)

Conversely, any function f : X → P bounded below defines an element m ∈ C∗0 (X, P ) by
formula (1). At last, the functionals mf1 and mf2 coincide if and only if the functions f1

and f2 have the same lower semicontinuous closures; that is, Cl f1 = Cl f2, where

(Cl f)(x) = sup{ψ(x) : ψ ≤ f, ψ ∈ C(X, P )}.

The Riesz–Markov theorem in functional analysis establishes a one-to-one correspon-
dence between continuous linear functionals on the space of continuous real functions on a
locally compact space X vanishing at infinity and regular finite Borel measures on X. Simi-
lar correspondence exists in idempotent analysis. We can define an idempotent measure µf

on the subsets of X by the formulas µf (A) = inf{x : x ∈ A}. This measure is σ-⊕-additive.
Equation (1) specifies a continuation of mf to the set of P -valued functions bounded be-
low. On analogy with conventional analysis, we say that such functions are integrable with
respect to the measure µf and denote the values taken by mf on these functions by the
idempotent integral

mf (h) =
∫ ⊕

X

h(x) dµf (x) = inf
x

f(x)¯ h(x).(2)

Theorem 1 is equivalent to the statement that all idempotent measures are absolutely con-
tinuous with respect to the standard idempotent measure m1I.
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4 Applications

4.1 Large deviation principle

The theory of large deviations concerned with the asymptotic estimation of probabilities
of rare events, and typically provide exponential bound on probability of such events and
characterize them. This theory has found many applications in information theory, coding
theory, image processing, statistical mechanics, various kind of random processes (certain
types of finite state Markov chains, Brownian motion, Wiener process), stochastic differential
equations, etc. Contemporary large deviation theory uses various approaches.

Let Ω be a topological space and A be the algebra of its Borel sets. A family of probabil-
ities (Pε), ε > 0, on (Ω,A) obeys the large deviation principle if there exists a rate function
I : Ω → [0,∞] such that

1) I is lower semi-continuous and Ωa = {ω ∈ Ω : I(ω) ≤ a} is a compact set for any
a < ∞,

2) -lim supε→0 ε log Pε(C) ≥ infω∈C I(ω) for each closed set C ⊂ Ω,

3) -lim infε→0 ε log Pε(U) ≤ infω∈U I(ω) for each open set U ⊂ Ω.

Then m(A) = infω∈A I(ω) is a positive σ-⊕-additive measure on A. Therefore, it is
naturally to generalize the previous definition in the following way [1, 23]. For any Borel set
A let

P out = lim sup
ε→0

ε log Pε(A), P in = lim inf
ε→0

ε log Pε(A).

One says that (Pε) obeys the weak large deviation principle, if there exists a positive idem-
potent measure m on (Ω,A) such that

1) there exists a sequence (Ωn) of compact subsets of Ω such that m(Ωc
n) → 0 = +∞ as

n →∞, where Cc stands for the complimentary set of C,

2) m(C) ≤ −P out(C) for each closed C ⊂ Ω,

2) m(U) ≥ −P in(U) for each open U ⊂ Ω.

Using Theorem 1 and its generalizations one can prove (see details in [1, 23]) that the
large deviation principle and its weak version are actually equivalent for some (rather gen-
eral) ”good” spaces Ω. One can obtain also an interesting correspondence between the
tightness conditions for probability and idempotent measures and for further generaliza-
tions on random sets see [14, 18]. Further generalization with respect to pseudo-additive
measures are contained in [13].

4.2 Hamilton-Jacobi equation

The introduced generalized analysis is applied for solving nonlinear equations (ODE, PDE,
difference equations, etc.) using now the pseudo-linear principle, which means that if u1 and
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u2 are solutions of the considered nonlinear equation, then also a1¯u1⊕a2¯u2 is a solution
for any constants a1 and a2 from [a, b]. This section is devoted to a short presentation of the
theory of generalized solutions to the Cauchy problem





∂S

∂t
+ H

(
x,

∂S

∂x

)
= 0,

S|t=0 = S0(x)
(3)

of a Hamilton-Jacobi equation (HJ) with Hamiltonian H being convex in p. Many important
applications require nonsmooth Hamiltonian, e.g., in control theory. More details can be
found in [9, 10, 11, 20]. Since any convex function can be written in the form

H(x, p) = max
u∈U

(pf(x, u)− g(x, u))

with some functions f , g, equation in (3) can be written in the equivalent form

∂S

∂t
+ max

u∈U

(〈
∂S

∂x
, f(x, u)

〉
− g(x, u)

)
= 0,

which is called the nonstationary Bellman differential equation (HJB).

