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Abstract

This work presents the analysis of images obtained via a novel ultra-sensitive

microarray technique. The practical goal of the new technology is to compare

the concentrations of mRNA in cases when only minute amounts of samples are

available, amounts that cannot be analyzed by classical methods.

The two main parts of the analysis are related to the detection of single

molecules in the images recorded under these special conditions and the analy-

sis of the point patterns represented by the positions of the detected molecules.

For the first part, an adapted wavelet thresholding method was investigated,

the thresholding being based on the control of the false discovery ratio (FDR). A

study of the influence of the noise models (Gaussian, Poisson and a Gauss-Poisson

mixture) on the detection accuracy as well as a possible way to cope with the

correlation of the undecimated wavelet coefficients are given.

The intensity of the point patterns representing the positions of the detected

single molecules is assumed to be piece-wise constant, typically one concentration

characterizing the hybridized molecules inside the microarray spot and another the

clutter outside the spot. The shape of the microarray spot is not fixed (although

usually circular), permitting the modeling of evaporation effects, spotting errors

etc. Three approaches were studied and compared: a method of moments applied

to count data, an expectation-maximization on k-nearest neighbor distances and

a level set segmentation method on the point densities.

The results of the analysis were validated on simulated and real data. Differ-

ently expressed genes were detected via the presented method for multiple myeloma

samples, result validated by an independent biological technique (qPCR). The

techniques presented in this work can be directly applied to other single molecule

imaging experiments.
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Die vorliegende Arbeit präsentiert ein Bildanalyseverfahren, das für eine neuar-

tige hochempfindliche Microarray-Technik entwickelt wurde. Das praktische Ziel

dieser neuen Technologie ist es, die Konzentration von mRNA in jenen Fällen zu

vergleichen, wo nur so geringe Probenmengen zur Verfügung stehen, daß diese

nicht durch klassische Methoden analysiert werden können.

Die beiden Hauptaufgaben der Analyse sind einerseits die Erkennung einzel-

ner Moleküle unter den besonderen Bedingungen, die durch die neue Technologie

impliziert werden, und andererseits die Analyse der Punktmuster, welche die Po-

sitionen der erkannten Moleküle repräsentieren.

Für die erste Aufgabe wurde eine adaptierte Wavelet Thresholding Methode

verwendet, wobei die Schwellwerte auf der Kontrolle des False Discovery Ratio

(FDR) basierten. Es wurde sowohl der Einfluss von Rausch-Modellen (Gauß, Pois-

son und ein Gauß-Poisson Kombination) auf die Genauigkeit der Erkennung von

einzelnen Molekülen untersucht als auch ein möglicher Weg, um der Korrelation

der Undecimated Wavelet Koeffizienten gerecht zu werden.

Die Intensität der Punktmuster, welche die Positionen der erkannten Moleküle

repräsentieren, wird als stückweise konstant angenommen, wobei typischerweise

eine Konzentration die hybridisierten Moleküle im Microarray-Spot und eine

andere Konzentration die Stördaten außerhalb charakterisiert. Die Form des

Microarray-Spots ist nicht festgelegt (obwohl sie als kreisförmig angenommen

wird), was es unter anderem ermöglicht, Verdunstungseffekte oder Spotting Fehler

zu modellieren.

Drei Ansätze wurden untersucht und verglichen: Eine Methode der Momente

angewandt auf Häufigkeitsdaten, eine Expectation-Maximization von k-NN Dis-

tanzen und eine Level Set Segmentation Methode auf den Punktdichten.

Die Ergebnisse der Analyse wurden anhand simulierter und realer Daten vali-

diert. Das vorgestellte Verfahren erkannte unterschiedliech exprimierte Gene für

Proben des Multiplen Myeloms und das Resultat durch eine unabhängige biologis-

che Technik (qPCR) nachgewiesen. Die in dieser Arbeit vorgestellten Techniken

können auch direkt bei anderen Einzelmolekülfluoreszenz-Experimente angewen-

det werden.
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Chapter 1

Introduction

The aim of this work is to provide efficient tools for the analysis of single molecules

and the patterns they form in fluorescence microscopy images in general and ultra-

sensitive microarray scans in particular. The features of interest are fluorescent-

tagged single molecules, their image being typically equivalent to diffraction limited

point sources. The number, intensity and relative positions of single molecules,

and at a different scale, the various pattern these single molecules form represent

a source of information that can be exploited in inference on biological processes.

This information is not available in classical, lower resolution microscopy imag-

ing, in which case only an aggregated signal intensity is being measured. In or-

der to achieve detection of single molecules, high resolution and high sensitivity

images have to be obtained through a set of techniques affecting the resulting

two-dimensional signal. These techniques introduce new challenges including the

handling of significantly bigger images that correspond to the same scanned sample

size and also of a different imaging regime. Single molecule imaging is character-

ized by different dynamic range and under certain conditions by low signal-to-noise

ratios as well as a different impact of the Poisson and Gaussian measurement noise

on the recorded signal.

1.1 Context

The work presented in this thesis was performed in the frame of the multidisci-

plinary project Ultra-sensitive genomics and proteomics funded by Genome Re-

search - Austria including the following project partners

• Biophysics Institute - Johannes Kepler University of Linz

15



16 Chapter 1: Introduction

• Upper Austrian Research GmbH - Linz

• Department of Knowledge-based Mathematical Systems - Johannes Kepler

University of Linz

• Department of Molecular Biology - University of Salzburg

• Department of Molecular Immunology - Medical University of Vienna

The biological expertise was provided and the biological samples prepared by the

partners at the Department of Molecular Biology, University of Salzburg. The

ultra-sensitive microarray technique was developed and perfected by the Biophysics

Institute at Johannes Kepler University, Linz and Upper Austrian Research GmbH,

Linz. This work was done in close collaboration with Dr. Jan Hesse and Dr.

Jaroslaw Jacak and the project coordinator Dr. Gerhard Schütz.

1.2 Motivation

We shall motivate the technique of ultra-sensitive microarrays via the example of

the cancer stem cells (CSC) hypothesis [110].

The hypothesis received much attention recently and it states that tumors are

initiated by a small population of tumor cells similar to adult stem cells, that have

the ability to self-renew as well as give rise to differentiated tissue cells. Knowledge

of the gene expression profile of these special CSC is crucial in understanding

the biological mechanisms at work and in development of effective therapies. A

quite well established way to determine the expression profile is the microarray

technique that will be described in Chapter 3. The technique offers the advantage

of studying thousands of genes in the frame of a single experiment, thus under

identical experimental conditions. However it has several drawbacks, one of the

most restrictive in our case being the relatively important quantity of target sample

mRNA necessary for a reliable analysis. Since the fraction of CSC might be as

low as 1% [46] the classical microarray technique cannot be applied directly to the

minute amount of mRNA obtained from CSC.

In order to alleviate the restriction imposed by the small amount of avail-

able mRNA, the microarray technology is combined with high resolution imaging.

Thanks to the development of the Nanoreader [56], a fast and highly sensitive

imaging system, the scanning of areas of 1 × 0.2 cm2 at a pixel size of 200 nm
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became possible within 50 seconds, with a good ability to discriminate among

minute differences.

The resulting high resolution images of microarray spots can be understood

as a zoom in the classical, low-resolution microarray images and are formed of

single molecules clustered in a circular pattern, representing the hybridized single

molecules of interest corresponding to one gene. The analysis of this new kind

of images and the estimation of the hybridization signal makes the object of the

present work.

1.3 Outline of the thesis

Excluding this introduction, the thesis consists of seven chapters. The outline of

the chapters is given in the following.

The principles of fluorescence microscopy with focus on single molecule imaging

are presented in Chapter 2. Mathematical models of image formation as well as

single molecule image content are proposed in the end of the chapter. The next

chapter, Chapter 3 gives an overview of the microarray technology, together with

a discussion of the importance of the method, its advantages and the challenges

of the classical low-resolution approach.

The following two chapters are related to single molecule detection in the flu-

orescence microscopy images. First, Chapter 4 sets the framework for denoising

and detection via a brief introduction to wavelet transforms, then in Chapter 5

a detailed discussion of wavelet thresholding as an approach to denoising and de-

tection is given, together with several methods for threshold selection, adaptation

to specific noise models and effect of signal sparsity on detection. The discussion

emphasizes detection approaches and results for the models described in Chapter 2.

After the detection of single molecules, we estimate the concentration of the

hybridized molecules inside the microarray spot. This new hybridization measure

requires the separation of molecules bound to the microarray spot from unspecific

binding, dirt etc. outside of it. The modeling of the problem is based on spatial

point patterns and is described in Chapter 6 together with the algorithms that

separate two superposed point patterns (signal and clutter) based on the intensities

of the two processes.

The validation of the method of ultra-sensitive microarray technique is done

through analysis based on simulated images and image series as well as on real

data. The real data includes microarray images of oligonucleotide dilution series
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and the scans of three competitively hybridized slides pertaining to an experiment

on multiple myeloma stem cells. The results are gathered in Chapter 7.

The last chapter of the thesis, Chapter 8, summarizes problems discussed in

this work as well as the proposed methods and concludes with possible applications

of the algorithms presented and indicates further lines of research.



Chapter 2

Single molecule imaging:

techniques and models

The main purpose of microscopic imaging is to detect small structures and visualize

their dynamics. Although other techniques can achieve the same or even higher

resolution (e.g. electron microscopy, atomic force microscopy etc.), fluorescence

microscopy is the most important in vivo approach, that can operate in biologically

relevant condition, without (or only minimally) disturbing the observed process.

Moreover the great specificity and ease of use make fluorescence microscopy the

main light microscopy tool in biomedical research.

In 1976, Hirschfeld achieved the first successful detection of single molecules

in solution [57] (although marking the molecule with multiple labels) and ever

since the field has received increasing attention in the fluorescence microscopy

community.

2.1 Fluorescence and fluorophores

The information offered by a typical light microscope is the intensity of light emit-

ted by an object, measured after having passed through an optical system. In the

case of fluorescence microscopy, the light is emitted by specific molecules, called

fluorophores, fluorochromes or fluorescent dyes that have the property that after

excitation with light at a certain wavelength as a response emit light at a longer

wavelength. If the molecules of interest are nonfluorescent, they can be tagged

with a fluorescent dye to make them visible. Various labeling methods have been

developed, like epitope tagging (inserting short DNA sequences of known epitopes

into the coding sequences of proteins), fluorescent proteins (the best known being

19
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Figure 2.1: Jablonski diagram showing photophysical transitions.

the green fluorescent protein GFP used to create fluorescent chimeric proteins that

can be expressed in living cells), immunofluorescence microscopy via fluorescent

antibodies that label fixed, permeabilized cells etc. Briefly, the principle of fluo-

rescence is explained as a cycle in which an electron of a fluorescent molecule is

excited to a higher energy state following the absorption of a photon of the excita-

tion wavelength. Almost immediately (in an interval of 10−9 − 10−12 seconds) the

electron returns to its initial ground state, as an effect the molecule possibly releas-

ing the absorbed energy as a fluorescent photon. The emitted fluorescent photon

typically exhibits a longer wavelength than the absorbed photon, due to the energy

loss through the process, the difference in wavelengths representing the Stokes shift

(we shall discuss below). The cycle is depicted graphically in the Jablonski dia-

gram, Fig. 2.1, which shows increasing energy states as a stack of horizontal lines.

There are two categories of excited states (characterized by different spin states of

the excited electrons): the singlet excited state and the triplet excited state (oc-

curring via spin-flipping). With high probability the electron is excited to a singlet

state (straight upward pointing blue arrow), and when it collapses to the ground

state, energy can be given up as fluorescence emission (downward pointing green

arrows). Alternatively, the electron can return to ground state without photon

emission, the energy being released as heat (internal conversion). However, there

is a probability that an electron can also enter the triplet excited state through a

process called intersystem crossing. There is a possibility of emission process from

this triplet state after a few seconds or even minutes, through a process called

phosphorescence. For more details see [85].

The true dynamic nature of fluorescence emission can be examined at single

molecules level, when individual molecules are seen to rapidly cycle between emis-
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Figure 2.2: Absorbance (dashed line) and emission(solid line) spectra of Cy3
(green) and Cy5 (red). (Figure made with Fluorescence Spectra Viewer, Invit-
rogen [1])

sive and nonemissive states, displaying a highly complex and fascinating dynamic

behavior [32].

The spectrum of wavelengths over which molecules absorb light (in order to

re-emit it) is called excitation spectrum, while the emitted fluorescent light from

excited dye molecules likewise ranges over a broad spectrum of longer wavelengths,

called the emission spectrum.

Although the excitation and emission spectra of fluorescent molecules over-

lap, usually there is a distance between their respective maxima known as Stokes

shift. This separation permits to distinguish between the excitation light and the

fluorescent signal with the aid of specially designed filters.

The following fluorescence related characteristics influence the quality of the

measured signal (the emitted fluorescence light): quantum efficiency - the fraction

of absorbed photons quanta that is re-emitted by a fluorochrome, photobleaching

the —usually permanent— loss of fluorescence due to chemical damage, when the

fluorescent molecule transits to a triplet excited state and autofluorescence, the

part of the signal that is not due to the fluorescent tags. Cells contain auto-

fluorescing metabolites, but dirt can also contribute to the autofluorescence of the

image.

Smith et al. [102] have proved that cell autofluorescence also increases with

cell DNA content. In the case of microarray slides, autofluorescence will play a

role due to the fluorescence of dirt particles on the slide that might hamper the

true cDNA signal. As for photobleaching at single molecule level in [43] a detailed

description is given.
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2.2 Microscopy techniques

In order to achieve the goal of imaging single molecules, which emit only a limited

number of photons, the imaging technique needs to show high sensitivity and

suppress the influence of the background and the structures of no interest (outside

of the focal plane).

Single molecules can be observed with simple methods such as wide-field mi-

croscopy, illuminating an area of several microns of the specimen. The schematic

representation of an epifluorescence microscope is given in Fig. 2.3. The (not

collimated) laser beam is reflected by the dichroic mirror toward the microscope

objective and illuminates the sample. The fluorescent emission is collected through

the same microscope objective and transmitted through the dichroic mirror. Fil-

ters eliminate the residual excitation light. It is important in order to maximize

the detection of fluorescent light to maximize the numerical aperture (NA) of the

objective, defined as: NA = n sinϕ, where n is the refractive index of the medium

between the sample and objective and ϕ the maximum collection angle ([81]).

The sensitivity can be improved by limiting the excitation volume through e.g.

two techniques: laser scanning confocal microscopy (LSCM) and total internal

reflectance fluorescence (TIRF) [81].

In the case of LSCM both illumination and detection are confined to a sin-

gle, diffraction-limited, spot in the specimen. To obtain an image, the procedure

is repeated scanning across the specimen using some form of scanning device.

Schematically the system is represented in Fig. 2.3.

The laser beam is reflected by a dichroic mirror and passes through the micro-

scope objective and is focused to a diffraction-limited spot at the focal plane. The

objective collects the emitted fluorescent light as well as the backscattered laser

light and passes it through the dichroic beamsplitter. Filters help to eliminate

residual laser light. In front of the detector a pinhole is inserted which prevents

the out-of-focus light to reach the detector. The diameter of the pinhole deter-

mines the thickness of the optical section from which fluorescent light is collected.

More details can be found in [89, 85, 81]. Finally the image is captured by a point

detector (a photodiode, a photomultiplier) or —as in our case — a digital charge

coupled device (CCD) camera.

TIRF measurements make use of the evanescent field generated upon total

internal reflection. Total internal reflection occurs at the interface between two

media: a higher refractive index medium n1 (the glass or plastic coverslip) and a

lower refractive index one, n2, n2 < n1 (air, water). If the angle of the incident
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Figure 2.3: Microscope configurations: left - epifluorescence, middle – confocal,
right - TIRF

beam with the interface normal is higher than the critical value arcsin(n2/n1)

the light is entirely reflected and it no longer passes into the second medium.

Nevertheless the reflected light generates an evanescent electromagnetic field in

the lower-index medium, in the close proximity of the interface. This evanescent

field is identical in frequency to the incident light, and decays exponentially in

intensity with distance z from the interface:

I(z) = I(0) exp(−z/d), d =
λ0
2π

(n2
1 sin

2(θ)− n2
2)
−1/2,

where the decay distance d is dependent on the wavelength of the excitation light

λ0, the refractive indices n1, n2 and the angle of incidence. Thus the field extends

at most 100 nanometers normal to the interface into the specimen and only the

fluorophores in this limited volume are excited. In this way the background can

be kept low and a good contrast is achieved for single molecule imaging.

2.3 Image formation

The dual nature of light, as wave on one hand and as quanta (photons) of elec-

tromagnetic radiation on the other can be exploited in order to describe image

formation as a linear shift invariant system and model the various sources of noise



24 Chapter 2: Single molecule imaging: techniques and models

Figure 2.4: The Airy function - image of a point source

that are corrupting this process.

Point spread function (PSF) and spatial resolution

Making use of the wave description of light, the Fraunhofer diffraction caused by

a circular aperture of a point source on the optical axis produces an intensity

distribution centered at r = 0 also known as Airy pattern ([117]):

PSF(r) =

(
2
J1(πqcr)

πqcr

)
,

with J1 the Bessel function of the first kind of order 1 and qc =
2NA
λ

, such that the

shape of the Airy pattern depends on the wavelength of light λ and the numerical

aperture NA of the objective lens. The smaller the wavelength and the higher

the numerical aperture the smaller the Airy disk with direct implications on the

system’s resolution properties as we shall see below.

In practice, most often the PSF is approximated by the following functions

[58]: Gaussian:

G(r) = e
−
(

r2

2a2

)

(2.3.1)

modified Lorentzian:

L(r) =
1

1 +
(
r2

a2

)b (2.3.2)

or a Moffat function:

M(r) =
1

(
1 + r2

a2

)b (2.3.3)

In biological experiments, the PSF depends on the specific refractive properties of

the sample [31]. An approximated PSF can be constructed by imaging small beads
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or in case this proves too difficult/tedious for the given biological experiment, by

extracting the images of small features. A similar procedure is used in astronomy,

where stars represent natural point like sources, which can be used to model the

system’s PSF.

The diffraction phenomenon affects the (spatial or lateral) resolution of an op-

tical system. Spatial resolution describes the smallest resolvable distance between

two points in an image. There exist several ways to define resolution.

The Abbe resolution is given by the FWHM (full width at half maximum) of

the Airy disk:

∆A ≈ λ

2NA
.

The Rayleigh limit (resolution) is the distance between the central maximum and

the first minimum of the intensity of the Airy pattern generated by the optical

system:

∆A ≈ 0.61
λ

NA
.

The Sparrow limit is defined as the minimum distance of two point objects of equal

intensity so that no intensity minimum exists between both images:

∆A ≈ 0.48
λ

NA
.

Noise sources and signal-to-noise ratio (SNR)

All measurements have an inherent uncertainty referred to as noise. A quan-

tification of how much this uncertainty affects the measurement is given by the

signal-to-noise ratio (SNR). A high SNR indicates high confidence in the measured

value. According to their source different types of noise can be classified as:

• shot-noise- the number of photons recorded by the camera over a discrete

interval of time can be described due to the quantum nature of light as a

stochastic process with a Poisson distribution:

N ∼ Poi(µ), p(N) =
µN exp(−µ)

N !
,

where N is the number of detected photons and µ is the expected value of

the Poisson process. This kind of noise can not be suppressed.

• thermal noise or dark current - thermal electrons generated by the kinetic

vibrations of silicon atoms in the CCD that are mistaken for photoelectrons.
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The number of thermal electrons follows a Poisson law. The higher the

temperature, the more important the contribution of thermal noise. Cooled

CCD cameras are used in order to suppress dark current.

• readout noise - noise added during readout of charges by the camera chip elec-

tronics and it is characterized by a Gaussian (normal) distribution N (µ, σ),

with probability density function (pdf)

p(x) =
1√
2πσ

exp

[−(x− µ)2

2σ2

]
.

(Note that a standard normal distribution has µ = 0 and σ = 1.) The

amount of noise depends on the readout rate. The higher the readout rate

the higher the readout noise level due to the on-chip electronics.

• quantization noise - the round off error due to the ADC when converting

analogue data to integer numbers. It depends on the number of bits used for

the digital representation of the data.

• dead/defect pixels - pixels with a constant white or black value.

An image is considered to be photon limited if the photon noise of the object signal

is greater than the camera read noise.

In order to measure the effect of the noise on the quality of signal the notion

of signal-to-noise (SNR) ratio is introduced. SNR is the ratio between the sum

of components contributing to the signal and the square root of the sums of the

variances of the various noise components. If the different types of noise are

independent the SNR can be written as:

SNR =
S1 + S2 + S3 + . . .√
N2

1 +N2
2 +N2

3 + . . .
.

In microscopy, the background signal can be large, sometimes 90% of the total

signal representing an object. In most cases, photon noise from the background

is the major source of noise, not the read noise of the camera. Thus, the SNR

equation includes a term for the background noise. The signal S is equal to the

difference between the counts in the target area (T) and those in the background

area (B): S = T − B. The contrast is defined via normalization with B:

C =
T − B

B
,
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such that the signal in terms of contrast becomes: S = C · B. Due to the Poisson

statistic model of the image, for the standard deviation of the noise we get N =√
B, and since T and B have similar values for low contrast, the SNR can be

written as:

SNR =
C · B√
B

= C
√
B,

or alternatively:

SNR = C
√
Φ · A,

where A is the area of the region of interest (the size of the smallest object we

wish to detect) and Φ is the photon flux (photons per unit area).

A more complex analytical equation for SNR was given by Newberry [86]:

SNR =

√
Co√

[(1/g) + (nσ2/Co) + (nσ2/pCo)]

where

Co = T − B counts due to the object

n - number of pixels in measured object area

p - number of pixels in measured background area

σ2 - variance of background pixels

g - gain (the number of electrons recorded by the CCD camera per number of

digital units contained in the image).

Usual ways to improve SNR are to increase the amount of light by reducing

the scan rate, increasing the recording time or opening the confocal pinhole, by

averaging several frames of the same imaged object etc.

Models of image formation

The optical system is locally shift invariant, thus a microscope can be well approx-

imated as a linear and shift-invariant (LSI) system [121], so that each point source

in the object plane f is replaced by a scaled and translated PSF in the image plane

(Huygens principle)

g(x, y) = f(x, y)⊗ PSF =

∫∫

Ω

PSF(u, v)f(x− u, y − v) du dv.
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A general microscopy image model together with algorithms for image restora-

tion is given in [104]. Imposing restrictions on the image content, Giovanelli and

Coulais [47] describe a model consisting of the superposition of two components:

one component (PS) is formed by point sources on a dark background, while the

other component is formed of spatially extended, smooth objects, called extended

sources (ES). These components are treated as two distinct maps, that have to

be accurately reconstructed. For the ES component the correlation structure is

introduced by a convolution kernel or pixel interactive penalties.

A similar description fits many single molecule microscopy images. The content

of images, a sparse set of point-like objects, is modeled in the object space as a

sum of delta peaks:

f(x, y) =
N∑

k=1

Akδ(x− xk, y − yk).

As a result of image formation process one obtains in the ideal image space

g(x, y) = K ∗ f(x, y) =
N∑

k=1

AkK(x− xk, y − yk)

describing the PS component of the image. The kernel K corresponds to the ideal

PSF or any of its approximations like the ones offered by the G,L,M models. Due

to the various sources of noise, the measurement can be written as

g̃(x, y) = α (b+ λ) + ε, (2.3.4)

λ ∼ Poi(g(x, y)), ε ∼ N (0, σ), (2.3.5)

with b the ES component or background and α the gain of the system.
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Microarrays with single molecule

sensitivity

Cells exposed to toxins, pharmacologic agents, human hormones etc. respond to

these changes by changes in the expression of particular genes [80]. Change in

gene expressions can occur also in normal cellular activity, e.g. cell division. Thus

the gene expression levels are highly informative about the cell state, the activity

of genes as well as changes in protein abundance in the cell.

The complete set of DNA transcripts and their relative levels of expression per-

taining to a cell or tissue as well as a specific condition is called the transcriptome.

