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Motivation

Our ultimate goal is to be able to proceed IF-THEN rules
Involving vague linguistic expressions which are modeled
by fuzzy sets.

Question: What is still missing before we reach that goal?

Nonchalantly speaking, fuzzy inference is about process-
Ing fuzzy rules.
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The Basic Setup

Let us in the following consider a system with n inputs and one
output. Assume that we have n linguistic variables

(N1,G1,T1, X1, M),

U1

Un — (Nna Gn, Tn, Xn, Mn)a

associated to the n inputs of the system and one linguistic vari-
able associated to the output:

vy = (Ny, Gy, Ty, Xy, My)
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Fuzzy Rule Base with m Rules

IF cond; THEN action;

IF cond,, THEN action,,

The conditions cond; and the actions action,; are ex-
pressions built up according to an appropriate syn-
tax.
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An Example of a General Syntax for Conditions

1 = (exp);

(exp) = (Iscondition) | “(" (exp) (binary) (exp) “)” |
“(not” (exp) “)";

(binary) = “and” | “or”;

(iscondition) = (N;) “is” (I}) ;

For some i = 1,...,n, (N;) may be expanded with the
corresponding name of the i-th linguistic variable and (lé)
may be expanded with a corresponding term from T;.
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A Simple Syntax for Actions

L= (Ny) “Is™ (ly;)

(ly;) may be expanded with a corresponding term from 7.
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Example

Consider a system with two inputs and one output:

v1 = (N1 = "¢, G1, Ty = {"nb", "ns", 2", “ps”, “pb’}.
X3 = [—-30,30], M),

vy = (No =", Go, To = {"nb”,“ns”, “z”, “ps”, “pb”},
Xo = [_307 30]7 M2)7

v, = (N, =“f", Gy, T, = {“nb”,“ns”, “z", “ps”, “pb’},
X, = [-100, 100], M,)
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Example (cont’d)

IF(piszand pisz) THEN fisz
IF (pisnsand ¢isz) THEN f isns
IF (pisns and ¢ isns) THEN f is nb
IF (pisnsand ¢is ps) THEN fis z

How can we define a control function from these rules?
[go to fuzzy sets]
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What Do We Need?

1. We have to feed our input values into the system
2. We have to evaluate the truth values of the conditions

3. We have to come to some conclusions/actions for
each rule

4. We have to come to an overall conclusion/action for
the whole set of rules

5. We have to get an output value

Steps 3 and 4 are usually considered the steps of actual
rfarsanecao 167
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Steps 1 and 2

Assume that we are given n crisp input values z; € X;
(z = 1,...,n) and assume we have fixed a De Morgan triple

(T,S,N).

Then we can compute the truth value t(cond;) of each condi-
tion cond; recursively in the following way (assuming the syntax
from the above example):

t(a and b) = T'(t(a), t(b))
t(a orb) = S(t(a),t(b))
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Steps 3 and 4: Basic Remarks

1. It may happen that the conditions of two or more rules
are fulfilled with a non-zero truth value

2. It may even happen that this is true for two or more
rules with different (conflicting?) actions

3. This is not at all a problem, but a great advantage!

4. In any case, the following basic requirement is obvi-
ous: The higher the truth value of a rule’s condition,
the higher its influence on the output should be
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Steps 3 and 4: Two Fundamental Approaches

Deductive interpretation:  Rules are considered as logi-
cal deduction rules (implications)

Assignment interpretation:  Rules are considered as
conditional assignments (like in a procedural pro-
gramming language)

Both approaches have in common that separate out-
put/action fuzzy sets are computed for each rule. Finally,
the output fuzzy sets of all rules are aggregated into one
global output fuzzy set.
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Step 3 in the Deductive Interpretation

We fix a fuzzy implication I in advance. Assume that we
consider the :-th rule which looks as follows:

IF cond; THEN Ny is I
Assume that the condition cond; Is fulfilled with a degree
of ¢;. Then the output fuzzy set O; is defined in the follow-
Ing way:

1o, (y) = I(ti; parey ()
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An Example

pa(z)
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An Example

Isy, Ng (04, pa(a))
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An Example

Isy Ng (0.4, 14 (x))
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An Example

T, (0.4, pa(x))
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An Example

T5(0.4, 14 (x))
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Step 4 in the Deductive Interpretation