Let us discuss first, what difficulties occur when one tries to give a reasonable definition
of the solutions to problem (3)? First, as simple examples shows, the classical (i.e., smooth)
solution of the Cauchy problem (3) does not exist for large time even for smooth H and S0.
Therefore one cannot hope to obtain smooth solutions for nonsmooth H and S0. On the
other hand, in contrast with the theory of linear equations, where generalized solutions can
be defined in the standard way as functionals on the space of test functions, there is no such
approach in the theory of nonlinear equations.

The most popular approach to the theory of generalized solutions of the HJB equation
is the vanishing viscosity method. However, this method cannot be used to construct a
reasonable theory of generalized solutions to (3) for discontinuous initial functions. Further-
more, it is highly desirable to devise a theory of problems (3) on the basis of only intrinsic
properties of HJB equations (i.e., regardless of the way in which the set of HJB equations
is embedded in the set of higher-order equations). Such a theory, including solutions with
discontinuous initial data, can be constructed for equations with convex Hamiltonians on
the basis of idempotent analysis, using the new superposition principle for the solutions of
(3) (which was first noted in [11]) and the idempotent analogue of the inner product

〈f, g〉P = inf
x

f(x)¯ g(x),(4)

replacing the usual L2-product.

There are many other nonlinear PDE treated by pseudo-analysis, see [6, 9, 10, 11, 12, 17,
22]. One of the main problem in the application on nonlinear PDE is the identification of
operations ⊕ and ¯. Goard and Broadbridge [5] have obtained a close connection with Lie
symmetry algebras. Namely, there are a number of computer added algorithms for finding
Lie symmetry algebra and therefore this relation can be used for finding ⊕ and ¯.
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4.3 Option pricing

The famous Black-Sholes (BS) and Cox-Ross-Rubinstein (CRR) formulas are basic results in
the modern theory of option pricing in financial mathematics. They are usually deduced by
means of stochastic analysis; various generalizations of these formulas were proposed using
more sophisticated stochastic models for common stocks pricing evolution. The systematic
deterministic approach to the option pricing leads to a different type of generalizations of BS
and CRR formulas characterized by more rough assumptions on common stocks evolution
(which are therefore easier to verify). This approach reduces the analysis of the option pricing
to the study of certain homogeneous nonexpansive maps, which however are ”strongly”
infinite dimensional: they act on the spaces of functions defined on sets, which are not
(even locally) compact. In the paper [8] there is obtained generalizations of the standard
CRR and BS formulas can be obtained using the deterministic (actually game-theoretic)
approach to option pricing and what class of homogeneous nonexpansive maps appear in
these formulas, considering first a simplest model of financial market with only two securities
in discrete time, then its generalization to the case of several common stocks, and then the
continuous limit. The infinite dimensional generalization of the theory of homogeneous
nonexpansive maps (which does not exists at the moment) would have direct applications
to the analysis of derivative securities pricing. On the other hand, this approach, which uses
neither martingales nor stochastic equations, makes the whole apparatus of the standard
game theory appropriate for the study of option pricing.
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[18] E. Pap, T. Grbić, Lj. Nedović, N. Ralević, Weak convergence of random sets, SISY
2005, 3rd Serbian-Hungarian Joint Symposium on Intelligent Systems, Subotica, 31.
August-1. September 2005, 73-80.
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Abstract — In this presentation we look on symmetric, positive definite functions from the
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1 Kernels

Definition 1. Let X be a non-empty set. A real-valued functionk : X × X → R is said to
be a positive definite kernel (short kernel) iff it is symmetric, that is,k(x, y) = k(y, x) for all
x, y ∈ X , and positive definite, that is,

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for anyn ∈ N and choice of

x1, . . . , xn ∈ X and any choice of real numbersc1, . . . , cn ∈ R .

Remark 2. In contrary to linear algebra this definition of positive definiteness is common in the
approximation and machine learning literature (compare [6,7]).

Due to Aronszajn [1] kernels can be characterized by inner products.