As opposed to the genome, it is highly dynamic, changing rapidly in response to

environmental conditions or during certain cellular events [75].

Microarray technology offers an advanced and efficient way to measure gene

expression of large sets of different genes at a high throughput. As a consequence,

it is an important tool in solving problems such as the detection of differently

expressed genes for different conditions, the annotation of gene function — in

case the encoded protein’s function is unknown, shared regulation patterns with

genes whose function is known offers valuable cues on the function of interest—,

definition of genetic pathways (the regulation of gene expression by other genes)

via temporal profiling, molecular phenotyping for prediction of pharmacological

response or evolution of a disease, etc. (see [108, 75]).

3.1 Biological background

Chromosomes are structures found in the cell nucleus, formed by a single molecule

of coiled deoxyribonucleic acid (DNA) carrying the individual’s hereditary mate-

29
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Figure 3.1: Central dogma of molecular biology

rial, and DNA-bound proteins. The DNA molecule is a double-stranded helix, each

strand formed of linkages of sugar-phosphate. The strands are bound together by

the noncovalent hydrogen bonding between pairs of attached bases.

The basic units of biological inheritance are the genes, specific segments of

a DNA molecule that contain all coding information for the cell to synthesize a

specific product, as an RNA molecule or a protein. They occupy a specific location

(locus) on a chromosome and are identified according to their function. Some

of the genes, the so-called housekeeping genes, encode proteins needed for basic

cellular activity, and thus are expressed in all cells. Others have specific tasks, as

coding the synthesis of specific antibodies or limit the formation of malignant cells

(antioncongene). More details can be found in [80, 69, 116, 33].

The genetic code is communicated from DNA to RNA via transcription, that

is the synthesis of an RNA strand of complementary bases to the DNA strand.

The production of proteins is then guided by the RNA transcribed from the DNA,

called messenger RNA or mRNA). The transcription occurs in the nucleus. The

mRNA is transported into the cytoplasm, where the ribosomes read the mRNA

sequence and translate it into the amino acid sequence of the produced protein.

Schematically, the process is presented in Fig. 3.1.

Figure 3.2: Genes, the units of biological inheritance. Figure from [2].
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A typical microarray experiment measures (and compares) the mRNA abun-

dance (expression levels) of the cell samples in order to infer the type and the

function of the proteins produced under certain conditions in the cell. However

the mRNA molecule is fragile and can be easily broken down by enzymes from bio-

logical solutions. Instead the more stable complementary DNA (cDNA) is created

from the mRNA sample, through reverse transcription and subsequently used in

the experiment.

3.2 Classical microarray technology

The high density DNA microarray allows the monitoring via single experiments

and on a single experimental medium the interactions among thousand of gene

transcripts in an organism. Good overviews of the technique can be found in

[119, 69, 80, 103].

Although the first immunoassay technologies were developed already in the

1950s and 1960s, the Southern blot developed in 1975 was the first array of ge-

netic material [105]. The miniaturization of the technique, microspotting in the

1980s [40] and the subsequent technological improvements (mechanization of the

construction of slides and of microspotting) lead to the industrialization of the

technology.

The technology is based on the specific pattern of bonding known as (Watson-

Crick) base pairing : the base known as adenine (A) specifically bonds with thymine

(T) while cytosine (C) specifically bonds with guanine (G). Note that in the case

of RNA, adenine bonds to uracil (U). The amine base that will form a bonding pair

with another amine base is considered its complementary base, and single DNA

or RNA (ribonucleic acid) strands form stable bonds or hybridize only with a

complementary strand. Hybridization is the fundamental process that constitutes

the basis of DNA microarray technology [69]. The hydrogen bonding between bases

is weak and breaks at approximately 90◦C, through a process called denaturation.

After cooling, at about 60◦C reassociation occurs.

Measurement process

Briefly, the experiment consists of a robotic machine laying spots or droplets of

probes, representing e.g. cDNA sequences, on a glass, silicon or plastic slide in

a regular pattern forming a 2d grid. The cDNA is immobilized on the array by

adherence to the slide coating, air drying and ultraviolet irradiation [80]. The slide
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Figure 3.3: Schematic representation of two-color microarray technology. Figure
from [2].

with the affixed spots is called microarray or chip and it represents a dictionary of

probes, in which an entry (DNA, oligonucleotide, antibody etc.) is identified by its

position in the grid. The process is represented in the upper right part of Fig. 3.3.

Via denaturation, double stranded cDNA is broken into single strands preparing

for the binding of target samples. For the sake of statistical soundness, each probe

on the chip is replicated a certain number of times subject to a trade-off between

cost and reliability of results.

Next, the target sample is marked with a fluorescent tag during reverse tran-

scription and washed over the chip. In the case of two different samples, a control

sample and an unknown target sample, (e.g. a control from normal cells and a

sample from cancerous cells), the samples are marked with distinguishable tags,

emitting at different wavelengths (typically red and green, Cyanine 5, Cy5 with

emission maximum at about 670nm, and Cyanine 3, Cy3 with maximum approxi-

mately at 570nm), then equal amounts of the samples are mixed and finally washed

over the microarray slide, where molecular hybridization takes place. If necessary,

the quantity of DNA can be amplified via a process called polymerase chain re-

action (PCR). The amount of bound sample to the probes is an indicator of the

strength of interaction intensity with the respective probe.

This hybridization is measured by scanning the microarray after excitation with

laser light. The scanning is performed usually with a confocal laser microscope
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Figure 3.4: Detail of microarray. Pseudocolors indicate: red - high expression in
target labeled with Cy5, green - high expression in target labeled with Cy3, yellow
- similar expression in both samples. The gene is identified by the position of the
respective spot in the grid.

and the fluorescent intensity for each probe spot (and in each color) is recorded.

The output of the last step are 16 bit images, a pseudocolored detail of which can

be seen in Fig. 3.4. The images have to be analyzed by robust image processing

tools to produce reliable intensity estimates that describe the hybridization.

Data analysis

According to [69], the main tasks image processing has to perform are:

Gridding Matching a grid to the image of the printed spot pattern and identi-

fying the approximate position of each spot

Segmentation Separation of foreground(signal) and background pixels for each

spot region. If shape priors are included in the process, the simplest assump-

tion is a circular shape with fixed or variable radius.
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Intensity extraction Computation of a summary statistic that best describes

intensity of the spot (e.g. mean, median etc.)

Background correction If necessary, the signal intensity is corrected with the

estimate of the local or global background (most often an additive back-

ground model is assumed). The effect of this step might be crucial in the

case of weakly expressed genes (dim spots).

The result of the image processing step is a gene expression matrix of (mean)

fluorescence intensity of each spot (or of the ratio of the intensities recorded in the

two channels). Normalization and data interpretations are the last steps of the

analysis that leads to the gain of biological insight on the role the reporters play in

the problem at hand. Normalization adjusts microarray data for effects which arise

from variation in the technology (systematic errors) rather than from biological

differences between the mRNA samples. It is a sequence of sophisticated statistical

methods that takes into account several factors such as unequal quantities of start-

ing RNA, differences in dye incorporation during labeling or detection efficiencies

between the fluorescent dyes used, variations in spotting and/or background, and

systematic biases in the measured expression levels (see [41, 120, 39, 16, 33] for

details). Normalization can be performed on several levels: within a single array

(among replicate spots), between a pair of replicate arrays and among multiple

arrays (over samples to be compared).

The last step, data interpretation is based on a plethora of tools from statisti-

cal hypothesis testing, to clustering, cluster analysis, data mining and it tries to

answer biological questions such as the detection of differently expressed genes (for

two sample experiments), the detection of co-regulated genes, characterization of

expression profiles etc.

Limitations of microarray technology

Each step of the technique is prone to distortions and noise contamination. A

thorough description of variation and noise sources can be found in [10, 80, 71].

Most of these factors have to be dealt with by the algorithms used for the analysis.

Results are influenced by several factors related to the surface of the array, the

binding efficiency, the typical number of dye attached to each cDNA molecule,

differences in PCR amplification, etc. For instance, reverse transcription bias oc-

curs due to variation in the degree of efficiency corresponding to different types
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of mRNA molecules, while sequence bias is due to varying binding affinity of fluo-

rescent dyes to different nucleotides (e.g. cDNA strands containing more guanine

appear brighter, due to better binding of the dye to guanine). The differences in

labeling are called dye-bias, and can be studied and corrected for via a repeat of

the experiment on the same targets, but with changed labeling, procedure known

in the literature as dye-swap.

One of the most important limitations of microarray technology is the availabil-

ity of tissue samples in sufficient quantity [80]. The problem is particularly acute

in cancer cell experiments, when the amount of mRNA that can be extracted from

rare cells is inadequate to perform a microarray experiment.

Moreover, the technique represents an indirect measurement of the abundance

of gene transcripts via the fluorescent dyes attached to the hybridized polynu-

cleotides. Fluorescence itself is not a linear phenomena (it is linear only over a

limited range). Thus, this method renders only a semi-quantitative measure of

differences in gene expression with small differences being obscured within the

experimental variation of the array technology.

A bias might be introduced by less-than-perfect denaturation process, resulting

in non-denatured strands of (spotted) DNA, as well as, target molecules that

stick to the slide and are not washed away, and subsequently contributing to the

background noise around the spot. Furthermore, experimental conditions cannot

be optimized for all the genes. Due to the fact that under the chosen conditions

hybridization simply did not happen for certain genes, the measured expressions

in these cases are misleading, since they do not reflect the real biological situation.

The complexity of the resulting data makes data storage, retrieval and sharing

difficult, a problem further increased by the lack of standardization among the

different existing systems.

Types of arrays

The best known types of arrays are the cDNA and the oligonucleotide arrays. Be-

sides the single-slide cDNA microarray experiments described above, in which one

compares transcript abundance in two mRNA samples hybridized to the same slide,

there are other approaches such as multiple-slide experiments comparing transcript

abundance in two or more types of mRNA samples hybridized to different slides

and a variant of this, the time-course experiments, in which transcript abundance

is monitored over time for processes such as the cell cycle. The technology is

based on clones obtained from cDNA libraries spotted on the support, typically
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formed by strands of 500 to 5000 bases of known sequence [80]. The design of the

array (the selection of cloned cDNA) can be optimized for the (hypothesis testing)

problem at hand.

Oligonucleotides are short sequences of base-pair segments, having a length

between 15 and 70 nucleotides. They can be used as probing material on the

array (one of the best known chip is the GeneChip produced by Affymetrix). The

advantages of this kind of arrays are specificity and efficiency of hybridization (due

to uniform length), they are also easier to engineer and easier to use for finding

optimal hybridization conditions. The disadvantages of the oligo arrays are cross-

hybridization with several genes, due to the short lengths of the oligonucleotides

— this can be seen as a strength when the purpose is discovery and not predefined

sequence matching— the absence of purification processes, irregularities in the

fluorescence signal, etc.

Other types of microarrays involve chromatin immunoprecipitation assays

(ChIP-chip)[118] or protein microarrays [114, 51].

3.3 The high resolution technique

A main objectives of our project was to correct some of the limitations described

in Section 3.2, such as unspecific binding (due to randomly bound molecules or

unattached fluorophores), the varying background intensity profile of the array,

the binding efficiency of the sample (which might be gene dependent), the dye

distribution per molecule (also gene dependent), varying illumination distortion

etc.

Our technology is based on the combination of the classical technology with

ultrasensitive fluorescence microscopy for reading the specially designed DNA chip.

Some of the advantages of scanning spots with ultrasensitive microscopy capa-

ble of measuring the signal of single dyes equivalent to single hybridization events

are illustrated in Fig. 3.5. In the low resolution image on the left, only the intensity

can be observed, without any further visual clue if it is due to true signal or arti-

facts. On the right, in the high resolution image, one can clearly distinguish the

bright artifacts (probably dirt) around the microarray spot from the true signal.

Artifacts that might distort the low-resolution signal intensity are identified using

ultrasensitive fluorescent microscopy.
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Figure 3.5: Image of a microarray spot with artifacts. (Left) Low resolution image,
with high intensity pixels (without visual clues for presence of artifacts) (Right)
High resolution image, where the artifact can be distinguished from signal. The
image intensity was rescaled for better visibility.

Imaging setup

The novel technique introduced in [56] increases tremendously the resolution of

the scanning, it represents a 20 times zoom in the classical microarray. To one

pixel imaged in the classical way correspond 400 pixels with the new technique.

At this resolution it is possible to detect and count single molecules. Given the

size of the fluorophore, the image of a molecule is equivalent to the point spread

function of the optical system applied to a point source as described in Chapter 2.

The imaging setup, NanoScout (developed by the SDT group, Institute of Bio-

physics, Johannes Kepler University and Upper Austrian Research), presented in

Fig. 3.6, is based on a modified epi-fluorescence microscope with a 100× oil im-

Figure 3.6: Nanoscout - the high resolution setup used in microarray imaging
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mersion objective (α-Plan Fluar, NA = 1.45, Zeiss). The samples are illuminated

in objective-type total internal reflection (TIR) configuration. For the selective

excitation of the dyes, Cy3 and Cy5, respectively, Ar+− and Kr+− lasers (514nm

and 647nm) are used. After appropriate filtering using standard Cy3 and Cy5 fil-

ter sets (Chroma Technology Corp., VT), the fluorescence images are taken with a

12-bit back-illuminated CCD camera (chip-size 1300×100 pixel, 20µm pixel-size).

The CCD camera is operated in time delay and integration (TDI)-mode. The

samples are mounted on a motorized xy-stage and synchronized to the line-shift

of the camera. This allows fast scanning of large areas (1 × 0.02cm2 in 58s) with

single fluorophore sensitivity and diffraction limited resolution. The setup and the

imaging process are described in detail in [56, 55, 61].

For validation of the system, microarrays comprising two full complementary

60mer oligonucleotides were used (Human Genome Oligo Set Version 3 (Operon)).

Hybridization of a dilution series of Cy5-labeled target oligonucleotides yielded

a quantification limit of 1.3fM corresponding to only 39.000 molecules in 50µl

sample.

The ultra-sensitive microarray technique was used to study the expression pro-

file of putative Multiple Myeloma (MM) stem cells using the human MM cell line

NCI-H929 and the results are provided in Chapter 7. This new technology brings

important insights in the field of biochips, with several advantages, like the anal-

ysis of images with very low sample concentrations, a new way of background

suppression, and more refinement in information.

Main steps in single molecule microarray image analysis

The high resolution microarray image analysis preserves the same main tasks as

the low resolution technique:

• Addressing/ Gridding - Localization of each spot of the grid pattern in the

image

• Estimation of the hybridization measure for each spot via spot identification

and concentration estimation

• Gene expression analysis.

However there is a need to redesign and/or adapt the existing algorithms in order

to be applicable to the new kind of data. Gridding is performed on a down-sampled
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version of the original image, while for the other tasks new algorithms are designed,

implemented and validated.

Gridding is performed by registering a predefined grid pattern with the image

of detected microarray spots. There is a plethora of methods to find the location

(and shape) of bright microarray spots. Among these we mention the method of

Angulo and Serra based on mathematical morphology [7], clustering of the pixels

into foreground, background and artifact pixels [14], watershed based algorithms

etc. Some of these approaches also adjust the shape and position of spots in a

subsequent step after an initial grid was found.

However, in our case due to the low amount of mRNA the spots appear much

dimmer than in the classical microarray images, making both tasks, spot detec-

tion and grid estimation, more difficult. For spot detection we have used the

same wavelet thresholding algorithms as for single molecule detection, in this case

applied to a downscaled, low resolution image. All the details are described in

Chapter 5. The combination of the resulting images from the two samples (cor-

responding to the red and green channel) improve the registration result. As the

result of the gridding step, we assume that the detected rectangular region in-

cludes a single microarray spot, potentially surrounded by background pixels (as

in Fig. 3.7(a)).

The steps related to the analysis of a single molecule microarray spot are illus-

trated by Fig. 3.7, where the results of each step are shown for the original spot

image presented in Fig. 3.7(a):

1. Detection of the support of single molecule signals, Fig. 3.7(b)

2. Identification of single peaks inside the detected signal support, Fig. 3.7(c)

3. Separation of specifically bound molecules from background clutter, Fig. 3.7(d).

The estimation of hybridization measure is usually complemented with infor-

mation regarding the local background for each spot as well as various spot quality

measures (homogeneity, circularity, etc.).

Each of these steps will be discussed in detail in the following chapters, the

detection of single molecules, based on wavelet thresholding in Chapters 4 and 5,

while the specific signal detection and concentration estimation in Chapter 6.
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Figure 3.7: Analysis of a spot in a high-resolution microarray image. (a) Original
image, bright features correspond to molecules bound to the chip. (b) Detection
of single molecules. (c) Selection of single molecule locations (local maxima on
denoised image inside the detection support in (b)). (d) Separation of hybridization
signal from clutter.

Mathematical model

The differences between the low resolution and high resolution microarray experi-

ments might be best understood by describing an underlying model of fluorescence

intensity for each of them.

Our aim is to propose a new measure for hybridization: instead of aggregations

of the pixel intensities inside the spot we use as hybridization measure single

molecule counts (or concentration of hybridized molecules per area unit). The

model we propose as well as the new hybridization measure suggest that the high

resolution technique has the following advantages: besides offering a way to analyze

very low concentration samples, it removes bias due to background heterogeneity

and PCR amplification, making several normalization steps and dye swap (all

prone to distortions and errors) unnecessary.
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So far, for the classical case of low resolution imaging, the analysis is based

on the comparison of appropriately chosen summary statistics of pixels inside the

spot. Conventional analysis is based on models of the microarray signal formation,

like the ones proposed by [10, 6, 23, 70, 74]. These models include several aspects

of the acquired data such as image intensity, spot shapes, noise.

A very simple but frequently used spot intensity model proposed in [6] can be

written

Yi = µi · s(i− ic) + εi,

where Yi is the intensity of the spot at pixel i, µi represents the amplitude of the

spot as a measure of the hybridization, s is a function describing the shape and

texture of the spot, while ic represents the center of the spot, and εi models the

local and/or global background noise, usually εi ∼ N (0, σ).

A more realistic model, taking into account the sensor properties, includes both

additive and multiplicative noise [71]:

Yi = αµie
ηi + εi,

where α is the gain of the sensor, eηi and εi representing the multiplicative and

additive noise, respectively.

Often a lognormal model of pixel values Yi is assumed. If Y is replaced by G

or R for intensities in the green or red channel respectively, and BRi and BGi

are the respective background estimates used for background correction, the final

quantity of interest is:

log(Gi − BGi)− log(Ri − BRi). (3.3.1)

The log-transform plays also a variance stabilizing role.

However, gaining access to microarray spot images at single molecule reso-

lution, we understand better the image formation process in both high and low

resolutions. For modeling we shall adopt an approach close to the concentration

modeling described in [23].

For the classical low-resolution microarray image analysis we propose a com-

pound Poisson process model explained below. The discussion of the high res-

olution model will be detailed in Chapter 6. We first give the definition of the

compound Poisson process and than see how it helps in modeling the microarray

pixel intensities.
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Figure 3.8: Schematically represented microarray spots. Although the red/green
ratio is the same in both spots, the intensity ratio in the two channels will differ

Definition 3.3.1. Given a rate λ > 0 and an arbitrary distribution Q, the random

sum

Z =
N∑

k=1

Xk,

is distributed according to CP(λ,Q) (compound Poisson process), where N ∼
Poi(λ) and Xi are independent and identically distributed random variables with

distribution Q (jump distribution), independent of N .

The tail behaviour of CP(λ,Q) is inherited from the distributionQ, the expectation

and variance are given by: E(Z) = λE(Q) and Var(Z) = λE(Q2).

Model 1

The intensity of pixel i in the low-resolution microarray spot image is obtained

by integrating the fluorescent intensity due to hybridized molecules, unspecific

binding, background and artifacts over the area corresponding to one pixel and it

can be written as:

Yi = Bi + Zi = Bi +

Ni∑

k=1

Dk, (3.3.2)

where Bi represents background fluctuation, Zi is a compound Poisson process such

that Ni represents the number of single molecules inside the low resolution pixel

area i and Dk are the intensities of single molecules in the same area, Dk ∼ Poi(µ).
Thus each pixel in the low resolution spot image can be considered a real-

ization of a random variable distributed according to a compound Poisson model

CP(λ, µ). Adding the effect of thermal noise and the gain of the optical system
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(as in Section 2.3), a pixel can be modeled as

g̃i(x, y) = α (Yi) + ε = α

(
Bi +

Ni∑

k=1

Dk

)
+ εi,

Bi ∼ Poi(B), ε ∼ N (0, σ),

Model 2

A more complex model takes into account the variation of the number of fluo-

rophores, Mk, bound to each molecule. In this case the the jump distribution D

follows itself a compound Poisson distribution, CP(λ1, CP(λ2, µ)). If Mk is the

number of dyes bound to a molecule, Mk ∼ Poi(λ2), and Djk is the intensity of a

single dye, Djk ∼ Poi(µ), the model can be written as:

Yi = Bi + Zi = Bi +

Ni∑

k=1

Mk∑

j=1

Djk. (3.3.3)

The compound Poisson process model has applications in gene expression anal-

ysis ([73, 113]), but to our knowledge has not been used in the case of microarray

image analysis. The compound Poisson model is useful in illustrating the difference

between the classical low resolution microarray analysis and the high resolution

one.

The technology of high resolution microarrays offers access to previously hidden

information: instead of analyzing the low-resolution pixel values Yi, the inference

is based on Ni the number of single molecules in the image. The measure of

hybridization is in our case the concentration of single molecules inside the spot

of interest. The knowledge of the background values of Bi and photon counts Dk

has little or no relevance, being only nuisance parameters.

In microarray analysis the identification of the true signal and the control of the

unspecific intensity variation is essential. We have identified the following short-

comings of the low resolution technique, which make this analysis less appropriate

than the single molecule one:

1. In case of low concentrations, many spots are rejected from analysis due to

low signal-to-noise (SNR) ratio and artifacts, especially in the case of dim

spots. Low resolution microarrays cannot discriminate between signal and

background. In the high resolution technique, single molecules are as easily

detected in low concentration (dim spots) as in high concentration ones,
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allowing the analysis of trace amount of biological sample.

2. Even when segmentation is possible, background estimation is difficult in

low resolution microarray images and might introduce a bias. In the high

resolution case, background subtraction becomes irrelevant, it is implicitly

achieved by the single molecule detection procedure.

3. It was shown that the labeling efficiency is gene dependent (see, e.g., [55])

and it can distort the results in the case of low-resolution microarrays. In

the high resolution case, the hybridization measure is represented by counts

of single molecules and it is not affected by the variability of the number of

fluorophores bound the a molecule. Dye swap normalization typically per-

formed for classical arrays in order to compensate for dye related differences

also becomes unnecessary.

4. We note that although normally only the count information is relevant in

the case of the high resolution technique, still it is possible to use the inten-

sity corresponding to a single molecule, for instance to discriminate it from

dirt. Dirt particles show autofluorescence, with a significantly lower (but

sometimes not negligible) intensity than the dye marked molecules. The

high resolution technique allows discrimination between two or several en-

tities based on total intensity of a single molecule but the same cannot be

performed in low resolution images, since the information is not available at

this granularity .

Some of the challenges of the new method are related to the huge amount of

data that has to be processed (22 GB per slide), the scarcity of the highly expressed

spots necessary to perform the gridding, the high variance of the Poisson processes

modeling the counting of molecules. Also, in case of high density of the molecules in

a spot, when single molecules cannot be discriminated, classical intensity summary

based methods have to be used instead of single molecule counting algorithms.
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Multiscale signal decomposition

This chapter gives a brief introduction to wavelets, both the continuous (CWT)

and discrete wavelet transform (DWT), as well as to multiresolution analysis, or-

thogonal wavelet bases and their generalization, the wavelet frames. We focus on

particular discretizations of the CWT, the dyadic wavelet transform,the undeci-

mated wavelet transform and the isotropic undecimated wavelet transform (for the

two dimensional case), and on a particular wavelet shape, the B-spline wavelet,

especially fitted to the analysis of biological images. The isotropic undecimated

wavelet transform is the representation of the signal that will be used in the next

chapter to detect single molecules.