We fix a t-norm 7T in advance. Assume that the output
fuzzy sets O; of all rules (z = 1,...,m) have been com-
puted. Then the output fuzzy set O is computed in the
following way:

poW) =T (po, (W), - bom ()
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Step 3 In the Assignment Interpretation

We fix a t-norm T in advance. Assume that we consider
the :-th rule which looks as follows:

IF cond; THEN Ny is I
Assume that the condition cond; Is fulfilled with a degree
of ¢;. Then the output fuzzy set O; is defined in the follow-
INng way:

1o, (y) = T (ti, mar ey (1))
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An Example

pa(z)
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An Example

Tm(0.4, pa(z))
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An Example

Tp(0.4, pa(x))
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An Example

11 (0.4, pa(x))
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Step 4 in the Assignment Interpretation

We fix an aggregation operator A in advance. Assume
that the output fuzzy sets O; ofall rules (: = 1, ..., m) have

been computed. Then the output fuzzy set O is computed
In the following way:

po (W) = A(po, (), - - -5 1o (1))
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Some Remarks

= The assignment interpretation is by far the more com-
mon one In practice. There is only one package that
seriously offers the deductive interpretation (LFLC). It
uses Tz?L and T = Ty.

= The most common variant of the assignment-based
approach is T' = T, and A = Sy. This classical
variant is better known as Mamdani/Assilian inference
or max-min inference. Another common variant uses
T = Tp and the sum/arithmetic mean as aggregation
A. This variant is often called sum-prod inference.
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Example

We consider the rule base from the previous example.
[go back]

We define the following fuzzy sets for variables with names
and ¢ (left) and f (right):

\ \
VA \

230 20 -10 | 10 20 30 ~100-80 ~40-20 20 40 80 100
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A Deeper Look Inside

= Each truth value ¢; is from the unit interval and depending on the
Input vector (x4, ...,zn). Therefore, we can consider ¢, as a fuzzy
seton Xq x --- x Xp.

= For a given input vector (zq,...,z,) and an output value y € Xy,
the degree of relationship via the rule base is given as

(tiCons o osan)o sy quy @) OF T (i, onds gy (9)),

That means that each rule defines a fuzzy relation from X; x--- x
Xn, t0 Xy,

= Correspondingly, the whole rule base defines a fuzzy relation from
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A Graphical Representation

ilnput
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What to Do With Fuzzy Inputs: CRI
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Step 5: Defuzzification

In many applications, we need a crisp value as output. The
following variants are common:

Mean of maximum (MOM): The output is computed as the
center of gravity of the area where p 5 takes the maximum,

l.e.
[ ydy
~ Ceil(0)
O) .= :
Emom (O) [ 1dy
Ceil(0)
where

Ceil(0) :={y € Xy | uo(w) = {ps(2) | z € Xy }}
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Step 5: Defuzzification (cont'd)

Center of gravity (COG): The output is computed as the cen-
ter of gravity of the area under ps:

|y vo(y) dy

Xy

;5[ po(y) dy

Ecoc(0) 1=

Center of area (COA). The output is computed as the point
which splits the area under n5 into two equally-sized parts.

Fuzzy Logic | 183



TS

lﬁlm"lm

P |

= JOHANNES KEPLER
UNIVERSITAT LINZ

rrrrrrrrrrrrrrrrrrrr , Lehre und Praxis

Summary: Deductive Interpretation

1. Feed our input values into the system: evaluate the truth
degrees to which the inputs belong to the fuzzy sets asso-
ciated to the linguistic terms

2. Evaluate the truth values of the conditions using fuzzy log-
ical operations (a De Morgan triple (T°, S, N))

3. Compute the conclusions/actions for each rule by connect-
Ing the truth value of the condition with the output fuzzy set
using a fuzzy implication I

4. Compute the overall conclusion/action for the whole set of
rules by aggregating the output fuzzy sets with a t-norm 7T°
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Summary: Assignment Interpretation

1. Analogous

2. Analogous

3. Compute the conclusions/actions for each rule by connect-

Ing the truth value of the condition with the output fuzzy set
using a t-norm 1’

4. Compute the overall conclusion/action for the whole set of

rules by aggregating the output fuzzy sets with an aggre-
gation operator A (most often a t-conorm)

5. Use defuzzification to get a crisp output value (optional)
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