Theorem 3. For any kernelk : X × X → R, there exists a Hilbert spaceH and a mapping
Φ : X → H such that

k(x, y) = 〈Φ(x),Φ(y)〉, (1)

for anyx, y ∈ X , where〈., .〉 denotes the inner product in the Hilbert space.

Because of its relevance for kernel methods the property (1) in literature is sometimes chosen
to be the starting point for the definition of a kernel (compare, e.g., [3]).

Theorem (3) does not tell how to construct the Hilbert spaceH (feature space) and the mapping
Φ. Actually,H is not even uniquely determined.

2 Reproducing Kernel Hilbert Spaces

One way to obtainH is to start withH ⊂ RX := {f : X → R}, a set of real-valued functions on
X , and apply the Riesz representation theorem (cf, e.g., [5]), by which a bounded linear functional
F : H → R, that is there is an upper boundM > 0 such that

∀f ∈ H : F [f ] ≤ M‖f‖H,

is uniquely represented by
F [f ] = 〈a, f〉H (2)

for an elementa ∈ H and where〈., .〉H and‖.‖H denotes the inner product ofH and the norm
induced by it, respectively.

If all evaluation functionalsδx : H → R, x ∈ X , given by

δx[f ] = f(x)

are postulated to be bounded, then due to Riesz representation theorem (2), to each elementx ∈ X
there is an elementKx ∈ H such that

f(x) = δx[f ] = 〈Kx, f〉H.

Particularly, forf = Ky we obtain

K(x, y) := Kx(y) = 〈Kx,Ky〉H (3)

This shows that each Hilbert spaceH ⊂ RX , for which all evaluation functionals are bounded,
induces a positive kernelK with feature mapΦ(x) = K(x, .). Such Hilbert spaces are called
reproducing kernel Hilbert sapce(RKHSfor short) due to equation (3). Vice versa it can be shown
that a positive kernelK induces uniquely a RKHS which is generated byK (see, e.g., [1,6]).



3 Mercer Kernels 2

3 Mercer Kernels

While the feature spaceRKHS is a function space, Mercer’s theorem demonstrates the construc-
tion of a feature space made up of sequences, that is`2, the set of square summable sequences
(see [4]).

Theorem 4. Supposek ∈ L∞(X 2) is a symmetric real-valued function such that for allf ∈
L2(X ) and any finite measureµ onX , we have∫

X 2

k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0. (4)

LetΨj ∈ L2(X ) be the normalized orthogonal eigenfunctions of the integral operatorTk,µ given
by

Tk,µ : L2(X ) → L2(X )(Tk,µ)(x) :=
∫
X

k(x, y)f(y)dµ(y) (5)

associated with the eigenvaluesλj > 0, sorted in non-decreasing order. Then

(λj)j ∈ `2,

k(x, y) =
∑N

j=1 λjΨj(x)Ψj(y) holds for allmost all(x, y) ∈ X 2. N ∈ N, or N = ∞; in
the latter case, the series converges absolutely and uniformly for allmost all(x, y) ∈ X 2.

4 Regularization

The following representer theorem is fundamental for optimization problems.

Theorem 5. LetΩ : [0,∞) → R be a strictly monotonically increasing function and

c : ((X × R2)m → [0,∞]

an arbitrary loss function, i.e.,c(x, y, f(x)) = 0 iff f(x) = y. Then each minimizer of the
regularized task

c((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) + Ω(‖f‖H)

admits a representation of the form

f(.) =
∑

i

αik(xi, .).

Theorem 5 emphasizes the importance of the regularization termΩ which guarantees the op-
timization problem to be tractable. It also demonstrates the duality between kernels and regular-
ization, which will be the issue next.

Definition 6. LetR : F → D, be a linear map from a dot product spaceF = {f |f : X → R}
into another dot product spaceD. Then the regularization term is given byΩ[f ] = 〈Rf,Rf〉 and
R is referred to as regularization operator.
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Theorem 7. For every positive definite linear self-adjoint operator̂R : F → F for which a
Green’s function exists, there is a correspondingRKHS H with reproducing kernelk, a dot
product spaceD and a regularization operatorR : F → D such that

f(x) = 〈Rk(x, .),Rf(.)〉D

The idea of the proof is the fact that the positive definite operatorR̂ can be splitted in a product
like R̂ = R∗R and that the Green’s function ofGx(.) of R̂ satisfies

f(x) = 〈R̂Gx(.), f(.)〉F = 〈RGx(.),Rf(.)〉D.