4.1 Continuous wavelet transform

The choice of wavelet transforms for the problem of single molecule detection can

be motivated in a first step by Mallat’s heuristic: Bases of smooth wavelets are

the best bases for representing objects composed of singularities, when there may

be an arbitrary number of singularities, which may be located in all possible spatial

positions (see for instance [36]).

Since the Fourier basis functions are localized in frequency but not in time, the

Fourier transform

Ff(ω) = f̂(ω) =
1√
2π

∫

R

f(x)e−ixω d x

is the ideal tool to study stationary signals defined by invariance of statistical

properties over time. However a small perturbation of frequencies in the Fourier

domain will produce changes over the whole time domain.

45
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On the other hand, wavelet transforms, local in both frequency (scale) and

time, provide the way to analyze non-stationary signals, characterized by transient

events [78, 63]. They offer a compact representation of a signal (e.g. with sharp

transitions), which for comparable approximation properties takes significantly

fewer wavelet basis functions than Fourier basis functions.

The wavelet transform breaks up a complicated signal in ”atoms”, called

wavelets.

A wavelet (also calledmother wavelet) is a function ψ ∈ L2, which is normalized

‖ψ‖ = 1, has zero average ∫ +∞

−∞
ψ(t)dt = 0,

and is centered in the neighborhood of t = 0.

The wavelet ψ is said to have order m ∈ N if it has m vanishing moments:

∫ +∞

−∞
tnψ(t)dt = 0, n = 0, 1, . . .m− 1

and
∫ +∞
−∞ tmψ(t)dt 6= 0. Thus a wavelet of order m is orthogonal to polynomials of

degree smaller than m.

The mother wavelet generates a family of wavelets ψs,u(x), s > 0, u ∈ R by

change of scale s (i.e. by dilation) and by change of position u (i.e. by translation)

of the mother wavelet function ψ(x). Thus each wavelet of the family is obtained

from ψ as:

ψs,u(t) =
1√
s
ψ

(
t− u

s

)
.

Definition 4.1.1. The (basic) wavelet ψ ∈ L2 satisfies the admissibility condition

if

Cψ =

∫ +∞

0

|(Fψ)(ω)|2
ω

dω < +∞. (4.1.1)

If ψ satisfies (4.1.1), the continuous wavelet transform (CWT) of f ∈ L2(R) at

position u and scale s is defined by

(Wf) (u, s) = 〈f, ψs,u〉 =
∫ +∞

−∞
f(t)

1√
s
ψ

(
t− u

s

)
dt = f ∗ ψ̄s(u), (4.1.2)

where u, s ∈ R, u 6= 0 , ∗ denotes the convolution operator and

ψ̄s(t) =
1√
s
ψ∗
(−t
s

)
.
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Under the assumption (4.1.1), it follows that for reasonable conditions imposed

on ψ (i.e. ψ ∈ L1(R)) the continuous function ψ̂ satisfies ψ̂(0) = 0, or equivalently∫∞
−∞ ψ(t) dt = 0, justifying the use of condition (4.1.1) as an alternative definition

of wavelet functions.

The wavelet transform measures the variation of f in a neighborhood of u of

size proportional to s. The regularity of the function f in the neighborhood of u

is characterized by the decay of the respective wavelet coefficients, allowing the

detection of transients in the signal.

The Fourier transform of Wf with respect to the u variable is

(FWf)(ω, s) = (Ff)(ω) · (Fψ)(sω)

and this equation is often used for the implementation of the CWT. The decompo-

sition obtained after the wavelet transform can be further processed for different

purposes, such as compression, denoising, pattern recognition etc. These tasks are

easier performed in the new wavelet space. Inversion formulas make possible the

recovery of the original or a suitably improved function from the expression of the

original function in terms of its wavelet transform.

The necessary condition to obtain the inverse of a wavelet transform is the

admissibility condition (4.1.1). According to [78], p.81, Calderon in 1964, and

Grossman and Morlet in 1984 prove independently that (4.1.1) is the condition for

a wavelet transform to be complete (to admit an inverse transform) and conserve

energy.

Theorem 4.1.2. Let the function ψ ∈ L2 satisfying the admissibility condi-

tion (4.1.1). Any function f ∈ L2 satisfies

f(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf(u, s)

1√
s
ψ

(
t− u

s

)
du

ds

s2

and ∫ +∞

−∞
|f(t)|2 dt = 1

Cψ

∫ +∞

0

∫ +∞

−∞

∣∣Wf(u, s)2
∣∣ du ds

s2
.

If Wf(u, s) is known only for s < s0, in order to recover f the information
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corresponding to s ≥ s0 can be obtained via a scaling function ϕ, satisfying:

|(Fϕ)(ω)|2 =
∫ +∞

1

|(Fψ)(sω)|2 ds
s

=

∫ +∞

ω

|(Fψ)(ξ)|2
ξ

dξ,

and from the admissibility condition results that: limω→0 |ϕ̂(ω)|2 = Cψ.

The scaling function ϕ can be interpreted as a low-pass filter, and the low

frequency approximation of function f at scale s is written as:

Lf(u, s) =

〈
f(t),

1√
s
ϕ

(
t− u

s

)〉
= f ∗ ϕ̄s(u).

With the help of the scaling function ϕ, Theorem 4.1.2 can be reformulated as:

f(t) =
1

Cψ

∫ s

0

Wf(·, s) ∗ ψs(t)
ds

s2
+

1

Cψs0
Lf(·, s) ∗ ϕs0(t). (4.1.3)

4.2 Frames

Although very elegant and descriptively rich, the CWT has several drawbacks,

such as dimension increase via the introduction of an extra dimension through

the scale parameter, high redundancy of the representation as well as the need to

adapt the CWT for the case of discrete signals, that are overwhelming in prac-

tical applications. In order to overcome these drawbacks, frames are defined as

(not necessarily independent) generalizations of bases, leading to redundant sig-

nal expansions. Ubiquitous examples of frames are the discrete windowed Fourier

transform and the discrete wavelet transforms, we will describe later.

Intuitively, frames are families of functions {ϕn}n∈Γ , Γ ⊂ N that characterize

a signal f via its inner products. The study of frames was motivated by the search

for the necessary and sufficient conditions that f ∈ H, where H is a Hilbert space,

is characterized by the inner products 〈f, ϕn〉 (the frame wavelet coefficients),

meaning that: 〈f1, ϕn〉 = 〈f2, ϕn〉 implies f1 = f2 [30]. Moreover, if f can be

reconstructed via these inner products, the reconstruction turns out to be of the

following simple form:

f =
∑

n∈Γ
〈f, ϕn〉 ϕ̃n, (4.2.1)

where ϕ̃n is the dual frame of ϕn, and will be defined below.

Definition 4.2.1. The sequence {ϕn}n∈Γ is a frame of a Hilbert space H if there
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exist two constants A,B > 0 such that for any f ∈ H

A ‖f‖2 ≤
∑

n∈Γ
|〈f, ϕn〉|2 ≤ B ‖f‖2 . (4.2.2)

If A = B the frame is called a tight frame.

The linear operator fromH to ℓ2(Γ) =
{
x = (xj)j∈Γ : ‖x‖2 =∑j∈Γ |x|

2
j <∞

}
,

defined as (Ff)j := 〈f, ϕj〉 is called a frame operator.

Condition (4.2.2), called stability condition, ensures that a function can be

recovered from its wavelet frame transform 〈f, ϕn〉 as in (4.2.1).

When the frame is normalized, ‖ϕn‖ = 1, A and B give a measure of the

redundancy:

• if {ϕn}n∈Γ are linearly independent then A ≤ 1 ≤ B.

• {ϕn}n∈Γ is an orthonormal basis if and only if A = B = 1.

• If A > 1 the frame is redundant, and A can be seen as a measure of the

redundancy factor.

The adjoint of the frame operator F ∗ can be computed as

〈F ∗x, f〉 = 〈x, Ff〉 =
∑

j∈Γ
xj〈f, ϕj〉 =

∑

j∈Γ
xj 〈ϕj, f〉 ,

so that F ∗x =
∑

j∈Γ xjϕj.

Note that F ∗F is invertible ([30]), and F̃ := (F ∗F )−1F ∗ is the left inverse, of

minimum sup norm, called pseudo-inverse (see [78]).

Definition 4.2.2. The dual frame of {ϕn}n∈Γ is defined as:

ϕ̃j = (F ∗F )−1 ϕj.

It can be shown that the dual frame is indeed a frame, satisfying

1

B
‖f‖2 ≤

∑

j∈Γ

∣∣〈f, ϕ̃j〉2
∣∣ ≤ 1

A
‖f‖2 .

If the frame is tight then ϕ̃j = A−1ϕj (for the proof and further details see [30]).
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Finally, the reconstruction formula can be now written:

f = F̃−1Ff =
∑

j∈Γ
〈f, ϕj〉 ϕ̃j =

∑

j∈Γ
xj 〈ϕ̃j, f〉ϕj.

A wavelet frame is constructed from a continuous wavelet family by restrict-

ing the parameter u and s in (4.1.2) to discrete values. Since the energy of a

wavelet is concentrated around u over a domain proportional to s (in frequency

space 1/s), for good localization properties in both domains, s is sampled along

an exponential sequence {aj}j∈Z, while the translation parameter u is sampled

uniformly proportional to aj:

ψj,n(t) =
1√
aj
ψ

(
t− nu0a

j

aj

)
(4.2.3)

Not every choice of ψ, a and u0 generates a frame of L2(R), even if ψ is admissible

(the frame condition actually imposes the admissibility of ψ). Necessary and

sufficient conditions for ψ, a and u0 to form a frame are given in [30].

In general, the canonical dual frame ψ̃j,n = (F ∗F )−1ψj,n does not have nec-

essarily a wavelet structure, since F ∗F does not commute with translation, and

neither does (F ∗F )−1 (however commutativity with dilation is fulfilled).

The function ψj is called also analysis wavelet, while ψ̃j when it has a wavelet

structure is called the synthesis wavelet, corresponding to the analysis (decompo-

sition) and the synthesis (reconstruction) steps in the wavelet transform.

Since a frame does not have to be linearly independent (e.g Haar family), the

stability condition is weaker than the Riesz basis requirement, defined below.

Definition 4.2.3. A family {ϕk} is Riesz basis for L2(R), if

L2(R) = span {ϕ(· − k)|k ∈ Z}

and

A
∑

k∈Z
c2k ≤

∥∥∥∥∥
∑

k∈Z
ckϕ(· − k)

∥∥∥∥∥

2

L2

≤ B
∑

k∈Z
c2k

for all {ck}k∈Z ∈ l2(Z), where A and B are positive constants.

Every orthonormal basis is a Riesz basis, and every Riesz basis is a frame. The

following theorem on the relationship between frames and Riesz bases is proven in

[24]:
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Theorem 4.2.4. Given ψ ∈ L2(R) the following statements are equivalent:

• {ψj,k} is a Riesz basis of L2(R)

• {ψj,k} is a frame of L2(R) and it is a ℓ2-linearly independent family, i.e.,

∑
cj,kψj,k = 0 ⇒ cj,k = 0.

Moreover the Riesz bounds coincide with the frame bounds.

For two particular frame classes the duals have an easy characterization, for

semi-orthogonal wavelets and the more restrictive orthogonal wavelets both pre-

sented in the following definition.

Definition 4.2.5. Given a wavelet ψ ∈ L2((R))

a) ψ is called an orthogonal wavelet if {ψj,k} satisfies:

〈ψj,k, ψl,m〉 = δj,k · δl,m, ∀j, k, l,m ∈ Z,

b) ψ is called a semi-orthogonal wavelet if

〈ψj,k, ψl,m〉 = 0, ∀j 6= l, k,m ∈ Z.

Note that the orthogonal wavelets are self-dual: ψj,k = ψ̃j,k, while the result

concerning the dual of a semi-orthogonal wavelet is given in the following theorem

(see [24], for details).

Theorem 4.2.6. If ψ ∈ L2(R) is a semi-orthogonal wavelet then its dual can be

defined via its Fourier transform as:

(F ψ̃)(ω) := (Fψ)∑∞
−∞ |(Fψ)(ω + 2πk)|2

meaning that 〈
ψj,k, ψ̃l,m

〉
= δj,kδl,m, ∀j, k, l,m ∈ Z, (4.2.4)

where ψ̃l,m := 2l/2ψ̃(2lx−m).

In this case the dual has a wavelet structure generated by ψ̃ and every f ∈
L2(R) can be written as:

f =
∑

j,k∈Z
cj,kψj,k(x) =

∑

j,k∈Z
dj,kψ̃j,k(x), (4.2.5)
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where the sums are known as wavelet series and from (4.2.4) follows that:

cj,k =
〈
f, ψ̃j,k

〉

dj,k = 〈f, ψj,k〉 .

It is clear that ψ and ψ̃ are interchangeable (either one can be used in analysis

and the other in synthesis).

4.3 Multi-resolution analysis

For an efficient computation of the wavelet transform and the reconstruction of a

signal via the inverse transform the concept of multiresolution analysis is intro-

duced. The multiresolution analysis (MRA) offers a hierarchical framework for

interpreting the information in the signal, with a parsimonious representation of

important features at different scales in only a few coefficients. It allows a scale

invariant analysis of signal features and via a special coarse-to-fine strategy ex-

amines the decorrelated components of the signal at different resolutions. It is a

convenient tool in pattern recognition, denoising, detection etc.

The computations implied by MRA can be conveniently described through

filters and filter banks. For every continuous linear operator F : ℓ2(Z) → ℓ2(Z)

there exist {hk}k∈Z ∈ ℓ2(Z) such that

(Fx)k =
∑

n∈Z
hk−nxn.

h = (. . . hk−1, hk, hk+1 . . .) represents the impulse response of the filter, and the

elements are called filter coefficients. A convenient way to describe filters is through

their Z transform, expressed as a Laurent polynomial:

H(z) =
∑

i

hiz
−i.

Louis et al. [76] give an elegant motivation for multiresolution analysis. A

signal f ∈ V−1, where V−1 is a subspace of L2(R), is decomposed in a smooth (low-

frequency) component via a projection P0f ∈ V0 and a detail (high-frequency)

component, Q0f ∈ W0, where W0 is the orthogonal complement of V0, W0 =



4.3 Multi-resolution analysis 53

{x ∈ V−1 : 〈x, y〉 = 0, y ∈ V0} denoted V−1 = V0 ⊕W0, such that

f = P0f +Q0f.

In the next step, P0f is decomposed by projections P1 and Q1 on orthogonal

subspaces V1 and W1, respectively, such that P0f = P1f + Q1f and f = P1f +

Q1f +Q0f . The process can be repeated recursively.

Definition 4.3.1. A sequence of nested, closed subspaces Vj ⊂ L2(R),

0 ⊂ . . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . ⊂ L2(R)

is called a multiresolution analysis (MRA) if

• limj→−∞ Vj =
⋃
j∈Z = L2(R)

• limj→∞ Vj =
⋂
j∈Z Vj = 0

• f(·) ∈ Vj if and only if f(2j·) ∈ V0

• f ∈ Vj if and only if f(· − 2jk) ∈ Vj,k ∈ Z

• ∃ϕ ∈ L2(R) : ϕ(· − k)k∈Z is a Riesz basis for V0.

It can be shown that f ∈ V0 if and only if f(· − k) ∈ V0, ∀k ∈ Z and

Vj = span {ϕj,k(· − k)|k ∈ Z},

where ϕj,k(x) := 2−j/2ϕ(2−jx− k).

To approximate f in Vj the projection on the scaling basis is considered, such

that the inner products

cj,n = 〈f, φj,n〉 =
∫ ∞

−∞
f(t)

1

2j/2
φ

(
t− 2jn

2j

)
dt

represent a discrete approximation at scale 2j.

The following lemma is a consequence of the observation:

2−1/2ϕ(x/2) ∈ V1 ⊂ V0 = span {ϕ(x− k)|k ∈ Z}.

Lemma 4.3.2. There exists {hk}k∈Z ∈ R such that

2−1/2ϕ
(x
2

)
=
∑

k∈Z
hkϕ(x− k), (4.3.1)
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where

hk =
〈
2−1/2ϕ

(x
2

)
, ϕ(x− k)

〉
.

Equation (4.3.1) is called two-scale equation or refinement equation.

Lemma 4.3.2 relates a dilation of ϕ by 2 to its integer translations via h, a

discrete filter called conjugate mirror filter.

On the other hand, the difference of information between the approximation

of the function f at resolution 2j+1 and 2j respectively is called detail signal at

resolution 2j. By denoting with Wj the complement of Vj in Vj+1, Vj−1 = Vj+̇Wj,

one can write the decomposition of L2(R) as the direct sum of the Wj spaces :

L2(R) =
∑̇

j∈Z
Wj = . . . +̇W1+̇W0+̇W1 . . . .

As opposed to the nested subspaces Vj, the subspaces Wj are disjunct: ∀j 6=
l, Wj ∩Wl = {0} . In order to have an orthonormal basis one can chose Wj to be

the orthogonal complement of Vj in Vj−1, Vj⊥Wj, as in the motivational example

for MRA,:

Vj−1 = Vj ⊕Wj.

The following theorem due to Mallat and Meyer [78] p.236 gives the construction of

an orthonormal basis of Wjby scaling and translations of a wavelet ψ, constructed

upon a scaling function ϕ.

Theorem 4.3.3. Given ϕ a scaling function and h the corresponding conjugate

mirror filter, denote by ψ the function whose Fourier transform is

(Fψ)(ω) = 1√
2
(Fg)

(ω
2

)
(F(ϕ)

(ω
2

)
,

where

(Fg)(ω) = e−iω(Fh∗)(ω + π). (4.3.2)

For any scale 2j, {ψj,n}n∈Z is an orthonormal basis of Wj, where

ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)
.

For all scales, {ψj,n}(j,n)∈Z2 is an orthonormal basis of L2(R).
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From Theorem 4.3.3 it results that

2−1/2ψ
(x
2

)
=
∑

k∈Z
gkϕ(x− k),

and subsequently

gk =
〈
2−1/2ψ

(x
2

)
, ϕ(x− k)

〉
.

Finally, the relation between g and h in (4.3.2) can be rewritten after the

inverse Fourier transform as:

gk = (−1)1−kh1−k.

4.4 Generalizations of MRA to two dimensions

The previous one dimensional multiresolution analysis setting can be extended to

higher dimensions L2(Rd) in a straightforward way.

If {Vj}j∈Z is a two-dimensional multiresolution analysis, the two-dimensional

signal f(x, y) ∈ L2(R2) can be approximated by its projection on Vj. Denoting

ϕ2j := 22
j

ϕ(2j, 2jy), it can be shown that the family of functions obtained by the

dilation and translation of the scaling function ϕ(x, y):

{
2−jϕ2j(x− 2−jn, y − 2−jm)

}
(n,m)∈Z2

forms an orthonormal basis of Vj.

The function ϕ(x, y) is unique with respect to a given multiresolution analysis.

A special case of multiresolution approximations is the one of separable MRA,

where each vector space Vj can be decomposed as a tensor product of two identical

subspaces of L2(R) (representing MRA of L2(R))

Vj = V 1
j ⊗ V 1

j = span
{
f(x)g(y) | f, g ∈ V 1

j

}
.

and subsequently the scaling function can be written as ϕ(x, y) = ϕ(x)ϕ(y), where

ϕ(x) is the respective one-dimensional scaling function.

The orthogonal basis of Vj is given by:

{
2−jϕ2j(x− 2−jn, y − 2−jm)

}
(n,m)∈Z2 =

{
2−jϕ2j(x− 2−jn)ϕ2j(y − 2−jm)

}
(n,m)∈Z2

and the approximation of the signal f(x, y) at resolution 2−j is characterized by
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the inner products:

{〈
f(x, y), ϕ2j(x− 2−jn)ϕ2j(y − 2−jm)

〉}
(m,n)∈Z2 .

Just as Vj is defined with the help of V 1
j , also the details Wj of the two-

dimensional MRA, are based on the respective W 1
j the complements of V 1

j in the

one dimensional case:

Vj−1 = V 1
j−1 ⊗ V 1

j−1

= (V 1
j ⊕W 1

j )⊗ (V 1
j ⊕W 1

j )

= (V 1
j ⊗ V 1

j )⊕ ((V 1
j ⊗W 1

j )⊕ (W 1
j ⊗ V 1

j )⊕ (W 1
j ⊗W 1

j ))

= Vj ⊕Wj.

Using the notations above, the following result, is proven in [77]:

Theorem 4.4.1. If Wj is the orthogonal complement of Vj, where {Vj}j∈Z is an

MRA of L2(R2), with generating scaling function ϕ(x, y) = ϕ(x)ϕ(x), and ψ(x) is

the one-dimensional wavelet associated to ϕ(x) then

{2−jψ1
2j(x− 2−jn, 2j, y − 2−jm),

2−jψ2
2j(x− 2−jn, 2j, y − 2−jm),

2−jψ3
2j(x− 2−jn, 2j, y − 2−jm)}(n,m)∈Z2 ,

where

ψh(x, y) = ϕ(x)ψ(y), ψv(x, y) = ψ(x)ϕ(y), ψd(x, y) = ψ(x)ψ(y),

is an orthonormal basis of Wj.

The scalar products corresponding to the three kinds of wavelets give the details

of the function f(x, y), with respect to three emphasized directions: horizontal,

vertical and diagonal. These directions might have a special role in human vision,

however are not so important in microscopy images.
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Figure 4.1: Orthogonal wavelet decomposition (Haar wavelets)

4.5 B-spline frames

The first and still very popular wavelet family is the family introduced by Haar in

1910 (see for example [12]), the Haar wavelets. Based on the scaling function:

ϕ(x) =

{
1, 0 ≤ x < 1

0, otherwise
(4.5.1)
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they fulfill a simple scaling equation:

ϕj+1,k =
1√
2
(ϕj,2k − ϕj,2k+1)

and based on the difference 1√
2
(ϕj,2k − ϕj,2k+1) = ψj+1,k the Haar wavelet can be

written as:

ϕ(x) =





1, 0 ≤ x < 1/2

−1, 1/2 ≤ x < 1

0, otherwise.

(4.5.2)

Haar wavelets are a particular case of B-spline wavelets (of order 0). The n-th

order B-spline is recursively defined as:

B0(x) = χ[0,1](2x)

Bn+1(x) = (Bn ∗B0)(x) =

∫ ∞

−∞
Bm−1(x− t)B0(t) dt =

∫ 1

0

Bm−1(x− t) dt,

normalized such that
∫
R
Bn(x) dx = 1. The Fourier transform of Bm is

(FBm)(ω) =
1√
2π

(
sin(ω/2)

ω/2

)m+1

=
1√
2π

sincm+1(ω/2).

For any j and m ≥ 2 the family

Bj :=
{
2j/2Bm(2

jx− k), k ∈ Z
}

is a Riesz basis of V m
j . Since the spline function Bm(2

jx) ∈ V m
j and V m

j ⊂ V m
j+1 it

results that it can be written as:

Bm(2
jx) =

∞∑

k=−∞
pm,kBm(2

j+1x− k), (4.5.3)

where {pm,k : k ∈ Z} is a ℓ2-sequence. Solving (4.5.3) for pm,k in Fourier domain

yields:

pm,k =





2−m+1

(
m

k

)
, 0 ≤ k < m

0, otherwise

(4.5.4)
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and the corresponding two-scale relation is then given by:

Bm(x) =
m∑

k=0

2−m+1

(
m

k

)
Bm(2x− k).

The first result concerning spline wavelets associated to B-spline scaling func-

tions of order m are called cardinal spline wavelets (see [24] for a detailed descrip-

tion). Their disadvantage is that although the wavelets have exponential decay,

their support is not compact thus being tedious to compute.

In order to remedy this shortcoming the orthogonality requirement is dropped.

Semi-orthogonal wavelets with compact supports always exist if the two-scale se-

quence of the scaling function ϕ has finite support. Chui in [24] describes the

unique solution for the compactly supported semi-orthogonal wavelet ψm with

minimum support that corresponds to the m-th order cardinal B-spline:





ψm(x) :=
∑

n qnBm(2x− n)

qn = (−1)n
2m−1

∑m
l=0

(
m

l

)
B2m(n+ 1− l), n = 0, . . . , 3m− 2.

