

Unit 5

Linguistic Variables and Modifiers

Motivation

Our goal is to be able to proceed IF-THEN rules involving vague linguistic expressions which are modeled by fuzzy sets.

Question: What is still missing?

Linguistic variables establish the link between the linguistic expressions in the rules and the corresponding models (fuzzy sets).

Linguistic Variables

A linguistic variable is a quintuple of the form

$$V = (N, G, T, X, M),$$

where N, T, X, G, and M are defined as follows:

- 1. N is the name of the linguistic variable V
- 2. G is a grammar
- 3. T is the so-called *term set*, i.e. the set linguistic expressions resulting from G
- 4. X is the universe of discourse
- 5. M is a $T \to \mathcal{F}(X)$ mapping which defines the semantics—a fuzzy set on X—of each linguistic expression in T


```
1. N=\text{"v1"}
2. G: \perp := \langle \text{adjective} \rangle;
\langle \text{adjective} \rangle := \text{"small"} \mid \text{"medium"} \mid \text{"large"};
3. T=\{\text{"small"},\text{"medium"},\text{"large"}\}
4. X=[0,100]
5. M=\ldots
```


4. X = [0, 100]

```
1. N = \text{"v2"}
2. G: \bot
                    := 〈atomic〉;
          ⟨atomic⟩ := ⟨adjective⟩ | ⟨adverb⟩ ⟨adjective⟩ ;
          ⟨adjective⟩ := "small" | "medium" | "large";
          ⟨adverb⟩ := "at least" | "at most";
3. T = \{\text{"small"}, \text{"medium"}, \text{"large"},
          "at least small", "at least medium",
          "at least large", "at most small",
          "at most medium", "at most large"}
```



```
1. N = \text{"v3"}
2. G: \bot
                            := \langle atomic \rangle \langle atomic \rangle \langle binary \rangle \langle atomic \rangle ;
            ⟨atomic⟩ := ⟨adjective⟩ | ⟨adverb⟩ ⟨adjective⟩ ;
            ⟨adjective⟩ := "nb" | "nm" | "ns" | "z" | "ps" | "pm" | "pb";
            ⟨adverb⟩ := "at least" | "at most";
            \langle binary \rangle := "and" | "or";
3. T = ... (462 elements)
4. X = [-100, 100]
5. M = ...
```


4. X = [-100, 100]

 $5 M = \dots$

```
1. N = \text{"v4"}
2. G: \bot
                                 := \langle \exp \rangle;
               \langle \exp \rangle := \langle \operatorname{atomic} \rangle \mid \text{"("} \langle \exp \rangle \langle \operatorname{binary} \rangle \langle \exp \rangle \text{")"} \mid
                                           "(not" (exp) ")";
               ⟨atomic⟩ := ⟨adjective⟩ | ⟨adverb⟩ ⟨adjective⟩ |
                                           "between" (adjective) "and" (adjective);
               ⟨adjective⟩ := "nb" | "nm" | "ns" | "z" | "ps" | "pm" | "pb";
               \langle adverb \rangle := "at least" | "at most";
               \langle binary \rangle := "and" | "or";
3. T = \dots (infinitely many elements)
```

145

How Do We Define M?

- As long as T is finite (e.g. Examples 1 and 2), we can define M(a) for each $a \in T$ separately
- If T is a big set (e.g. Example 3), this is cumbersome
- If *T* is infinite (e.g. Example 4), this is not possible anymore

Practically Feasible Way

- Define separate fuzzy sets M(a) for all atomic adjectives a
- Use modifiers for adverbs
- Use fuzzy set operations for logical connectives

Unary Ordering-Based Modifiers

$$\mu_{M(\text{at least }a)}(x) = \sup\{\mu_{M(a)}(y) \mid y \leq x\}$$

$$\mu_{M(\text{at most }a)}(x) = \sup\{\mu_{M(a)}(y) \mid y \geq x\}$$

Note that, with the convention

$$\mu_L(x,y) = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{if } x > y, \end{cases}$$

this means nothing else but the following:

$$M(\text{at least } a) = L(M(a))$$

148

M(at least a)

$M(\mathsf{at}\;\mathsf{most}\;a)$

Logical Connectives

Assume that (T, S, N) is a De Morgan triple. Then we can define the following:

$$\mu_{M(a \text{ and } b)}(x) = T(\mu_{M(a)}(x), \mu_{M(b)}(x))$$

$$\mu_{M(a \text{ or } b)}(x) = S(\mu_{M(a)}(x), \mu_{M(b)}(x))$$

$$\mu_{M(\text{not } a)}(x) = N(\mu_{M(a)}(x))$$

This means nothing else but the following:

$$M(a ext{ and } b) = M(a) \cap_T M(b)$$
 $M(a ext{ or } b) = M(a) \cup_S M(b)$
 $M(\text{not } a) = \mathbb{C}_N M(a)$

The "Between" Modifier

$$M(\text{between } a \text{ and } b) = M(\text{at least } (a \text{ or } b) \text{ and at most } (a \text{ or } b))$$

= $L(M(a) \cup_S M(b)) \cap_T L^{-1}(M(a) \cup_S M(b))$

M(between a and b)

What About Other Adverbs?

- In principle, we can add any kind of adverb to the grammar *G*
- But how can we define the corresponding semantics?
- Again, either via separate fuzzy sets or via modifiers
- Notorious example: intensifying modifier "very" and weakening modifier "more or less"

Zadeh's Approach

$$\mu_{M(\text{very }a)}(x) = \left(\mu_{M(a)}(x)\right)^{2}$$

$$\mu_{M(\text{more or less }a)}(x) = \sqrt{\mu_{M(a)}(x)}$$

This approach is far too simplistic!

De Cock's Approach

Suppose that R is a d-resemblance relation and T is a (left-)continuous t-norm.

$$M(\text{more or less } a) = R_T(M(a)),$$

$$M(\text{very } a) = R_T^{\bullet}(M(a)),$$

where R_T^{\bullet} is a specific kind of image of R:

$$\mu_{R_T^{\bullet}(A)}(x) = \inf\{\vec{T}(\mu_R(x,y),\mu_A(y)) \mid y \in X\}$$

De Cock's Approach (cont'd)

$$M(\text{roughly }a) = M(\text{more or less more or less }a)$$

$$= R_T(R_T(M(a)))$$

$$M(\text{extremely }a) = M(\text{very very }a)$$

$$= R_T^{\bullet}(R_T^{\bullet}(M(a)))$$

Final Remarks

- There are several other approaches how to deal with "roughly", "very", "more or less", etc.
- None of them is commonly accepted
- None of them is fully capable of capturing the subtle meanings of these adverbs in a satisfactory way