4.1 Regularization Opererator in the Frequency Domain

By Bochner’s characterization theorem [2] for translational invariant kernels we get

k(x, y) = (2π)−
N
2

∫
Ω

ei〈ω,(x−y)〉v(ω)dω. (6)

The corresponding regularization operator to the kernel (7) turns out to be

〈Rf,Rg〉D = (2π)
N
2

∫
Ω

F [f ](ω)F [g](ω)
v(ω)

dω (7)

whereF [f ] denotes the Fourier transform off .

4.2 Regularization Opererator for Mercer Kernels

For Mercer kernels there is an analogous result (see [6]). Let

k(x, y) =
∑

i

λiΨi(x)Ψi(y)

be a Mercer kernel, the corresponding regularization operatorR is given by

(R∗R)(x, y) =
∑

i

λ−1
i Ψi(x)Ψi(y)

provided the sum
∑

i λ
−1
i is convergent.
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Summary. A new approach for finding nonlinear approximation formulas for very
high-dimensional data is presented. The method is based on linear regression, but
instead of the original variables we use nonlinear terms with these variables. Such
a formula is still linear in the parameters, so least squares can be applied to find
the globally optimal parameters. We use an accelerated version of genetic program-
ming to find the optimal nonlinear terms, and we use variable selection methods
to select those terms leading to an approximation formula which shows an optimal
balance of accuracy and simplicity. In general, evolutionary methods like genetic
programming tend to produce many individuals with low fitness. To save compu-
tation time, an early stopping strategy in case of low fitness is used. The method
was tested with two benchmark data sets (the Friedman data set in the KEEL
repository http://sci2s.ugr.es/keel/, and the CPU data set in the UCI repository
http://www.ics.uci.edu/ mlearn/MLRepository.html) where it produced approxi-
mation formulas which are more exact than the benchmark papers.

1 The approximation formula generator HDFormGen B

In this paper, the new algorithm HDFormGen B (A Formula Generator
for High Dimensional Data, Variant B)is introduced which is able to find an
approximation formula with nonlinear terms for a high dimensional regression
data set. With this algorithm, formulas similar to the following can been
achieved:
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y = − 413.505
+ 2.3135 · (P2offset · Tgas)
+ 1.9948 · ((P2offset + Tgas) − N) (1)
− 8.6768 · (P1offset − sin(Fm))
+ 0.000000016942 · ((CO2 · P1offset) · N)

The new algorithm HDFormGen B is especially strong under the following
conditions:

1. The higher the dimensionality, the better this algorithm fits. The reason
is that in our algorithm no local fitting is performed, so the curse of
dimensionality is not so bad. (For more details, see [9] , section 7.6.1
’Curse of Dimensionality’.)

2. If approximation formulas that are not very simple have to be detected,
then this algorithm is the ideal choice. The crossover operator helps finding
these formulas quite fast.

3. If the number of data points is not very high or the dimensionality is high,
then local fitting is dangerous. So in these cases, our algorithm is a good
choice.

The basic idea of the algorithm is the following:

• The structure of each of the nonlinear terms in the whole formula is found
and optimized with the use of genetic programming (see [3] and [4]).

• The parameters of the formula can be optimized easily with a least squares
algorithm. This can only be done, if the formula is linear in the parameters,
so the genetic programming tool must not generate terms which contain
additional parameters.

There is another aspect that has to be considered:
The terms that are used in the approximation formula finally shall be as
uncorrelated to each other as possible. We want an approximation formula
which is on the one hand as simple as possible, and on the other hand as
exact as possible. So we have to find the most important nonlinear terms,
such that the regression formula based on these terms is as good as possible.
Variable selection methods like forward selection have been designed to fulfill
this task. In HDFormGen B a variant of forward selection is used. For
this reason, the basic concept of forward selection will be explained in the
following rows:

• At first, the most important variable (or nonlinear term) is selected. This
is that variable (or term) which is correlated strongest to the actual de-
pendent y.

• Then the effects of the variables/terms selected so far are subtracted from
the original dependent y. This is necessary to avoid that variables that are
highly correlated to the first choice will be chosen again and again.

• Then, again the most important variable/term is selected.
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• And again, the dependent is modified, such that the effects of the vari-
ables/terms chosen already are eliminated.