(4.5.5)

Several properties of spline wavelets are discussed in [24, 111, 77, 78].

4.6 Fast wavelet transform algorithms via filter

banks

In most of practical cases, one has to deal with discrete signals. A real digital

signal is a sequence fi = f(i) ∈ R. We shall consider only square summable

signals f ∈ l2(Z). The simplest discretization of an analog input f(t) can be

achieved via natural sampling:

f [n] = f(t = n), n ∈ Z.

The discrete signal can be related to f(t) also via a D/A converter:

f(t) ≈
∑

n

f [n]χ(t− n).

It includes the natural sampling case when χ(n) = δ0n. Wavelet algorithms for

discrete signals as well as their connection to the CWT were thoroughly described
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in [100, 77, 90, 87], with a focus on computational details.

Most frequently computations are made over the dyadic grid u = 2j, s = k2j

for the scale and translation parameter of the wavelet. Mallat in [77] proposed

the use of conjugate mirror filters for the computation of the discrete wavelet

transform (DWT) in the frame of multiresolution analysis. Two special operators

are used in the transition from one resolution to another. The decimation operator

D : ℓ2(Z) → ℓ2(2Z), Dk,m = δ2k,m retains only the terms with even index in the

sequence (alternative notation: 2 ↓ 1). The Fourier transform of a decimated

signal yn = x2n is

ŷ(2ω) =
∑

n

x2ne
−i2nω =

1

2
(x̂(ω) + x̂(ω + π)) .

The component x̂(ω + π) creates a frequency folding called aliasing that must be

canceled at the reconstruction of the signal.

The adjoint operator E = D∗ : ℓ2(2Z) → ℓ2(Z) inserts 0’s at the odd indices:

Ek,m = δk,2m resulting in

. . . 0, x−1, 0, x0, 0, x1, 0 . . .

It is also denoted by 1 ↑ 2.

The signal f is decomposed iteratively by the low pass filter h and the high-pass

filter g, both filtered results being subsequently decimated (by using the operator

D). The procedure is repeated for the low-pass filtered signal. These steps applied

recursively represent the analysis part of the algorithm, depicted on the left of

Fig. 4.2. The connection between ϕ, ψ and h and g, respectively was given at the

end of Section 4.2.

The computation can be summarized as the iteration of the following steps:

cj,n(f) =
∑

k

h2n−kcj−1,k(f), (4.6.1)

wj,n(f) =
∑

k

g2n−kcj−1,k(f), (4.6.2)

where c0,k = f(k) and

gi = (−1)ih−i+1, hi = 21/2
∫
ϕ(x− i)ϕ(2x) dx.

As for reconstruction (synthesis), on the right side in Fig. 4.2, since cj,n(f)
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Figure 4.2: Signal decomposition and reconstruction (one level)

represents the projection on the subspace Vj, and wj,n on Wj, the following holds

in case of orthogonality:

cj−1,i(f) =
∑

n

h2n−icj,n(f) +
∑

n

g2n−iwj,n(f).

Before the convolutions with the respective filters, note that the signals are

upsampled via the operator E. If no further processing is applied after the anal-

ysis step, the synthesis will recover the original signal. It is important for the

computational efficiency of the algorithm that the filters h and g (equivalently ψ

and ϕ) have compact support.

The algorithm above represents a critically sampled filter bank corresponding

to the orthonormal and biorthonormal filter bases (for details see [77, 78]). In the

more general class of frames described in Section 4.2 the equivalent algorithm is

based on the oversampled filter banks (for details see [28]). The reconstruction

formula is given in (4.2.5), where the scaling functions are denoted by ϕ, wavelets

by ψ and their duals ϕ̃ and ψ̃ . Special reconstruction conditions (see [28, 5])

have to hold in order to obtain a perfect reconstruction of the signal. The perfect

reconstruction condition (canceling the aliasing) for the oversampled case (see [28])

is given by

(Fh∗)(ω + π)(F h̃)(ω) + (Fg∗)(ω + π)(F g̃)(ω) = 0

(Fh∗)(ω)(F h̃)(ω) + (Fg∗)(ω)(F g̃)(ω) = 2.

4.7 Translation invariance

Although computationally and memory-wise very efficient, the sampling over the

dyadic grid has drawbacks in pattern recognition, since the description of a pat-

tern should not depend on the position where the pattern appear. The lack of
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Figure 4.3: Undecimated signal decomposition and reconstruction (two consecutive
levels)

translation invariance of the dyadic grid sampling violates the principle of inde-

pendence of description from the location. We shall see in the next chapter that

also a certain amount of redundancy of wavelet coefficients can prove beneficial in

applications like denoising and image restoration.

In order to recognize a pattern in a signal, the numerical descriptors of the pat-

tern should be translation invariant. The continuous wavelet transform is transla-

tion invariant: Wfτ (u, s) = Wf(u− τ, s), where fτ (t) = f(t− τ), but the uniform

sampling of the translation parameter u of a wavelet frame as in (4.2.3) does not

preserve this property: Wfτ (ka
ju0, a

j) might be very different fromWf(kaju0, a
j)

if τ is not of the form τ = kaju0 and the sampling interval aju0 is large relative

to the rate of variation of f ∗ ψaj (see [78]).

Undecimated wavelet transform

The obvious solution to preserve translation invariance is to modify the discretiza-

tion of the translation parameter u. The scale s is still sampled along the dyadic

sequence {2j}j∈Z but u is not subsampled and the wavelet transform is defined as

Wf(u, 2j) =

∫
f(t)

1

2j
ψ

(
t− u

2j

)
dt = f ∗ ψj(u). (4.7.1)

It can be proven that the suitably normalized dyadic wavelet transform from

(4.7.1),
√
2−j/2W , is a frame operator. A fast dyadic transform is schematically

represented in Fig. 4.3. Note that all decimations and dilations are dropped. In-

stead modified filters h(j) and g(j) are used, where h(j) is obtained from h(j−1) by

applying the dilation operator E:

h(j) = (. . . 0, h
(j−1)
−1 , 0, h

(j−1)
0 , 0, h

(j−1)
1 0 . . .),
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and g(j) is obtained similarly from g(j−1). In order to compute the multiresolution

analysis, the operation above performs the dilation of the wavelet ψ and scaling

function ϕ (and also samples these functions in more points) in order to compensate

the lack of decimation of the signal, through which multiresolution was achieved

in the algorithm of Mallat. The construction based on zero insertion inspired the

name of the method (à trous is French for ’with holes’).

With these new filters the algorithm becomes the iteration of

cj+1,k = cjk ∗ h(j)k , wj+1,k = cjk ∗ g(j)k (4.7.2)

as decomposition steps and as for reconstruction:

cj+1,k =
1

2
(cj+1,k ∗ h̃(j)k + wj+1,k ∗ g̃(j)k ).

The extension of the undecimated wavelet transform to two dimensions is

achieved (for the sake of simplicity) via separable filters:

cj+1(k, l) = (h(j)h(j) ∗ cj)(k, l)
w1
j+1(k, l) = (g(j)h(j) ∗ cj)(k, l)

w2
j+1(k, l) = (h(j)g(j) ∗ cj)(k, l)

w3
j+1(k, l) = (g(j)g(j) ∗ cj)(k, l), j = 1, . . . , J − 1.

Note that each of the transformed images has the same size as the original image,

such that the redundancy factor is 3(J − 1) + 1.

Isotropic undecimated wavelet transform

In single molecule images, features are usually isotropic and in order to perform a

good image analysis the isotropy of the filters is a desirable property. In order to

preserve isotropy, the filters h and g as well as the scaling function and the mother

wavelet function ϕ and ψ have to be nearly isotropic. A popular choice is based

on one-dimensional B-spline scaling function of order 3, ϕ(x) = B3(x), to which

corresponds the filter hk =
[

1
16
, 1

4
, 3

8
, 1

4
, 1

16

]
. Based on ϕ(x), a 2d separable filter

is constructed such that:

ϕ(x, y) = B3(x)B3(y)

and

ψ
(x
2
,
y

2

)
= 4ϕ(x, y)− ϕ

(x
2
,
y

2

)
.
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The related filters are h(k,l) = hk×hl and g(k,l) = 10,0−hk,l, where 10,0 = 1 at (0, 0)

and is null otherwise. It means that the wavelet detail coefficients are given by:

wj+1,(k,l) = cj,(k,l) − cj+1,(k,l) [106] and the reconstruction is the sum of all details

and the coarsest approximation:

f(k,l) = cJ,(k,l) +
J∑

j=0

wj+1,(k,l). (4.7.3)

The detail at each resolution has the same dimension as the original 2d signal.

When there is no confusion, a single index will be used to denote the 2d index

(k, l). The index j will be preserved to denote the scale.

The relation to the UWT based on the same h and g = 1 − h =

[−1,−4, 10,−4,−1] is

w1
j + w2

j + w3
j = wj = cj − cj+1

Further details on UWT and IUWT can be found in [106]. The à trous scheme

was used in [107] for astronomical images, and in [106, 88] for microscopy.
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Wavelet based detection

The previous chapter offered a short introduction in wavelet transforms and fo-

cused on the transforms suited to analyze biological structures in general, and

single molecules in particular, like the IUWT transform described in Section 4.7.

The multiresolution analysis of a signal makes possible a good localization of

interesting areas (e.g. singularities) as well as a sparse representation, by only few

important wavelet coefficients, since the transform adapts to the local regularity of

the signal. Jaffard and Meyer ([62]) explain the efficiency of the wavelet transform

via the following paradigm: Objects, images, or signals with simple geometrical

structures have sparse wavelet expansions. Conversely, functions whose wavelet

expansion is sparse have interesting geometrical properties. In this chapter we shall

describe thresholding algorithms that make use of the convenient representation

with the final goal of performing the single molecule detection task.

5.1 Statistical applications of wavelet transforms

The solution of several statistical problems (estimation, approximation, model se-

lection, pattern recognition, etc.) can be generically formulated as the recovery of

the original (signal) coefficients expressed in a certain basis from the empirical ones

(see e.g. [78, 19]). Donoho explored the connection between the estimation prob-

lem and the representation problem, and showed that ”efficient representations

lead to efficient estimations” [36, 37, 19].

The efficiency of estimation is motivated by the decorrelating property of a

wavelet transform which creates a sparse signal, with most coefficients zero or close

to zero. The noise however affects equally all coefficients and if its level is moderate,

signal wavelet coefficients can be easily discriminated from coefficients due to noise

65
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Figure 5.1: Diagram of thresholding algorithms

by simple thresholding techniques. A fundamental oracle inequality relates the

performance of thresholding rules to the sparsity of such wavelet representations

[19].

A simple setting to illustrate the applications of the wavelet transforms in

statistics is the single sequence problem, seen as a non-parametric regression prob-

lem and defined as the estimation of a function f (e.g. f : R → R) from the data

{yi, i = 1, . . . , n} corrupted by additive noise:

yi = f(ti) + εi, i = 1, . . . , n. (5.1.1)

We shall consider f equally sampled at points ti = i∆ and denote fi = f(ti). Most

frequently the noise εi is considered to be independent and identically distributed

(i.i.d) white noise, following a Gaussian distribution εi ∼ N (ν, σ). Without loss of

generality, one can assume εi ∼ N (0, σ). Different noise models are described in

Section 5.6.

The performance of an estimator of f , denoted f̂ , can be measured by the risk

based on ℓ2 loss:

R(f̂ , f) = n−1E
∥∥∥f̂ − f

∥∥∥
2

ℓ2n

= E

[
1

n

n∑

i=1

(
f̂i − fi

)2
]
. (5.1.2)

Wavelets offer a convenient basis for signal representation, so the entire set-

ting (5.1.1) can be transposed in wavelet space. A typical algorithm to estimate

f̂ consists of three major steps: wavelet decomposition, estimation of true wavelet

coefficients with the help of an operator ρ and reconstruction of the signal via

inverse wavelet transform based on the estimated coefficients. See Fig. 5.1 for a

schematic representation. The function f is not known, so the continuous wavelet
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coefficients

wj,k =

∫
f(u)ψj,k(u) du

cannot be directly computed, and are estimated from the empirical wavelet co-

efficients. The coefficients wj,k of the discrete wavelet transform of the signal

f = (fi)i∈1,...n at scale j and location k are given by:

wj,k =
n∑

i=1

fiψj,i.

Moreover, the empirical coefficients w̃j,k of the discrete wavelet transform of the

noisy data y = (yi)i∈1,...n at scale j and location k are given by:

w̃j,k =
n∑

i=1

yiψj,i.

Given an estimate ŵi,k of the wavelet coefficient of the signal f and an orthogonal

wavelet transform, one can get an estimate of the signal by applying the following

inverse transform:

f̂i =
J∑

j=1

2j−1∑

k=0

ŵj,kψj,k +
2J∑

k=0

ĉJ,kϕJ,k.

The approximation n1/2ψj,k(i) ≈ 2j/2ψ(2ju − k), u = i/n holds for the discrete

case. Furthermore, to each wavelet level corresponds an estimation problem of

type (5.1.1), and we have:

w̃j,k = wj,k + εj,k for all j = 1, . . . , J and k = 0, . . . , 2j − 1, (5.1.3)

where E [εj,k] = 0 and E [ε2j,k] = σ2
j .

Finally, due to the orthonormality we have also E {εi1ǫi2} = σ2δi1−i2 since:

E

(
∑

i1

ψj1,k1εi1

)(
∑

i2

ψj2,k2εi2

)
=
∑

i1

∑

i2

E {εi1εi2}ψj1,k1ψj2,k2

= σ2δ(j1,k1),(j2,k2). (5.1.4)

Thus, the orthogonal wavelet transformed noise coefficients are also white noise.
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5.2 Wavelet coefficient estimation

The problem described in (5.1.1) can be transposed in wavelet space, as a wavelet

coefficient estimation problem. The risk equivalent to (5.1.2) becomes:

R(f̂ , f) = E

[
∑

j

∑

k

(ŵj,k − wj,k)
2

]
. (5.2.1)

The minimization of the risk is achieved via the algorithms described in Fig. 5.1,

more precisely the modification of wavelet coefficients via the operator ρ. In gen-

eral, these algorithms operate with two simplifications. First, only diagonal esti-

mators are considered, and second, these estimators have a special form (linear or

thresholding functions, called also shrinkage functions).

A diagonal estimator in the discrete wavelet basis estimates independently

each wj,k from w̃j,k via a function ρ: ŵj,k = ρ(w̃j,k). The algorithm can be thus

summarized as:

f̂ =
J∑

j=1

2j−1∑

k=0

ρ (〈y, ψj,k〉)ψj,k +
2J∑

k=0

ρ (〈y, ϕJ,k〉)ϕJ,k.

Additionally as a simple scenario we can assume ρ to be a linear function

ρ(w̃j,k) = aj,kw̃j,k that minimizes the risk (5.2.1). Level-wise, considering (5.1.3)

it follows that

E ‖wj,k − aj,kw̃j,k‖2 = |wj,k|2 (1− aj,k)
2 + aj,kσ

2
j . (5.2.2)

The minimum of (5.2.2) is attained for

aj,k =
|wj,k|2

|wj,k|2 + σ2
j

,

yielding

RL(f̂ , f) =
∑

j,k

|wj,k|2 σ2
j

|wj,k|2 + σ2
j

.

We note that the linear factor aj,k cannot be computed in practice, since it depends

on the unknown coefficient wj,k. Therefore the risk is not reachable, it is an ideal

risk that can be attained only with information on ideal smoothing of f provided

by an oracle, (an information which practically is not available). The ideal risk has
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theoretical importance, being a term of comparison for the optimality of estimation

algorithms.

Since the signal is assumed sparse, there are only a few important features at

detail level, the rest of the wavelet coefficients being zero or very close to zero.

This motivates the introduction of a further restriction: aj,k ∈ {0, 1}.
The nonlinear projector that minimizes (5.2.2) consists of the selection of the

bases that correlate best with the signal, thus having the most extreme valued

wavelet coefficients |wj,k| = |〈f, ψj, k〉|. This selection shows the signal dependent

aspect of the procedure. It can be described for instance via a thresholding defined

by:

aj,k =




1, |wj,k| ≥ σ

0, |wj,k| < σ.
(5.2.3)

Basically the thresholding includes the coefficients that exceed the noise level.

Again the estimator via aj,k depends on the unknown signal, such that an oracle

is necessary to decide which coefficients are above the noise level.

The risk of the oracle projector is

RNL =
∑

j,k

min
(
w2
j,k, σ

2
)

which is of the same order as RL:

RNL ≥ RL ≥ 1

2
RNL

since min(x, y) ≥ xy
(x+y)

≥ 1
2
min(x, y).

Donoho proved that simple estimates of wj,k are remarkably close to RNL.

Some of these simple estimates are the subject of Section 5.3 [36].

5.3 Wavelet thresholding

Thresholding means setting to zero the small wavelet coefficients wj,k ≤ T , for

a given threshold T . It is equivalent to ignore the details of the signal at the

respective scale and location and describe the signal based only on the coarser

(smoother) approximation level. It can be seen as a local smoothing of the signal,

when the signal is regular. At detail level only a few coefficients are kept, that are

exceeding the amplitude of (the transformed) noise. These coefficients correspond

to the sharp signal transitions, assumed to be limited in number and that translate
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in high wavelet coefficients in the neighborhood of the transition. Thus the wavelet

thresholding represents an adaptive smoothing approach, with adaptive bandwidth

with respect to the local regularity of the signal. Several problems arise such as

• the exact form of the thresholding function ρT essential for the estimation of

the wavelet coefficients,

• the automatic choice of the threshold value T ,

• if the value T should be unique over all levels or level dependent (Tj),

• if the threshold should be fixed or data-dependent.

In general, thresholding functions ρ are supposed to fulfill the following properties

[65]:

• ρT (−y) = ρT (y)

• ρT (y) ≤ x if y ≥ 0 (shrinking)

• x− ρT (y) ≤ T + b if y ≥ 0 (boundedness)

• ρT (y) = 0 if |y| ≤ T.

The two most well-known thresholding functions are the hard and the soft thresh-

oldings, represented in Fig. 5.2. The hard thresholding ρH of wavelet coefficients

is a ”keep-or-kill” rule, according to which only those wjk coefficients are kept that

exceed a certain threshold T , while the others are set to 0:

ρH(y) =

{
y, |y| ≥ T

0, |y| < T.
(5.3.1)

In order to avoid visual artifacts, hard thresholding can be replaced by a continuous

function, known as the soft thresholding function, and defined as:

ρS(y) =





y − T, y ≥ T

0, |y| < T.

y + T, y ≤ −T
(5.3.2)

The hard thresholding rule solves the following penalized least square problem:

ρH(y) = ρH(y, T ) = argminf̂ (y − f̂)2 + T 2
∥∥∥f̂
∥∥∥
0

= argminf̂ (y − f̂)2 + T 2If̂ 6=0 (5.3.3)
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Figure 5.2: Hard (left) and soft(right) thresholding functions.

while the soft thresholding rule is the solution of:

ρS(y) = ρS(y, T ) = argminf̂ (y − f̂)2 + 2T
∥∥∥f̂
∥∥∥
1

= argminf̂ (y − f̂)2 + 2T |f̂ |. (5.3.4)

Several other thresholding functions were proposed in the literature, (see for ex-

ample [45, 44, 9]). Their common characteristic is the interval [−T, T ] where the

value of the wavelet coefficients is set to 0. This is related the property of the

wavelet transform to concentrate the energy of a signal in just a few high wavelet

coefficients (high in this context meaning exceeding to threshold T in absolute

value).

Besides the questions related to the choice of threshold, one has to take into

account the adaptation to different noise models, given that the image formation

is not always best described by Gaussian noise as in the model (5.1.1) (see the

description of image formation and microscopy noise models in Chapter 2 ). An-

other factor affecting the behaviour of thresholding algorithms is the amount of
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signal (sparsity) discussed in the following.

5.4 Signal sparsity

We have described how the signal can be approximated by a few significant wavelet

coefficients, referring to this property as sparsity in wavelet bases. We shall de-

scribe in the subsequent the notion of sparsity in more detail.

The notion is related in the case of a wavelet transformed signal to the number

of significant wavelet coefficients in the wavelet representation.

More generally, sparsity implies that most of the signal strength is concen-

trated in a few of the coefficients. The most straightforward examples are the

spike (1, 0, ..., 0) and the comb vectors (n1/2, ..., n1/2) [19]. They have the same ℓ2

norm, however the spike is considerably more sparse than the comb signal. If the

two vectors are two representations of the same signal in two different bases and

knowing that the noise would normally not correlate with any basis (is not sparse

in any basis) the spike representation would be easier denoised, (the significant

coefficients easier found) then the comb one.

According to [4], an intuitive definition of sparsity of a signal µ is that it implies

a relatively small proportion of nonzero coefficients. For a fixed proportion η and

the l0 quasi-norm ‖x‖0 = | {i : xi 6= 0} | the set with a proportion η of nonzero

entries is

B0(η) = {µ ∈ R
n : ‖µ‖0 ≤ ηn} .

Alternatively, sparsity can be defined on the decreasing rearrangement of the

amplitudes: ∣∣µ(1)

∣∣ ≥
∣∣µ(2)

∣∣ . . . ≥
∣∣µ(n)

∣∣

as a term-wise power-law bound:

∣∣µ(k)

∣∣ ≤ C · k−β, k = 1, 2 . . . .

Finally, sparsity can be measured using lp norms, with p small:

‖µ‖p =
(

n∑

i=1

|µi|p
)1/p

.
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Strong-lp balls of small average radius η are defined as:

Bp(η) =

{
µ ∈ R

n : 1/n
n∑

i=1

|µi|p ≤ ηp

}

In the light of the sparsity definitions above, the sparsity of signal represen-

tation in wavelet space is thus related to the lp norm of the wavelet coefficient

vectors, for p small. Thus the regularizations terms (ℓ0 and ℓ1 penalties in (5.3.3)

and (5.3.4)) corresponding to the soft and hard thresholding justify the preference

of nonlinear thresholding estimators over the linear one.

5.5 Threshold selection

Strongly connected to the sparsity of a signal is the selection of the threshold T

in the thresholding function ρ = ρ(·, T ). For a sparse signal only a few coefficients

should be kept, while if the signal is not as sparse more coefficients are expected

to appear in the representation. Therefore, the threshold T has to be adjusted

according to the (unknown) sparsity of the signal.

In order to perform the selection one can think of at least two general classes

of algorithms, generated by two ways of modeling the wavelet coefficients. Both

ways are based on a signal-background separation problem formulation based on

the assumption that a given data sample {xi, i = 1, . . . n} was generated partly by

a (possibly very general) signal distribution PS (θPS
) while the rest of the samples

pertain to the background distribution PB (θPB
), θPB

, θPS
representing the param-

eters of PB and PS . Different views on the modeling of this problem lead to

different approaches in setting the right threshold T and detecting the significant

coefficients.

Model 1

One possible approach to model the data xi is by considering it a realization

of random variables Xi distributed according to the following two-component

mixture:

Xi ∼ πPS (θPS
) + (1− π)PB (θPB

) ,

where π represents the proportion of signal in the data (and thus reflects the

sparsity of the signal). Note that PS might represent an arbitrary complex

distribution, for example it can be at its turn a mixture distribution.
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Model 2

The drawback of the previous approach is that a model of the signal has to be

specified. An alternative view, especially appropriate when the proportion

of the background, 1 − π, is much higher than that of the signal samples,

is to consider the signal samples as outliers with respect to the distribution

PB, i.e. as data deviating from the data described by PB.

The problem of outlier-detection is closely related to the robust estimation of

θPB
, the parameters of PB, which are usually unknown. Consequently, the two

tasks are intertwined: if the parameters are known, the outliers can be identified

based on the deviation from PB(θ̂PB
), on the other hand, if we would know (and

remove) the outliers, the parameters could be correctly estimated based on the

remaining data.

Universal threshold

One approach to model the outliers is related to their link to the extremal value

of the background distribution. A simple view in one dimension would be that

all elements higher than the maximum (smaller than the minimum) of a sequence

of i.i.d. random variables distributed according to PB are considered outliers. It

is an approach based on Model 2 described above, since it does not make any

assumption neither on the signal nor the signal distribution and was proposed by

Donoho and Johnstone in [36] under the name universal thresholding.

The universal threshold is defined as

TU =
√
2 log nσ,

where σ is the standard deviation of the distribution of wavelet coefficients (or an

appropriate estimate of it) and n is the number of coefficients. It originates from

modeling the wavelet coefficients assumed normally distributed, wj,k ∼ N (0, σ),

given that most coefficients are due to Gaussian noise and only a few are generated

by signal.

The threshold TU is an extreme value of the wj,k and is based on the following

property([72]): given a sequence of i.i.d. Z1, . . . , Zn ∼ N (0, 1)

P
({

max1≤i≤n|Zi| >
√
2 log n

})
≤ 1√

4π log n
→ 0.

However the convergence is slow and the threshold often proves to be too high.
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Instead of the unknown parameter σ a robust estimation of the standard deviation

is used. More details on the estimate can be found in Appendix A.

Finally, Donoho proved the following optimality result [36].

Theorem 5.5.1. The risk RT (f̂ , f) of a hard or soft thresholding estimator with

threshold TU =
√
2 log nσ satisfies for n ≥ 4

RT (f̂ , f) ≥ (2 log n+ 1)
(
σ2 +RNL(f)

)
,

and is optimal among diagonal estimators D:

lim
n→∞

inf
D

sup
f∈F

E

∥∥∥f − f̂
∥∥∥

σ2 +RNL

1

2 log n
= 1.

A similar result holds as well in the case of colored noise.

SURE

A data driven, sub-band adaptive threshold is SURE (Stein Unbiased Risk Esti-

mation) proposed in [38].

The equivalent problem to wavelet coefficients estimation can be defined for

each wavelet level as a mean vector estimation (w1, . . . , wn)
T (we omit the scale

index j to simplify the notation) based on the data w̃k ∼ N (wk, 1), k = 1, . . . , n

with minimum risk. In case of a sparse data sample, most wk are thought to be

zero. The result of Stein [87] states that µ̂(x) = x+ g(x) is an unbiased estimator,

where g = (g1, g2, . . . , gn) : R
n → R

n is weakly differentiable:

E ‖µ̂(x)− µ‖2 = n+ Eµ

{
‖g(x)‖2 + 2∇ · g(x)

}
.

Using the soft thresholding function one gets

gk(wk) = ρS(wk)− wk =





−T, wk ≥ T

−wk, −T ≤ wk < T

t, wk < −T

and ‖g(w)‖2 =∑n
k=1 min2(|wk|, T ). Also

∇ · g ≡
n∑

k=1

∂

∂wk
gk(w) = −

n∑

k=1

1[−T,T ](wk)
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so that Stein’s estimate of risk can be written as:

SURE(T,w) = −n+ 2 · | {k : |wk| > T} |+
n∑

k=1

min2(|wk|, T ).

The threshold is chosen to minimize the estimate of risk:

T0 = argminT≥0SURE(T,w).

It has been noted that the threshold computed by the SURE criterion is often

too low. Donoho and Johnson also proposed a correction for the very sparse

signals, when the method is known to have a weaker performance. The correction

is based on the use of the universal threshold if the signal is sparse and of the SURE

criterion otherwise. Heuristically, the signal is considered sparse if its variance (the

mean being assumed 0) satisfies:

n∑

k=1

w2
k ≤ 1 +

(log2 n)
3/2

√
n

.

Bayesian thresholding

In a Bayes setting, according to Model 1 above, the wavelet coefficients corre-

sponding to problem (5.1.1) (or more precisely after the DWT to (5.1.3)) follow a

prior distributions defined usually as a mixture

wj,k ∼ (1− πj)δ(0) + πjγ,

where γ is assumed a fixed unimodal symmetric density, e.g. the normal distri-

bution N (0, τj) as in [25] or a heavy tail distribution, like a double exponential

as in [66, 67]. The parameter πj gives a measure of the sparsity of the signal.

The prior can be chosen directly based on available information or can be con-

structed partially or totally on the data itself, as in the case of the empirical Bayes

procedure (EBayes), described below [67].

The noise is considered independent of the wavelet coefficients and normally

distributed. Using the notation g = γ ∗ Φ, Φ being the standard normal density,

the maximum likelihood estimator π̂j of πj is obtained as the maximizer of the
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Declared non-significant Declared significant Total
True H0 U V m0

False H0 T S m−m0

m-R R m

Table 5.1: Cases in multiple hypothesis testing

marginal log-likelihood:

ℓ(π) =
n∑

i=1

log {(1− πj)Φ(w̃ji) + πg(w̃ji)} ,

subject to the constraint πj ≤
√
2 log n, the universal threshold representing the

largest value obtained from a zero signal and it corresponds to the limit case

πj → 0. The estimated value π̂j is plugged back into the prior and the wavelet

coefficients are estimated via a Bayesian procedure as the mean or median of the

posterior distribution (see [66, 67] for computational details).

False Discovery Rate

The task of significant wavelet coefficient selection can be reformulated from a

multiple hypothesis testing point of view: to each wavelet coefficient of the true,

unknown function f corresponds the null hypothesis Hjk : wjk = 0, representing

the case that the wavelet coefficients corresponds exclusively to noise, to the no

signal case (m such hypotheses in total).

We expect that most of the empirical wavelet coefficient values are small, the

variation around 0 due only to noise. Ideally, only the signal coefficients should be

kept in the reconstruction meaning that only in these cases Hjk should be rejected.

This setting corresponds to Model 2 of wavelet coefficients described above.

Suppose that Hjk is rejected or accepted based on the value of a test statistic

Tjk(wjk), more specifically Hjk is rejected if Tjk(wjk) < cjk. The p-value related

to a test is defined as the probability of having a larger value than a fixed p given

that the null hypothesis H0 is true: P (t > p|H0).

Let R denote the number of coefficients kept in the representation out of which

S are correctly and V are erroneously kept, R = V + S. V represent the false

positives or false discoveries (also known as type I errors ). The false negatives

(type II errors) are denoted by T . These quantities are summarized in Table 5.1.

Of all the variables that appear in Table 5.1, only m and R are observed.

The importance of controlling the false positives is convincingly motivated
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through the humorous but noteworthy False Positive Rules of Young [115]:

• With enough testing, false positives will occur

• Internal evidence will not contradict a false positive result

• Good investigators will come up with a possible explanation

• It only happens to the other person.

Definition 5.5.2. The Family-Wise Error Rate (FWER) is the probability of

making any false positive call P (V ≤ 1), at the desired significance level α.

An approach based on controlling the FWER is the Bonferroni approach and

consists of adjusting the p-values by the number of comparisons (or tests) m:

p̃j = min(1,m · pj) and reject the hypothesis for which the adjusted p-values are

smaller than desired significance level α.

The approach is often too conservative and lacks enough power to detect sig-

nificant differences (produces too many false negatives). A better power can be

obtained by the Sidak adjusted p-values p̃j = 1 − (1 − pj)
m that control FWER

when the comparisons are independent.

Definition 5.5.3. The False Discovery Rate (FDR) is defined as the expecta-

tion of Q, the expected proportion of erroneously kept coefficients among all the

coefficients kept in the representation:

FDR = E(Q), Q = V/R.

The random variable Q, represents the proportion of (false positives) coeffi-

cients, that were kept although they should have been dropped, and it is an error

measure of this procedure. Naturally, when R = 0 also Q is set to 0.

The Benjamini-Hochberg method described in [11] was applied to wavelet

thresholding (see [3, 4]) and maximizes the number of kept coefficients, controlling

meanwhile the FDR to a level q.

Benjamini-Hochberg algorithm

For each wavelet detail level j:

1. For each w̃jk calculate the two-sided p-value:

pjk = 2 (1− Φ (|w̃jk| /σ)) ,
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where Φ is the standard normal distribution function.

2. Order ascendingly the computed pjk-s,

p(1) ≤ p(2) ≤ . . . ≤ p(m).

3. Find the largest i such that p(i) ≤ i
m
q and denote it i0.

Compute λi0 = σΦ−1(1 − p(i0)/2). The true value σ can be replaced by an

estimate of the wavelet coefficients’ variance.

4. The estimates ŵjk are obtained by thresholding all coefficients w̃jk at level

λi0 .

Note that if the data is pure noise the control of the FDR is equivalent to the

Bonferroni approach. If many true coefficients are present, R tends to be large,

and FDR will be smaller, so that the error rate is adaptive with respect to the

sparsity of the estimated function.

It was proved in [11] that the above procedure controls the FDR at the (un-

known) level m0

m
q ≤ q. In the case of non-Gaussian noise one should replace Φ

with F the c.d.f. of the noise model.

Variance - covariance estimation

As we have seen most of the wavelet threshold estimates rely on the variance of

the noise distribution (or wavelet transformed noise at the respective scale). In the

FDR approach the variance appears in the formulation of the null-hypotheses and

the computation of p-values. Most conveniently, we shall use an estimate of the

variance, computed from the data. However, since the data is a mixture of noise

and true signal, we have to strive to compute the estimate of the noise variance

based only on true noise values, a typical problem from the field of robust statistics

[52]. For the robust estimation of scale we adopt, as description of the data, the

Model 2 above, assuming that the true signal coefficients are a small fraction of

all the coefficients and can be regarded as outliers.

For the one dimensional case the most frequently used scale estimator is

MAD(x) = median |x−median(x)| /0.674 (the estimator is described in Ap-

pendix A). For higher dimensional problems, a state of the art methods is the

Minimum Covariance Determinant (MCD) estimate. Based on the MCD estimate

of the covariance, the Mahalanobis distances (MD) of wavelet coefficients (seen as
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tuples) are computed, and used in an alternative algorithm for detection of sig-

nificant wavelet coefficients as proposed in Section 5.8 below. Several distribution

can be used to approximate the distribution of MD in order to construct the H0

hypothesis of the FDR approach, such as χ2,F and Beta (all details can be found

in Appendix A).

We shall incorporate the variance and covariance estimates described in the

Appendix A found at the end of this work in the wavelet thresholding algorithms

used for signal reconstruction in general, and in our particular case, for single

molecule detection.

5.6 Other noise models

Wavelet methods are typically designed for additive Gaussian noise: Xi = µi + εi,

where εi ∼ N (0, σ). In the case of microscopy imaging, the three most frequent

models based on image formation are- in order of model accuracy but also increas-

ing difficulty/complexity:

• M1: Gaussian noise

yi = µi + εi, ε ∼ N (0, σ)

• M2: Poisson noise

yi = xi, xi ∼ Poi(µi)

• M3: Poisson and Gaussian noise

yi = xi + εi, xi ∼ Poi(θi), εi ∼ N (µ, σ) (5.6.1)

Especially low intensities (small photon counts) collected by the sensor are not

well modeled by Gaussian noise (M1).

A combination of Poisson (shot-noise) and Gaussian noise is more appropriate

to describe photon count variations and read-out noise. The main difference is the

heteroscedasticity of models M2 and M3 as opposed to M1, the variance of the

noise being dependent on the signal.

Several methods were devised to handle models M2 and M3. The most straight-

forward is to consider their simple approximation via a Gaussian model, given that
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asymptotic normality in terms of probabilities of large deviations often holds:

P (±(wj,k − θj,k)/σj,k ≥ x)

1− Φ(x)
→ 1, as n→ ∞.

A different way to take into account the heteroscedasticity of the noise are variance

stabilizing transforms, applied prior to wavelet detection to the input image which

transform the heteroscedastic noise into Gaussian noise of variance approximately

equal to one.

In case of a Poisson noise model M2 (suitable to describe the photon count

model) the best known variance stabilization is the Anscombe transform [8]:

t(Xi) = 2
√
Xi + 3/8.

However it underestimates the low intensity values, especially those with pixel

intensity under 30. Modeling both the photon count noise as well as the read-out

noise, one obtains the mixed Poisson-Gaussian image model M3. Xi = α ·Ni+ εi,

where α > 0 represents the gain of the detector, Ni ∼ Poi(µi) and εi ∼ N (0, σ).

A more elaborate transform is the Generalized Anscombe transform (GAT)

introduced in [107], that can stabilize the Poisson - Gaussian noise: tG(x) =
2
α

√
αx+ 3

8
α2 + σ2 − αµ. The parameters α represent the gain of the detector,

µ and σ are the parameters of the Gaussian noise as in (5.6.1) and all three

parameters can be determined from the image itself via robust fitting as described

in [17].

5.7 Single molecule detection and evaluation of

the detection method

As opposed to the denoising and restoration problems to which wavelet threshold-

ing usually is applied, we are not interested in the original true value of each pixel

in the image, but on the detection of single molecules. We shall define the task as

the detection of significant pixels in the first J scales of the wavelet transform.

Through simulations and experiments on real images we have found that the

choice J = 3 performs well for a wide range of SNR, signal intensity and sparsity.

The significant pixels were found via FDR thresholding, and for the null hypothesis

the Gaussian model was assumed, with expected value 0 with the MAD estimation

of its variance.
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The significant pixels, those belonging to true signal are those that have non-

zero coefficients in all the J detail levels (except the finest, which usually is pure

noise). The binary image obtained from the J detail coefficient levels after level-

wise wavelet thresholding and combination of each level via a logical AND opera-

tion is an indicator image for the support of the detected single molecules:

B =
J∏

j=j0

1{wjk>λi0 (j)}.

If the first detail level is too noisy, one can set j0 = 2.

At very low concentrations the single molecules are mostly well separated of

each other. At higher concentrations, the support of imaged single molecules can

be touching each other, so that the number of connected components in the binary

image underestimates (strongly in case of high concentration) the number of single

molecules in the image.

In order to alleviate the problem, a denoised image is additionally obtained

after applying the reconstruction step (4.7.3) with thresholded detail coefficients.

Since the wavelet detection algorithm has the “resolution” described above, two

molecules that are spatially close together will be detected as one. The correction

of the estimation of the number of molecules consists in combining the binary image

obtained after the detection step with the denoised image (via a simple product

operation), and all the local maxima of the denoised image inside the support of

the binary mask are considered distinct single molecules (see for instance Fig. 3.7,

c).

The detection algorithm was tested on a set of simulation images with varied

image quality parameters, as measured by the signal-to-noise ratio (SNR), as well

as several molecule concentrations. Each image is of dimension 512 × 512 pixels

and contains 10, 50, 100, 500 or 1000 randomly placed molecules.

To each single molecule corresponds a diffraction limited spot, approximated

by a two-dimensional Gaussian shape, with width s corresponding to the point

spread function of the optical system (1.1 in our simulations). Both the con-

stant background intensity and the peak intensity S were chosen on a logarithmic

scale between 10 and 100. Noise is generated for each pixel as described in (5.6):

the photon count noise was modeled by draws from Poisson distributions, and

finally Gaussian noise is added to each pixel from N (0, σ), where σ was chosen

as 0, 5, 10, 15 and 20% of the maximum peak intensity. For this special case of

Poisson-Gaussian model described, we use the following signal-to-noise (SNR) def-
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(a) N = 10 (b) N = 50

(c) N = 100 (d) N = 500

(e) N = 1000

Figure 5.3: A set of simulation images is shown in (a)-(e) for different concentra-
tions: N represents the number of peaks in the 512×512 pixel image (corresponding
to 102.4µm × 102.4µm). SNR = 5.02 (additional Gaussian noise with σ = 2.2).
The images are scaled for better visibility. The same pixel intensity scale is used
for the five images.
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inition as described in Chapter 2:

SNR =
S√

B + σ2
,

where S represents the single molecule intensity, B the (local) background of the

image and σ the standard deviation of the read-out noise. (For simplicity S is the

maximum intensity of the single molecule profile).

The SNR for our simulations is between 0.9 and 31.6.. For each set of param-

eters 10 images were generated and analyzed. One set of simulations is presented

in Fig. 5.3 (a)− (e).

The results are summarized in Fig. 5.4 (a) and (b). For SNR above 10 the de-

tection for all five concentrations levels exceeds 80% true positives for less than 500

molecules, but is only above 60% for high concentrations (N = 1000). However,

at high concentrations the spots can be analyzed also with conventional methods

designed for low resolution microarrays. The SNR typical for our system, is usu-

ally at least 15, (at this level true positives are higher than 85% for N = 500,

and 70% forN = 1000). The rate of false positives is under 9% even for very

low concentrations (N = 10) and substantially lower for N > 100. The detection

performance was similar for simulation with the same SNR, independent of the

weight of Poisson and Gaussian noise in the generation of the simualtion image.

5.8 Signal detection via robust distance thresh-

olding

In the case of orthogonal wavelet transforms, the independent thresholding of

wavelet coefficients at different scales is the natural approach. However, in the

case of the redundant à trous transform the wavelet coefficients are still correlated

across scales, the gain of translation invariance being made at the price of losing

orthogonality. We shall investigate the effect of the correlation between wavelet

scales on the detection task. As alternative to the scale-wise thresholding of the

wavelet coefficients we suggest the modeling of the null-hypothesis in a higher

dimensional space. In case we are using J wavelet detail levels, H0 will be modeled

in a J-dimensional space, taking into account the correlations between detail levels.

If {wij, j = 1, . . . J} are the wavelet coefficients obtained via the wavelet trans-

form of the image, we assume that H0 is described by a J-dimensional Gaussian

N (T, S), where T and S are the MCD robust estimates described in Appendix A.



5.8 Signal detection via robust distance thresholding 85

(a) True positive ratios (5% Gaussian noise added)

(b) False positive ratios (5% Gaussian noise added)

Figure 5.4: The results of detection on the simulations are summarized in figures:
(a) ratio of true positives and (b)ratio of false negatives with respect to the true
number of simulated single molecules
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Figure 5.5: Test pattern for detection (testing several intensities and several stric-
ture sizes)

The signal detection is performed in one step in the following way: the one di-

mensional data representing the p-values of the robust distances, ri, are computed

and subsequently thresholded, via the FDR approach at a fixed significance level q

assuming that ri are distributed according to ri ∼ χ2
d, as described in Section 5.5.

The dependence of wavelet coefficients was discussed also in [27], in particular

the dependence between two successive wavelet levels. The solution proposed

in [27] is based on Bayesian modeling, MAP estimators and bivariate shrinkage

functions.

As test case an image of 25 Gaussian shapes was used, the Gaussian hav-

ing total intensities ranging on a logarithmic scale from 100 to 1000 and widths

σ ∈ {0.5, 1, 1.5, 2, 2.5} . The original test pattern without noise is shown in Fig. 5.5.

The intensity of the shapes increases from left to right and each line is character-

ized by the same spread σ of the Gaussian shape. The correlation of successive

wavelet coefficients can be observed in Fig. 5.6. The first scale is mostly noise, and

is uncorrelated with the higher scales, however, one can notice a correlation be-

tween successive scales, starting from the second level (second line and/or column)

onwards.

The Fig. 5.7 presents the detection results in case of the test image corrupted

by Poisson noise and additive Gaussian noise of parameter N (10, 3) (as described

in Section 5.7). The detection by classical scale-wise thresholding (upper right

image) detects 20 out of 25 structures, and shows little difference in size of the

detected structures (all detected blobs have similar areas, although five different
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σ parameter values were used in the simulation). However the performance of the

method both in accuracy and computation time is remarkable.

The Mahalanobis distance based detection with standard estimates has a very

low detection performance, only 13 structures being detected (lower left image in

Fig. 5.7).

The robust Mahalanobis distance thresholding, RMDT, (lower right image),

detects 23 of the 25 structures and shows relatively good sensitivity to the param-

eter σ of the detected structures. Its drawback consists of detecting one small false

positive structure as opposed to none in the scale-wise thresholding case.

A further advantage of RMDT is that it is more robust to the number of levels

J selected in the wavelet transform than the scale-wise thresholding detection.

The strong constraint that a pixel is considered signal only if the corresponding

wavelet coefficients are outliers in all wavelet scales results in several pixels not

being detected as signal.

For the Poisson-Gaussian model with no background there are no significant

difference between several models for the distance: χ2,Beta,F as can be seen in

Figure 5.6: Pairwise wavelet coefficients correlated across the scales.
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Figure 5.7: Wavelet based detection. Upper left: original noisy test image, scaled
for better visibility. Upper right: the support of the signal detected via scale-
wise thresholding. Lower left: thresholding based on Mahalanobis distance with
standard estimates. Lower Right: thresholding based on Mahalanobis distance
with MCD estimates assuming a χ2 distribution. (All thresholds are based on
control of FDR).

Figure 5.8: Detection based on 5 scales. Left: scale-wise thresholding. Right:
RMDT.
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Figure 5.9: Wavelet based detection. The robust Mahalanobis distance distri-
bution is modeled as (left) χ2 distributed, (middle) Beta distributed (right) F
distributed. No significant difference in detection is observed.

Fig. 5.9.
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Chapter 6

Spatial patterns

After detecting the approximate position of spots and localizing the single molecule

peaks in the detected region it is necessary to refine the analysis in order to remove

single peaks outside the printed spot. Typically peaks representing non-specific

binding, artifacts, dirt, etc. outside the spot area have to be separated from

hybridized peaks. This step corresponds to the background/foreground pixel sep-

aration in the classical microarray image analysis.

The main assumption for this step of the analysis is that the concentration of

false peaks is different - typically lower - from the concentration of the peaks inside

the spot. For this reason, the signal and the background are jointly modeled as a

mixture of two (spatial) point processes.

This chapter presents a brief introduction in the field of spatial point patterns,

in order to offer a perspective of modeling single molecules as point patterns. We

will focus on two models, the two-dimensional stationary Poisson process and the

mixture of stationary Poisson processes. The latter will be used in separating

hybridized single molecules from clutter.

Furthermore we describe and compare solutions for two problems: the complete

randomness test and concentration estimation. We apply the described algorithms

to prove the soundness of randomness assumption in the case of single molecule

microarray images, as well as concentration estimation at the single molecule level,

which will give the measure of hybridization for each spot in the high resolution

microarray.

91
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6.1 Introduction to spatial point processes

Intuitively, point processes are stochastic models for finite or countable collection of

points X lying in some set S ⊆ R
d, d ≥ 1. A point pattern is typically interpreted

as a realization of a point process.

The area where points of the pattern can possibly be observed is called obser-

vation window, denoted usually by W . When the point pattern is restricted to W

(W = S), we talk about finite point patterns. More frequently thoughW is strictly

contained in S (W ⊂ S). Since there is no information for the unobserved region

R
d\W , in the case of certain statistical summaries one has to handle the problems

raised by the missing data that could affect these summaries. This problem is

known under the name of boundary or edge effects.

We use the notations: XA = X ∩ A and X(A) is the cardinality of XA, where

A ⊂ R
d is a bounded Borel set.

Definition 6.1.1. A point process defined on S ⊂ R
d is a random variable X

taking values in a measurable space [N,N ], where N is the family of all locally

finite point configurations in S:

N = {x ⊂ S : x(A) <∞, ∀A ∈ B0}

and B0 denotes the class of bounded Borel sets in S and such that the points have

single multiplicity (xi 6= xj if i 6= j.) N is the smallest σ-algebra generated by

all sets of the form {x ∈ N : x(A) = m}, with A ∈ B0 and m ∈ N0. X can be

regarded as a measure on a probability field (Ω,F ,P) that makes all mappings

X(A) : Ω → N measurable.

Intuitively, a point process, denoted by X has two interpretations:

1. a random counting measure: X(B) = n meaning that B contains n points

of N.

2. a random closed set X = {x1, x2, . . .} = {xi}, or xi ∈ N

The point process X generates a distribution P on [N,N ]. The distribution P

is determined by the probabilities P (Y ) = P (X ∈ Y ). Several good introductions

in the theory of points process are available, e.g. [109, 29, 82, 60].

Two important properties of point processes are stationarity and isotropy.
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Figure 6.1: Point pattern corresponding to a high resolution microarray area

Definition 6.1.2. A point process X is said to be stationary if its statistics are

invariant under translation, i.e. the processes X = xi and Xx = xi + x have the

same distribution for all x ∈ R
d.

Definition 6.1.3. A point process X is said to be isotropic if its statistics are

invariant under rotation, i.e. the processes X and rX have the same distribution

for all rotations r around the origin.