• Continue in this manner, until enough variables/terms are selected.

2 The new algorithm HDFormGen B

2.1 The core of the new algorithm

In the following, the original dependent is called y. At the beginning, the
actual dependent is the original dependent yactual = y . Later yactual will be
modified. The constant term c = (1, . . . , 1)T is always the first variable that
is chosen. But this variable is not counted as real variable. The algorithm
performs the following steps:

1. An accelerated version of genetic programming (including a population of
individuals and a crossover operator) is used to generate millions of very
simple formulas. We select that formula xA which is best correlated with
the actual dependent yactual. We look only at the absolute value of the
correlation coefficient.

2. Then we modify yactual such that all the parts of y that can be approxi-
mated with the regressors already chosen are subtracted, setting yactual to
y − ŷ(c, xA). Here ŷ(c, xA) is the linear best approximation of y with the
use of the regressors c and xA. We can say, yactual is y made orthogonal
to the regressors already chosen.

3. Once again the accelerated version of genetic programming is used to
generate millions of very simple formulas. And now we select that formula
xB which is correlated strongest with the actual dependent yactual. We
look only at absolute values again.

4. Then once again, yactual is made orthogonal to the regressors already
chosen, so we set yactual to y − ŷ(c, xA, xB).

5. Continue in this manner, until a given number of regressor terms is se-
lected or some other termination criterion is fulfilled.

2.2 The accelerated version of genetic programming - an overview

Stopping the calculation of the correlation coefficient as early as possible, when
it can be seen that the checked individual is not worth spending additional
time, accelerates the algorithm enormously. But how can this be carried out,
if we have a population of individuals and not a single individual?

In the following lines the major steps of the accelerated genetic program-
ming algorithm are described.

1. Generate an initial population with popsize individuals.
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2. Evaluate each individual for n1 points of the training data set and estimate
the correlation coefficient with the actual dependent by using only these
n1 points.

3. Determine the popsizesmall best correlated individuals out of popsize,
based on the estimated correlation coefficient. We look only at the absolute
value of the correlation coefficient.

4. For these popsizesmall chosen individuals the exact value of the fitness
function (i.e. the absolute value of the correlation coefficient) using all
the points of the training data set has to be calculated.

5. Produce a new generation of popsize out of the popsizesmall chosen indi-
viduals:
• Repeat the following, until we have enough new individuals. Choose

randomly two of the popsizesmall individuals and compare their fitness.
The better one is called the winner, and the other one is called the
loser. Let the winner produce two offsprings, one is an exact copy of
the winner, and the other offspring is made via crossover (as crossover
partner, one of the popsizesmall individuals is chosen, which is neither
the winner nor the loser).

• The individual which is the best so far is always copied into the next
generation (’elitism’).

• A small part of the new generation is produced in the same way as the
initial population. This is one way of avoiding the problem with local
optima. A mutation is not needed any more.

6. Go to step 2, until a termination criterion is fulfilled.

• As termination criterion, we usually take that a specific number of gener-
ations is reached.

• The parameter popsize determines, how many individuals are evolved in
the genetic programming algorithm. The parameter popsize can take any
positive integer number. The larger popsize is, the more computation time
is needed, and the better the results are. In our experiments, a popsize of
5000 has been used successfully.

• The parameter n1 tells the algorithm, how many points are used to get
a quick estimation of the correlation coefficient. n1 can be an arbitrary
positive integer, but n1 shall not exceed the number of training data points.
In our experiments, settings of n1 = 30, n1 = 50 and n1 = 100 have been
used successfully.

• The parameter popsizesmall determines, how many individuals of the total
population are selected to be examined in detail. The value of popsizesmall

shall be much smaller than popsize, for example popsize/10.
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3 Variants of the Formula Generator Algorithm Applied
To Standard Benchmark Data Sets

To show the quality of our approximation formula generator, several standard
data sets have been used. The main data source is the UCI repository, which
can be found in the following address:

http://www.ics.uci.edu/~mlearn/MLRepository.html

The complete repository has been downloaded, and a few of the data
sets have been selected for our experiments. The UCI repository is used by
many software developers, so several reports concerning their results can be
found. Nevertheless it has to be mentioned that many of the data sets in
the UCI repository can not be used for examining our methods. The vast
majority of the data sets is a mixture of numerical and non-numerical data.
Many other data sets have missing values. And many data sets have not more
than 2 variables. All these data sets can not be used here. We can only use
data sets that can be handled with multidimensional regression.