Moments of point processes

The intensity measure of a point process N is the analogue of the first moment of

a real-valued random variable and is defined as:

Λ(B) = EN(B), B ⊆ R
d.

The intensity function λ(x) models the mean structure of the process, such

that if x is an infinitesimally small set of Rd having area dx then E (N(dx)) ≈
P (N(dx) = 1) ≈ λ(x)νd( dx). It follows that

µ(B) = Λ(B) =

∫

B

λ(x) dx.

The (Papangelou) conditional intensity is a function λ(u|X ) of a spatial lo-

cation u ∈ W and the entire pattern X . Considering an infinitesimal region of

area du around u, λ(u|X ) du is the conditional probability that the point process
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contains a point in this region, given the position of all the points in the process

outside of the infinitesimal region:

E
(
N( dx) = 1|N ∩ dxC = X

)
≈ λ(x|X )ν( dx).

The stationary Poisson process discussed below has the conditional intensity

λ(u|X ) = β, where β is the intensity of the process.

Higher order moments

Computations of expected values, usually are simplified when the Campbell theo-

rem is applied (see [109]).

Theorem 6.1.4. If f is a non-negative measurable function and S =
∑

x∈X f(x)

then

E(S) = E

(
∑

x∈X
f(x)

)
=

∫

Rd

f(x)λ(x) dx. (6.1.1)

Generalizing the first moment measure, one obtains the nth-order moment

measures µ(n) of the point process X defined by

∫
f(x1, . . . , xn)µ

(n)( d(x1, . . . , xn)) = E

(
∑

x1,...,xn∈X
f(x1, . . . , xn)

)
(6.1.2)

where f(x1, . . . , xn) is any non-negative measurable function on R
nd.

The following equalities hold

µ(n)(B1 × . . .× Bn) = E (X(B1) . . . X(Bn)))

and in case B1 = . . . = Bn = B, µ(n)(Bn) = EX(B)n.

In particular:

n = 1 : µ(1)(B) = EX(B) = Λ(B)

n = 2 : µ(2)(B1 × B2) = EX(B1)X(B2)

var (X(B)) = µ(2)(B × B)− (Λ(B))2

cov (X(B1), X(B2)) = µ(2)(B1 × B2)− Λ(B1)Λ(B2)
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Factorial moments

The nth order factorial moment measure α(n) of the point process X is defined

by:

∫
f(x1, . . . , xn)α

(n)( d(x1, . . . , xn)) = E

∑

x1 6=x2 6=... 6=xn∈X
f (x1, . . . , xn) ,

where f is a non-negative measurable function on R
nd.

For n = 2, µ(2)(B1 × B2) = Λ(B1 ∩ B2) + α(2)(B1 × B2). If B1, . . . , Bn are

pairwise disjoint, then

µ(n)(B1 × . . .× Bn) = α(n)(B1 × . . .× Bn).

The name factorial moment is justified by the following equality:

α(n)(Bn) = E [X(B)(X(B)− 1) . . . (X(B)− n+ 1)] ,

such that αn(Bn) is the factorial moment of X(B).

Point process operations

Many point process models can be derived from simpler models by applying one

or several operations, such as thinning, superposition, clustering.

A thinning operation consists of removal of certain points of a point process

N0, yielding the thinned point process N ∈ N0. The removal of a point x can be

done according to a constant probability p, a location dependent probability p(x)

or a random probability. We talk of independent thinnings if removal of points is

done independently of other points, and of dependent thinnings, when the removal

depends on the configuration of N0.

The intensity function of a p(x)-thinned process with original process intensity

λ0 is

λ(x) = p(x)λ0(x), x ∈ R
d.

In a superposition operation two or more point processes are superimposed

onto each other, such that the resulting process is the set-theoretic union of the

operand processes: N = N1 ∪ N2 . . . ∪ Nk. The intensity of the resulting process

is the sum of the intensities of component processes λ = λ1 + λ2 + . . .+ λk.

Finally, clustering is the operation through which points x of the process N0
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are replaced by clusters Nx of points. The union of the clusters defines the cluster

point process

N = ∪x∈N0N
x.

A special case of clustering is when all clusters have the same distribution, with c̄

the mean number of points in each cluster. In this case the intensity of the cluster

process is

λ = c̄λ0. (6.1.3)

Point process models

With a few simple generating mechanisms and the operation described above sev-

eral point process models can be described. The simplest and best studied point

process is the (homogeneous) Poisson point process.

Spatial Poisson process

Definition 6.1.5. A Poisson process N defined on S and with intensity measure

Λ and intensity function λ satisfies for any bounded region B ⊆ S with Λ(B) > 0:

Poisson distribution of point counts : for all bounded Borel sets B:

P (N(B) = m) = [Λ(B)]m · exp (−Λ(B)) /m!, m = 0, 1, 2, . . .

Independent scattering property: the number of points of N in k disjoint sets

form k independent random variables.

The homogeneous Poisson process is a special case, such that Λ(B) = λν(B),

for a constant λ > 0, which also implies that the process is isotropic. The homo-

geneous Poisson process represents a model for no interaction or complete spatial

randomness (CSR) since for any disjoint subsets A,B ⊆ S, N(A) and N(B) are

independent.

In the case of an inhomogeneous Poisson process, the intensity is not propor-

tional to Lebesgue measure, but is a deterministic function of spatial location. If

a inhomogeneous Poisson process has random mean measures we talk of doubly

stochastic processes or Cox processes. For instance a stationary Poisson process

with randomized intensity parameter is a particular Cox process, called mixed

Poisson process.
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As an exemplification of clustering processes we shall define Neymann-Scott

point processes and in order to illustrate processes that exhibit regularity we in-

troduce the hard-core models.

Neymann-Scott processes are the result of homogeneous independent clustering

applied to stationary point processes. The points of the parent process form a

stationary Poisson process of intensity λ0 and are not observable. Each parent

point x generates a cluster Nx of average size c̄, independently and identically

distributed around the parent point. The process has the intensity given in (6.1.3).

If Nx is a cluster of independently and uniformly distributed points in a ball

b(x,R) the point process is called Matérn cluster process, while if the daughter

points follow a normal distribution around the parent point the process is called

(modified) Thomas process (see [60]).

The hard core models belong to the class of point processes that model inhi-

bition or regularity and are characterized by a minimal distance r0 between their

points. No points may be located at distance smaller than r0 of each other.

The simplest model is the Matérn hard-core process I, NI , obtained from a

homogeneous Poisson process N0 with intensity λ0 by deleting all pairs of events

of N0 that are separated by a distance smaller than r0. The probability that a

point is retained in NI is exp
{
−λ0Vdrd0

}
and the intensity of NI is

λ = λ0 exp
{
−λ0Vdrd0

}
,

where Vd = πd/2/Γ(1+ d/2) is the volume of the unit sphere. If the initial process

N0 is endowed with independent marks Z(x), the model II of Matérn hard-core

process NII is defined as the process obtained after the deletion of points u, such

that ‖u− x‖ < r0 and Z(u) < Z(x). The probability that an arbitrary point is

retained in NII is
{
1− exp

(
−λ0Vdrd0

)}
/
{
λ0Vdr

d
0

}
and the intensity of NII is

λ =
1− exp

(
−λ0Vdrd0

)

Vdrd0
.

Several other point process models are known in the literature, many of which are

described in [91, 109, 26, 60].
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6.2 Summary characteristics for (stationary)

point processes

In order to make inferences on the random mechanisms that generate the point

processes or test the assumed models, summary characteristics of the point pat-

terns are computed and analyzed. In the following we shall discuss first and second

order summary characteristics of point patterns (as well as their estimation). Fur-

ther details on the properties and estimation of these characteristics as well as

other (e.g. directional) characteristics can be found in [26, 60, 109].

The spherical contact distribution function (empty-space distribution) is based

on the probability that a disk or (hyper)sphere of radius r does not contain any

point of N . It is defined as a function of r:

Hs,x(r) = 1− P (N (b(x, r)) = 0) , r ≥ 0.

If the process is stationary: Hs(r) = 1− P (N (b(0, r)) = 0) , r ≥ 0.

The nearest-neighbour distance distribution function D(r) (denoted also by

G(r) in the literature) is the random distance from the typical point to its nearest

neighbour. In the context of the Palm distribution (conditioning on the typical

point of the process):

D(r) = Po (N (B(o, r)\ {o})) > 0, r ≥ 0.

The nearest-neighbour captures the behaviour of the process only at relatively

small range. Generalizations such as kth nearest-neighbour distance distributions

may be seen as a remedy to this shortcoming:

DK(r) = Po (N (B(o, r)\ {o}) ≥ K) , r ≥ 0.

In the case of Poisson processes D(r) = Hs(r), r ≥ 0. If the process is regular,

D(r) ≤ Hs(r), r ≥ 0, while for cluster processes the reverse inequality holds,

D(r) ≥ Hs(r), r ≥ 0, since nearest inter-point distances tend to be distances

between points in the same cluster.

Based on the observation above, the following function provides information

on the nature of the studied process:

J(r) =
1−D(r)

1−Hs(r)
, r ≥ 0 and Hs(r) < 1.
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For Poisson processes J(r) = 1 holds. However the inverse implication does not

hold, there exist other processes different from Poisson, with J(r) = 1.

The estimation of J(r) poses some difficulties, especially for small values of

1−Hs(r) (i.e. for large r). Furthermore, the numerator and denominator are point-

and location-related summaries, respectively, each with different fluctuations that

do not cancel out.

The summaries discussed so far are restricted to describe the point pattern

in small neighborhoods of a typical point. For longer-range spatial correlation

analysis a better approach is offered by second order characteristics.

The inhomogeneous reduced second moment measure is defined as:

K(B) =
1

|A|E
∑

u∈N(A)

∑

v∈N\{u}

1u−v∈B
λ(u) · λ(v) , (6.2.1)

where the point process N is second-order reweighted stationary, meaning that

the right hand side of (6.2.1) does not depend on the choice of A ⊆ R, where

0 < |A| < ∞. When the process is stationary and isotropic, the reduced moment

function becomes Ripley’s K−function (see [91]):

K(r) = K (b(o, r)) , r ≥ 0.

The quantity λK(r) represents the mean number of points of N within a sphere

of radius r centered on a ’typical point’, which itself is excluded from the count.

The function K is monotonically non-decreasing on r > 0 and converges to 0 as

r → 0. In the case of a stationary Poisson process: K(r) = bdr
d, r ≥ 0. A variance

stabilized transformation of K ( K estimated by non-parametric methods) is the

L-function defined as:

L(r) =

√
K(r)

π
, (6.2.2)

in the planar case, and as

L(r) = d

√
K(r)

bd
, r ≥ 0, (6.2.3)

in the general d-dimensional case.

For a Poisson process, L(r) = r. In general, L(r) > r indicates aggregation

and L(r) < r indicates regularity.
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Figure 6.2: Summaries for the point pattern in Fig. 6.1 (different colors correspond
to different edge correction methods)

6.3 Testing in the framework of point patterns

Based on the summary characteristics described in the previous section, several

statistical tests are designed in order to gain information on the studied point

process, its properties and generating mechanism.

In the frame of microarray analysis, we would like to test the randomness of

the single molecule distributions inside the spots of the high resolution microarray

data. Therefore the positions of the single molecules, obtained by the wavelet

detection methods will form the input data we test against the CSR hypothesis.

Since the homogeneous Poisson process is the mathematical model that de-

scribes CSR, the ”null model” implying complete lack of structure, the CSR tests

consist of estimating a summary statistic (scalar or functional) from the data and

compare it with the relevant summary characteristic for a Poisson process. If

the difference between the two characteristics is large, the Poisson hypothesis is

rejected.

We describe two CSR tests, one based on point numbers and the other on
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inter-point distances of the point patterns, which we apply in order to test if the

assumption of randomness of single molecule positions inside the microarray spot

should be rejected or not.

The index-of-dispersion test

The sampling window W can be divided into subregions of equal size, called

quadrats, usually for practical reasons in squares or rectangular grid cells. Un-

der the homogeneous Poisson process hypothesis, the number of points in each

quadrat follows a Poisson distribution of mean λ · ν(Q) and the counts in disjoints

quadrats are independent.

The test is defined based on the index of dispersion defined as:

I =
(k − 1)s2

x̄
,

where k is the number of quadrats, x̄ the mean of the number of points per quadrat,

and s2 is the sample variance of the number of points per quadrat. It represents

the χ2 goodness-of-fit test of the hypothesis that the n points are independently

and uniformly distributed in W . It follows approximately a χ2 distribution with

k − 1 degrees of freedom, for k > 6 and λ · ν(Q) > 1.

The CSR hypothesis is rejected if I > χ2
k−1;α (the alternative being that there

is aggregation in the process), or if I < χ2
k−1;1−α (alternative: regularity of point

pattern).

An extension of the above approach is the Greig-Smith method, which basically

applies the previous test to a quadtree structure. It also gives information at which

scale clustering occurs, if at all.

L test

In order to test the hypothesis that the single molecules are randomly distributed

we compute the empirical L−function based on the location of single molecules,

obtained via the wavelet transform approach. Knowing that the L−function of

a homogeneous Poisson process has the simple linear form: L(r) = r for r ≥ 0,

the large deviation of the empirical L−function indicates rejection of the CSR

hypothesis. The square root transformation in the computation of the L−function:

L(r) =
√
K(R)/π has a variance stabilization effect, that makes the L−function

a better candidate for the test than the K−function.
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(a) Positions of single molecules
in a PALM image

(b) Positions of single molecules
in a high resolution microarray spot

(c) Estimated L̂ and envelopes
of 49 simulations for the point pattern

in (a)

(d) Estimated L̂ and envelopes
of 49 simulations for the point pattern

in (b)

Figure 6.3: Testing the CSR hypothesis

In order to compare the empirical L−function, L̂, with the theoretical one, the

following two methods were used. First, the empirical L-function is compared to

the envelope of m Poisson process simulations with the same intensity λ̂ as the

original process. Denoting the simulated processes with S1
P , S

2
P , . . . , S

m
P , the lower

and upper envelopes are defined as:

SP,min(r) = min
{
S1
P , S

2
P , . . . , S

m
P

}

SP,max(r) = max
{
S1
P , S

2
P , . . . , S

m
P

}

In Fig. 6.3, (a) and (b) the two point patterns corresponding to a Photo Acti-

vated Light Microscopy (PALM) image and to the high resolution microarray spot

respectively are shown, together with the observation window. As can be seen in
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sub-figures 6.3 (c) and (d), for both the point patterns the CSR hypothesis cannot

be rejected: the empirical L−functions show great similarity with the theoretical

L−function and are consistently located between the lower and upper envelopes

computed from 49 simulations.

Moreover, as an additional test, the maximum deviance, computed as:

τ = maxr≤s|L̂(r)− r|

can be approximated by a normal distribution if nus3/a2 small, where a = ν(W ),

u is the length of the boundary of W and n is the number of observed points

[34]. The critical value of τ for the significance level α = 0.01 is approximately

τ0.01 = 1.75
√
a/n. In the case of the PALM image, pattern (a) in Fig. 6.3, τa =

3.14 < τ0.01 = 3.71, as for pattern (b), the high resolution microarray spot, τb =

5.07 < τ0.01 = 5.90.

Although the CSR test does not prove the correctness of our model assumption,

we shall consider that the stationary Poisson model is a reasonable description for

the spatial distribution of single molecules.

Note however a small hard core in both processes (the region where the L

function is null). It is due to the fact that in case two molecules are close to each

other, only one is detected. The ”resolution” of the wavelet detection algorithm

applied to single molecule images is approximately 4 pixels.

6.4 Estimation of hybridization signal

In the case of high resolution microarray analysis, the hybridization signal is the

intensity of the point process corresponding to the position of single molecules

inside the microarray spot. We are interested especially in two models for intensity

estimation:

• the homogeneous Poisson process

• the mixture of two homogeneous Poisson processes.

We have shown that inside the spot the CSR hypothesis of the single molecule

locations cannot be rejected and we adopt this model due to its simplicity and

the good agreement with the physics of the hybridization process. If the exact

location of the spot is known, we consider the observation window W coinciding
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with the spot and the positions of single molecules inside the spot represent an

homogeneous Poisson process, with the only parameter the intensity λ.

A short overview of estimation methods for this case is given in [60].

• If the number of points in the sampling window W is N(W ) and the area

(hyper-volume) of W is denoted ν(W ) then:

λ̂ =
N(W )

ν(W )
(6.4.1)

is an unbiased estimator with variance var(λ̂) = λ
ν(W )

. This is also the max-

imum likelihood estimator.

• Distance methods are based on ”nearest neighbour”-type distances, having

a known distribution for homogeneous Poisson process model.

• Confidence intervals for λ are based on the normal approximation of the

Poisson distributed N(W ) = λ̂ν(W ):

(zα/2
2

−
√
N(W )

)2
≤ λν(W ) ≤

(zα/2
2

+
√
N(W ) + 1

)2
,

where zα/2 are quantiles of the standard normal distribution. This method is

most useful in determining the window size required for a given estimation

accuracy: if δ is the desired width of the confidence interval and α is the

required confidence level from

δν(W ) ≈
(zα/2

2
+
√
λν(W ) + 1

)2
−
(zα/2

2
+
√
λν(W )

)2

results that the required window size is

ν(W ) ≈ 4zα/2λ

δ2
. (6.4.2)

As we have mentioned in the beginning of the chapter, not all the peaks detected

in the subimage corresponding to a grid element belong to the spot of interest (see

Fig 3.7, c)). The background might be heavily contaminated by unspecifically

bound signal, impurities, etc. which we shall call generally clutter, which when

unaccounted for could seriously distort the hybridization results. Also in practice

the exact spot location inside the subimage is not known, small distortion might

be due to printing tip motion, scanning artifacts etc.
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Each rectangular subimage of the microarray, obtained after the gridding step,

contains the circular spot of mRNA hybridized to the printed cDNA (foreground)

surrounded by a background region with clutter. Therefore, peaks detected in the

subimages have to be assigned either to foreground or background. In order to

make a correct concentration estimation (or hybridization estimation), we have to

model both the spot and the background concentration. A straightforward model

turns out to be the superposition of spatial Poisson point processes. However

a more precise model is that of a homogeneous Poisson process (modeling the

clutter) on which is superposed another homogeneous Poisson process restricted

to a subdomain of the initial process. The new process has piecewise-constant

intensity function. The estimation of the intensity of the process can be done

either by parametric methods, typically based on mixture models on one hand,

and on nonparametric methods, on the other hand.

In the case of parametric models, in order to distinguish between peaks within

the spot, representing true hybridization signal and those representing clutter we

use spatial information, counts of peaks in subregions or relative distances of the

peaks to each other and design a spatial mixture model based on this information.

One component of the mixture will represent the true signal, while the other the

clutter.

In the case of non-parametric intensity estimation approaches first the intensity

is estimated and subsequently the location of the spot is found. We will use

the Nadaraya-Watson kernel estimate or a wavelet estimation method, and in

both cases the spot position is found after intensity estimation via segmentations

methods.

In the classical microarray case, this step corresponds to foreground/background

segmentation and in [14] it is based on a Gaussian mixture model for pixel inten-

sity values, where each pixel is assumed having a mixture distribution of two

(signal/background) or three (signal/background/artifacts) components.

Analysis of count data via the method of moments

A first parametric approach for concentration estimation is to consider the count

yi, of the detected peaks inside non-overlapping systematic quadrats of size s× s

pixels covering the spot subimage, where i is an index over the quadrat covering,

i ∈ {1, . . . , N}. Let Y be the random variables whose realizations are the counts yi.

It is supposed to follow a mixture distribution with K components and we would

like to determine the parameters of this mixture distribution. The basic idea is
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to apply the method of moments to the data yi. In the general case, the method

consists of selecting a set of moments {E(Hj(Y )|θ)}j of the random variable Y

and determine the unknown parameters θ, by matching the theoretical moments

with their empirical counterparts H̃j.

It results in solving a usually nonlinear equation system:

K∑

k=1

ηkE(Hj(Y )|θk) = H̃j (6.4.3)

for the unknown parameters θk of each mixture component and ηk representing

the proportion of each component in the mixture.

For the case of Poisson mixture distribution,

P (Y = y) =
K∑

k=1

ηk
e−λkλyk
y!

,

where
∑K

k=1 ηk = 1 >, and ηk 6= 0, k = 1, . . . , K, following the method of

Everitt described in [42], we use the factorial moments :

Hj(Y ) =
Y !

(Y − j)!
, j = 1, . . . 2K − 1.

For data distributed according to a Poisson mixture distribution the factorial

moments are equal to the moments about the origin of the mixing distribution,∑K
k=1 ηkλ

j
k.

In the case of a microarray spot subimage, the quadrat values describe a mix-

ture of two Poisson processes: one describing counts inside the spot and the other

outside of the microarray spot. The counts are modeled as a mixture of two

Poisson distributions, with constant concentrations λ1, λ2 (expressed in counts per

quadrat): p(yi|λ1, λ2, η1) = η1Poi (λ1) + (1 − η1)Poi (λ2) , where η1 denotes the

weight of the first component. This simple model does not account for correla-

tions between neighbouring quadrats. For this mixture of two components one has

to determine three parameters: λ1, λ2 the intensity of the two Poisson distributions

and η1 the proportion of the first component in the whole population.

The first three factorial moments E(Hj(Y )|λ1, λ2, η1) of the random variable

Y , are matched with empirical moments obtained from yi. The equation system
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for λ1, λ2 and η1 becomes:

η1(λ1 − λ2) + λ2 = v1

η1(λ
2
1 − λ22) + λ22 = v2

η1(λ
3
1 − λ32) + λ32 = v3

with vj =
1
N

∑
i:yi≥j yi(yi − 1) · · · (yi − (j − 1)).

Although inefficient compared to other estimators (see, e.g., [68]), this simple

method offers a closed form solution in the case of mixture of two Poisson distri-

butions, which is crucial for the speed of the analysis for such a large quantity of

data.

We tested several quadrat sizes, but the results obtained on real images were

robust for quadrats of size 20 × 20 pixels and above. However further study is

necessary to select the optimal quadrat size.

Expectation maximization (EM) based on Kth nearest

neighbor distances

As a second approach we adopt the method of Byers and Raftery, used in minefield

detection [18]. The detection results are not pooled together, but are considered

as the realization of a spatial Poisson process. The location of the detected peaks

are treated as a mixture of two spatial Poisson processes with different rates for

foreground and background.

In the case of a single spatial Poisson processes with constant rate λ the distri-

bution DK of the distance from a point of the Poisson process to its K-th nearest

neighbor can be written as

P (DK ≥ x) =
K−1∑

k=0

e−λπx
2
(λπx2)

k

k!
= 1− FDK

(x). (6.4.4)

This leads to the density function:

fDK
(x) =

dFDK
(x)

dx
=
e−λπx

2
2 (λπ)K x2K−1

(K − 1)!

meaning that the D2
K follows a transformed Gamma distribution, D2

K ∼ Γ(K,λπ).
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(a) Easily separable components of the
mixture

λ1 = 0.025, λ2 = 0.005

(b) A case with mixture components
difficult to separate
λ1 = 0.065, λ2 = 0.045

Figure 6.4: The density function of kNN distanceDk(λ1, λ2) for the spatial Poisson
mixture with concentrations λ1 inside and λ2 outside the spot, respectively.

The maximum likelihood estimate of the rate of the Poisson process is:

λ̂ =
K

π
∑n

i=1 d
2
i

(6.4.5)

where di, i = 1, . . . , n are the realizations of the K-th nearest neighbour distances.

In the case of a mixture of two Poisson processes with two intensity rates λ1

and λ2, the model for DK can be written as

DK ∼ p Γ
1
2 (K,λ1π) + (1− p)Γ

1
2 (K,λ2π) . (6.4.6)

The pdf of the mixture is plotted in Fig. 6.4. The Figure 6.4 is a pseudo-surface

representing the distribution function of the k-th nearest neighbour Dk(λ1, λ2)

in the spatial mixture model for each fixed value K on the axis kNN , and for

fixed rates λ1 and λ2. The bigger the difference between the signal and clutter

concentration the easier is to separate the two components of the mixture. Also,

as one can see in Fig. 6.4 for high concentrations the task is more challenging than

for lower concentrations. As opposed to the method of moments’ η, p represents a

proportion of the samples DK . The three unknown parameters that describe the

distribution DK : p, λ1, λ2, are estimated via the EM algorithm, together with the

assignments to components (“missing data”) δi ∈ {0, 1}, where δi = 1 if the i−th

point belongs to the first component (signal), and δi = 0 otherwise.
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(a) 0.08 amol/80µl (b) 0.8 amol/80µl (c) 8 amol/80µl

Figure 6.5: Background/foreground separation of peaks for three different concen-
trations via the EM method applied to the Kth nearest neighbour distances.

The expectation step becomes:

E
(
δ̂
(t+1)
i

)
=

p(t)fDK

(
di, λ̂

(t)
1

)

p(t)fDK

(
di, λ̂

(t)
1

)
+ (1− p(t))fDK

(
di, λ̂

(t)
2

)

and the maximization:

λ̂
(t+1)
1 =

K
∑n

i=1 δ̂
(t+1)
i

π
∑n

i=1 d
2
i δ̂

(
i t+ 1)

λ̂
(t+1)
2 =

K
∑n

i=1

(
1− δ̂

(t+1)
i

)

π
∑n

i=1 d
2
i

(
1− δ̂

(t+1)
i

)

p(t+1) =
n∑

i=1

δ̂
(t+1)
i

n
.

As initial values for the three parameters one can use the results obtained

through the method of moments. In order to gain insight in the challenges of

microarray image analysis, we present the results of the classical method and the

high resolution adapted peak counting method for three different concentration:

0.08, 0.08, and 8 amol/80µl. In Fig. 6.5 the result of the EM method applied to real

oligonucleotide data is shown. In the leftmost image, characterized by low concen-

tration of molecules, one can see that only for a part of the spot the hybridized

signal was correctly identified. For higher concentrations (middle and right image)

the spot shape can clearly be recognized. The EM method is insensitive to the

shape that has to be detected, allowing for the analysis of anomalous spots due
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to uneven drying, spotting errors etc. [99]. An example of a possible shape that

could be analyzed is shown in Fig. 6.6.

Segmentation of point processes based on a level set ap-

proach

Given that we deal with homogeneous Poisson point processes in distinct regions

of the image (the inside respective outside region of the microarray spot), the in-

tensity of the respective point process can be seen as a piece-wise constant function

over disjunct regions of the image.

The level set approach proposed in [20, 21] is designed to segment images that

can be well approximated by piecewise constant or piecewise smooth functions

and for which the separating contours is not necessarily gradient based. Thus it is

a reasonable choice to partition the microarray spot image and estimate the two

concentrations (or intensities) via this level set algorithm.

The algorithm is a particular case of the Mumford-Shah segmentation problem

[84], that finds a decomposition of the image domain Ω ⊂ R
2 into disjunct compo-

nents Ωi, defined as the connected components of Ω\C, where C is a closed subset

in Ω, consisting of a finite set of smooth curves. Thus Ω =
⋃
iΩi ∪ C. In order to

solve this problem, Mumford and Shah minimize the following energy functional

Figure 6.6: Anomalous shape detection. A high concentration donut shape was
simulated on a background formed of low concentration clutter. The proposed
approach is able to separate signal from clutter.
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with respect to u and C

FMS =

∫

Ω

(u− u0)
2 dx dy + µ

∫

Ω\C
|∇u|2 dx dy + ν|C|,

where u0 : Ω → R is the bounded image function, |C| denotes the length of

C and ν and µ are fixed weight parameters. In particular, if u0 is formed of

regions of approximately piecewise-constant intensities, approximately c1 inside C

and approximately c2 outside this region and setting µ = 0 (for constant regions

having anyway ∇u0 = 0 fulfilled) the minimizing problem becomes:

inf
u,C

F = λ1

∫

int(C)

(u(x, y)−c1)2 dx dy+λ2
∫

out(C)

(u(x, y)−c2)2 dx dy+ν|C|. (6.4.7)

As a matter of notation if Ω∗ ⊂ Ω an open subset then C is the boundary of the

subset C = ∂Ω∗ , int(C) = Ω∗ and out(C) = Ω\Ω∗. An ubiquitous choice of

parameters is λ1 = λ2 = 1.

The algorithms makes use of the implicit representation for the evolving curves

C as the zero level set of a scalar Lipschitz continuous function φ : Ω → R such

that φ(x, y) > 0 in int(C), φ(x, y) < 0 in out(C) and φ(x, y) = 0 on C and with

the help of the Heaviside function H

H(z) =




1, if z ≥ 0

0, if z < 0

and the Dirac measure δa given by

δa(A) =




1, if a ∈ A

0, if a /∈ A

By replacing H and δ with their regularized versions Hε and δε (e.g. obtained via

convolution with a molifier), δε(z) =
d
dz
Hε(z), the length of C can be expressed as

|C| = lim
ε←0

∫

Ω

|∇Hε(φ(x, y))| dx dy = lim
ε←0

∫

Ω

δε(φ(x, y))|∇φ(x, y)| dx dy.
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Chan and Vese rewrite (6.4.7) as

inf
u,C

F =

∫

Ω

(u(x, y)− c1)
2Hε(φ) dx dy+

∫

Ω

(u(x, y)− c2)
2(1−Hε(φ)) dx dy + ν

∫

Ω

|∇Hε(φ)|. (6.4.8)

Now the solution can be written as: u(x, y) = c1H(φ(x, y))+c2(1−H(φ(x, y)))

and the constants c1, c2 minimizing (6.4.8) for fixed φ are

c1(φ) =

∫
Ω
u0(x, y)Hǫ(φ(x, y)) dx dy∫

Ω
Hǫ(φ(x, y)) dx dy

c2(φ) =

∫
Ω
u0(x, y)(1−Hǫ(φ(x, y))) dx dy∫

Ω
(1−Hǫ(φ(x, y))) dx dy

while for fixed constants c1, c2 the minimizer with respect to φ is

∂φ

∂t
= δǫ

[
νdiv

( ∇φ
|∇φ|

)
− (u0 − c1)

2 + (u0 − c2)
2

]
. (6.4.9)

The authors summarize the advantages of this method as opposed to other active

contour methods as being able to segment images in which the contour is not

necessarily based on the gradient, (as in our case, where the two different point

Processes are separated by a cognitive contour and not a gradient based one), it

detects interior contours and is not dependent on the initial starting contour. See

[20, 21] for more details 1.

The level set approach applied directly to our point process (or even to the

microarray spot image) however, does not detect the two regions of different point

concentrations, but instead detects single peaks (for a very wide range of the

penalization terms - we have tested a range over 10 orders of magnitude). Instead

the approach is applied to a kernel density estimate of the point process described

below.

Nadaraya-Watson kernel density estimator The best known non-parametric

intensity estimator is the Nadaraya-Watson or simply kernel estimator [101]. The

kernel estimator with kernel K is defined by

f̂(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
,

1The implementation of the level set segmentation method was kindly provided by Bettina
Heise (Dept. of Knowledge-based Mathematical Systems, Johannes Kepler University, Linz).
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(a) 0.008 amol/80µl (b) 0.08 amol/80µl (c) 8 amol/80µl

Figure 6.7: Nadaraya-Watson kernel smoothing

where where K is a function satisfying

∫ ∞

−∞
K(x) dx = 1

and h is the kernel width, called also smoothing parameter or bandwidth. The two

most important problems that arise in kernel density estimation is the choice of

the kernel function K and of the kernel width h. From these two problems, the

crucial one is the choice of the parameter h (see [101]). As kernel function we shall

use a 2-dimensional Gaussian shape.

Many approaches have been developed for bandwidth selection (see e.g. [101])

however a simple heuristic to chose the width of the kernel is to use the interquartile

distance. The kernel estimator is illustrated on the single molecules detected in

three oligo-nucleotide spots with three different concentration (the heuristically

chosen h is the interquartile range bandwidth h = hiq) and the results are presented

in Fig. 6.7. The kernel smoothed images were subsequently segmented via the level

set approach described above. Three separation contours are presented in Fig. 6.8

together with the input point patterns for three bandwidth choices: in red h = hiq,

in green h = 1/4hiq and in blue h = 1/10hiq.

Although the segmentation is only slightly affected, the signal concentration

estimate is more biased in the case of larger h (when a higher area is contributes

to the smoothed value at one point). Instead we propose a simple re-estimation

of the single molecule concentration inside the spot int(C) as in (6.4.1), where

W = int(C).
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(a) 0.008 amol/80µl (b) 0.08 amol/80µl (c) 8 amol/80µl

Figure 6.8: Segmentation of the point patterns via level sets for three choices of
smoothing bandwidths (red: h = hiq, green h = 1/4hiq and blue h = 1/10hiq)

6.5 Evaluation of concentration estimation

The concentration estimation algorithms were tested on simulated data represent-

ing the position of single molecules and clutter, respectively.

We assumed that signal (molecules’ position) has a higher concentration than

clutter. For each data set, two spatial Poisson processes are simulated: one of

intensity λ1 inside a disk of radius R (150 pixels in our case) and a second one,

of intensity λ2, independent of the first one, in a rectangle excluding this area.

The parameter values were chosen such that (λ1, λ2) ∈ [0.01, 0.05] × [0.005, 0.05],

λ2 < λ1. For each (λ1, λ2) parameter pair, ten data sets were generated. The

results of the estimation of the signal concentration λ1 are presented in Fig. 6.9.

In order to evaluate the performance of the presented algorithms we have in mind

three criteria:

• accuracy

• precision

• computational cost.

Accuracy can be seen as a measure of how close the estimate approaches the true

simulation parameter, while precision describes repeatability or more precisely

how tight estimates cluster for given parameter. As for the last criterion, given

the very different nature of the algorithms to be compared we have considered

the execution time to be the measure of computational cost. In Fig. 6.9 and
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6.10 the accuracy of the estimate is represented by the distance to the true value,

while the precision is reflected by the size of the error bars. The results in the

case of MOM estimation are biased to lower intensities λ1 than the true value,

represented as a stair-case function on the figure. When the two concentrations

are close together one can see a stronger bias, due to the failure of separating the

two components of the mixture. The same behaviour can be noticed in the case

of level set segmentation (with and without re-estimation of the concentration) in

Fig. 6.10. In the case of re-estimated concentration the phenomenon is significantly

stronger than in the estimation obtained implicitly by the level set method. The

EM-based algorithm produces almost no bias. The true parameter value belongs

to the estimated confidence interval. The precision of the method tends to increase

with the concentration λ2 of the clutter around the spot of interest (which appears

as color code in the figure).

The highest precision among the three methods is achieved by the level set

approach at the cost of higher computational cost. Although more computationally

expensive than the MOM, the increased accuracy of the EM method makes it

preferable to the MOM and the level set approach. Finally, MOM offers a good

trade-off in case all three criteria: accuracy, precision and computational cost are

taken into account.

The mean squared error (MSE) for the three methods over the range of signal

and clutter concentration is summarized in Fig. 6.11. Only the parameters in the

region λ2 < λ1 were taken into account in the simulations. The smallest mean

squared error is achieved by the EM algorithm, while the MOM method and the

level set method with reestimated concentrations have comparable behaviour.
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(a) MOM

(b) EM

Figure 6.9: Concentration estimation results for the MOM and EM method on
simulated data. The true λ values are represented as a stair-case function and for
better visibility, the estimation results were slightly shifted on the abscissa.
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(a) Concentration estimation after level set segmentation

(b) Reestimated concentration after level set segmentation

Figure 6.10: Concentration estimation results for the level set based method on
simulated data. The true λ values are represented as a stair-case function and for
better visibility, the estimation results were slightly shifted on the abscissa.
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Figure 6.11: Mean squared error of the proposed algorithms over the range of signal
λ1 and clutter λ2 concentrations. The EM algorithm has the best performance,
followed by MOM and level sets with reestimated concentrations.



Chapter 7

Results of microarray analysis

with single molecule sensitivity

Given the huge amount of data that needs to be analyzed the single molecule

detection and signal estimation algorithms have to be fast, and in the same time

accurate and robust to noise and model misspecification. Moreover, the range

of interest of mRNA and cDNA concentration in the sample is much below the

required concentration for classical low-resolution microarray analysis.

The proposed single molecule analysis tackles all the above described difficul-

ties. We have separately evaluated the single molecule detection algorithms in

Chapter 5 and the concentration estimation in Chapter 6. Now we validate our

entire approach on simulations that check the correlation of the estimated param-

eters with the simulation parameters, as well as on real high-resolution microarray

images. Since the ground truth in the case of real images is not known, special dilu-

tion series experiments for oligonucleotide arrays are used. Finally, we describe the

results of a full analysis of cDNA microarray slides for a Multiple Myeloma sample.

The list of differently expressed genes obtained via this analysis was confirmed by

independent PCR analysis.

7.1 Validation on simulated data

Simulation images

Simulation images represent a square domain of 512 × 512 pixels with a spot

of radius 150 pixels at its center (the proportions correspond to the real case

situation). The (optional) background of the image, due in practice mainly to the
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laser profile, is constructed as a 2d image of a ridge. It is a vertical repeat of a 1d

horizontal Gaussian signal with σ = 500.

The positions of single peaks are generated according to a mixture of two

spatial Poisson processes with parameters λS representing the peak concentration

inside the spot and λB representing peaks outside the spot of interest (noise).

At each position generated as above, an appropriately discretized 2d Gaussian

approximation of the PSF is added to the background image (see the details of the

model in Section 2.3. The total intensity of each Gaussian peak is randomly drawn

from a Poisson distribution P(µ) or a compound Poisson distribution CP(n, µ)

(in the case of multiple dye model), where µ is the expected number of photons

emitted by a single dye and n is the expected number of dyes bound to a single

molecule. The width of the Gaussian can be chosen constant (e.g. σ = 1) or

independent for each peak, as an instance of a Gaussian random variable N (m, s)

(e.g. m = 1, s = 0.01). Finally, Poisson and Gaussian noise are added to the

simulation model.

Figure 7.1 shows the images simulated as described above, and for the sake of

visual comparison also real oligonucleotide spots are presented in Fig. 7.2.

Figure 7.1: Simulation of microarray spots. Peak concentrations: left: 0.005
peaks/pixel inside the spot and 0.0005 peaks/pixel outside the spot, right: 0.01
peaks/pixel inside the spot and 0.0025 peaks/pixel outside the spot
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Figure 7.2: Scanned oligonucleotide spots (dilution: 0.8 and 8 amol/80µl)

Classical microarray methods applied to downsampled sim-

ulation data

In order to check the effect of the novel high resolution information on the esti-

mation of hybridization intensity we have compared simulation results for state-

of-the-art microarray spot segmentation methods. The algorithms selected for the

comparison, particularly suited for low SNR images, are: maximum likelihood es-

timation segmentation (MLE) [14], a segmentation based on the Mann-Whitney

test [22] and a Markov Chain Monte Carlo (MCMC) approach [49]. Briefly we

describe the three algorithms.

MLE segmentation

The pixel values of the subimage corresponding to a grid element are assumed

distributed according to a Gaussian mixture model (GMM):

f =
K∑

j=1

πjN (µj, σj).

Each component of the mixture describes one of the following classes: signal S

and background B if K = 2, or signal S, background B and artifacts A if K = 3.

The parameters of the mixture Ψ = {πk, µj, σj, j = 1, . . . , K} are estimated via
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maximization of the log-likelihood:

ℓ(x) =
N∑

i=1

log f(xi|Ψ) =
N∑

i=1

log

{
K∑

j=1

πjN (µj, σj)

}
.

The maximization of the log-likelihood can be obtained e.g. via an expectation-

maximization approach similar to the one described in Section 6.4.

Segmentation based on Mann-Whitney test

The iterative algorithm starts with an initial partition of the region of interest in

foreground (signal) Si, i = 1, . . . ,m and background pixels Bj, j = 1, . . . , n.

The iteration step consists of the (non-parametric and distribution-free) Mann-

Whitney test applied to eight random background pixels B8
j and the eight lowest

intensity foreground pixels S8
j . For each pixel value a testing problem is defined,

based on the accept/reject of the null hypothesis

H0 : µS − µB = 0

the alternative hypothesis being

H1 : µS − µB > 0,

where µS and µB are the mean values of signal, respective background. The test

is based on the rank-sum statistic R, the sum of the ranks of all the samples S8
j

in the ordered sequence of S8
j ∪ B8

j . The hypothesis H0 is rejected if R ≥ rα, the

critical value corresponding to the significance level α, knowing that under the null

hypothesis

R− n(n+1)
2

− mn
2√

mn(m+n+1)
12

∝ N (0, 1),

for m,n ≥ 8 ( and can be directly computed for smaller values).

If H0 is not rejected, the smallest values (possibly only one) of Si, i = 1, . . . ,m

are discarded and the lowest eight samples from the remaining Si values are selected

as S8
j and the procedure is iterated until no potential signal pixels remain or the

H0 is rejected. If the second situation occurs, all the remaining pixels in Si are

signal, the rest belonging to the background of the spot. Further details on the

approach can be found in [22].
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MCMC segmentation

The approach is based on a hierarchical Bayes model of the spot image and

uses Markov Chain Monte Carlo algorithms as computational tool to sample

the posterior distribution and estimate the parameters of the model. The al-

gorithm was fully described in [35], and reimplemented and applied to low-

resolution microarray images in [99]. The parameters describe the spot shape

model and the signal intensity model. We assume a simplified circular spot shape

R(τ) = {z = (x, y) : (x− x0)
2 + (y − y0)

2 ≤ r2}, where τ = [x0, y0, r] represents

the shape parameter vector, but it is possible to consider more complex shapes,

like ellipse or annulus. The subimage corresponding to a grid element can be

written as the union of the spot region and the complement of the spot region:

G = R(τ) ∪RC(τ).

Each pixel r is assumed normally distributed, and corrupted by additive mea-

surement noise εr: u(r) = u0(r) + εr, εr ∼ N (0, σB). The pixels inside the

spot are normally distributed around an average hybridization level µ with hy-

bridization signal variability σ, while those outside the spot have a mean value

0:

p(u(r)|φ) =




N (µ,

√
σ2 + σ2

B) if r ∈ R(τ)

N (0, σB) if r ∈ RC(τ).
(7.1.1)

The likelihood of the measurement u given the parameters φ is

L(u|φ) =
∏

z∈R(τ)

N (u(·);µ,
√
σ2 + σ2

B) ·
∏

z∈RC(τ)

N (u(·); 0, σB)

∝
(
1 +

σ2

σ2
B

)−N(τ)
2

exp



−1

2

∑

r∈R(τ)

[
(u(·)− µ)2

σ2 + σ2
B

− (u(·))2
σ2
B

]
 (7.1.2)

where N(τ) =
∑

z 1z∈R(τ) is the number of signal measurements in the sub-image.

The shape τ and the signal θ = [µ, σ] parameters are considered independent

a priori. For each parameter a uniform prior is assumed

Px0(x0) ∼ U [xMIN, xMAX],

Py0(y0) ∼ U [yMIN, yMAX],

Pr(r) ∼ U [rMIN, rMAX],

Pµ(µ) ∼ U [0, σMAX],

Pσ(σ) ∼ U [0, σMAX],
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and given the independence of the parameters, the joint prior distribution is given

by:

Pφ(φ) = Pτ (τ)Pθ(θ) = Px0(x0) · Py0(y0) · Pr(r) · Pµ(µ)Pσ(σ).

In order to estimate the parameters of the model, samples are drawn via Gibbs

sampling from the posterior probability density function

p(φ|u) ∝ Pφ(φ)L(u|φ).

The estimator based on the samples φ(t) is defined as the average of a part of

the samples:

φ̂ =
1

T − t0

(
T∑

t=t0+1

φ(t)

)
,

where t0 is the burn-in period, and the first t0 samples are discarded. Note that the

estimator minimizes the mean square error based on the samples φ(t), t = t0, . . . T.

The details of the algorithm can be found in [35, 99].

However classical methods are not directly applicable to high resolution images.

Instead we apply them to downsampled versions of the original high resolution

images. The downsampling can be done in several ways:

1. integration over a quadratic region of size q × q

2. integration over a quadratic region of size q × q over the denoised image via

wavelet thresholding

3. integration over a quadratic region of size q × q over the counts of single

molecules after detection

4. kernel smoothed counts of single molecules

5. adaptive kernel smoothed counts of single molecules.

6. non parametric wavelet estimation applied to counts of single molecules.

Except for the first case, all other downsampling methods are based on in-

formation available only via the high resolution technique. A first issue is the

selection of the downsampling region size (q × q) for some of the downsamplings.

As we have seen in the MOM estimation approach the size of q × q influences the

estimation of hybridization intensity: for small q the bias is small and variance is

high, wile for large q the reverse holds (high bias, but small variance). We use
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in our computations q = 20. In future we plan implementation of the algorithms

based on adaptive kernel smoothed data and wavelet smoothed images.

Correlation tests

In Chapter 5 we have validated the detection results on simulation images, while

in Chapter 6 we have tested the separation of point patterns on simulated data.

In this section, we perform correlation tests in order to compare the results of our

analysis to those obtained by classical, low-resolution, ensemble analysis on the

downscaled images of the same data. Since our method results in peaks/pixel con-

centrations, while the ensemble approach gives mean pixel intensity values we com-

pare the correlation coefficients of the estimated hybridization measures computed

by each method with the ground truth concentrations used in the simulations.

For this purpose, 60 sets of images were generated with SNR between 2.85

and 31.6. Each set of images, characterized by a SNR value, contains 15 im-

ages. In each image, single molecules were simulated with concentrations λ1 ∈
{0.003, 0.005, 0.007, 0.009, 0.01} peaks/pixels inside a disk of radius 150 pixels.

The concentration λ2 of peaks corresponding to clutter outside this disk was also

varied from 0.001 to λ1 − 0.002 by steps of 0.002.

In Fig. 7.3 are shown the images corresponding to background value λ = 0.003,

SNR = 12.52. The single molecule simulation procedure is the one described in

Section 7.1.

In Fig. 7.4 we present the correlation results for the three high resolution al-

gorithms: MOM, EM and level set method. Each point in Fig. 7.4 corresponds

to a correlation coefficient computed between the hybridization measure (the es-

timated λ1 values) and the true λ1 values used in simulations. MOM performs

slightly worse than the other two algorithms, while EM and the level set method

have similarly good performance, with a small advantage for the level set method.

In order to compare the algorithms with state of the art microarray segmen-

tation methods we have created the corresponding low resolution images, by inte-

grating the intensities of the high resolution images over 20×20 pixel patches. The

pixel intensities of the downscaled images were modeled as a Gaussian mixture of

foreground (signal) and background pixels respectively and the parameters of the

mixture were estimated via a maximum likelihood (ML) approach as described in

the previous section. Moreover, we have applied the same downsampling and ML

estimating procedure to the original high-resolution image after a wavelet denois-
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Figure 7.3: Simulation of microarrays spots. Left column: spots at single
molecule resolution (200nm pixel size) with different peak concentrations (λ)
inside each spot. Starting from the first row up till the fourth down: λ =
0.005, 0.007, 0.009, 011 peaks per pixel. (Background concentration representing
dirt, unspecific binding etc.: 0.003 peaks per pixel). Middle column: the same
spots downsampled to 4µm, the size used by existing commercial microarray sys-
tems. Right column: The original spots, denoised via wavelet thresholding and
then downsampled to 4µm.
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Figure 7.4: Correlations between the estimated and the true signal concentrations
for the three high resolution algorithms: MOM, EM and level sets. The arrow
indicates the correlation coefficient corresponding to the images in Fig. 7.3.

ing step. Thus we eliminated the effect of the background on the hybridization

measure.

We have compared our high resolution analysis with two more state-of-the-art

microarray spot segmentation and intensity estimation methods: the first based

on the Mann-Whitney rank-sum statistic (M-W) and the MCMC algorithm also

presented in the previous section.