3.1 The data set auto-mpg

The first data set is called ’auto-mpg’. This data can be found in the directory
’auto-mpg’ of the UCI-repository. The data concerns city-cycle fuel consump-
tion in miles per gallon, to be predicted in terms of 3 multivalued discrete and
5 continuous attributes.
Number of instances: 398
Number of attributes: 9
The data set contains the following attributes:

mpg: continuous; the dependent variable
cylinders: multi-valued discrete
displacement: continuous
horsepower: continuous
weight: continuous
acceleration: continuous
model year: multi-valued discrete
origin: multi-valued discrete
car name: string (unique for each instance)

In the original data set, the attribute horsepower has six missing values. So we
deleted the corresponding rows in our data set. And we deleted the attribute
carname, because our algorithm cannot handle strings. So finally we have a
data set with 392 rows and 8 columns.

The original data set has been split into two parts. We have taken the
first 90% of the data as training-data, and the rest as test-data. Then we
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made an approximation formula for ’mpg’ with our algorithm. And finally we
calculated the mean absolute error (=MAE) for the test data.

One of the best formulas that we reach with our algorithms is the following:

mpg =7.7974
− 0.0084204 · ((sqrtabs(weight) − modelyear)modelyear)
+ 1.6747 · (sin(sqrtabs((horsepower + cylinders)))) (2)
− 0.88459 · (cos((modelyear + modelyear)) − origin)

This formula is quite simple, and it leads to an MAE of 2.6861 for the test
data. We found another formula with an MAE that is even slightly lower,
namely 2.5182, but the corresponding formula is a bit more complicated:

mpg =35.6145
− 0.67801 · (sqrtabs(weight) − (modelyear + origin))
+ 1.5074 · (sin(sqrtabs((horsepower + sqrtabs(horsepower))))) (3)
+ 34.605 · (sin(cos(sqrtabs((acceleration + modelyear)))))
− 0.062681 · (acceleration · cos((modelyear + modelyear)))
− 0.99804 · (cos((acceleration · cos(cylinders))))

In the UCI-Repository we found a benchmark paper see [11] that uses various
methods to find an approximation for mpg. The situation is not exactly the
same, because in the paper mentioned the 10% test data have been chosen in
a different way. Still we want to mention that the best method in [11], reached
an MAE of 2.02. And the worst method in [11] reached an MAE of 6.53. So
our formulas are comparable to these methods. For more details see [11].

3.2 The data set cpu

The data set ’cpu’ can be found in the directory ’cpu-performance’ of the
UCI-repository.
Number of instances: 209
Number of attributes: 10
The data set contains the following attributes:

vendor name: string
model name: string
MYCT: machine cycle time in nanoseconds (integer)
MMIN: minimum main memory in kilobytes (integer)
MMAX: maximum main memory in kilobytes (integer)



A Nonlinear Approximation Formula Generator 7

CACH: cache memory in kilobytes (integer)
CHMIN: minimum channels in units (integer)
CHMAX: maximum channels in units (integer)
PRP: published relative performance (integer); the dependent variable;
ERP: estimated relative performance via linear regression (integer)

At first we deleted the attributes vendorname and modelname because our
algorithm can not handle strings. Furthermore the data set contains the at-
tribute ERP , which is an old estimation for PRP . So we have to delete the
attribute ERP , because we do not want to generate an approximation for-
mula by using the results of an old approximation. This would be too easy. So
finally we have only 7 attributes remaining. Before the core of our algorithm
has been run, we split the data into two parts: 70% of the 209 instances have
been randomly chosen to play the role of the training data. And the other
30% play the role of the test-data. This has been done similar to one of our
benchmark papers - see [7]. In [7] the process of selecting the training data
randomly was repeated 20 times to get more exact results. We do not do this
here, too, because then we would have to run our evolution based algorithm
20 times, and this costs too much computational effort.

Our algorithm has been started 10 times. Roughly 3.7 seconds are neces-
sary per term for performing the evolutionary part of the algorithm. Totally
we received ten approximation formulas, with an average MAE of 23.33 de-
termined for the test data set. The worst MAE is only 25.15, and the best
MAE is 23.06. The best formula is the following:

PRP =16.344
+ 0.0032443 · (sqrtabs((MMIN · (MMAX · CHMAX)))) (4)
+ 0.7936 · ((CACH − CHMAX) − sin(CHMAX))

In our benchmark paper (see [7]), various different methods have been
tried out. The best method leads to an MAE of 38.0. So compared to this
paper, our method leads to a more exact approximation.

In the paper [11], an MAE of 28.1 has been reached. It has to be mentioned,
that in [11], the experiment is not exactly the same, as far as the process of
splitting the data into training data and test data is concerned. For more
details, see [11].

3.3 The data set friedman

The data set ’friedman’ can be found in the KEEL repository, which is
located in
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http://sci2s.ugr.es/keel/

In the keel repository, benchmark papers can be found. For the fried-
man data set, a quite actual (2004) benchmark paper is available (see
[5]).

We try to design our experiments as similar as possible to the benchmark
paper, to get comparable results. In the benchmark paper, the following is
done:

’This is a synthetic benchmark data set. Each sample consists of
five inputs and one output. The formula for the data generation is
t = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4

4 + 5x5
5 + ε, where ε is a Gaussian

random noise N(0, 1), and x1, ..., x5 are uniformly distributed over the do-
main [0, 1]. 1400 samples were created, of which 200 samples were randomly
chosen for network training and 200 samples for validation. The remaining
1000 samples were used for network testing.’

In the KEEL repository, the data sets are already available as described
in [5]. So we have a 200 sample training data set, and a 200 sample validation
data set, and a 1000 sample test data set. Unlike the benchmark paper, we do
not need any validation data. So we only take the 200 sample training data
set to find an approximation formula, and we take the 1000 sample test data
set to determine the quality. As a quality measure, here the MSE is used,
according to the benchmark data.

The best formula that we get is the following:

salida =4.8843
+ 10.1761 · (entrada4 + sin((entrada2 · (entrada1 + (entrada1 + entrada1)))))
− 5.3183 · (sin((entrada3 + (entrada3 + entrada3))) − entrada5)

(5)

The MAE of this formula is 0.889281, and the MSE of this formula is
1.23629 . In the benchmark-paper (see [5]), the best method leads to an MSE
of 4.502 . So our formula is much more exact.

References

1. Hastie, T., Tibshirani, R., and Friedman J. , ”The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction.”, Springer Berlin, 2001

2. F. E. Harrell jr., ”Regression modeling strategies: With applications to linear
models, logistic regression and survival analysis”, Springer Series in Statistics,
2001

3. J. R. Koza, ”Genetic Programming”, The MIT Press, Cambridge, Mas-
sachusetts, 1992

4. J. R. Koza, ”Genetic Programming II”, The MIT Press, Cambridge, Mas-
sachusetts, 1994



A Nonlinear Approximation Formula Generator 9

5. W. M. Lee, C. P. Lim, K. K. Yuen, S. M. Lo, ”A Hybrid Neural Network
Model for Noisy Data Regression”, IEEE Transactions on Systems, Man and
Cybernetics, Part B 34:2, Pages 951-960, 2004

6. L. Ljung, ”System Identification: Theory for the User”, ISBN 0-13-656695-2,
Prentice Hall PTR, New Jersey, 1999

7. Merz, C. J., Pazzani, M. J., ”Combining Neural Network Regression Estimates
with Regularized Linear Weights”, Advances in Neural Information Processing
Systems 9, edited by M.C. Mozer, M.I. Jordan, and T. Petsche, 1997

8. A. Miller, ”Subset Selection in Regression - Second Edition”, ISBN 1-58488-
171-2 Chapman & Hall/CRC Boca Raton London New York Washington, D.C.
2002

9. O. Nelles, ”Nonlinear System Identification - From Classical Approaches to Neu-
ral Networks and Fuzzy Models”, ISBN 3-540-67369-5 Springer-Verlag Berlin
Heidelberg New York, 2001

10. W. H. Press, S. A. Teukolsky, W. T. Vetterling and P.B. Flannery, ”Numerical
Recipes in C: The Art of Scientific Computing”, Cambridge University Press,
Cambridge, U.K., second ed., 1992

11. J. R. Quinlan, ”Combining Instance-Based and Model-Based Learning”, Pro-
ceedings on the Tenth International Conference of Machine Learning, Pages
236-243, University of Massachusetts, Morgan Kaufmann, 1993