The results are visualized in Fig. 7.5. In this case, out of the three high resolu-

tion algorithms only the EM method’s results are plotted, in order not to overload

the figure, together with four low-resolution results, all in different colours. In

their case the correlation coefficients are computed based on the mean foreground

pixel intensities and the true λ1 values used in simulations. For the whole range of

different SNR corresponding to the test data, our approach (with EM concentra-

tion estimation) has higher correlation coefficients than any of the alternative four

algorithms. The lowest correlation value for single molecule analysis, 0.77, was ob-

tained at SNR = 3.99. Since some of the low-resolution spot analysis have failed
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Figure 7.5: Correlations between the estimated and the true signal concentrations.
The single molecule analysis performs better than the analysis on the downscaled
data (original and denoised via wavelet thresholding). The arrow indicates the
correlation coefficient corresponding to the images in Fig. 7.3.

for low SNR image data, we show the results for the data sets with SNR ≥ 5.

We mention that the analysis of a low-resolution microarray spot via the MCMC

segmentation method takes approximately 10 minutes [99] for low SNR, this time

complexity being a prohibitive factor for use on chips with several thousand spots.

Our EM approach takes approximately 90 seconds/spot for average concentration

spots, and significantly less for low concentration spots. The mean of the correla-

tion coefficients for the compared algorithms on these simulation datasets are as

follows:

• MOM approach: 0.889

• High resolution EM approach: 0.969

• KDE and level set segmentation: 0.973

• Low resolution MLE: 0.858

• MLE on wavelet denoised images: 0.809. However on datasets with SNR >

16 the method outperforms the low resolution MLE.
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• MCMC segmentation: 0.809

• M-W segmentation: 0.709.

The first three high resolution approaches perform better than any of the classical

low resolution methods.

7.2 Oligonucleotide dilution series

The performance of the algorithms is best measured on real data. However in the

case of real images the ground truth is missing and the accuracy of the results is

difficult to evaluate. A special design of experiments based on dilution series of

oligonucleotide arrays (see Section 3.3 for technology details) provides reliable con-

trol for the quality of the results on real images. We have used images of oligonu-

cleotide arrays with four different concentrations: 0.01, 0.1, 1 and 10amol/µl, and

20 replicated spots for each concentration. The main visual difference between

oligonucleotide arrays and cDNA arrays is the uniformity of peak intensities, since

in the oligonucleotide array each peak is due to a single dye molecule, (basically

meaning that Model 1 in 3.3 is sufficient to describe the imaging process).

Single molecule approaches cannot be applied on the images corresponding to

10amol/µl concentration, since at this concentration peaks due to single molecules

overlap and cannot be separated. At this concentration one can successfully use

methods typical for ensemble analysis. We shall concentrate in the following on

the concentration range of 0.01− 1amol/µl.

The results of the high resolution algorithms MOM, EM and KDE for the

dilution series data are shown in Fig. 7.7, while the low resolution analysis on the

software downsampled images are presented in Fig. 7.6. Each point corresponds to

the concentration estimate of one spot. One expects a linear relation on the log-log

plot for concentrations up to 1amol/µl. The line in each figure unites the mean

values over the replicas of estimated concentrations for the three concentrations.

The high resolution algorithms MOM and EM show a close to linear relationship,

while the KDE approach is the best in this respect. Among the low resolution

methods, the best linearity yields the MLE algorithm applied to the count of the

peaks after wavelet based detection, followed by the MW and K-means algorithms.

Note that the MLE approach applied to counts of wavelet detected peaks is in fact

a high resolution technique, since it is based on information available only at

high resolution (the peaks representing single molecules). The mean value and
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Figure 7.6: Comparison of the concentration estimates for the dilution series in
case of six low resolution algorithms

Figure 7.7: Comparison of the concentration estimates for the dilution series in
case of the three high resolution algorithms

standard deviation of the signal estimates are summarized in Table 7.1. From the

point of view of the separability of the three classes of spot concentrations the high

resolution techniques are definitely superior, with the best results achieved by the
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Table 7.1: Results of signal concentration estimation on dilution series for several
algorithms (concentrations given in amol/µ l)

Algorithm c=0.01 c=0.1 c=1

mean std mean std mean std

MW 506.5310 6.6084 508.5122 6.2745 509.7575 6.4127
MCMC 210.4264 24.0670 210.3824 24.9649 206.6088 25.2465
K-means 512.2587 0.1529 514.2674 0.5970 515.6143 0.7614

LowRes+MLE 207211.85 409.39 214352.35 6335.14 231223.28 3600.98
W. peaks+MLE 464.85 90.17 790.43 94.14 1463.10 244.33

W. denoised+MLE 207254.94 372.30 217812.76 6394.59 233116.49 3726.15
MOM 0.0022 0.0007 0.0045 0.0005 0.0066 0.0005
EM 0.0025 0.0007 0.0057 0.0007 0.0087 0.0006
KDE 0.0077 0.0028 0.0180 0.0045 0.0367 0.0070

EM algorithm (see Fig. 7.7).

7.3 Gene expression in multiple myeloma data

A typical application of the ultra-sensitive microarray system is the analysis of

cancer stem cells(CSC) in order to characterize their gene and protein expression

profile. The problem was briefly presented in Chapter 1. Given the small fraction

of stem cells (fraction as low as < 1% according to [46]) the analysis is extremely

difficult if not impossible via the classical ensemble microarray techniques. The

ultra-sensitive microarray analysis was used to study the expression profile of puta-

tive Multiple Myeloma (MM) stem cells using the human MM cell line NCI-H929.

The sample of 600 ng of total RNA from a CD138− Multiple Myeloma

NCIH929 cell line was extracted at the Salzburg Department of Genetics. RNA

from CD138− and CD138+ side population was labeled with Alexa-647 dye or

with Alexa-555, respectively, and competitively hybridized on three replica slides.

Spotting, labeling and imaging were adapted to the conditions imposed by the

small amount of mRNA. Selecting 400 genes for which all (image) quality criteria

were satisfied on all the replicas, we have found 64 differently expressed genes. The

expression levels of several of these genes were tested and confirmed by employing

a different technique — qPCR. The qPCR tests were performed at the Department

of Genetics of Salzburg University. The results of the qPCR approach are in good

correlation with the gene expression estimated from the microarray data. The

results are summarized in Fig. 7.3. For each gene the bar is proportional to the

ratio for CD138± of the respective gene expressions. The colored stars mark genes
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Figure 7.8: The expression profiles of several side population genes showing re-
pressors and over-expressers. The repressed genes like CSEN, CCT6A and CASQ1
were either not analyzed with the qPCR method or showed not interpretable re-
sults. Rest of the presented genes show a higher expression level, and are in a
good agreement with the microarray results

compared with PCR. The gene ratios confirmed in the validation are marked with

a green star, while the three red stars show the ratios diverging in their expression

profile from the qPCR results.
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Conclusion

In the concluding chapter of this thesis, we are giving a brief overview of the image

processing tasks implied by the new technique of ultra-sensitive microarrays as well

as the results discussed in detail in the previous chapters. We shall also point out

possible applications of our study to other problems in microscopy as well as other

fields. Further ideas and lines of study will be pointed out in the second section

of the chapter that concludes this thesis.

8.1 Summary

This work was motivated by the new technology of high-resolution microarray

analysis, representing a combination between fast single molecule imaging and the

microarray technique. Each step of the microarray technique had to be evaluated

and adapted to the novel challenges, the most crucial of which being the small

amount of target mRNA typically used in the new technology.

Spotting, labeling and imaging were adapted to the new conditions and the

technical innovation in the biological and physical aspects of the problem resulted

in a new type of images to be analyzed. The challenges of the new technique from

an image processing and analysis point of view are related to:

The modified content of the microarray image. Instead of a microarray

circular spot representing the signal over a (uniform) background we have to

deal with information at two resolution levels: at high resolution the single

molecule peaks can be detected, and at a larger scale these peaks form the

hybridized spot imposed over a background of clutter. The detection of single

molecule peaks was implemented based on a wavelet thresholding algorithm.

The position of the single peaks were modeled as a superposition of two
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homogeneous Poisson processes corresponding to hybridization signal and

clutter. The intensity of the signal process was proposed as a new measure

of hybridization (Chapter 6).

Wide range of SNR and combined Poisson-Gaussian noise models. Sin-

gle molecule imaging poses new challenges related to SNR of the image and

the contrast of signal. Typically detection algorithms have to be very robust

over a wide range of SNR and contrast parameters. The support of the signal

is very small (of the order of a few pixels) which makes the detection prob-

lem difficult. Moreover, the concentration of the peaks (the sparsity of the

signal) is influencing the detection, and therefore was also taken into account

in our examination. We studied in Chapter 5 the behaviour of the detection

algorithms and summarized their results on systematic simulations of im-

ages, over a range of simulation parameters and implicitly SNRs, as well as

on real images. For the conditions imposed by single molecule imaging the

wavelet thresholding methods proved reliable and accurate. Although the

detection is based on the control of false positive cases, for the evaluation

of the algorithms we measured both the false positive as well as the false

negative detections.

The size of the images and complexity of algorithms. To each microarray

slide correspond approximately 22GB of image data (partitioned in several

subimages). Therefore the time and space complexities of the chosen al-

gorithms bear a crucial importance. Wavelet thresholding methods show

good performance with respect to time and memory, thanks to the one step

approach and to the special form of operators, (diagonal operators) used.

The concentration estimation is very fast in the case of MOM approach, and

slightly more computationally intensive in case of the EM and the level set

algorithms, with the advantage of increased accuracy. Each additional step,

such as improved noise variance estimation or variance stabilization trans-

forms further increase the computation time. Nevertheless the proposed

algorithms are on average 10 times faster than some of the state-of-the art

algorithms analyzing low-resolution microarray images, such as [99] (see Sec-

tion 7.1). However, in order to target a wider public, we plan improvements

of both memory and time performance.

Low mRNA concentration. The low fluorophore concentration results in few

single molecule peaks, which in turn, at low resolution, translate to dim
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spots. The wavelet-based detection algorithm used for single molecule de-

tection was successfully applied also to the detection of microarray spots in

downsampled (originally high-resolution) microarray images (Section 7.3).

The gridding algorithm has also been adapted so that the grid pattern match-

ing works robustly even in the case of missing (or dim) column and/or lines

of microarray spots.

Understanding the advantages and disadvantages of the new tech-

nique. The access to high resolution information permitted modeling at

single molecule and single dye level. It also helped in gaining understanding

on image formation, both in the low-resolution and high-resolution cases.

Modeling both cases allowed a better identification of the sources of bias

and errors in each case, as well as to perform a better comparison of the two

techniques (as described in Chapters 2 and 7).

Validation of the results. In order to validate the results the algorithms were

tested on simulated and real data. For the real data the ground truth is not

available, however with the help of specially designed experiments, such as

the dilution series of oligonucleotide arrays the correctness of the results could

be evaluated (see Section 7.2). The results of our approach on a real data

set based on multiple myeloma were confirmed by an independent technique

(qPCR) as described in Section 7.3.

We have presented in this work a comprehensive image processing solution for a

new microarray technique, analyzing the similarities and differences to the state-of-

the art approaches used in the standard microarray applications. Besides the signal

processing and image analysis approach this work attempted to accommodate the

point of view of the biologists and biophysicists involved, since it is the result of a

close and continuous collaboration in the framework of a multidisciplinary project.

8.2 Outlook

Beyond applications to the ultra-sensitive microarray technology, the study of

algorithms analyzing single molecule images has an interest in its own. All the

present and future applications of single molecule imaging might benefit of the

algorithms detecting single molecules, with special concern to low level SNR, the

specific noise model and single molecule concentrations.
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A reliable method, based on wavelet thresholding, of finding significant pixels

in a microscopy image was described in Chapter 5. The special focus was the

detection of pixels due to single molecules. Further analysis of the values of these

pixels might provide insight in the temporal behaviour of fluorophores, character-

izing the phenomena known as blinking and bleaching (Section 2.1). We envisage

to address the problem of subpixel accuracy, which classically is based on fitting

a 2d Gaussian shape to the pixel values corresponding to the single molecule im-

age. Bobroff [15] discussed the importance of the signal support over which this

fitting is performed. We will investigate the effect of signal support selection via

wavelet thresholding on the fitting procedure. Finally, we will extend the analy-

sis of molecule intensities, which for the moment only discriminates between two

classes of signal intensity: due to single dyes and due to dirt, to more general

stoichiometry problems, as e.g. the one described in [83].

We plan to study different models (e.g. truncated and censored distribu-

tions) for the description of single molecule positions and counts, knowing that

the wavelet detection methods have a certain ”resolution” (see Section 6.4), thus

introducing a truncation of the data. We would like to look into the benefits of

wavelet methods as density estimators in case of spatial point patterns in general

and in microscopy in particular.

A possible line of study in the future is the utility of spatial point pattern

approaches to microscopy images of single molecules. There are already a few

attempts of using spatial patterns in co-localization [122], tracking [64] and at

a higher scale, in the study of the differences between the patterns of nuclei of

malignant epithelial tumor (adenocarcenomas) cells as opposed to normal cells

[79]. We are interested in characterizing videomicroscopy image sequences of single

molecules previous to tracking, in order to assess their quality, make inferences

about the dynamics and finally, facilitate the tracking. We believe that point

pattern analysis — both as hypothesis testing and parameter estimation — will

prove to be a useful tool in PALM imaging [13].

As previously mentioned, optimized versions of the algorithms and their im-

plementations, more efficient both in run-time and memory, are planned to be

developed in order to improve the use of the proposed approach.
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Outliers and variance-covariance

estimators

Several intuitive descriptions of outliers have been proposed in the literature. We

adopt the one offered in [98], according to which outliers are ”observations that do

not follow the pattern of the majority of the data”.

The deviation of the outliers from the majority of the data is measured by a

convenient measure, such as the quadratic distance measure between data x and

a location y, given by the (squared) Mahalanobis distance:

MD2(x, y) = (x− y)TS−1(x− y), (A.0.1)

where y is a d-dimensional vector and S is a positive definite symmetric d × d

dimensional matrix. The Mahalanobis distance represents the distance from the

point x to the ”center” of the data cloud, taking into account the shape of the

point cloud. Typically if this distance is larger than a predetermined threshold, x

is considered an outlier.

The importance of the Mahalanobis distance is justified by the aim to find

methods that are affine equivariant, so that ”measurement scale changes and other

linear transformations do not alter the behavior of analysis method” (see [93]).

Usually, y and S are replaced by estimations of the location and scatter, e.g.

the standard estimators, average of the sample x̄ = 1/n
∑n

i=1 xi for location and

for scatter the sample covariance matrix: Ŝ = n−1(x− x̄)T (x− x̄).

For multivariate normally distributed d-dimensional data the values are ap-

proximately χ2 distributed with d degrees of freedom ([48]).

The standard sample location and shape parameters are not robust estimators
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Figure A.1: (Left) Hawkins-Bradu-Kass 3d data. (Right) p-values of the data
plotted against the data index. The first 14 points represent outliers.

(the higher the moment the higher the influence of the outlier), leading to masking

and swamping phenomena, in the case of multiple outliers or clusters of outliers

corrupting the data.

The masking effect means that an outlier or an outlying subset is undetected

because of the presence of another, usually adjacent subset, while swamping effects

occur when good observations are incorrectly identified as outliers, usually due to

the presence of a remote subset of observations([50]).

These phenomena prevent outliers having a large Mahalanobis distance value

comparatively to the rest of the data cloud. The dataset due to Hawkins, Bradu,

and Kass, described also in [96] (p. 94), illustrates the failure of the Mahalanobis

distance with standard parameter estimation to uncover outliers. Figure shows

the Hawkins-Bradu-Kass data, consisting of 75 three-dimensional points and their

respective p-values assuming a χ2 distribution with three degrees of freedom. At

least ten p-vales out of the first 14 values corresponding to outliers are not signif-

icantly different from the rest of p-values of the clean data.

A possible solution to the aforementioned problem consists of replacing the

standard location (T ) and scatter (S) estimates by robust counterparts, since

the underlying idea in robust estimation is to eliminate or drastically reduce the

influence of outliers on the estimates. Such an approach would preserve the nice

intuitive idea of using Mahalanobis distance for detecting outliers.

A measure of robustness of an estimator T is its breakdown point ε∗, the smallest
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Figure A.2: (Left) p-values of the robust Mahalanobis distances for the HBK
data. (Right) The Mahalanobis distances for the HBK data computed according
to (A.0.1) with the standard location and scatter estimates plotted against the
robust Mahalanobis distance (MCD estimates). The 14 representing outliers are
easily identifiable in the case of robust distances (y axis), and blend in the rest of
the data for the standard estimates (x axis).

fraction of contamination that can cause T to take arbitrarily large values:

ε∗(T,X) = min
{m
n

: supX′ ‖T (X ′)− T (X)‖ = ∞, |X ′| = m, |X| = n, |X ′ ∩X| = n−m
}

Illustrative examples in case of location estimation, are the arithmetic mean

with the breakdown point 0, and the median whose breakdown point is 50%.

A.1 One-dimensional robust estimators of loca-

tion and scale

For the univariate case, d = 1, several robust estimates were proposed (see for

example [52]). The most popular one-dimensional location and scale estimators

are the (one-step) M -estimators, also called generalized maximum likelihood.

The classical maximum likelihood estimators Tn = T (x1, . . . , xn) maximizing∏n
i=1 fTn(xi) or equivalently minimizing:

n∑

i=1

(−lnfTn(xi)) =
! minTn (A.1.1)
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are replaced by the following minimization problem

n∑

i=1

ρ (xi, Tn) =
! minTn , (A.1.2)

where ρ is a function defined on X ×Θ, (where X is the range of the variable and

Θ is the parameter space), with derivative ψ(x, θ) = ∂
∂θ
ρ(x, θ), such that (A.1.2)

is replaced by:
n∑

i=1

ψ (xi, Tn) = 0.

One of the simplest robust location estimator is the median of the sample. As

for scale, the median absolute deviation (MAD) is a popular choice:

ψMAD(x) = sign
(
|x| − Φ−1(3/4)

)

resulting in MAD(x) = median |x−median(x)| /0.674. This is the estimate of

scale for the distribution of wavelet coefficients proposed in [36, 37] and used in

wavelet thresholding.

We have implemented two alternatives to the MAD robust scale approximation

are described in [95]:

Sn = c1 ·medi {medj |xi − xj|} ,

where medixi denotes the median of the sample {x1, x2, . . . xn} and

Qn = c2 · {|xi − xj| : i < j} (k),

Their advantage is greater (Gaussian) efficiency and no underlying assumption of

a symmetric distribution, with the drawback of higher computation time (which

was especially limiting for the large microarray images).

A.2 Robust covariance matrix estimation

The robust estimation in multivariate case, and especially d > 2, is much more

challenging than in the univariate one. Outliers are difficult or impossible to

detect even by visual inspection and sample covariance matrices are very sensitive

to outliers. Moreover, Gnanadesikan and Kettenring ([48]) identify several other

causes that make outlier detection particularly challenging in high dimensions:
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outliers may corrupt not only location and scale, but also orientation parameters

(i.e. correlations), the view of outlier as an extremal value does not hold in high

dimensions, an outlier might be characterized by a gross error in one dimension, or

milder errors in several (or all) dimensions (relating the problem to that of sparsity

of the error vector).

A presentation of the difficulties of the task as well as a comparison of some of

the solutions is given in [93]. The robust approaches are classified in [59] in three

categories:

• Robust estimation of individual matrix elements of the covariance matrix

• Robust estimation of variances in sufficiently many selected directions, to

which a quadratic form is then fitted

• Direct estimation of shape matrix for some elliptical distribution.

The breakdown point of all affine equivariant M -estimators is at most 1
d+1

or even lower, if the outliers belong to a lower dimensional space. This makes

the multivariate location and shape problem a very difficult problem to tackle.

However a popular choice from the combinatorial category of location and shape

estimators in the multivariate case, the Minimum Covariance Determinant (MCD)

estimates, have been proved to work well over a wide range of situations.

The objective of the MCD estimator, first introduced in [94] is to find h obser-

vation out of the total n whose classical covariance matrix has the lowest determi-

nant. The location and scatter are the standard estimates based on the chosen h

observations.

Formally, given n data points, {x1, . . . , xn}, the MCD is based on the sub-

sample {xi, i ∈ H}, where H ⊂ {1, 2, · · · , n} of size h, h ≤ n, that minimizes the

determinant of the covariance matrix, more precisely:

MCD = (TH , SH), (A.2.1)
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where

H : { {i ∈ H} , |H| = h : det(SH) ≤ det(SK), ∀K, det(K) = h}

TH =
1

h

∑

i∈H
xi

SH =
1

h

∑

i∈H
(xi − TH)(xi − TH)

T .

The estimator is affine equivariant because the determinant of the covariance ma-

trix of the transformed data satisfies:

det(ATCA) = (det(A))2 det(C)

The main idea of the MCD algorithm is that of obtaining a sample subset H2 ⊂
{1, . . . , n} starting from the subset H1 with the same cardinality, |H1| = |H2| = h,

such that the new subset has a smaller covariance matrix determinant than the

initial one. The process of obtaining a new subset H2 is called a C-step in [97] and

it is summarized in the following theorem.

We denote with dk(i) = MD(xi, Tk, Sk) the Mahalanobis distance of the ith

point, i ∈ Hk, with respect to the standard estimators of location and shape, Tk

and Sk, of the subset Hk.

Theorem A.2.1. Given X = {x1, . . . , xn} p-variate observations and the subset

H1 ⊂ X, such that |H1| = h, if det(S1) 6= 0 and

H2 = {π(i), i = 1, . . . h : d1(π(1)) ≤ d1(π(2)) ≤ . . . ≤ d1(π(n))} ,

where π : {1, . . . , n} → {1, . . . , n} is the permutation corresponding to the increas-

ing ordering of the data then

det(S2) ≤ det(S1).

The equality holds if and only if T2 = T1 and S2 = S1.

A proof of the theorem is given in [97].

The exact MCD solution can be found only in very simple cases, instead approx-

imations based on random search [96], steepest descent [54] and heuristic search

optimization [92, 93] were proposed. We use a computationally efficient version of
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the random search MCD algorithm, introduced in [97] and implemented in LIBRA

[112].

The properties of the MCD estimators were extensively studied, for example

in order to choose the parameter h the maximum breakdown point of the MCD

estimator is achieved for h =
⌊
n+p+1

2

⌋
. However for a good trade-off between

robustness and efficiency the authors recommend 0.75 · n (see [96, 53]).

A.3 Distributions of Mahalanobis distances

The Mahalanobis squared distances give a one-dimensional measure of how far a

point is from a location with respect to a shape. Several approximations of the

distribution of the Mahalanobis distance are known in the literature. Some results

are given in [48, 53] and summarized as follows.

Consider n multivariate data points in R
p, Xi ∼ N (µ,Σ), and S an estimate

of Σ. The three distributional results for distances based on multivariate normal

data are given below.

1. Considering the true parameters µ and Σ known, if the data are normal

distributed, the Mahalanobis distances have an exact χ2
d distribution:

MD(xi, µ,Σ) ∼ χ2
d,

with

E [MD(xi, µ,Σ)] = d

var [MD(xi, µ,Σ)] = 2d.

2. The Mahalanobis distances based on the standard estimates have an exact

Beta distribution:

n

(n− 1)2
MD(xi, T, S) ∼ Beta

(
d

2
,
n− d− 1

2

)
,

and

E

[
n

(n− 1)
MD(xi, T, S)

]
= d

var

[
n

(n− 1)
MD(xi, T, S)

]
= 2d

n− d− 1

n+ 1
.
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3. The Mahalanobis distances based on an estimate S of Σ, independent of

xi have an exact F distribution when µ is the location argument, and an

approximate F distribution when the standard location estimate is used.

n− d

d(n− 1)
MD(xi, T, S) ∼ F (d, n− d) ,

and

E

[
n− d− 2

(n− 1)
MD(xi, T, S)

]
= d

var

[
n− d− 2

(n− 1)
MD(xi, T, S)

]
= 2d

n− 2

n− d− 4
.

The above distributions can be incorporated in outlier detecting algorithms. Quan-

tiles, especially χ2 quantiles are a straightforward way to identify outliers, although

the results are often spoiled by the high amount of false positives ( see [98]).
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